Lecture 15 (Sections 4.5, 4.6)

Dimension

2 Rank

Dimension

Theorem 9

Let $H = \operatorname{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ and let q > p. Then any collection of q vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_q\}$ (in H) is linearly dependent.

If $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ and $\{\mathbf{u}_1, \dots, \mathbf{u}_q\}$ are bases for H then p = q.

Definition

If $\{v_1, \ldots, v_n\}$ is a basis for H, then n is called the dimension of H, written $\dim H$.

Let $n = \dim V \ge 1$ and $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$. Then S is lin. indep. $\Leftrightarrow S$ spans $V \Leftrightarrow S$ is a basis for V.

- $\dim \operatorname{Nul} A$ is the number of free variables in $A\mathbf{x} = \mathbf{0}$
- dim Col A is the number of pivot columns in A

Rank

Theorem 13

If $A \sim B$, then Row A = Row B. If B is in echelon form, the nonzero rows of B form a basis for Row A = Row B.

Definition

 $\operatorname{rank} A = \dim \operatorname{Col} A$

Theorem 14

Let *A* be $k \times n$ matrix. Then rank $A = \dim \text{Row } A$ and rank $A + \dim \text{Nul } A = n$.

Theorem

Let A be $n \times n$ matrix. Then

A is invertible $\Leftrightarrow \operatorname{Col} A = \mathbb{R}^n \Leftrightarrow \operatorname{rank} A = n \Leftrightarrow \operatorname{Nul} A = \{0\} \Leftrightarrow \dim \operatorname{Nul} A = 0$