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The subject of geometric numerical integration deals with numerical integra�
tors that preserve geometric properties of the �ow of a di�erential equation�
and it explains how structure preservation leads to an improved long�time be�
haviour� This article illustrates concepts and results of geometric numerical
integration on the important example of the St�ormer�Verlet method� It thus
presents a cross�section of the recent monograph by the authors� enriched by
some additional material�

After an introduction to the Newton�St�ormer�Verlet�leapfrog method and its
various interpretations� there follows a discussion of geometric properties� re�
versibility� symplecticity� volume preservation� and conservation of �rst inte�
grals� The extension to Hamiltonian systems on manifolds is also described�
The theoretical foundation relies on a backward error analysis� which trans�
lates the geometric properties of the method into the structure of a modi�ed
di�erential equation� whose �ow is nearly identical to the numerical method�
Combined with results from perturbation theory� this explains the excellent
long�time behaviour of the method� long�time energy conservation� linear er�
ror growth and preservation of invariant tori in near�integrable systems� a
discrete virial theorem� preservation of adiabatic invariants�
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�� The Newton�St�ormer�Verlet�leapfrog method

We start by considering systems of second order di
erential equations

�q � f�q�� �����

where the right�hand side f�q� does not depend on �q� Many problems in
astronomy� molecular dynamics� and other areas of physics are of this form�

���� Two�step formulation

If we choose a step size h and grid points tn � t� � nh� the most natural
discretisation of ����� is

qn�� � �qn � qn�� � h�f�qn�� �����

which determines qn�� whenever qn�� and qn are known� Geometrically�
this amounts to determining an interpolating parabola which in the mid�
point assumes the second derivative prescribed by equation ������ see the
left picture of Fig� ����
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���� One�step formulations

Introducing the velocity �q � v turns equation ����� into a �rst�order system
of doubled dimension

�q � v� �v � f�q�� �����

an equation in the so�called phase space� In analogy to this� we introduce
discrete approximations of v and q as follows�

vn �
qn�� � qn��

�h
� vn� �

�

�
qn � qn��

h
� qn� �

�

�
qn � qn��

�
� �����

where some derivatives� in order to preserve second order and symmetry�
are evaluated on the staggered grid tn� �

�

� tn� �

�

� � � �� see the right picture of

Fig� ���� Inserting these expressions into the method �or simply looking at
the picture� we see that method ����� can now be interpreted as a one�step
method �h � �qn� vn� �� �qn��� vn���
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There is a dual variant of the method on the staggered grid �vn� �

�

� qn� �

�

� ��
�vn� �

�

� qn� �

�

� as follows�

�B�

qn � qn� �
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���
�

For both arrays �A� and �B�� one can concatenate� in the actual step�by�
step procedure� the last line of the previous step with the �rst line of the
subsequent step� Both schemes then turn into the same method� where the
q�values are evaluated on the original grid� and the v�values on the staggered
grid�

vn� �

�

� vn� �

�

� h f�qn� �����

qn�� � qn � h vn� �

�

This is the computationally most economic implementation and numerically
more stable than ������ see �Hairer� N�rsett and Wanner ����� p� �����
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���� Historical remarks

Isn�t that ingenious � I borrowed it straight from Newton� It comes
right out of the Principia� diagram and all�

�R� Feynman 
���� p� ���

The above schemes are known in the literature under various names� Es�
pecially in molecular dynamics they are often called the Verlet method
�Verlet ��
�� and have become by far the most widely used integration
scheme in this �eld�
Another name for this method is St�ormer method� since C� St�ormer� in

����� used higher�order variants of it for his computations of the motion of
ionised particles in the earth�s magnetic �eld �aurora borealis�� see� e�g��
�Hairer et al� ����� Sect� III����� Sometimes it is also called the Encke
method� because J�F� Encke� around ��
�� did extensive calculations for the
perturbation terms of planetary orbits� which obey systems of second order
di
erential equations of precisely the form ������ Mainly in the context of
partial di
erential equations of wave propagation� this method is called the
leap�frog method� In yet another context� this formula is the basic method
for the GBS extrapolation scheme� as it was proposed� for the case of equa�
tion ������ by Gragg in ��
	� see �Hairer et al� ����� p� ��� f��� Furthermore�
the scheme ����� is equivalent to Nystr�om�s method of order �� see �Hairer
et al� ����� p� �
�� formula �III���������
A curious fact is that Professor Loup Verlet� who later became interested

in the history of science� discovered precisely �his� method in several places
of the classical literature� For example� in the calculations of logarithms
and astronomical tables by J�B� Delambre in ����� this paper has been
translated and commented in �McLachlan and Quispel ����� Appendix C��
Even more spectacular is the �nding that the �Verlet method� was used in
Newton�s Principia from �
�� to prove Kepler�s second law� An especially
clear account can be found in Feynman�s Messenger lecture from ��
�� see
�Feynman ��
	� p� ���� from which we reproduce with pleasure� two of Feyn�
man�s original hand drawings�
The argumentation is as follows� if there

are no forces� the body advances with uniform
speed� and the radius vector covers same areas
in same times� simply because the two trian�
gles Sun���� and Sun���� have the same base
and common altitudes �see the wrap �gure��
If now the gravitational force acts at the mid�
point� the planet is deviated in such a way that
the top of the second triangle moves parallel to

�
� � � and with permission of the publisher
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Fig� 
�	� Gravitation acting at mid�point �drawing of R� Feynman�

the sun ray �see Fig� ����� Hence� also the triangle Sun���� has the same area�
The whole procedure �uniform motion on half the interval� then a �kick� to
the velocity in direction of the Sun� and another uniform motion on the
second half� is precisely the variant �B� of the St�ormer�Verlet scheme�

���� Interpretation as composition method �symplectic Euler�

We can go a step further and split the formulae in the middle of the schemes
���	� and ���
�� We then arrive at the schemes �vn� qn� �� �vn� �

�

� qn� �

�

� given

by

�SE��
vn� �

�

� vn �
h
� f�qn�
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� qn
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�

�����

as well as the adjoint scheme �vn� �

�

� qn� �

�

� �� �vn��� qn��� obtained by for�

mally replacing the subscript n by n� � and h by �h�
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�
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�����
Both these schemes� in which one variable is used at the old value and the
other at the new value� are called the symplectic Euler method�
We thus see that the above scheme �A� is the composition of the symplectic

Euler schemes �SE�� with �SE��� while the scheme �B� is the composition
of method �SE�� followed by �SE���
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��	� Interpretation as splitting method

We consider the vector �eld �v� f�q�� of ����� �split� as the sum of two vector

�elds �v� �� and ��� f�q�� as indicated in Fig� ���� The exact �ows �
���
t and

�q � v
�v � f�q�

q

v

�
�q � v
�v � �

q

v

�
�q � �
�v � f�q�

q

v

Fig� 
��� The phase space vector �eld split into two �elds

�
���
t of these two vector �elds� which both have a constant time derivative�
are easily obtained�

�
���
t �

n
q� � q� � t � v�
v� � v�

�
���
t �

n
q� � q�
v� � v� � t � f�q�� � ������

These formulae are precisely those which build up the formulae �SE�� and
�SE�� above �
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���
h�� � �
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���
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���
h��

�SE��

y�

y�

�
���
h��

�
���
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���
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������

For the two versions of the St�ormer�Verlet method we thus obtain the dia�
grams

�A� � �SE�� � �SE��
�B� � �SE�� � �SE��

�A�

y�

y�

�
���
h�� �

���
h

�
���
h�� �B�

y�

y�

�
���
h��

�
���
h

�
���
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������

or in explicit formulae�

�
�A�
h � �

���
h�� � �

���
h � ����

h��

�
�B�
h � �

���
h�� � �

���
h � ����

h�� �
������

This way of composing the �ows of split vector �elds is often referred to
as Strang splitting� after �Strang ��
��� For a careful survey of splitting
methods we refer to �McLachlan and Quispel ������
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��
� Interpretation as variational integrator

A further approach to the St�ormer�Verlet method is obtained by discretising
Hamilton�s principle� This variational principle states that the motion of a
mechanical system between any two positions q�t�� � q� and q�tN � � qN is
such that the action integralZ tN

t�

L�q�t�� �q�t�� dt is minimised� ������

where L�q� v� is the Lagrangian of the system� Typically� it is the di
erence
between the kinetic and the potential energy�

L�q� v� �
�

�
vTMv � U�q�� ����	�

with a positive de�nite mass matrix M � In the case where M does not
depend on q� the Euler�Lagrange equations of this variational problem�
d
dt

�L
�v �

�L
�q � reduce to the second�order di
erential equation M �q � �rU�q��

We now approximate q�t� by a piecewise linear function� interpolating grid
values �tn� qn� for n � �� �� � � � � N � and the action integral by the trapezoidal
rule� We then require that q�� � � � � qN�� be such that instead of �������

N��X
n��

Sh�qn� qn��� is minimised� ����
�

where

Sh�qn� qn��� �
h

�
L
�
qn�

qn�� � qn
h

�
�
h

�
L
�
qn���

qn�� � qn
h

�
� ������

The requirement that the gradient with respect to qn be zero� yields the
discrete Euler�Lagrange equations

rQSh�qn��� qn� �rqSh�qn� qn��� � �

for n � �� � � � � N � �� where the partial gradients rq�rQ refer to Sh �
Sh�q�Q�� In the case of the Lagrangian ����	� these equations reduce to

M�qn�� � �qn � qn��� � h�rU�qn� � �� ������

which is just the two�step formulation ����� of the St�ormer�Verlet method�
with f�q� � �M��rU�q��
This variational interpretation of the St�ormer�Verlet method was given

by �MacKay ������ A comprehensive survey of variational integrators can
be found in �Marsden and West ������
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��� St�ormer�Verlet scheme ��� Runge�s method

Fig� 
��� Kepler problem
 dashed� exact solution

���� Numerical example

We choose the Kepler problem

�q� � � q�
�q�� � q���

	��
� �q� � � q�

�q�� � q���
	��

� ������

As initial values we take

q���� � �� e� q���� � �� �q���� � �� �q���� �

r
� � e

�� e
� ������

with e � ��
� The period of the exact solution is ��� Figure ��� presents
the numerical values of the St�ormer�Verlet method for two di
erent step
sizes� These solutions are compared to those of the explicit midpoint rule in
Runge�s one�step formulation� see �Hairer� Lubich and Wanner ����� p� ���
Fig� ���� and equation ������� This second method is of the same order and
for the �rst steps it behaves very similarly to the St�ormer�Verlet scheme �the
�rst step is even identical��� but it deteriorates signi�cantly as the integration
interval increases� The explanation of this strange di
erence is the subject
of the theories below�
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���� Extension to general partitioned problems

For the extension of the above formulae to the more general system

�q � g�q� v�� �v � f�q� v�� ������

we follow the ideas of �De Vogelaere ��	
�� This is a marvellous paper�
short� clear� elegant� written in one week� submitted for publication � and
never published� We �rst extend the formulae ����� and ������ by taking
over the missing arguments from one equation to the other� This gives

�SE��
vn� �

�

� vn �
h
� f�qn� vn� �

�

�

qn� �

�

� qn �
h
� g�qn� vn� �

�

�
������

and

�SE��
qn�� � qn� �

�

� h
� g�qn��� vn� �

�

�

vn�� � vn� �

�

� h
� f�qn��� vn� �

�

��
������

In each of these algorithms the derivative evaluations of both formulae are
taken at the same point� The extensions of the St�ormer�Verlet schemes are
now obtained by composition� in the same way as in Sect� ����

�A� � �SE����SE��

vn� �

�

� vn �
h
� f�qn� vn� �

�

�

qn�� � qn �
h
�

�
g�qn� vn� �

�

� � g�qn��� vn� �

�

�
�

vn�� � vn� �

�

� h
� f�qn��� vn� �

�

��

������
and for the dual version

�B� � �SE����SE��

qn � qn� �

�

� h
� g�qn� vn� �

�

�

vn� �

�

� vn� �

�

� h
�

�
f�qn� vn� �

�

� � f�qn� vn� �

�

�
�

qn� �

�

� qn �
h
� g�qn� vn� �

�

��

����	�
For illustrations see Fig� ��	� The �rst equation of ������ is now an implicit
formula for vn� �

�

� the second one for qn��� while only the last one is explicit�

Such implicit methods were not common in the �fties and might then not
have delighted journal editors � nor programmers�

No detailed example or discussion is given� This will best be done
by those working on these problems in the Brookhaven� Harwell�
MURA or CERN group� �De Vogelaere 
����
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St�ormer�Verlet �A�

exact

�qn� �

�
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�

�
�qn� vn� �

�

�

�qn� �

�

� vn� �

�

��qn� vn� �

�

�

St�ormer�Verlet �B�

Fig� 
��� St�ormer�Verlet methods for �q � v� �v � � sin q � v���� initial values
��
��� ����� step size h � 
��� Black points indicate where the vector �eld is

evaluated�

�� Geometric properties

We study geometric properties of the �ow of di
erential equations which
are preserved by the St�ormer�Verlet method� The properties discussed are
reversibility� symplecticity� and volume preservation�

���� Symmetry and reversibility

The St�ormer�Verlet method is symmetric with respect to changing the di�
rection of time� in its one�step formulation ���	�� replacing h by �h and
exchanging the subscripts n � n � � �i�e�� re�ecting time at the centre
tn����� gives the same method again� Similarly� the replacements h � �h
and n� �

� � n� �
� leave the formulation ���
� unchanged� In terms of the

numerical one�step map �h � �qn� vn� �� �qn��� vn���� this symmetry can be
stated more formally as

�h � �
��
�h� �����

Such a relation does not hold for the symplectic Euler methods ����� and
������ where the above time�re�ection transforms �SE�� to �SE�� and vice
versa�
The time�symmetry of the St�ormer�Verlet method implies an important

geometric property of the numerical map in the phase space� namely re�
versibility� to which we turn next� The importance of this property in nu�
merical analysis was �rst emphasized by �Sto
er ������
The system ����� has the property that inverting the direction of the initial

velocity does not change the solution trajectory� it just inverts the direction
of motion� The �ow �t thus satis�es that

�t�q� v� � �bq� bv� implies �t�bq��bv� � �q��v�� �����

and we call it reversible with respect to the re�ection � � �q� v� �� �q��v��
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Fig� 	�
� A reversible system �left� and the symmetric St�ormer�Verlet method
�right�
 same equation as in Fig� 
���

This property is illustrated in the left picture of Fig� ���� The numerical
one�step map �h of the St�ormer�Verlet method satis�es similarly

�h�q� v� � �bq� bv� implies �h�bq��bv� � �q��v�� �����

for all q� v and all h� see the right picture of Fig� ���� This holds because prac�
tically all numerical methods for ������ and in particular the St�ormer�Verlet
method and also the symplectic Euler methods� are such that

�h�q� v� � �bq� bv� implies ��h�q��v� � �bq��bv�� �����

as is readily seen from the de�ning formulae such as ���	�� The symmetry
����� of the St�ormer�Verlet method is therefore equivalent to the reversibility
������ Let us summarise these considerations�

Theorem ���� The St�ormer�Verlet method applied to the second�order
di
erential equation ����� is both symmetric and reversible� i�e�� its one�step
map satis�es ����� and ������

In some situations� the �ow is ��reversible with respect to involutions �
other than �q� v� �� �q��v�� that is� it satis�es

� � �t � ���
t � �� ���	�

For example� the �ow of the Kepler problem ������ is ��reversible also with
respect to � � �q�� q�� v�� v�� �� �q���q���v�� v��� In general� the �ow of a
di
erential equation �y � F �y� is ��reversible if and only if the vector �eld
satis�es � � F � �F � �� We then call the di
erential equation ��reversible�
By the same argument as above� the St�ormer�Verlet method is then also

��reversible for � of the form ��q� v� � ����q�� ���v��� i�e��

� � �h � �
��
h � �� ���
�
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���� Hamiltonian systems and symplecticity

We now turn to the important class of Hamiltonian systems

�p � �rqH�p� q� � �q � rpH�p� q� �����

where H�p� q� is an arbitrary scalar function of the variables �p� q�� When
the Hamiltonian is of the form

H�p� q� �
�

�
pTM��p� U�q�� �����

with a positive de�nite mass matrix M and a potential U�q�� then the
system ����� turns into the second�order di
erential equation ����� upon
expressing the momenta p � Mv in terms of the velocities and setting
f�q� � �M��rU�q�� Equation ����� expresses the total energy H as the
sum of kinetic and potential energy�
A characteristic geometric property of Hamiltonian systems is that the

�ow �t is symplectic� that is� the derivative ��t � ��t���p� q� of the �ow
satis�es� for all �p� q� and t where �t�p� q� is de�ned�

��t�p� q�
TJ ��t�p� q� � J with J �

�
� I
�I �

�
� �����

where I is the identity matrix of the dimension of p or q� see� e�g�� �Arnold
����� p� ���� or �Hairer et al� ����� p� �����
The relation ����� is formally similar to orthogonality �which it would be

if J were replaced by the identity matrix�� but unlike orthogonality it is
not related to the conservation of lengths� but of areas in phase space� In
fact� for systems with one degree of freedom �i�e�� p� q � R�� the equation
����� expresses that the �ow preserves the area of sets of initial values in the
�p� q��plane� see the left picture of Fig� ���� For higher�dimensional systems�
symplecticity ����� means that the �ow preserves the sum of the oriented
areas of the projections of �t�A� onto the �pi� qi��coordinate planes� for any
two�dimensional bounded manifold of initial values A� see� e�g�� �Hairer et
al� ����� p� ���f�� for a justi�cation of this interpretation�
The St�ormer�Verlet method ������ applied to the Hamiltonian system

����� reads

�A�

pn� �

�

� pn � h
� rqH�pn� �

�

� qn�

qn�� � qn �
h
�

�
rpH�pn� �

�

� qn� �rpH�pn� �

�

� qn���
�

pn�� � pn� �

�

� h
� rqH�pn� �

�

� qn���

������

and a similar formula for variant �B�� In the particular case of the Hamil�
tonian ������ the method reduces to the St�ormer�Verlet method ���	� with
f�q� � �M��rU�q�� upon setting pn �Mvn�
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�t

Fig� 	�	� Symplecticity of the St�ormer�Verlet method for a separable
Hamiltonian�

A numerical method is called symplectic if� for Hamiltonian systems ������
the Jacobian of the numerical �ow �h � �pn� qn� �� �pn��� qn��� satis�es
condition ������ i�e�� if

��h�p� q�
TJ ��h�p� q� � J ������

for all �p� q� and all step sizes h�
Symplecticity of numerical methods was �rst considered by �De Vogelaere

��	
�� but was not followed up until �Ruth ����� and �Feng ���	�� In the
late ����s� the results of �Lasagni ������ �Sanz�Serna ������ and �Suris �����
started o
 an avalanche of papers on symplectic numerical methods� �Sanz�
Serna and Calvo ����� was the �rst book dealing with this subject�

Theorem ���� The St�ormer�Verlet method applied to a Hamiltonian sys�
tem is symplectic�

We give four di
erent proofs of this result� which all correspond to di
er�
ent interpretations of the method� as a composition method� as a splitting
method� as a variational integrator� and using generating functions� Each
of these interpretations lends itself to generalisations to other symplectic in�
tegrators� of higher order and�or for constrained Hamiltonian systems� Yet
another proof is based on the preservation of quadratic invariants and will be
mentioned in Sect� � below� The second proof applies only to Hamiltonians
of the special form ������ the third proof is formulated for such Hamiltonians
for convenience�
The historically 
rst proof� due to �De Vogelaere ��	
�� uses the interpre�

tation of the St�ormer�Verlet method as the composition of the symplectic
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Euler method

�SE��
pn� �

�

� pn � h
� rqH�pn� �

�

� qn�

qn� �

�

� qn �
h
� rpH�pn� �

�

� qn�
������

and its adjoint

�SE��
qn�� � qn� �

�

� h
� rpH�pn� �

�

� qn���

pn�� � pn� �

�

� h
� rqH�pn� �

�

� qn����
������

The method �SE�� is indeed symplectic� as is seen by direct veri�cation of

the symplecticity condition
�
��pn�����qn�����

��pn�qn�

�T
J
�
��pn�����qn�����

��pn�qn�

�
� J� The

matrix of partial derivatives is obtained from di
erentiating equation ��������
I � hHT

qp �
�hHpp I

��
��pn����� qn�����

��pn� qn�

�
�

�
I �hHqq

� I � hHqp

�
�

where all the submatrices of the Hessian� Hqp�Hpp� etc�� are evaluated at
�pn����� qn�� In the same way� �SE�� is seen to be symplectic� Hence also
their composition ������ is symplectic�
The second proof is the most elegant one� but it applies only to the case

of separable Hamiltonians H�p� q� � T �p� � U�q�� It is based on the inter�
pretation of the St�ormer�Verlet method as a splitting method� As in �������
we have for variant �A�

�h � �Uh�� � �Th � �Uh��� ������

where �Tt and �Ut are the exact �ows of the Hamiltonian systems with
Hamiltonian T �p� � �

� p
TM��p and U�q�� i�e�� �p � �� �q � M��p and

�p � �rU�q�� �q � �� respectively� corresponding to the splitting H�p� q� �
T �p��U�q� of the Hamiltonian ����� into kinetic and potential energy� Since
the �ows of Hamiltonian systems are symplectic� so is their composition
������� This is illustrated in the right picture of Fig� ���� Variant �B� has
the �ows of T and U interchanged in ������� and thus it is likewise symplec�
tic�
The third proof uses the interpretation of the St�ormer�Verlet method as

a variational integrator �see Sect� ��
�� The symplecticity of variational in�
tegrators derives from non�numerical work by �Maeda ����� and �Veselov
������ Using ����� and the �rst line of ���	� we have for Sh�q�Q� of �������
in the case of the Lagrangian ����	� which corresponds to the Hamiltonian
������

�rqSh�qn� qn��� �M
qn�� � qn

h
�
h

�
rU�qn� �Mvn � pn ����	�
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and similarly

rQSh�qn� qn��� �M
qn�� � qn

h
� h

�
rU�qn��� �Mvn�� � pn��� ����
�

Given �pn� qn�� the �rst of the above two equations determines qn��� and
the second one pn��� The one�step map �h � �pn� qn� �� �pn��� qn��� of the
St�ormer�Verlet method is thus generated by the scalar�valued function Sh
via ����	� and ����
�� The desired result then follows from the fact that a
map �p� q� �� �P�Q� generated by

�rqS�q�Q� � p� rQS�q�Q� � P

is symplectic for any function S� This is veri�ed by directly checking the
symplecticity condition� Di
erentiation of the above equations gives the
following relations for the matrices of partial derivatives Pp� Pq� Qp� Qq�

Sqq � SqQQq � �� SqQQp � I

SQq � SQQQq � Pq� SQQQp � Pp �

These equations yield�
Pp Pq
Qp Qq

�T �
� I
�I �

��
Pp Pq
Qp Qq

�
�

�
� I
�I �

�
after multiplying out� as is required for symplecticity� This completes the
third proof of symplecticity of the St�ormer�Verlet method�
A fourth proof of the symplecticity is based on ideas of �Lasagni ������ A

step of the St�ormer�Verlet method can be generated by a function bSh�p�� q��
in the same way as the symplectic Euler method�

p� � p� �rq
bSh�p�� q��

q� � q� �rp
bSh�p�� q��� ������

As we have seen in the �rst proof� such maps are symplectic� The generating
function is simply bSh � hH for the symplectic Euler method� For the
St�ormer�Verlet method bSh is obtained as
bSh�p�� q�� �

h

�

�
H�p���� q�� �H�p���� q��

�
������

�h
�

�
rqH�p���� q��

T
�
rpH�p���� q�� �rpH�p���� q��

�
�

where q� and p��� are de�ned by the St�ormer�Verlet formulae and are now
considered as functions of �p�� q��� We do not give the computational details�
which can be found in �Hairer et al� ����� Sect� VI�	� for a more general class
of symplectic integrators�
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���� Volume preservation

The �ow �t of a system of di
erential equations �y � F �y� with divergence�
free vector �eld �divF �y� � � for all y� satis�es det��t�y� � � for all y� It
therefore preserves volume in phase space� for every bounded open set  
and for every t for which �t�y� exists for all y �  �

vol ��t� �� � vol � ��

The vector �eld �v� f�q�� of a second�order di
erential equation ������ written
as a �rst�order system� is divergence�free� The same is true for Hamiltonian
vector �elds ��rqH�p� q��rpH�p� q���
The St�ormer�Verlet method preserves volume�

vol ��h� �� � vol � ��

in the following two situations�
For the method ������� applied to a Hamiltonian system ������ this follows

from its symplecticity ������� which implies det��h�p� q� � � for all �p� q��
For partitioned di
erential equations of the form

�q � g�v�� �v � f�q� ������

the method ������ can be interpreted as the splitting ������� where �
���
t and

�
���
t are the exact �ows of �q � g�v�� �v � � and �q � �� �v � f�q�� respectively�
Since the vector �elds of these �ows are divergence�free� they are volume�
preserving and so is their composition�
The same idea allows to extend the St�ormer�Verlet method to a volume�

preserving algorithm for systems partitioned into three equations

�x � a�y� z�� �y � b�x� z�� �z � c�x� y�� ������

for which the diagonal blocks of the Jacobian are zero� We split them in a
symmetric way as

�
���
h�� � �

���
h�� � �

�	�
h � ����

h�� � �
���
h�� ������

where �
���
t is the �volume�preserving� �ow of �x � a�y� z�� �y � �� �z � � and

similarly for �
���
t and �

�	�
t � Written out� this becomes

xn� �

�

� xn �
h
� a�yn� zn�

yn� �

�

� yn �
h
� b�xn� �

�

� zn�

zn�� � zn � h c�xn� �

�

� yn� �

�

�

yn�� � yn� �

�

� h
� b�xn� �

�

� zn���

xn�� � xn� �

�

� h
� a�yn��� zn����

������
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Fig� 	��� Volume�preserving deformation of the ball of radius ���� centred at the
origin� by the ABC �ow �left� and by method �	�		� �right��

An illustration of this algorithm� applied to the ABC��ow

�x � A sin z � C cos y
�y � B sinx�A cos z
�z � C sin y �B cos x �

is presented in Fig� ��� for A � ���� B � C � ��
More ingenuity is necessary if the system is divergence�free with non�zero

elements on the diagonal of the Jacobian� �Feng and Shang ���	� give a
volume�preserving extension of the above scheme to the general case�

�� Conservation of �rst integrals

A non�constant function I�y� is a 
rst integral �or conserved quantity� or
constant of motion� or invariant� of the di
erential equation �y � F �y� if
I�y�t�� is constant along every solution� or equivalently� if

I ��y�F �y� � � for all y� �����

The latter condition says that the gradient rI�y� is orthogonal to the vector
�eld F �y� in every point of the phase space�
The foremost example is the HamiltonianH�p� q� of a Hamiltonian system

������ since H � � �rpH
T �rqH

T � and rpH
T ��rqH��rqH

T rpH � �� the
total energy H is a �rst integral� Apart from very exceptional cases� H is
not constant along numerical solutions computed with the St�ormer�Verlet
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Fig� ��
� The Hamiltonian and the second component of the Runge�Lenz�Pauli
vector along the numerical solution of the St�ormer�Verlet method with step size

h � ���	�

method� Later we will see� however� that H is conserved up to O�h�� over
extremely long time intervals�

Example ���� The Kepler problem ������ is Hamiltonian with H�p� q� �
�
��p

�
� � p��� � ��

p
q�� � q��� In addition to the Hamiltonian� this system has

the following conserved quantities� as can be easily checked� the angular
momentum L � q�p� � q�p�� and the non�zero components of the Runge�
Lenz�Pauli vector��A�

A�

�

�A �

�� p�
p�
�

�A�
�� �

�
q�p� � q�p�

�A� �p
q�� � q��

�� q�
q�
�

�A �

Fig� ��� shows the behaviour of these quantities along a numerical solution of
the St�ormer�Verlet method� The method preserves the angular momentum
exactly �see Sect� ����� and there are only small errors in the Hamiltonian
along the numerical solution� but no drift� There is� however� a linear drift
in the Runge�Lenz�Pauli vector� In contrast� for explicit Runge�Kutta meth�
ods� none of the �rst integrals is preserved� and there is a drift away from
the constant value for all of them�

Example ���� �Conservation of total linear and angular momentum of N �
body systems�� A system of N particles interacting pairwise with potential
forces which depend on the distances of the particles� is formulated as a
Hamiltonian system with total energy

H�p� q� �
�

�

NX
i��

�

mi
pTi pi �

NX
i��

i��X
j��

Vij

�
kqi � qjk

�
� �����

Here qi� pi � R	 represent the position and momentum of the ith particle of
mass mi� and Vij�r� �i � j� is the interaction potential between the ith and
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jth particle� The equations of motion read

�qi �
�

mi
pi � �pi �

NX
j��

�ij �qi � qj�

where� for i � j� we have �ij � �ji � �V �
ij�rij��rij with rij � kqi � qjk� and

�ii is arbitrary� say �ii � �� The conservation of the total linear momen�
tum P �

PN
i�� pi and the total angular momentum L �

PN
i�� qi � pi is a

consequence of the symmetry relation �ij � �ji�

d

dt

NX
i��

pi �

NX
i��

NX
j��

�ij�qi � qj� � �

d

dt

NX
i��

qi � pi �
NX
i��

�

mi
pi � pi �

NX
i��

NX
j��

qi � �ij�qi � qj� � � �

The exact preservation of linear �rst integrals� such as the total linear
momentum� is common to most numerical integrators�

Theorem ���� The St�ormer�Verlet method preserves linear �rst integrals�

Proof� Let the linear �rst integral be I�q� v� � bT q � cT v� so that bT v �
cT f�q� � � for all q� v� Necessarily then� cT f�q� � � for all q� and b � ��
Multiplying the formulae for v in ���	� by cT thus yields cT v� � cT v�� �

Quadratic 
rst integrals are not generally preserved by the St�ormer�Verlet
method� as the following example shows�

Example ���� Consider the harmonic oscillator� which has the Hamilto�
nianH�p� q� � �

�p
�� �

�	
�q� �p� q � R�� Applying the St�ormer�Verlet method

gives �
pn��

	qn��

�
� A�h	�

�
pn
	qn

�
�����

with the propagation matrix

A�h	� �

�
�� h���

� �h�
�

�
�� h���




�
h�
� �� h���

�

�
� �����

Since A�h	� is not an orthogonal matrix� H�p� q� is not preserved along
numerical solutions� Notice� however� that the characteristic polynomial is

�� ���h�	��
��� so that the eigenvalues are of modulus one if �and only
if� jh	j � �� The matrix V of eigenvectors is close to the identity for small
h	� and the norm of V ���pn� 	qn�

T is conserved�

The St�ormer�Verlet method does� however� preserve an important sub�
class of quadratic �rst integrals� and in particular the total angular momen�
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tum of N �body systems� As we have seen in Sect� ���� Newton was already
aware that the method preserves angular momentum in the Kepler problem
and used this fact to prove Kepler�s second law� In the following result C is
a constant square matrix and c a constant vector�

Theorem ���� The St�ormer�Verlet method preserves quadratic �rst in�
tegrals of the form I�q� v� � vT �Cq � c� �or I�p� q� � pT �Bq � b� in the
Hamiltonian case��

Proof� By ������ f�q�T �Cq � c� � vTCv � � for all q� v� Writing the
St�ormer�Verlet method as the composition of the two symplectic Euler
methods ����� and ������ we obtain for the �rst half�step

vTn�����Cqn���� � c� � vTn �Cqn � c�

�
h

�

�
f�qn�

T �Cqn � c� � vTn����Cvn����

�
�

where we notice that the term in the second line vanishes� For the second
half�step we obtain in the same way vTn���Cqn��� c� � vTn�����Cqn����� c��

and the result follows� �

The most important source of �rst integrals of Hamiltonian systems is
Noether�s theorem� which states that continuous symmetries yield �rst in�
tegrals� if the associated Lagrangian is invariant under the �ow �s of the
vector �eld a�q�� that is� L��s�q�� �

�
s�q�v� � L�q� v� for all real s near � and

all �q� v�� then I�p� q� � pTa�q� is a �rst integral� see� e�g�� �Arnold �����
p� ���� For Hamiltonian systems of the form ������ where the associated La�
grangian is ����	�� it can be shown that a�q� must be linear� a�q� � Bq� b�
with MB skew�symmetric� Hence� for Hamiltonian systems ����� with a
Hamiltonian of the form ������ all �rst integrals originating from Noether�s
theorem are preserved by the St�ormer�Verlet method�
Theorem ��	 yields yet another proof �and further insight� of the sym�

plecticity of the St�ormer�Verlet method� consider the Hamiltonian system
�p � �rU�q�� �q �M��p together with its variational equation

�Y �

�
� �r�U�q�

M�� �

�
Y with Y �

�
Pp Pq
Qp Qq

�
�

The derivative of the �ow is then ��t�p� q� � Y �t� corresponding to the
initial conditions p� q and Y ��� � I� The derivative ��h�p� q� of the numeri�
cal solution with respect to the initial values equals the result Y� obtained
by applying the method to the combined system of the Hamiltonian sys�
tem together with its variational equation� partitioned into �p� Pp� Pq� and
�q�Qp� Qq�� Symplecticity means that the components of Y

TJY are �rst
integrals� Since they are of the mixed quadratic type considered above�
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Theorem ��	 shows that they are preserved by the St�ormer�Verlet method�

Y T
� JY� � Y T

� JY�� which is just the symplecticity �
�
h
TJ��h � J �

�� Backward error analysis

The theoretical foundation of geometric integrators is mainly based on a
backward interpretation which considers the numerical approximation as
the exact solution of a modi�ed problem� Such an interpretation has been
intuitively used in the physics literature� e�g�� �Ruth ������ A rigorous
formulation evolved around ����� beginning with the papers �Feng ������
�McLachlan and Atela ������ �Sanz�Serna ������ �Yoshida ������ Expo�
nentially small error bounds and applications of backward error analysis
to explaining the long�time behaviour of numerical integrators were subse�
quently given by �Benettin and Giorgilli ������ �Hairer and Lubich ������
and �Reich ����a�� We explain the essential ideas and we illustrate them
for the St�ormer�Verlet method�

���� Construction of the modi
ed equation

The idea of backward error analysis applies to general ordinary di
erential
equations and to general numerical integrators� and a restriction to special
methods for second order problems would hide the essentials� We therefore
consider the di
erential equation

�y � F �y� �����

and a numerical one�step method yn�� � �h�yn�� The idea consists in
searching and studying a modi
ed di�erential equation

�y � F �y� � hF��y� � h�F	�y� � � � � � �����

such that the exact time�h �ow e�h�y� of ����� is equal to the numerical �ow
�h�y�� Unfortunately� the series in ����� cannot be expected to converge in
general� and the precise statement has to be formulated as follows�

Theorem ���� Consider ����� with an in�nitely di
erentiable vector �eld
F �y�� and assume that the numerical method admits a Taylor series expan�
sion of the form

�h�y� � y � hF �y� � h�D��y� � h	D	�y� � � � � �����

with smooth Dj�y�� Then� there exist unique vector �elds Fj�y� such that
for any N 	 ��

�h�y� � e�h�N �y� �O�hN����

where e�t�N is the exact �ow of the truncated modi�ed equation

�y � F �y� � hF��y� � � � � � hN��FN �y�� �����



		 E� Hairer� Ch� Lubich and G� Wanner

Proof� Disregarding convergence issues� we expand the exact �ow of �����
into a Taylor series �using the notation ey�t� � e�t�y��
e�h�y� � y � h �ey ��� � h�

��
�ey ��� � h	

��
ey�	���� � � � �

� y � h�F �y� � hF��y� � h�F	�y� � � � ��

�
h�

��
�F ��y� � hF ���y� � � � ���F �y� � hF��y� � � � �� � � � �

���	�

and we compare like powers of h in the expressions ���	� and ������ This
yields recurrence relations for the functions Fj�y�� namely�

F��y� � D��y�� �

�

F �F �y� ���
�

F	�y� � D	�y�� �

�


�
F ���F� F ��y� � F �F �F �y�

�
� �

�


�
F �F��y� � F ��F �y�

�
�

and uniquely de�nes the functions Fj�y� in a constructive manner� �

���� Modi
ed equation of the St�ormer�Verlet method

Putting y � �q� v�T and F �y� � �v� f�q��T � the di
erential equation ����� is
of the form ������ For the St�ormer�Verlet scheme ���	� we have

�h�q� v� �

�
q � hv � h�

� f�q�

v � h
�f�q� �

h
�f�q � hv � h�

� f�q��

�
� �����

Expanding this function into a Taylor series we get ����� with

D��q� v� �
�

�

�
f�q�
f ��q�v

�
� D	�q� v� �

�

�

�
�

f ��q�f�q� � f ���q��v� v�

�
� � � �

and the functions Fj�q� v� can be computed as in the proof of Theorem ����
Since the St�ormer�Verlet method is of second order� the function D��q� v�
has to coincide with the h��coe!cient of the exact solution and we have
F��q� v� � �� We then get

F	�q� v� �
�

��

� �� f ��q�v
f ��q�f�q� � f ���q��v� v�

�
� �����

and for the next function we obtain F
�q� v� � �� The vanishing of this
function follows from the symmetry of the method �cf� Sect� ����� For larger
�odd� j the functions Fj�q� v� become more and more complicated and higher
derivatives of f�q� are involved� The explicit formula for F	�q� v� also shows
that the modi�ed di
erential equation ����� is no longer a second order
equation like ������
A similar computation for the version �B� of the St�ormer�Verlet method
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Fig� ��
� Numerical solution with step size h � ��� for the two versions of the
St�ormer�Verlet method compared to the exact �ow of their modi�ed di�erential

equations truncated after the O�h�� term�

�see ���
�� gives

F	�q� v� �
�

��

�
� f ��q�v

�� f ��q�f�q�� f ���q��v� v�

�
�����

and� obviously� also F��q� v� � F
�q� v� � ��
As a concrete example consider the pendulum equation for which f�q� �

� sin q� The two pictures of Fig� ��� show the exact �ow of the modi�ed
di
erential equations �truncated after the O�h�� term� corresponding to the
two versions ���	� and ���
� of the St�ormer�Verlet scheme together with the
numerical solution for the initial value �p�� q�� � ����������� The colour
of the numerical approximations �dark gray to light gray� indicates the in�
creasing time� We observe a surprisingly good agreement�
In both cases the solutions of the modi�ed equation are periodic� and

the numerical approximation lies near a closed curve� so that a correct
qualitative behaviour is obtained� This is explained by the fact that for
f�q� � �rU�q� the vector �elds ����� and ����� are Hamiltonian with

H	�p� q� �
�

��
r�U�q��p� p� �

�

��
rU�q�TrU�q� and

H	�p� q� � � �

��
r�U�q��p� p�� �

�
rU�q�TrU�q��

respectively� Consequently� the exact solutions of the truncated modi�ed
equation stay on the level curves of eH�p� q� � H�p� q� � h�H	�p� q� which
are drawn in Fig� ����

���� Properties of the modi
ed di�erential equation

In the following Sect� ��� we shall see that the numerical solution is extremely
close to the exact solution of a truncated modi�ed equation� To study
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properties of the numerical solution� it is therefore justi�ed to investigate
instead the corresponding properties of the modi�ed di
erential equation�
It follows from the de�nition of the modi�ed equation that for methods

of order r� i�e�� �h�y� � �h�y� �O�hr���� we have

Fj�y� � � for j � �� � � � � r�

Furthermore� if the leading term of the local truncation error is Er���y��
i�e�� �h�y� � �h�y� � hr��Er���y� �O�hr���� then

Fr���y� � Er���y��

By Theorem ��� the St�ormer�Verlet method is symmetric� For such meth�
ods the modi�ed equation has an expansion in even powers of h� i�e��

F�j�y� � � for j � �� �� � � � � ������

This can be proved as follows� to indicate the h�dependence of the vector
�eld ������ we denote by e�t�h�y� the �formal� �ow of ������ Backward error
analysis tells us that �h�y� � e�h�h�y�� We thus have ��h�y� � e��h��h�y�
and by the group property of the exact �ow ���

�h�y� � e�h��h�y�� The sym�
metry condition ����� thus implies that e�t�h�y� � e�t��h�y� for t � h� and the
computation of ���	� shows that this is only possible if ������ holds�
Geometric properties of a numerical method have their counterparts in

the modi�ed equation� Let us explain this for the properties discussed in
Sects� � and ��

Theorem ���� �reversible systems� If the St�ormer�Verlet method ���	�
is applied to a di
erential equation ������ then every truncation of the
modi�ed di
erential equation is reversible with respect to the re�ection
��q� v� � �q��v��
Theorem ���� �Hamiltonian systems� If the St�ormer�Verlet method
������ is applied to a Hamiltonian system� then every truncation of the
modi�ed di
erential equation is Hamiltonian�

Theorem ���� �divergence�free systems� If the St�ormer�Verlet method
������ is applied to a divergence�free system of the form ������� then every
truncation of the modi�ed di
erential equation is divergence�free�

Theorem ���� �	rst integrals� If the St�ormer�Verlet method ������ is
applied to a di
erential equation with a �rst integral of the form I�q� v� �
vT �Cq � c�� then every truncation of the modi�ed di
erential equation has
I�q� v� as a �rst integral�

The proofs are based on an induction argument� Since they are all
very similar� see �Hairer et al� ����� Chap� IX�� we only present the proof
of Theorem ���� for the case where the Hamiltonian H�p� q� is de�ned
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on a simply connected domain� This proof was �rst given by �Benettin
and Giorgilli ����� and �Tang ������ and its ideas can be traced back to
�Moser ��
���

Proof� With y � �p� q�� the Hamiltonian system ����� is written more com�
pactly as �y � J��rH�y� with J of ������ We will show that all the coe!cient
functions of the modi�ed equation can be written as

Fj�y� � J��rHj�y�� ������

Assume� by induction� that ������ holds for j � �� �� � � � � N �this is satis�ed
for N � �� because F��y� � F �y� � J��rH�y��� We have to prove the
existence of a Hamiltonian HN���y�� The idea is to consider the truncated
modi�ed equation ������ which then is a Hamiltonian system with Hamilto�
nian H�y� � hH��y� � � � �� hN��HN �y�� Its �ow �N�t�y�� compared to that
of ����� and thus to the one�step map �h of the St�ormer�Verlet method�
satis�es

�h�y� � �N�h�y� � hN��FN���y� �O�hN����

and also

��h�y� � ��N�h�y� � hN��F �N���y� �O�hN����

By Theorem ��� and by the induction hypothesis� �h and �N�h are sym�
plectic transformations� This� together with ��N�h�y� � I � O�h�� therefore
implies

J � ��h�y�
TJ��h�y� � J � hN��

�
F �N���y�

T J � JF �N���y�
�
�O�hN����

Consequently� the matrix JF �N���y� is symmetric� The function JFN���y� is
therefore the gradient of some scalar function HN���y�� which proves ������
for j � N � �� �

The last argument of the foregoing proof requires that the domain be sim�
ply connected� For general domains� one has to use the representation ������
with the help of the generating function ������� We refer to Sect� IX���� of
�Hairer et al� ����� for details of the proof�

���� Exponentially small error estimates

Theorem ��� proves a statement that is valid for all N 	 �� and it is natural
to ask which choice of N gives the best estimate�

Example ��
� Consider the simple di
erential equation �q � f�t� �which
becomes autonomous after adding �t � ��� If one tries to compute the mod�
i�ed equation for the St�ormer�Verlet method� one is readily convinced that
its q�component is of the form

�q�t� � f�t� � h�b� �f�t� � h
b
f
�
��t� � h�b�f

����t� � � � � � ������
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Putting f�t� � et� the solution of this modi�ed equation iseq�t� � C� � tC� � �� � b�h
� � b
h


 � b�h
� � � � �� et�

and inserted into ����� we obtain

�� � b�h
� � b
h


 � b�h
� � � � ���e�h � � � eh� � h�� ������

This shows that ��b�h
��b
h


� � � � is analytic in a disc of radius �� centred
at the origin� Consequently� the coe!cients behave like b�k 
 Const ������k

for k ���
Consider now functions f�t� whose derivatives grow like f �k��t� 
 k�M R�k�

This is the case for analytic f�t� with �nite poles� The individual terms of
the modi�ed equation ������ then behave like

h�kb�kf
��k��t� 
 Const

h�k��k��

�R � ����k 
 Const
p
��k

� h � �k
R � �� e

��k
������

�using Stirlings formula�� Even for very small step sizes h this expression is
unbounded for k ��� so that the series ������ cannot converge� However�
the formula ������ tells us that the terms of the series decrease until �k
approaches the value ��R�h� and then they tend rapidly to�� It is therefore
natural to truncate the modi�ed equation after N terms� where N 
 ��R�h�
To �nd a reasonably good truncation index N for general di
erential

equations� one has to know estimates for all derivatives of F �y� and of the
coe!cient functions Dj�y� of the Taylor expansion of the numerical �ow�
One convenient way for doing this is to assume analyticity of these functions�
Exponentially small error bounds were �rst derived by �Benettin and

Giorgilli ������ The following estimates are from �Hairer et al� ����� p� ��
��

Theorem ���� Let F �y� be analytic in B�R�y��� let the coe!cients Dj�y�
of the method ����� be analytic in BR�y��� and assume that

kF �y�k �M and kDj�y�k � �M

�
�
M

R

�j��

����	�

hold for y � B�R�y�� and y � BR�y��� respectively� If h � h��� with
h� � R��e�M� and � � � max�
� ���� ln ������ then there exists N � N�h�
�namely N equal to the largest integer satisfying hN � h�� such that the
di
erence between the numerical solution y� � �h�y�� and the exact solutione�N�t�y�� of the truncated modi�ed equation ����� satis�es

k�h�y��� e�N�h�y��k � h�Me�h��h�

where � � e�� � ��
	� � �� depends only on the method�

The proof of this theorem is technical and long� see �Hairer et al� �����
Sect� IX��� for details� We just explain how the assumptions can be checked
for the St�ormer�Verlet method ������
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We let y � �q� v�T � F �y� � �v� f�q��T � and we consider the scaled norm
kyk � kqk � hkvk� The quantities R and M are then given by the prob�
lem� The computation of the beginning of Sect� ��� shows that the functions
Dj�q� v� are composed of derivatives of f�q� so that they are analytic on
the same domain as f�q�� To �nd the constants � and 
 in ����	�� we use
kF �y�k � kvk�hkf�q�k �M for kq�q�k�hkv�v�k � �R� and we estimate				�h�q� v� �

�
q � hv

v � h
� f�q�

�				 � 				� h�

� f�q�
h
� f�q � hv � h�

� f�q��

�				 � hM

for kq � q�k � hkv � v�k � R and for hM � R� This follows from the fact

that the argument of f satis�es kq � hv � h�

� f�q� � q�k � R � hM � �R�
Considered as a function of h� �h�q� v� is analytic in the complex disc jhj �
R�M � Cauchy�s estimate therefore yields

kDj�q� v�k � �

j�

				 dj

dhj

�
�h�q� v� �

�
q � hv

v � h
� f�q�

��




h��

				 �M
�M
R

�j��

for j 	 �� This proves the estimates ����	� with � � � and 
 � ����

�� Long�time behaviour of numerical solutions

In this section we show how the geometric properties of Sect� � turn into
favourable long�term behaviour� Most of the results are obtained with the
help of backward error analysis�

	��� Energy conservation

We have seen in Example ��� that the total energy H�p� q� of a Hamiltonian
system is not preserved exactly by the St�ormer�Verlet method� In that ex�
ample it is� however� approximately preserved� Also for the Kepler problem�
Fig� ��� indicates no drift in the energy� As the following theorem shows�
the Hamiltonian is in fact approximately preserved over very long times for
general Hamiltonian systems�

Theorem ���� The total energy along a numerical solution �pn� qn� of the
St�ormer�Verlet method satis�es

jH�pn� qn��H�p�� q��j � Ch� �CNh
N t for � � t � nh � h�N

for arbitrary positive integer N � The constants C and CN are independent
of t and h� CN depends on bounds of derivatives of H up to �N���th order
in a region that contains the numerical solution values �pn� qn��

We give two di
erent proofs of this result� the �rst one based on the
symplecticity� the second one on the symmetry of the method� When the
Hamiltonian is analytic� both proofs can be re�ned to yield an estimate



	� E� Hairer� Ch� Lubich and G� Wanner

Ch� � C�e
�c�ht over exponentially long times t � ec�h� with c proportional

to �� � where  is an upper bound of kM����r�U�q�M����k���� i�e�� of the
highest frequency in the linearised system�

The 
rst proof uses the symplecticity of the St�ormer�Verlet method via
backward error analysis� in an argument due to �Benettin and Giorgilli
������ It applies to general symplectic methods for general �smooth� Hamil�
tonian systems ������ We know from Theorem ��� that the modi�ed dif�
ferential equation� truncated after N terms� is again Hamiltonian� with a
modi�ed Hamiltonian eH that is O�h�� close to the original Hamiltonian H
in a neighbourhood of the numerical solution values� Consider now eH along
the numerical solution� We write the deviation of eH as a telescoping sum

eH�pn� qn�� eH�p�� q�� � n��X
j��

� eH�pj��� qj���� eH�pj � qj�� �
By construction of the modi�ed equation� we have for its �ow e�h�pj � qj� �
�pj��� qj��� �O�hN���� On the other hand� the �ow e�t preserves the mod�
i�ed Hamiltonian� and henceeH�pj��� qj���� eH�pj � qj� � eH�pj��� qj���� eH�e�h�pj � qj�� � O�hN����

Inserting this estimate in the above sum yields the result�

The second proof uses only the symmetry of the St�ormer�Verlet method�
It was given in �Hairer and Lubich ����b� because its arguments extend
to numerical energy conservation in oscillatory systems when the product
of the step size with the highest frequencies is bounded away from � �see
Sect� 	���� Backward error analysis� or the asymptotic h��expansion of the
numerical solution� shows that there exists� for every n� a function qn�t�
with qn��� � qn and q

n��h� � qn�� �O�hN��� satisfying

qn�t� h�� �qn�t� � qn�t� h� � h�f�qn�t�� �O�hN��� �	���

for t in some �xed interval around �� The functions qn�t � h� and qn���t�
agree up to O�hN��� as do their kth derivatives multiplied with hk� for
k � N � By Taylor expansion in �	����

N��X
l��

�

��l��

d�lqn

dt�l
�t�h�l�� � f�qn�t�� �O�hN �� �	���

Because of the symmetry of the method� only even�order derivatives of qn�t�
�and even powers of the step size� are present in �	����
We multiply �	��� with �qn�t�TM and integrate over t� The key observation

is now that the product of �qn�t� with an even�order derivative of qn�t� is a
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total di
erential �we omit the superscript n in the following formula��

�qTMq��l� �
d

dt
Al"q#

with

Al"q# �
�
�qTMq��l�����qTMq��l����� � ���q�l����TMq�l���
 �

�
�q�l��TMq�l�

�
�

In particular� A�"q# �
�
� �q

TM �q� Moreover� for f�q� � �M��rU�q� we
clearly have �qTMf�q� � ��d�dt�U�q�� For the energy functional

H"q#�t� �
N��X
l��

�

��l��
Al"q#�t�h

�l�� � U�q�t��

we thus obtain �d�dt�H"qn#�t� � O�hN � and hence
H"qn#�h� �H"qn#��� � O�hN���� �	���

Since the functions qn�t�h� and qn���t�� together with their kth derivatives
scaled by hk �k � N�� are equal up to O�hN���� we further have

H"qn��#��� �H"qn#�h� � O�hN���� �	���

Moreover� with pn�t� �M �qn�t� we have

H"qn#��� � H�pn���� qn���� �O�h�� � H�pn� qn� �O�h��� �	�	�

where the last equation follows by noting

pn �M
qn�� � qn��

�h
� pn��� �O�h���

Hence� from �	�����	�	��

H�pn� qn��H�p�� q�� � H"qn#��� �H"q�#��� �O�h��
� O�nhN��� �O�h���

which completes the proof�

	��� Linear error growth for integrable systems

General Hamiltonian systems may have extremely complicated dynamics�
and little can be said about the long�time behaviour of their discretisations
apart from the long�time near�conservation of the total energy considered
above� At the other end� the simplest conceivable dynamics $ uniform mo�
tion on a Cartesian product of circles $ appears in integrable Hamiltonian
systems� Their practical interest lies in the fact that many physical sys�
tems are perturbations of integrable systems� with planetary motion as the
classical example and historical driving force�
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A Hamiltonian system ����� is integrable if there exists a symplectic trans�
formation

�p� q� � ��a� �� �	�
�

to action�angle variables �a� ��� de�ned for actions a � �a�� � � � � ad� in some
open set of Rd and for angles � on the whole d�dimensional torus

Td � Rd����Zd� � f���� � � � � �d�� �i � R mod ��g�
such that the Hamiltonian in these variables depends only on the actions�

H�p� q� � H���a� ��� � K�a�� �	���

In the action�angle variables� the equations of motion are simply

�a � � � �� � 	�a� �	���

with the frequencies 	 � �	�� � � � � 	d�
T � raK �notice r�K � ��� This has

a quasi�periodic �or possibly periodic� �ow�

�t�a� �� � �a� � � 	�a�t�� �	���

For every a� the torus f�a� �� � � � Tdg is thus invariant under the �ow� We
express the actions and angles in terms of the original variables �p� q� via
the inverse transform of �	�
� as

�a� �� � �I�p� q��%�p� q��

and note that the components of I � �I�� � � � � Id� are �rst integrals of the
integrable system�
Integrability of a Hamiltonian system is an exceptional property� the

system has d independent �rst integrals I�� � � � � Id whose Poisson brackets
vanish pairwise� i�e��

fIi� Ijg � rqI
T
i rpIj �rpI

T
i rqIj � � for all i� j�

The solution trajectories of the Hamiltonian systems with Hamiltonian Ii ex�

ist for all time �in the action�angle variables� their �ow is simply �
�i�
t �a� �� �

�a� � � tei� with ei denoting the ith unit vector of R
d�� and the level sets

of I are compact �the invariant tori fa � Const�� � � Tdg�� Conversely�
it is the content of the Arnold�Liouville theorem �Arnold ��
�� that every
Hamiltonian system that has d �rst integrals with the above properties� can
be transformed to action�angle variables with a Hamiltonian depending only
on the actions�

Example ���� The harmonic oscillator H�p� q� � �
�p

� � �
�q

� is integrable�
with the transformation to action�angle coordinates given by�

p
q

�
�

�p
�a cos �p
�a sin �

�
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Fig� ��
� Transformation to action�angle variables�

with a � H�p� q�� see Fig� 	��� Here� the action�angle coordinates are sym�
plectic polar coordinates�

Example ���� The Kepler problem� withH�p� q� � �
��p

�
��p

�
�����

p
q�� � q��

in the rangeH � �� is integrable with actions a� � ��
p��H and a� � L �the

angular momentum� L � q�p��q�p��� The frequencies are 	� � 	� � ���T �
where T � ������H�	�� is the period of a trajectory with total energy H�
Example ���� A further celebrated example of an integrable system is
the Toda lattice �Toda ����� Flaschka ������ which describes a system of
particles on a line interacting with exponential forces� The Hamiltonian is

H�p� q� �
dX

k��

�
�

�
p�k � exp�qk � qk���

�
with periodic extension qd�� � q�� The eigenvalues of the matrix

L �

�BBBBB�
a� b� bd
b� a� b� �

b�
� � �

� � �

�
� � � ad�� bd��

bd bd�� ad

�CCCCCA �
ak � ��

�pk

bk � �
� exp�

�
� �qk � qk����

are �rst integrals whose Poisson brackets vanish pairwise�
We consider the case d � � and choose initial values q� � ��� �����T and

p� � ����	� �� ��	�T � Figure 	�� shows the eigenvalues of L along the nu�
merical solution of the St�ormer�Verlet and the second�order Runge method
obtained with step sizes h � ��� �left� and h � ���	 �right� on the interval
� � t � 	�� Not only the Hamiltonian �Theorem 	���� but all d �rst integrals
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Fig� ��	� Toda eigenvalues along the numerical solution�

of the integrable system are well approximated over long times with an error
of size O�h��� This is explained by Theorem 	�	 below�
The global error in �p� q� is plotted in Fig� 	��� We observe a linear error

growth for the St�ormer�Verlet method� in contrast to a quadratic error
growth for the second�order Runge method�

The study of the error behaviour of the numerical method combines
backward error analysis� by means of which the numerical map is inter�
preted as being essentially the time�h �ow of a modi�ed Hamiltonian sys�
tem� and the perturbation theory of integrable systems� a rich mathematical
theory originally developed for problems of celestial mechanics �Poincar&e
��������������� Siegel and Moser ������ The e
ect of a small perturbation
of an integrable system is well under control in subsets of the phase space
where the frequencies 	 satisfy Siegel�s diophantine condition�

jk � 	j 	 �jkj�� for all k � Zd �	����

50 100
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.8 global error

St�ormer�Verlet� h � ���	

Runge	� h � ���	

global error
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Fig� ���� Global error of the St�ormer�Verlet and the second�order Runge method
on the Toda lattice�
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for some positive constants � and �� with jkj �Pi ki� For � � d��� almost
all frequencies �in the sense of Lebesgue measure� satisfy �	���� for some
� � �� For any choice of � and � the complementary set is� however� open
and dense in Rd�
For general numerical integrators applied to integrable systems �or per�

turbations thereof� the error grows quadratically with time� and there is a
linear drift o
 the �rst integrals Ii� For symplectic methods such as the
St�ormer�Verlet method there is linear error growth and long�time near�
preservation of the �rst integrals Ii� as is shown by the following result
from �Hairer et al� ����� Sect� X����

Theorem ���� Consider applying the St�ormer�Verlet method to an inte�
grable system ����� with real�analytic Hamiltonian� Suppose that 	� � Rd

satis�es the diophantine condition �	����� Then� there exist positive con�
stants C� c and h� such that the following holds for all step sizes h � h��
every numerical solution �pn� qn� starting with frequencies 	� � 	�I�p�� q���
such that k	� � 	�k � cj log hj����� satis�es

k�pn� qn�� �p�t�� q�t��k � C th�

kI�pn� qn�� I�p�� q��k � C h�
for t � nh � h�� �

The constants h�� c� C depend on d� �� � and on bounds of the Hamiltonian�

The basic steps of the proof are summarised in Fig� 	��� By backward
error analysis� the numerical method coincides� up to arbitrary order in h�
with the �ow of the modi�ed di
erential equation� which is a Hamiltonian
perturbation of size � � h� of the original� integrable system� We are thus in
the realm of classical perturbation theory� In addition to the transformation
to the action�angle variables �a� ��� which gives the modi�ed Hamiltonian in

the form K�a� � � eK��a� ��� we use a further symplectic coordinate transfor�
mation �a� �� � ��b� �� which eliminates� up to high�order terms in �� the
dependence on the angles in the modi�ed Hamiltonian� This transformation
is O��� close to the identity� It is constructed as

b � a�r�S�b� ��� � � � �rbS�b� ���

where the generating function S�b� �� is determined as a Lindstedt�Poincar&e
perturbation series�

S�b� �� � �S��b� �� � ��S��b� �� � � � �� �NSN �b� ���

The error propagation is then studied in the �b� ���variables� with the result

kb�t�� b�k � C t �N��

k��t�� �� � 	��b�� tk � C �t� t�� �N
for t� � ���N �

with 	��b� � 	�b� �O���� Transforming back to the original variables �p� q�
�nally yields the stated result�
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backward error
analysis

integrable
Hamiltonian

H�p� q�

numerical
solution
�pn� qn�

modi�ed
Hamiltonian

eH�p� q�

Hamiltonian
K�a�

action�angle
variables

�p� q� � ��a� ��
modi�ed Hamiltonian
K�a� � 	 eK��a� ��
with 	 � hpLindstedt�Poincar�e

series
�a� �� � 
�b� ��

modi�ed Hamiltonian

K�b� � 	K��b� � � � �� 	NKN�b�

�	N��R�b� ��

Fig� ���� Transformations in the proof of Theorem ����

Theorem 	�	 admits extensions in several directions� It is just one of a
series of results on the long�time behaviour of geometric integrators�
� The theorem does not apply directly to the Kepler problem� which has

two identical frequencies 	� � 	� � ���H�	��� However� since the angular
momentum a� � L is preserved exactly by the St�ormer�Verlet method� it
turns out that the modi�ed Hamiltonian written in the action�angle variables
of the Kepler problem is independent of the angle ��� Only the angle �� must
therefore be eliminated via the perturbation series� and this involves only the
single frequency 	� for which the diophantine condition is trivially satis�ed�
The proof and result of Theorem 	�	 thus extend to the Kepler problem�
� The linear error growth remains intact when the method is applied to

perturbed integrable systemsH�p� q���G�p� q� with a perturbation parameter
of size � � O�h�� for some positive exponent ��
� Under stronger conditions on the initial values or on the system� the

near�preservation of the action variables along the numerical solution holds
for times that are exponentially long in a negative power of the step size
�Hairer and Lubich ����� Moan ������ For a Cantor set of initial values
and a Cantor set of step sizes this holds even perpetually� in view of the
existence of invariant tori of the numerical integrator close to the invariant
tori of the integrable system �Shang ����� Shang ������
� Perturbed integrable systems have KAM tori� i�e�� deformations of the
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invariant tori of the integrable system corresponding to diophantine frequen�
cies 	� which are invariant under the �ow of the perturbed system� If the
method is applied to such a perturbed integrable system� then the numeri�
cal method has tori which are near�invariant over exponentially long times
�Hairer and Lubich ������ For a Cantor set of non�resonant step sizes there
are even truly invariant tori on which the numerical one�step map reduces
to rotation by h	 in suitable coordinates �Hairer et al� ����� p� �����
� There is a completely analogous theory for integrable reversible sys�

tems �Hairer et al� ����� Chap�XI�� These are di
erential equations with
reversible �ow ������ which are transformed to the form �	��� by a transfor�
mation �q� v� � ���a� ��� ��a� ��� that preserves reversibility� i�e�� � is odd in
� and � is even in �� In that theory� only the reversibility of the numer�
ical method comes into play� not the symplecticity� There is again linear
error growth� long�time near�preservation of the action variables� and an
abundance of invariant tori�
� For dissipatively perturbed integrable systems� where only one torus

survives the perturbation and becomes weakly attractive� the existence of
a nearby invariant torus of the numerical method is shown under weak as�
sumptions on the step size in �Sto
er ����� Hairer and Lubich ������

	��� Statistical behaviour

The equation of motion of a system of ��� particles interacting
through a Lennard�Jones potential has been integrated for vari�
ous values of the temperature and density� relative� generally� to a
�uid state� The equilibrium properties have been calculated and
are shown to agree very well with the corresponding properties of
argon� �L� Verlet 
����

In molecular dynamics� it is the computation of statistical or thermodynamic
quantities� such as temperature� which is of interest rather than single tra�
jectories� The success of the St�ormer�Verlet method in this �eld lies in the
observation that the method is apparently able to reproduce the correct
statistical behaviour over long times� Since �Verlet ��
��� this has been
con�rmed in numerous computational experiments� Backward error analy�
sis gives indications as to why this might be so� but to our knowledge there
are as yet no rigorous mathematical results in the literature explaining the
favourable statistical behaviour�
In the following we derive a result which is a discrete analogue of the

virial theorem of statistical mechanics� cf� �Abraham and Marsden �����
p� ���� and �Gallavotti ����� p� ����� Consider the Poisson bracket fF�Hg �
rqF

TrpH �rpF
TrqH of an arbitrary di
erentiable function F �p� q� with

the Hamiltonian� Along every solution �p�t�� q�t�� of the Hamiltonian system
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we have

fF�Hg�p�t�� q�t�� � d

dt
F �p�t�� q�t���

and hence the time average of the Poisson bracket along a solution is

�

T

Z T

�
fF�Hg�p�t�� q�t�� dt � �

T

�
F �p�T �� q�T �� � F �p���� q����

�
�

If F is bounded along the solution� this shows that the average is of size
O���T � as T � �� In particular� this condition is satis�ed if the energy
level set f�p� q� � H�p� q� � H�p���� q����g is compact�
Example ��
� For a separable Hamiltonian ����� the choices F �p� q� � pi
and qi for i � �� � � � � d then yield

lim
T��

�

T

Z T

�
rU�q�t�� dt � � � lim

T��

�

T

Z T

�
p�t� dt � ��

The choice F �p� q� � pT q yields the virial theorem of Clausius �Gallavotti
����� p� �����

lim
T��

�

T

Z T

�
p�t�TM��p�t� dt � lim

T��

�

T

Z T

�
q�t�TrU�q�t�� dt�

i�e�� the time average of twice the kinetic energy equals that of the virial
function qTrU�q��
For the numerical discretisation there is the following result�

Theorem ���� Let H�p� q� be a real�analytic Hamiltonian for which

K� � f�p� q� � jH�p� q��H�j � �g is compact

for some � � �� Let F �p� q� be an arbitrary real�analytic function de�ned
on a neighbourhood of K�� Then� the numerical solution �pn� qn� obtained
by a symplectic numerical integrator �such as the St�ormer�Verlet method�
satis�es for h � h�


 �

N

N��X
n��

fF�Hg�pn� qn�



 � C h for ��h � Nh � ec�h� �	����

The constants C� c� h� � � depend on bounds of H and F on a complex
neighbourhood of the set K�� but are independent of h and �p�� q�� � K��
�

Proof� By Theorem 	�� and the remark thereafter� we know that

yn �� �pn� qn� � K��� for nh � ec�h�

It is then su!cient to prove �	���� for ��h � Nh � ���h with some � � ��
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since for larger N we split the sum into pieces of such length� to each of
which we apply the estimate�
The exponentially small estimate of Theorem ��� implies� see �Hairer and

Lubich ����� Corollary ���

yn � ey�tn� � O�h�� for nh � ���h� �	����

where ey�t� � e�t�y�� is the exact solution of the �optimally truncated� modi�
�ed di
erential equation� which by Theorem ��� is Hamiltonian with a mod�
i�ed Hamiltonian eH� Since r eH � rH �O�h��� this implies

�

N

N��X
n��

fF�Hg�yn� �
�

N

N��X
n��

fF� eHg�yn� �O�h��
�

�

N

N��X
n��

fF� eHg�ey�tn�� �O�h���
The last sum is an O�h� quadrature approximation to

�

Nh

Z Nh

�
fF� eHg�ey�t�� dt � �

Nh

�
F �ey�Nh�� � F �ey����� � O�h�

for ��h � Nh � ���h� Combining the above estimates completes the proof�
�

We remark that the proof �and presumably the result� cannot be improved
to yield O�h�� for Nh 	 h�� in �	����� since the estimate �	���� cannot� in
general� be extended to times nh � h���

Example ���� We give a numerical experiment with a small�scale version
of Verlet�s argon model� It considers NA atoms interacting by the Lennard�
Jones potential

V �r� � � �

���
r

���
�
��
r

���
�

The Hamiltonian of the system is ����� with Vij � V � We choose NA � �
and the data of �Biesiadecki and Skeel ������ see also �Hairer et al� �����
p� �	�� Figure 	�	 shows the Hamiltonian� the temperature

T �p� �
�

NAkB

�

�m

NAX
i��

kpik�

�kB is Boltzmann�s constant� and the virial function

C�q� �

NAX
i��

i��X
j��

V ��rij�rij
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Fig� ���� Computed total energy� temperature and virial function of the argon
crystal� 
� ��� steps of size h � �� �fsec��

�with rij � kqi � qjk� over an interval of length � � ��� "fsec#� obtained by
the St�ormer�Verlet method with step size h � �� "fsec#� The units in the
�gure are such that kB � �� The size of the oscillations in the Hamiltonian
is proportional to h�� whereas that in the temperature and in the virial
function is independent of h� At the end of the integration �after �� ���
steps� the averages of twice the kinetic energy and of the virial function are
����� and ������ respectively�

	��� Oscillatory di�erential equations

Nonlinear mass�spring models have traditionally been very useful in explain�
ing various phenomena of more complicated �real� physical systems� Above
we mentioned already the Toda lattice� An equally famous problem is the
Fermi�Pasta�Ulam model �Fermi� Pasta and Ulam ��		� Ford ������ where
a nonlinear perturbation to a primarily linear problem is studied over long
times� Here we use a variant of this problem for gaining insight into the long�
time energy behaviour of the St�ormer�Verlet method applied to oscillatory
systems with multiple time scales� We are interested in using step sizes h for
which the product with the highest frequency 	 in the system is bounded
away from zero� �Values of h	 
 ��� are routinely used in molecular dynam�
ics�� In this situation� backward error analysis is no longer applicable� since
the �exponentially small� error terms are then of size O�e�c�h�� � O����
Example ��
� Consider a chain of �m mass points� connected with alter�
nating soft nonlinear and sti
 linear springs� and �xed at the end points� see
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x� x� x�m�� x�m� � �

sti�
harmonic

soft
nonlinear

Fig� ���� Chain with alternating soft nonlinear and sti� linear springs�

�Galgani� Giorgilli� Martinoli and Vanzini ����� and Fig� 	�
� The variables
x�� � � � � x�m stand for the displacements of the mass points� In terms of the
new variables

qi � �x�i � x�i����
p
�� qm�i � �x�i � x�i����

p
��

�which represent a scaled displacement and a scaled expansion�compression
of the ith sti
 spring� and the momenta pi � �qi� the motion is described by
a Hamiltonian system with

H�p� q� �
�

�

�mX
i��

p�i �
	�

�

mX
i��

q�m�i �
�

�

�
�q� � qm���




�

m��X
i��

�qi�� � qm�i�� � qi � qm�i�

 � �qm � q�m�



�
�

where 	 � � is a large parameter� Here we assume cubic nonlinear springs�
but the special form of the nonlinearity is not important�
For an illustration we consider m � � and choose 	 � ��� In Fig� 	�� we

have plotted the following quantities as functions of time� the Hamiltonian
H �actually we plot H � ��� for graphical reasons�� the oscillatory energy I
de�ned as

I � I� � I� � I	 with Ij �
�

�
p�m�j �

�

�
	�q�m�j�

and the kinetic energies of the mass centre motion and of the relative motion
of masses joined by a sti
 spring�

T� �
�

�
�p�� � p�� � p�	�� T� �

�

�
�p�
 � p�� � p����

The system has di
erent dynamics on several time scales� on the fast scale
	�� the motion is nearly harmonic in the sti
 springs� on scale 	� there is
the motion of the soft springs driven by the nonlinearity� on the slow scale
	 there is an energy exchange between the sti
 linear springs� For the �rst
three pictures the solutions were computed with high accuracy�
In the last picture we show the results obtained by the St�ormer�Verlet

method with step size h � ��	�	� We note that both H and I are approxi�
mately conserved over long times� For �xed 	 the size of the oscillations in
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Fig� ���� Di�erent time scales in a Fermi�Pasta�Ulam problem� and energy
conservation of the St�ormer�Verlet method�

H is proportional to h�� However� the oscillations remain of the same size if
h decreases and 	 increases such that h	 remains constant� The oscillations
in I are of size O�	��� uniformly for h� ��

The equations of motion for the above example are of the form

�q � � �q �rU�q� with  �

�
� �
� 	I

�
�	����

with a single high frequency 	 � � and with a smooth potential U�q� whose
derivatives are bounded independently of 	� In addition to the total energy
as a conserved quantity�

H�p� q� �
�

�
pT p�

�

�
qT �q � U�q��

the system has an adiabatic invariant� over times exponentially long in 	�
the oscillatory energy

I�p� q� �
�

�
pT
�
� �
� I

�
p�

	�

�
qT
�
� �
� I

�
q �	����

is preserved up to O�	���� This holds uniformly for all initial values for
which the total energy is bounded by a constant independent of 	� i�e�� for
bounded �p� q� with �� I�q � O�	����
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Consider now applying the St�ormer�Verlet method to such a system� The
step size is then restricted to h	 � � for linear stability� as Example ���
shows� The Hamiltonian H�pn� qn� and the oscillatory energy I�pn� qn� of
�	���� oscillate rapidly� but stay within an O��h	��� band over long times�
The oscillations do not become smaller when h is decreased but 	 is increased
such that their product h	 is kept �xed� Nevertheless� the following result
shows that the time averages of the total and oscillatory energies

Hn �
h

T

X
jjhj�T��

H�pn�j� qn�j�

In �
h

T

X
jjhj�T��

I�pn�j� qn�j�

for an arbitrary �xed T � � remain constant up to O�h� over long times
even when h	 is bounded away from zero� but within the range of linear
stability�

Theorem ����� Let the St�ormer�Verlet method be applied to the problem
�	���� with a step size h for which � � c� � h	 � c� � �� Let e	 be
de�ned by the relation sin���he	� � �

�h	 and suppose j sin���khe	�j 	 c
p
h for

k � �� � � � � N for some N 	 � and c � �� Suppose further that the total
energy at the initial value �p�� q�� is bounded independently of 	� and that
the numerical solution values qn stay in a region where all derivatives of
the potential U are bounded� Then� the time averages of the total and the
oscillatory energy along the numerical solution satisfy

Hn � H� �O�h�
In � I� �O�h�

for � � nh � h�N���

The constants symbolized by O are independent of n� h� 	 with the above
conditions�

It should� however� be noted that the time averages Hn and In do not� in
general� remain O�h� close to the initial values H�p�� q�� and I�p�� q���
The estimates of Theorem 	��� can be improved to O�h�� if a weighted

time average is taken� replacing the characteristic function of the interval
"�T��� T��# by a smooth windowing function with bounded support� and if
the oscillatory energy I is replaced by J�p� q� � I�p� q��qT

�
� �
� I

�
rU�q��

which is preserved up to O�	��� over exponentially long time intervals�
For h	 � �� the long�time near�preservation of the adiabatic invariant I

can be shown using backward error analysis �Reich ����b�� but this argu�
ment breaks down for h	 bounded away from zero as in Theorem 	����
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We comment only brie�y on the proof of Theorem 	���� see �Hairer et
al� ����� Chap� XIII� for the full proof� It is based on representing the
numerical solution locally �on bounded intervals� by a modulated Fourier
expansion

qn �
X
jkj	N

zk�t�e
ike�t �O�hN � for t � nh�

where the coe!cients zk�t� together with all their derivatives �up to some
arbitrarily �xed order� are bounded by O�e	�jkj�� A similar representation
holds for pn� The expansion coe!cients yk�t� � zk�t�e

ike�t satisfy a system
of equations similar in structure to �	��� �but of higher dimension�� This
permits to use similar arguments to the second proof of Theorem 	�� to infer
the existence of certain modi�ed energies H� and I�� which the numerical
method preserves up to O�h� over times h�N��� Finally� the time averages
Hn and In can be expressed� up to O�h�� in terms of these modi�ed energies�

	� Constrained Hamiltonian systems

A minimal set of coordinates of a mechanical system is often di!cult to
�nd� The minimal coordinates may be de�ned only implicitly� or frequent
changes of charts are necessary along a solution of the system� In this
situation it is favourable to formulate the problem as a Hamiltonian system
with constraints�


��� Formulation as di�erential�algebraic equations

We consider a mechanical system with coordinates q � Rd that are subject
to constraints g�q� � �� The equations of motion are then of the form

�p � �rqH�p� q��rqg�q�


�q � rpH�p� q�� � � g�q��
�
���

where the Hamiltonian H�p� q� is usually given by ������ Here� p and q are

vectors in Rd� g�q� � �g��q�� � � � � gm�q��
T is the vector of constraints� and

rqg � �rqg�� � � � �rqgm� is the transposed Jacobian matrix of g�q��
To compute the Lagrange multiplier 
� we di
erentiate the constraint

� � g�q�t�� with respect to time� This yields the so�called hidden constraint

� � rqg�q�
TrpH�p� q�� �
���

which is an invariant of the �ow of �
���� A further di
erentiation gives

� �
�

�q

�
rqg�q�

TrpH�p� q�
�
rpH�p� q�

�rqg�q�
Tr�

pH�p� q�
�
rqH�p� q� �rqg�q�


�
�

�
���



Geometric Numerical Integration ��

which allows us to express 
 in terms of �p� q�� if the matrix

rqg�q�
Tr�

pH�p� q�rqg�q� is invertible �
���

�r�
pH denotes the Hessian matrix of H�� Inserting the so�obtained function


�p� q� into �
��� gives the ordinary di
erential equation

�p � �rqH�p� q��rqg�q�
�p� q�

�q � rpH�p� q�
�
�	�

for �p� q�� which is well�de�ned on the domain where H�p� q� and g�q� are
de�ned� and not only for g�q� � �� The standard theory for ordinary dif�
ferential equations can be used to deduce existence and uniqueness of the
solution� Important properties of the system �
��� are the following�

� whenever the initial values satisfy �p�� q�� �M with

M � f�p� q� � g�q� � �� rqg�q�
TrpH�p� q� � �g� �
�
�

the solution stays on the manifoldM for all t� hence� the �ow of �
���
is a mapping �t �M�M�

� the �ow �t is a symplectic transformation onM which means that

���t�p� q���
TJ ��t�p� q�� � �TJ � for �� � � T�p�q�M� �
���

here� T�p�q�M denotes the tangent space of M at �p� q� � M� and the
product ��t�p� q�� has to be interpreted as the directional derivative on
the manifold�

� for Hamiltonians satisfying
H��p� q� � H�p� q�

the �ow �t is ��reversible for ��p� q� � ��p� q� in the sense that ���	�
holds for �p� q� �M�

The �rst of these properties follows from the de�nition of 
�p� q�� For
�p�� q�� �M� a �rst integration of �
��� gives �
��� and a second integration
yields g�q� � � along the solution of �
�	��
To prove the symplecticity� we consider the �unconstrained� Hamiltonian

system with K�p� q� � H�p� q� � g�q�T
�p� q�� Its �ow is symplectic and
coincides with that of �
�	� on the manifoldM�
The reversibility is a consequence of the fact that H��p� q� � H�p� q�

implies 
��p� q� � 
�p� q�� The �ow of �
�	� and hence also its restriction
ontoM is thus ��reversible�

Example 
��� �Kepler and two�body problems on the sphere�
Following �Kozlov and Harin ������ we consider a particle moving on the
unit sphere attracted by a �xed point a on the sphere� The potential is given
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Fig� ��
� Solutions of the Kepler problem and the two�body problem on the
sphere�

as a fundamental solution of the Laplace�Beltrami equation on the sphere�

U�q� a� � � cos�
sin�

� cos� � hq� ai� �
���

The Kepler problem on the sphere is then of the form �
��� with

H�p� q� �
�

�
pT p� U�q� a�� g�q� � qT q � ��

The left picture of Fig� 
�� shows the solution corresponding to the point
a � ����

p
�� ���

p
�� ����T and to initial values given in spherical coordinates

by �� � �� �� � ��� and ��� � ���� ��� � ����� The point a and the initial
value are indicated by a larger symbol in Fig� 
���
Whereas in the Euclidean space the two�body problem reduces to the

Kepler problem� this is not the case on the sphere� For the two�body problem
the Hamiltonian is

H�p�� p�� q�� q�� �
�

�
pT� p� �

�

�
pT� p� � U�q�� q��

with U�q�� q�� given by �
���� The constraints are gi�q�� q�� � qTi qi � � for
i � �� �� The solution with initial values ��� � ����� ��� � ���� ��� �
����� ��� � ��
 and ���� � ���� ���� � ���	� ���� � ���� ���� � ���� is plotted
in Fig� 
�� �right��

Example 
��� �Rigid body� The motion of a rigid body with a �xed
point chosen at the origin can be described by an orthogonal matrix Q�t��
Denoting by I�� I�� I	 the moments of inertia of the body� its kinetic energy
is

T �
�

�
�I� 

�
� � I� 

�
� � I	 

�
	��
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where the angular velocity  � � �� �� 	�
T of the body is de�ned by

b �
�� � � 	  �

 	 � � �

� �  � �

�A � QT �Q�

�Arnold ����� Chap� 
�� In terms of Q� the kinetic energy on the manifold
O��� � fQ jQTQ � Ig becomes

T �
�

�
trace �b Db T � �

�

�
trace �QT �QD �QTQ� �

�

�
trace � �QD �QT ��

whereD � diag �d�� d�� d	� is given by the relations I� � d��d	� I� � d	�d��
and I	 � d� � d�� With P � �T�� �Q � �QD� we are thus concerned with

H�P�Q� �
�

�
trace �PD��P T � � U�Q��

and the constrained Hamiltonian system becomes

�P � �rQU�Q��Q'�

�Q � PD��� � � QTQ� I�
�
���

where ' is a symmetric matrix consisting of Lagrange multipliers� This is
of the form �
��� and satis�es the regularity condition �
����


��� Development of the Rattle algorithm

The most important numerical algorithm for the solution of constrained
Hamiltonian systems is an adaptation of the St�ormer�Verlet method� Its
historical development is in three main steps�

First step� For Hamiltonians H�p� q� �
�

�
pTM��p � U�q� with constant

mass matrix M �cf� Sect� ����� the problem is a second order di
erential
equation M �q � �rqU�q� � rqg�q�
 with constraint g�q� � �� The most
natural extension of ����� is

qn�� � �qn � qn�� � �h�M���rqU�qn� �rqg�qn�
n�

� � g�qn��� �
�
����

This algorithm �called Shake� was originally proposed by �Ryckaert� Cic�
cotti and Berendsen ����� for computations in molecular dynamics� The p�
components� not used in the recursion� are approximated by pn �M�qn���
qn�����h�
Second step� A one�step formulation of this method� obtained by a formal

analogy to formula ���	�� reads

pn���� � pn � h

�
�rqU�qn� �rqg�qn�
n�

qn�� � qn � hM��pn����� � � g�qn���

pn�� � pn���� � h

�
�rqU�qn��� �rqg�qn���
n����

�
����
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This formula cannot be implemented� because 
n�� is not yet available at
this step �it is computed together with qn���� As a remedy� �Andersen �����
suggests replacing the last line in �
���� with the projection step

pn�� � pn���� � h

�
�rqU�qn��� �rqg�qn����n�

� � rqg�qn���
TM��pn���

�
����

This modi�cation� called Rattle� is motivated by the fact that the numerical
approximation �pn��� qn��� lies on the solution manifoldM�
Third step� �Jay ����� and �Reich ����� observed independently that the

Rattle method can be interpreted as a partitioned Runge�Kutta method and
thus allows the extension to general Hamiltonians

pn���� � pn � h

�
�rqH�pn����� qn� �rqg�qn�
n�

qn�� � qn �
h

�
�rpH�pn����� qn� �rpH�pn����� qn����

� � g�qn���

pn�� � pn���� � h

�
�rqH�pn����� qn��� �rqg�qn����n�

� � rqg�qn���
TrpH�pn��� qn���

�
����

whenever �pn� qn� � M� The �rst three equations of �
���� determine
�pn����� qn��� 
n�� whereas the remaining two are equations for �pn��� �n��
For su!ciently small step size� these equations have a locally unique solution
�Hairer et al� ����� p� �����

Example 
��� �Kepler problem on the sphere� We apply the Rattle
method with a large step size h � ���� to the problem of Example 
���
The numerical solution� plotted in Fig� 
��� shows a precession as it appears

Fig� ��	� Numerical solution of the Kepler problem on the sphere� obtained with
the Rattle method using step size h � �����
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in computations with symplectic integrators for the Kepler problem in the
Euclidean space� see Fig� ���� We remark that the value of the Hamiltonian
along the numerical solution oscillates around the correct value and the
energy error remains bounded by ����� on very long time intervals�
Since the constraint g�q� is quadratic and the Hamiltonian is separable�

the formulae �
���� are explicit with exception of the computation of 
n� for
which a scalar quadratic equation needs to be solved�

Example 
��� �Rigid body� The Rattle method �
���� applied to �
���
yields

P��� � P� � h

�
rQV �Q��� h

�
Q�'�

Q� � Q� � hP���D
��� QT

�Q� � I �
����

P� � P��� � h

�
rQV �Q��� h

�
Q�'�� D��P T

� Q� �QT
� P�D

�� � ��

where both '� and '� are symmetric matrices� For consistent initial values�
Q� is orthogonal and Q

T
� P�D

�� � b � is skew�symmetric� Working withb � � QT
�
�Q� � QT

� P�D
��� b ��� � QT

� P���D
��� b � � QT

� P�D
��

instead of P�� P���� P�� the equations �
���� become the following integrator

�Q�� b �� �� �Q�� b �� �

� �nd an orthogonal matrix I � hb ��� such thatb ��� � b � � h

�
QT

�rQV �Q��D
�� � h

�
'�D

��

holds with a symmetric matrix '��

� compute Q� � Q��I � hb ���� �

� compute a skew�symmetric matrix b � such thatb � � b ��� � h

�
QT

�rQV �Q��D
�� � �b ��� � b T

����� h

�
'�D

��

holds with a symmetric matrix '��

This algorithm for the simulation of the heavy top is proposed in �McLachlan
and Scovel ���	�� An e!cient implementation uses the representation of the
appearing orthogonal matrices by quaternions �Hairer ������


��� Geometric properties of Rattle

For consistent initial values �pn� qn� � M� the Rattle method �
���� yields
an approximation �pn��� qn��� which is again on M� We thus have a nu�
merical �ow �h � M � M� The geometric properties of Sect� � for the
St�ormer�Verlet method extend to this algorithm�



�� E� Hairer� Ch� Lubich and G� Wanner

Theorem 
��� The Rattle method is symmetric� i�e�� �h � ���
�h on M�

For Hamiltonians satisfying H��p� q� � H�p� q�� the method is reversible
with respect to the re�ection ��p� q� � ��p� q�� i�e�� it satis�es ���h � �

��
h ��

onM�

The proof is by straightforward veri�cation� as for the St�ormer�Verlet
method�

Theorem 
�
� The Rattle method is symplectic� i�e��

���h�p� q���
TJ ��h�p� q�� � �TJ � for �� � � T�p�q�M� �
��	�

This result was �rst proved by �Leimkuhler and Skeel ����� for the method
�
������
����� and by �Jay ����� and �Reich ����� for the general case �
�����
One proof of Theorem 
�
 is by computing ��h�p� q�� using implicit di
er�

entiation� and by verifying the identity �
��	�� Further proofs are based on
the interpretation as a variational integrator �Marsden and West ������ and
on explicit formulae of a generating function as in ������� see �Hairer ������


� Geometric integration beyond St�ormer�Verlet

In this article we have deliberately considered only the St�ormer�Verlet method
and a few selected geometric properties� Even within the class of ordinary
di
erential equations� we have not mentioned important topics of geometric
integration such as

� higher order methods� e�g�� symmetric composition� partitioned Runge�
Kutta� and linear multistep methods�

� the structure�preserving use of variable step sizes�
� di
erential equations with further geometric properties such as di
er�
ential equations on Lie groups� problems with multiple time scales� etc�

The reader will �nd more on these topics in the monographs �Sanz�Serna and
Calvo ����� and �Hairer� Lubich and Wanner ������ in the special journal
issue �Budd and Iserles ������ and in the survey articles �Iserles� Munthe�
Kaas� N�rsett and Zanna ������ �Marsden and West ������ and �McLachlan
and Quispel ������

REFERENCES

R� Abraham and J�E� Marsden �
����� Foundations of Mechanics� 	nd ed�� Ben�
jamin�Cummings� Reading� MA�

H�C� Andersen �
����� Rattle� a �velocity� version of the Shake algorithm for molec�
ular dynamics calculations� J� Comput� Phys� �	� 	�����

V�I� Arnold �
����� Small denominators and problems of stability of motion in
classical and celestial mechanics� Russian Math� Surveys 
�� ���
�
�



Geometric Numerical Integration ��

V�I� Arnold �
����� Mathematical Methods of Classical Mechanics� 	nd ed��
Springer�Verlag� New York�

G� Benettin and A� Giorgilli �
����� On the Hamiltonian interpolation of near to
the identity symplectic mappings with application to symplectic integration
algorithms� J� Stat� Phys� ��� 


��

���

J�J� Biesiadecki and R�D� Skeel �
����� Dangers of multiple time step methods�
J� Comput� Phys� 
��� �
���	��

C�J� Budd and A� Iserles� eds� �
����� Geometric integration� numerical solution of
di�erential equations on manifolds� R� Soc� Lond� Philos� Trans� Ser� A Math�
Phys� Eng� Sci� ���� no� 
����

R� De Vogelaere �
����� Methods of integration which preserve the contact trans�
formation property of the Hamiltonian equations� Report No� �� Dept� Math��
Univ� of Notre Dame� Ind�

K� Feng �
����� On di�erence schemes and symplectic geometry� Proceedings of the
Fifth Intern� Symposium on Di�erential Geometry � Di�erential Equations�
August 
���� Beijing� �	����

K� Feng �
��
�� Formal power series and numerical algorithms for dynamical sys�
tems� In Tony Chan and Zhong�Ci Shi� eds�� Proceedings of international con�
ference on scienti�c computation� Hangzhou� China� Series on Appl� Math� 
�
	�����

K� Feng and Z� Shang �
����� Volume�preserving algorithms for source�free dynam�
ical systems� Numer� Math� �
� ��
�����

E� Fermi� J� Pasta and S� Ulam �
����� Studies of non linear problems� Los Alamos
Report No� LA�
���� later published in E� Fermi� Collected Papers� Vol� II�
Chicago Univ� Press� 
���� ��������

R� Feynman �
����� The Character of Physical Law � First publishing BBC 
���

The M�I�T� Press 
����

H� Flaschka �
����� The Toda lattice	 II	 Existence of integrals� Phys� Rev� B ��

�	��
�	��

J� Ford �
��	�� The Fermi�Pasta�Ulam problem� paradox turns discovery� Physics
Reports 	
�� 	�
��
��

L� Galgani� A� Giorgilli� A� Martinoli and S� Vanzini �
��	�� On the problem of en�
ergy equipartition for large systems of the Fermi�Pasta�Ulam type� analytical
and numerical estimates� Physica D ��� ��������

G� Gallavotti �
����� Statistical Mechanics	 A Short Treatise� Springer� Berlin�
E� Hairer �	��	�� Global modi
ed Hamiltonian for constrained symplectic integra�

tors� Numer� Math�� to appear�
E� Hairer and Ch� Lubich �
����� The life�span of backward error analysis for nu�

merical integrators� Numer� Math� ��� ��
���	�
E� Hairer and Ch� Lubich �
����� Invariant tori of dissipatively perturbed Hamilto�

nian systems under symplectic discretization� Appl� Numer� Math� 	�� ����
�
E� Hairer and Ch� Lubich �	���a�� Long�time energy conservation of numerical

methods for oscillatory di�erential equations� SIAM J� Numer� Anal� ��� �
��
��
�

E� Hairer and Ch� Lubich �	���b�� Energy conservation by St�ormer�type numerical
integrators� in� G�F� Gri ths and G�A� Watson �eds��� Numerical Analysis

���� CRC Press LLC� 
���
���



�� E� Hairer� Ch� Lubich and G� Wanner

E� Hairer� Ch� Lubich and G� Wanner �	��	�� Geometric Numerical Integra�
tion	 Structure�Preserving Algorithms for Ordinary Di�erential Equations �
Springer� Berlin�

E� Hairer� S�P� N!rsett and G� Wanner �
����� Solving Ordinary Di�erential Equa�
tions I� Nonsti� Problems � Springer� Heidelberg�

A� Iserles� H�Z� Munthe�Kaas� S�P� N!rsett and A� Zanna �	����� Lie�group meth�
ods� Acta Numerica �� 	
������

L� Jay �
����� Runge�Kutta type methods for index three di�erential�algebraic
equations with applications to Hamiltonian systems� Thesis No� 	���� Univ�
Gen"eve�

V�V� Kozlov and A�O� Harin �
��	�� Kepler�s problem in constant curvature spaces�
Celestial Mech� Dynam� Astronom� ��� ��������

F�M� Lasagni �
����� Canonical Runge�Kutta methods� ZAMP ��� ��	�����
B�J� Leimkuhler and R�D� Skeel �
����� Symplectic numerical integrators in con�

strained Hamiltonian systems� J� Comput� Phys� 

	� 

��
	��
R� MacKay �
��	�� Some aspects of the dynamics of Hamiltonian systems� in

D�S� Broomhead and A� Iserles� eds�� The Dynamics of Numerics and the
Numerics of Dynamics� Clarendon Press� Oxford� 
���
���

S� Maeda �
����� Canonical structure and symmetries for discrete systems� Math�
Japonica 	�� �����	��

J�E� Marsden and M� West �	��
�� Discrete mechanics and variational integrators�
Acta Numerica 
�� �����
��

R�I� McLachlan and P� Atela �
��	�� The accuracy of symplectic integrators� Non�
linearity �� ��
���	�

R�I� McLachlan and G�R�W� Quispel �	��	�� Splitting methods � Acta Numerica 

�
��
�����

R�I� McLachlan and C� Scovel �
����� Equivariant constrained symplectic integra�
tion� J� Nonlinear Sci� �� 	���	���

P�C� Moan �	��	�� On backward error analysis and Nekhoroshev stability in the
numerical analysis of conservative systems of ODEs� PhD thesis� University
of Cambridge�

J� Moser �
����� Lectures on Hamiltonian systems� Mem� Am� Math� Soc� �
� 
����
H� Poincar�e �
��	�
����
����� Les M�ethodes Nouvelles de la M�ecanique C�eleste�

Tome I�III� Gauthier�Villars� Paris�
S� Reich �
����� Symplectic integration of constrained Hamiltonian systems by

Runge�Kutta methods� Techn� Report ���
�� Dept� Comput� Sci�� Univ� of
British Columbia�

S� Reich �
���a�� Backward error analysis for numerical integrators� SIAM J� Nu�
mer� Anal� ��� 
����
����

S� Reich �
���b�� Preservation of adiabatic invariants under symplectic discretiza�
tion� Appl� Numer� Math� 	�� ������

R�D� Ruth �
����� A canonical integration technique� IEEE Trans� Nuclear Science
NS���� 	����	��
�

J��P� Ryckaert� G� Ciccotti and H�J�C� Berendsen �
����� Numerical integration
of the cartesian equations of motion of a system with constraints� molecular
dynamics of n�alkanes� J� Comput� Phys� 	�� �	����
�



Geometric Numerical Integration �


J�M� Sanz�Serna �
����� Runge�Kutta schemes for Hamiltonian systems� BIT 	��
��������

J�M� Sanz�Serna �
��	�� Symplectic integrators for Hamiltonian problems� an
overview� Acta Numerica 
� 	���	���

J�M� Sanz�Serna and M�P� Calvo �
����� Numerical Hamiltonian Problems� Chap�
man � Hall� London�

Z� Shang �
����� KAM theorem of symplectic algorithms for Hamiltonian systems�
Numer� Math� ��� ��������

Z� Shang �	����� Resonant and diophantine step sizes in computing invariant tori
of Hamiltonian systems� Nonlinearity 
�� 	�������

C�L� Siegel and J�K� Moser �
��
�� Lectures on Celestial Mechanics� Grundlehren
der math� Wiss�� Vol� 
��� Springer�Verlag� Heidelberg�

D� Sto�er �
����� On reversible and canonical integration methods� SAM�Report
No� ������ ETH Z�urich�

D� Sto�er �
����� On the qualitative behaviour of symplectic integrators	 III� Per�
turbed integrable systems� J� Math� Anal� Appl� 	
�� �	
�����

G� Strang �
����� On the construction and comparison of di�erence schemes� SIAM
J� Numer� Anal� �� �����
��

Y�B� Suris �
����� On the conservation of the symplectic structure in the numerical
solution of Hamiltonian systems �in Russian�� in S�S� Filippov� ed�� Numeri�
cal Solution of Ordinary Di�erential Equations� Keldysh Institute of Applied
Mathematics� USSR Academy of Sciences� Moscow� 
���
���

Y��F� Tang �
����� Formal energy of a symplectic scheme for Hamiltonian systems
and its applications 
I�� Computers Math� Applic� 	�� �
����

M� Toda �
����� Waves in nonlinear lattice� Progr� Theor� Phys� Suppl� ��� 
���
	���

L� Verlet �
����� Computer �experiments� on classical �uids	 I	 Thermodynamical
properties of Lennard�Jones molecules� Phys� Rev� 
��� ���
���

A�P� Veselov �
��
�� Integrable maps� Russ� Math� Surv� ��� 
��
�
H� Yoshida �
����� Recent progress in the theory and application of symplectic in�

tegrators� Celestial Mech� Dynam� Astronom� ��� 	�����


