MATH 20F WINTER 2007 MIDTERM EXAM II

FEBRUARY 28

GUIDELINES:

- Please put your name, ID number, TA's name, and section time on your blue book or exam sheet.
- No books, notes, or calculators are allowed.
- Write your solutions clearly and give explanations for your work. Answers without justifications will not be given credit.
- If any question is not clear, ask for clarification.

PROBLEMS:

1. [10pts] Let B be a 3×3 matrix such that det B = 2, and let A be given by

$$A = \left[\begin{array}{rrrr} 1 & 3 & 9 \\ 1 & 8 & 64 \\ 1 & 13 & 169 \end{array} \right].$$

- a). [5pts] Calculate det(BAB).
- b). [5pts] Write A in LU form, that is, find an upper triangular matrix U and a unit lower triangular matrix L such that A = LU.

4 4 7

2. [10pts] Let the matrix A and the vectors $\mathbf{u} \in \mathbb{R}^4$ and $\mathbf{w} \in \mathbb{R}^3$ be given by

$A = \left[\right.$	$\begin{array}{rrrr} 3 & -2 \\ -2 & 6 \\ 4 & 2 \end{array}$	$ \begin{array}{ccc} 4 & 4 \\ 2 & 0 \\ 3 & 9 \end{array} $],	u =	$\begin{array}{r}14\\10\\-1\\-14\end{array}$,	$\mathbf{w} =$	$\left[\begin{array}{c}23\\43\\0\end{array}\right]$	•
----------------------	---	--	----	------------	--	---	----------------	---	---

- a). [5pts] Find a basis for and the dimension of NulA. Is **u** in NulA? (*Hint* on row reducing A: Scale the second row by factor $\frac{1}{2}$ and interchange the first two rows. Then do not use scaling until the last moment. This will save some arithmetics on fractions.)
- b). [5pts] Find a basis for and the dimension of Col A. Is w in Col A?

(SEE OTHER SIDE)

3. [10pts] Let H be a vector space and let $\mathcal{V} = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ be a basis for H. Let the vectors $\mathbf{u}_1, \mathbf{u}_2$, and \mathbf{u}_3 be given by

 $\mathbf{u}_1 = \mathbf{v}_1 - 2\mathbf{v}_3, \qquad \mathbf{u}_2 = -3\mathbf{v}_1 + \mathbf{v}_2 + 4\mathbf{v}_3, \qquad \mathbf{u}_3 = 2\mathbf{v}_1 - 3\mathbf{v}_2 + 4\mathbf{v}_3.$

- a). Is $\mathcal{U} = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ a basis for H? If so, find the *change-of-coordinate* matrix from \mathcal{V} to \mathcal{U} , that is, find the matrix Q such that $[\mathbf{x}]_{\mathcal{U}} = Q[\mathbf{x}]_{\mathcal{V}}$ for all $\mathbf{x} \in H$. Here $[\mathbf{x}]_{\mathcal{V}}$ and $[\mathbf{x}]_{\mathcal{U}}$ denote the *coordinate vectors* of \mathbf{x} relative to the bases \mathcal{V} and \mathcal{U} , respectively.
- b). If $\mathbf{x} = 4\mathbf{v}_1 + \mathbf{v}_2 3\mathbf{v}_3$, find $[\mathbf{x}]_{\mathcal{U}}$.
- 4. [10pts] Mark each statement TRUE or FALSE. Briefly justify each answer.
 - a). If A and B are invertible $n \times n$ matrices, then $A^{-1}B^{-1}$ is the inverse of AB.
 - b). If A is invertible, then elementary row operations that reduce A to I also reduce I to A^{-1} .
 - c). The determinant of a matrix in echelon form is the product of its pivot entries.
 - d). The number of pivot columns in A is the dimension of Nul A.
 - e). If V is a vector space of dimension k, and **x** is in V, then the coordinate vector of **x** relative to any basis for V is in \mathbb{R}^k .