Lecture 20: Sections 5.1, 5.2

Definition

Let A be a square matrix. If, for a nonzero vector x,

 $A\mathbf{x} = \lambda \mathbf{x}$

then **x** is called an eigenvector of *A*, and λ is called an eigenvalue of *A*.

 α is an eigenvalue of $A \Leftrightarrow (A - \alpha I)\mathbf{x} = \mathbf{0}$ has a nontrivial solution \Leftrightarrow $(A - \alpha I)$ is not invertible $\Leftrightarrow \det(A - \alpha I) = 0$

- $det(A \alpha I) = 0$ the characteristic equation
- $det(A \alpha I)$ the characteristic polynomial
- Nul $(A \lambda I)$ the eigenspace corresponding to the eigenvalue λ
- The eigenvalues of a triangular matrix are the entries on its main diagonal
- If $B = P^{-1}AP$ then A and B have the same characteristic polynomial and hence the same eigenvalues
- If v₁,..., v_p are eigenvectors that correspond to distinct eigenvalues of some matrix, then the set {v₁,..., v_p} is linearly independent