MATH 20F WINTER 2007 PRACTICE MIDTERM II

FEBRUARY 28

GUIDELINES:

- Please put your name, ID number, TA's name, and section time on your blue book or exam sheet.
- No books, notes, or calculators are allowed.
- Write your solutions clearly and give explanations for your work. Answers without justifications will not be given credit.
- If any question is not clear, ask for clarification.

PROBLEMS:

1. [10pts] Let A be a 3×3 matrix such that det A = 4, and let B be given by

$$B = \left[\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{array} \right].$$

- a). [5pts] Calculate det $(A^{-1}B)$.
- b). [5pts] Write B in LU form, that is, find an upper triangular matrix U and a unit lower triangular matrix L such that B = LU.
- 2. [10pts] Determine if each of the following set is a vector space. If so, find a basis for it and calculate its dimension. (*Hint*: If a subset of a vector space is itself a vector space, it is called a subspace.)
 a). [5pts]

$$S = \left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n : x_1 + \ldots + x_n = 0 \right\}.$$

b). [*5pts*]

$$H = \{ \begin{bmatrix} \alpha \\ \beta \\ \alpha \\ \beta \end{bmatrix} \in \mathbb{R}^4 : \alpha, \beta \in \mathbb{R} \}.$$

(SEE OTHER SIDE)

3. [20pts] Let the following vectors be given:

$$\mathbf{u}_1 = \begin{bmatrix} 2\\ -4\\ 0 \end{bmatrix}, \qquad \mathbf{u}_2 = \begin{bmatrix} 0\\ 2\\ 2 \end{bmatrix}, \qquad \mathbf{u}_3 = \begin{bmatrix} 0\\ 6\\ 0 \end{bmatrix},$$

and

$$\mathbf{v}_1 = \begin{bmatrix} 2\\ -2\\ -2 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 0\\ 0\\ -1 \end{bmatrix}, \qquad \mathbf{v}_3 = \begin{bmatrix} 1\\ 0\\ 4 \end{bmatrix}.$$

- a). [5pts] Prove that $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a basis for \mathbb{R}^3 .
- b). [5pts] Find the change-of-coordinate matrix from \mathcal{U} to $\mathcal{V} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, that is, find the matrix P such that $[\mathbf{x}]_{\mathcal{V}} = P[\mathbf{x}]_{\mathcal{U}}$ for all $\mathbf{x} \in \mathbb{R}^3$. Is \mathcal{V} a basis for \mathbb{R}^3 ?
- c). [5pts] If the coordinate vector of $\mathbf{x} \in \mathbb{R}^3$ relative to the basis \mathcal{U} is given by

$$[\mathbf{x}]_{\mathcal{U}} = \begin{bmatrix} 2\\ -3\\ 1 \end{bmatrix},$$

find $[\mathbf{x}]_{\mathcal{V}}$, that is, the coordinate vector of \mathbf{x} relative to the basis \mathcal{V} .

- d). [5pts] Find the change-of-coordinate matrix from \mathcal{V} to \mathcal{U} , that is, find the matrix Q such that $[\mathbf{x}]_{\mathcal{U}} = Q[\mathbf{x}]_{\mathcal{V}}$ for all $\mathbf{x} \in \mathbb{R}^3$. (*Hint*: How is Q related to P?)
- 4. [10pts] Mark each statement TRUE or FALSE. Briefly justify each answer.
 - a). In order for a matrix B to be the inverse of A, both equations AB = I and BA = I must be true.
 - b). If A is an invertible $n \times n$ matrix, then the equation $A\mathbf{x} = \mathbf{b}$ is consistent and has a unique solution for each \mathbf{b} in \mathbb{R}^n .
 - c). det $A = -\det A^T$.
 - d). A basis is a spanning set that is as large as possible.
 - e). A basis is a linearly independent set that is as large as possible.