MATH 20F WINTER 2007 FINAL EXAM

MARCH 21

GUIDELINES:

- Please put your name, ID number, and TA's name on your blue book.
- No books, notes, or calculators are allowed.
- Write your solutions clearly and give explanations for your work. Answers without justifications will not be given credit.
- If any question is not clear, ask for clarification.
- Please draw the following table on the inner side of the front cover of your blue book.

PROBLEMS:

1. [15pts]

a). [5pts] Find the inverse of
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
.
b). [5pts] Find the orthogonal projection of $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ onto the (one-dimensional)
subspace of \mathbb{R}^3 spanned by $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.
c). [5pts] Determine the rank of $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.

2. [10pts] Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ and $L: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear mappings given by

$$S(\mathbf{x}) = \begin{bmatrix} 2x_1 + 3x_2\\ 4x_1 + 5x_2 \end{bmatrix}, \quad \text{where } \mathbf{x} = \begin{bmatrix} x_1\\ x_2 \end{bmatrix},$$

and

$$L(\mathbf{x}) = \begin{bmatrix} 5x_2 \\ -4x_1 + 9x_2 \end{bmatrix}, \quad \text{where } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

- a). [5pts] Is S onto? Is it one-to-one? Justify your answer.
- b). [5pts] Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the mapping such that $L = S \circ T$, that is, let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the mapping such that $L(\mathbf{x}) = S(T(\mathbf{x}))$ for all $\mathbf{x} \in \mathbb{R}^2$. Find the standard matrix of T.

(SEE OTHER SIDE)

1	
$\frac{2}{3}$	
3	
$\begin{array}{c} 4\\ 5\\ 6 \end{array}$	
5	
7	
8	
\sum	

3. [10pts] Let the matrix A and the vectors $\mathbf{x} \in \mathbb{R}^4$ and $\mathbf{z} \in \mathbb{R}^3$ be given by

$$A = \begin{bmatrix} 1 & -2 & 5\\ 2 & 5 & -8\\ -1 & -4 & 7\\ 3 & 1 & 1 \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} 0\\ 0\\ 6\\ 0 \end{bmatrix}, \qquad \mathbf{z} = \begin{bmatrix} 122\\ -244\\ -122 \end{bmatrix}.$$

a). [5pts] Find a basis for and the dimension of Col A. Is \mathbf{x} in Col A?

- b). [5pts] Find a basis for and the dimension of Nul A. Is z in Nul A?
- 4. [15pts] Let the following vectors be given:

$$\mathbf{u}_1 = \begin{bmatrix} -6 \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 6 \\ -2 \end{bmatrix}.$$

It is easy to show that both $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2\}$ and $\mathcal{V} = \{\mathbf{v}_1, \mathbf{v}_2\}$ are bases for \mathbb{R}^2 .

- a). [5pts] Find the change-of-coordinate matrix from \mathcal{U} to \mathcal{V} , that is, find the matrix P such that $[\mathbf{x}]_{\mathcal{V}} = P[\mathbf{x}]_{\mathcal{U}}$ for all $\mathbf{x} \in \mathbb{R}^2$. b). [5pts] If the coordinate vector of $\mathbf{x} \in \mathbb{R}^2$ relative to the basis \mathcal{U} is given by

$$[\mathbf{x}]_{\mathcal{U}} = \begin{bmatrix} 1\\4 \end{bmatrix},$$

find $[\mathbf{x}]_{\mathcal{V}}$, that is, the coordinate vector of \mathbf{x} relative to the basis \mathcal{V} .

- c). [5pts] Find the change-of-coordinate matrix from \mathcal{V} to \mathcal{U} , that is, find the matrix Q such that $[\mathbf{x}]_{\mathcal{U}} = Q[\mathbf{x}]_{\mathcal{V}}$ for all $\mathbf{x} \in \mathbb{R}^2$.
- 5. [20pts] Let the matrices A, B, and the vector **x** be given by

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} 5 \\ -1 \\ -2 \end{bmatrix}.$$

- a). [5pts] Find all eigenvalues and eigenvectors of A. Is A diagonalizable?
- b). [5pts] Find all eigenvalues and eigenvectors of B.
- c). [5pts] Orthogonally diagonalize B.
- d). [5pts] Suppose that H and G are the eigenspaces of B. Then find $\mathbf{y} \in H$ and $\mathbf{z} \in G$ such that $\mathbf{x} = \mathbf{y} + \mathbf{z}$.
- 6. [10pts] Mark each statement TRUE or FALSE. Briefly justify each answer.
 - a). A number α is an eigenvalue of A if and only if the equation $(A \alpha I)\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
 - b). $\det(A+B) = \det A + \det B$
 - c). The dimension of an eigenspace of a matrix equals the multiplicity of the corresponding eigenvalue.
 - d). Eigenvectors corresponding to different eigenvalues of a symmetric matrix are orthogonal.
 - e). The general least-squares problem is to find an \mathbf{x} that makes $A\mathbf{x}$ as close as possible to **b**.

(SEE OTHER PAGE)

- 7. [10pts] Let A and B be $n \times n$ matrices.
 - a). [5pts] Use determinants to get a proof of the fact that if AB = I, then both A and B are invertible.
 - b). [5pts] Show that if $A \neq 0$, $B \neq 0$, and AB = 0, then det $A = \det B = 0$. (*Hint*: What are the columns of AB? What does the condition AB = 0 say about the columns of B? First consider the possibility det $B \neq 0$ and use the fact that A = 0 if Nul $A = \mathbb{R}^n$. Now consider the condition $B^T A^T = 0$ and the possibility det $A^T \neq 0$.)
- 8. [10pts] Let H be a subspace of \mathbb{R}^n , and let A be a matrix such that $||A\mathbf{y}|| = ||\mathbf{y}||$ for any $\mathbf{y} \in H$, and $A\mathbf{z} = \mathbf{0}$ for any $\mathbf{z} \in H^{\perp}$. Prove that for any $\mathbf{x} \in \mathbb{R}^n$, the vector $A^T A \mathbf{x}$ is equal to the orthogonal projection of \mathbf{x} onto H, as follows:
 - a). [5pts] Any vector $\mathbf{x} \in \mathbb{R}^n$ can be written as $\mathbf{x} = \hat{\mathbf{x}} + \mathbf{z}$ with $\hat{\mathbf{x}} \in H$ being the orthogonal projection of \mathbf{x} onto H, and $\mathbf{z} \in H^{\perp}$. Then it is clear that $\mathbf{x} \in H^{\perp}$ if and only if $\hat{\mathbf{x}} = 0$. Use this observation to show that Nul $A = H^{\perp}$. Explain why this implies $\operatorname{Col} A^T = H$. Show that $A^T A \mathbf{x} = A^T A \hat{\mathbf{x}}$.
 - b). [5pts] Show that $(A\mathbf{u}) \cdot (A\mathbf{v}) = \mathbf{u} \cdot \mathbf{v}$ for any $\mathbf{u}, \mathbf{v} \in H$. Further manipulate the equality to show that $\mathbf{u}^T (A^T A \mathbf{v} - \mathbf{v}) = 0$ for any $\mathbf{u}, \mathbf{v} \in H$. Is $A^T A \mathbf{v} - \mathbf{v}$ in H^{\perp} ? Using a result from a), show that $A^T A \mathbf{v} - \mathbf{v} \in H$. What do these two conditions imply? From a) we have $A^T A \mathbf{x} = A^T A \hat{\mathbf{x}}$ where $\hat{\mathbf{x}} \in H$ is the orthogonal projection of \mathbf{x} onto H. What can you say about $A^T A \hat{\mathbf{x}}$ now?