Lecture 8 (Section 1.9)

The matrix of a linear transformation

Linear transformations of \mathbb{R}^2

Onto and one-to-one mappings

The matrix of a linear transformation

Theorem 10

Let $T : \mathbb{R}^n \to \mathbb{R}^k$ be a linear mapping. Then, for all $\mathbf{x} \in \mathbb{R}^n$, we have

 $T(\mathbf{x}) = A\mathbf{x}$

where

- $A = [T(\mathbf{e}_1) \dots T(\mathbf{e}_n)]$
- $I = [\mathbf{e}_1 \dots \mathbf{e}_n]$ the identity matrix in \mathbb{R}^n

Linear transformations of \mathbb{R}^2

Onto and one-to-one mappings

Let $T : \mathbb{R}^n \to \mathbb{R}^k$ and if T is linear, let $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. (If not, A is not defined)

Definition

T is onto (or surjective) if each $\mathbf{b} \in \mathbb{R}^k$ is the image of at least one $\mathbf{x} \in \mathbb{R}^n$. Equivalent are

- Range $(T) = \mathbb{R}^k$
- Columns of A span \mathbb{R}^n

Definition

T is one-to-one (or injective) if each $\mathbf{b} \in \text{Range}(T)$ is the image of exactly one $\mathbf{x} \in \mathbb{R}^n$. Equivalent are

- Each $\mathbf{b} \in \mathbb{R}^k$ is the image of at most one $\mathbf{x} \in \mathbb{R}^n$
- Columns of A are linearly independent
- $A\mathbf{x} = \mathbf{0}$ has only the trivial solution