Ax=b, A=[$\mathbf{a}_1,...,\mathbf{a}_n$] is k by n matrix, T(\mathbf{x})=A \mathbf{x}

	inconsistent	consistent		consistent for all \mathbf{h} in \mathbf{D}^k
		unique solution	many solutions	
row reduction	<i>last</i> column of the augmented matrix [A b] is a <i>pivot</i> column	<i>all columns</i> of A are pivot columns	at least one <i>non</i> -pivot <i>column</i> in A	A has a pivot position in <i>every row</i>
vectors	b is <i>not</i> in the span of $\mathbf{a}_1, \dots, \mathbf{a}_n$	a ₁ ,, a _n are linearly <i>independent</i>	$\mathbf{a}_{1},,\mathbf{a}_{n}$ are linearly <i>dependent</i>	$\mathbf{a}_{1},,\mathbf{a}_{n}$ span \mathbf{R}^{k}
			at least <i>one</i> of the vectors $\mathbf{a}_1,,\mathbf{a}_n$ is a <i>linear combination</i> of the others	each b in \mathbb{R}^k is a linear combination of $\mathbf{a}_1, \dots, \mathbf{a}_n$
matrices	b is <i>not</i> in the span of the columns of A	columns of A are linearly <i>independent</i>	columns of A are linearly <i>dependent</i>	columns of A span R^k
		A x=0 has <i>only</i> the trivial solution		each b in \mathbb{R}^k is a linear combination of the columns of A
mappings	b is <i>not</i> in the range of <i>T</i>	<i>T</i> is one-to-one	<i>T</i> is <i>not</i> one-to-one	<i>T</i> is <i>onto</i>
		each b in \mathbb{R}^k is the image of at <i>most one</i> x in \mathbb{R}^n		Range of T is \mathbb{R}^k