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(Row) Echelon Form

• Nonzero row - row containing at least one nonzero entry
• Leading entry - leftmost nonzero entry (in a nonzero row)

Matrix in echelon form (or echelon matrix):
• All nonzero rows are above all zero rows
• Each leading entry is to the right of the leading entry of the above row
• All entries in a column below a leading entry are zero

»
1 2
3 4

– »
1 2
0 4

– »
0 1 2
0 0 4

– 24 0 0
1 2
0 4

35 24 1 2
0 4
0 0

35
24 1 2 3 4

0 5 6 0
0 0 0 8

35 24 0 1 2 3
5 0 7 6
0 0 8 9

35 24 1 2 3 4
0 0 5 6
0 0 0 8

35



Reduced (Row) Echelon Form

Matrix in reduced echelon form (or reduced echelon matrix):
• It is in echelon form
• Each leading entry is 1
• Each leading entry is the only nonzero entry in its column»

1 2
3 4

– »
1 2
0 4

– »
1 2
0 1

– »
1 0
0 1

– »
1 0
0 0

–

24 1 2 0 0
0 0 1 0
0 0 0 1

35 24 1 2 0 4
0 0 1 5
0 0 0 0

35 24 0 1 0
1 0 0
0 0 1

35



Elementary row operations

• Interchange - Interchange two rows
• Scaling - Multiply all entries in a row by a nonzero constant
• Replacement - Replace one row by the sum of itself and a multiple of another row

A =

2664
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

3775
Perform elementary row operations on A and get U, i.e., let U be row equivalent to A

• If U is in echelon form, we say U is an echelon form of A

• If U is in reduced echelon form, we say U is the reduced echelon form of A

Theorem: For any matrix, there is one and only one reduced echelon form.



Row reduction algorithm

Forward phase: echelon form
• Determine the leftmost nonzero column (pivot column)
• Select a nonzero entry in the pivot column (pivot)
• Interchange row to move this entry to the top position (pivot position)
• Use row replacement operations to create zeros in all positions below the pivot
• Ignoring (or covering) the row containing the pivot position, repeat the process

until there are only zeros

Backward phase: reduced echelon form
• Use scaling operations to make pivots equal to 1
• Beginning with the rightmost pivot and working upward to the left, create zeros

above each pivot

Invariance of pivot positions
• Backward phase does not change pivot positions
• The reduced echelon form is unique

⇒ the leading entries are always in the same positions in any echelon form of a given
matrix



Linear Systems

24 1 2 0 4
0 0 1 5
0 0 0 0

35 8<: x1 + 2x2 = 4
x3 = 5
0 = 0

• pivot columns - basic variables: x1, x3

• the rest - free variables: x2 8<: x1 = 4− 2x2
x2 is free
x3 = 5

(4− 2x2, x2, 5) is a solution for any real number x2 ∈ R
In a slightly different notation: (4− 2t, t, 5) for any real number t ∈ R



Existence and Uniqueness
If the rightmost column is a pivot column, like in24 1 2 0 0

0 0 1 0
0 0 0 1

35 8<: x1 + 2x2 = 0
x3 = 0
0 = 1

then the system is inconsistent.
If the rightmost column is not a pivot column, like in24 1 2 0 4

0 0 1 5
0 0 0 0

35 8<: x1 + 2x2 = 4
x3 = 5
0 = 0

or 24 1 2 0 4
0 1 0 5
0 0 1 0

35 8<: x1 = 4
x2 = 5

x3 = 0

then the system is consistent.
If there are no free variables, then the system has a unique solution.

It is sufficient to have an echelon form to answer these questions. If a system is

determined to be consistent, one can go ahead and find the reduced echelon form to

solve the system (in other words, to find the solution set).
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