Lecture 7 (Section 1.8)

General mappings

Linear mappings

General mappings

$$T: \mathbb{R}^n \to \mathbb{R}^k$$
 or $\mathbf{x} \mapsto T(\mathbf{x})$

- mapping (map, function, transformation) from \mathbb{R}^n to \mathbb{R}^k
- T maps x to $T(\mathbf{x})$
- \mathbb{R}^n is the domain of *T*
- \mathbb{R}^k is the codomain of T
- for $\mathbf{x} \in \mathbb{R}^n$, $T(\mathbf{x}) \in \mathbb{R}^k$ is called the image of \mathbf{x}
- the range of T is the set of all $T(\mathbf{x})$

Range $(T) = \{T(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n\}$

Linear mappings

Definition

 $T: \mathbb{R}^n \to \mathbb{R}^k$ is linear if

- $T(\alpha \mathbf{x}) = \alpha T(\mathbf{x})$ for all $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$
- $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

Theorem 9'

If $T : \mathbb{R}^n \to \mathbb{R}^k$ is a linear mapping, then

- T(0) = 0
- $T(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha T(\mathbf{x}) + \beta T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$

Theorem 9" If $T : \mathbb{R}^n \to \mathbb{R}^k$ satisfies

$$T(\alpha \mathbf{x} + \mathbf{y}) = \alpha T(\mathbf{x}) + T(\mathbf{y})$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$

then T is linear.