Lecture 10 (Section 2.2)

Inverse of a matrix

Inverse of a matrix

• Let A be $n \times n$. $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one and onto $\Leftrightarrow A$ is invertible. • $A = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ is invertible if and only if ad = b = c = 0 and the invert

• $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if $ad - bc \neq 0$ and the inverse is

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

- det A = ad bc is called the determinant of A
- "invertible" = "nonsingular", "not invertible" = "singular"

Inverse of a matrix

Theorem 6

• *A* is invertible $\Rightarrow A^{-1}$ is invertible and

$$(A^{-1})^{-1} = A$$

• A and B have the same size and are invertible \Rightarrow AB is invertible and

$$(\underline{AB})^{-1} = B^{-1}A^{-1}$$

• A is invertible $\Rightarrow A^T$ is invertible and

$$(A^T)^{-1} = (A^{-1})^T$$

Elementary matrices

- $n \times n$ matrix *E* is elementary if it is obtained from I_n by a single elementary row op.
- Every elementary matrix is invertible
- If A is $n \times k$ matrix,

 $I_n \longrightarrow E$ $A \longrightarrow EA$

• $n \times n$ matrix A is invertible $\Leftrightarrow A \sim I_n$

$$\Leftrightarrow \qquad I_n = E_p E_{p-1} \dots E_1 A$$
$$\Leftrightarrow \qquad A^{-1} = E_p E_{p-1} \dots E_1 = E_p E_{p-1} \dots E_1 I_n$$