GniCodes — Matlab Programs for
Geometric Numerical Integration

1

Ernst Hairer ' and Martin Hairer 2

! Section de mathématiques, Univ. Genéve, CH-1211 Geneve 24, Switzerland
2 Mathematics Institute, Univ. Warwick, Coventry CV4 7AL, England

Abstract. Geometric numerical integration is synonymous with structure-preser-
ving integration of ordinary differential equations. These notes, prepared for the
Durham summer school 2002, are complementary to the monograph of Hairer,
Lubich and Wanner [12]. They give an introduction to the subject, and they discuss
and explain the use of Matlab programs for experimenting with structure-preserving
algorithms.

We start with presenting some typical classes of problems having properties
that are important to be conserved by the discretization (Section 1). The flow of
Hamiltonian differential equations is symplectic and possesses conserved quanti-
ties. Conservative systems have a time-reversible flow. Differential equations with
first integrals and problems on manifolds are also considered. We then introduce
in Section 2 simple symplectic and symmetric integrators, (partitioned) Runge-
Kutta methods, composition and splitting methods, linear multistep methods, and
algorithms for Hamiltonian problems on manifolds. We briefly discuss their sym-
plecticity and symmetry. The improved performance of such geometric integrators
is best understood with the help of a backward error analysis (Section 3). We ex-
plain some implications for the long-time integration of Hamiltonian systems and
of completely integrable problems.

Section 4 is devoted to a presentation and explanation of Matlab codes for
implicit Runge-Kutta, composition, and multistep methods. The final Section 5
gives a comparison of the different methods and illustrates the use of these programs
at some typical interesting situations: the computation of Poincaré sections, and
the simulation of the motion of two bodies on a sphere. The Matlab codes as well
as their Fortran 77 counterparts can be downloaded at

http://www.unige.ch/math /folks/hairer
under the item “software”.

1 Problems to be Solved

For the numerical solution of ordinary differential equations there exist well-
developed theories, and excellent general purpose codes are available and
widely used. If the flow of the differential equation has a particular struc-
ture, then its preservation by the discretization scheme can improve con-
siderably its performance and its qualitative behaviour. This article focuses
on structure-preserving algorithms for some important classes of problems —
Hamiltonian systems and reversible differential equations.
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1.1 Hamiltonian Systems

For a smooth function H(p,q) defined on an open set D C R? x R% we
consider the differential equation

. 0H . OH :
pi=—=—(pq), &=-—(paq), i=1,....,d (L1)

0q; Opi
The dimension d of the vectors p and ¢ is called the ‘degree of freedom’ of
the system. We also use the more compact notation

p: _qu(paq)a q:va(p7Q)7

or

j=JIVH(y), y= (5) L J= (_OI é) , (12)

where V,H,V,H,VH denote the column vectors of partial derivatives with
respect to the components of p, q,y, respectively. The matrix J is the struc-
ture matrix of Hamiltonian systems in canonical form.

Throughout this article we denote by ¢;(y) the exact flow of the system
(1.2), i.e., ¢i(yo) = y(t) is the solution at time ¢ of the problem (1.2) with
initial value y(0) = yo.

Ezample 1.1 (Classical Mechanical Systems). Consider a mechanical system
that can be described with (minimal) coordinates ¢ € R%. Denote its kinetic
energy by T'(q,q) = 2 ¢" M(q)g (with a symmetric positive definite matrix
M (q)) and its potential energy by U(q). The motion of the system is then
given as the solution of the Euler-Lagrange equations

5 (1@1) = 3 (160 - U ) (1)

corresponding to the variational problem [(T'(¢,¢) — U(g))dt — min. In-
troducing the new variables p := M (q)¢ (momenta or Poisson variables) the
differential equation (1.3) is equivalent to the Hamiltonian system (1.1) with

1 _
H(p.q) = 50" M(9)"'p+Ula). (1.4)
This is an immediate consequence from computing the partial derivatives of
this function H(p,q). A simple example, often used for illustrations, is the
mathematical pendulum for which the Hamiltonian is

1
H(p,q) = 5192 — cosq. (1.5)

Due to their special structure, Hamiltonian systems have several interest-
ing properties:
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Fig.1.1. Level curves H(p,q) = const for the pendulum problem (left picture),
and area-preservation of its exact flow (right picture).

e the Hamiltonian H(p, q) is constant along solutions of (1.1); for classical
mechanical systems this means that the total energy (sum of kinetic and
potential energies) is a conserved quantity.

e for systems with one degree of freedom the flow ¢; is area-preserving; for
the general case it is volume-preserving. This means that

nlpe(A)) = p(4) for t>0 (L6)

for any compact set A C R? x R<.
e the flow ¢; is a symplectic transformation, i.e.,

P ()T i(y) =J for t >0, (17)
where the prime in ¢}(y) denotes the derivation with respect to y.

The first property is immediately verified by differentiating 4 H (p(t), q(t)) =
... = 0. The solutions of the mathematical pendulum are therefore on the
level curves of the Hamiltonian (1.5); see Fig.1.1. The second property is
a consequence of the third, because (1.7) and the continuous dependence of
i (y) on timply det ¢}(y) = 1. This together with the transformation formula
for multiple integrals proves (1.6). The right picture of Fig. 1.1 illustrates the
area-preservation of the exact flow for the pendulum equation.

The symplecticity condition (1.7) has a nice geometric interpretation. It
is equivalent to the property that

w(pe(A)) =w(A) for t >0

holds for any two-dimensional sub-manifold A of R xR?, where w(A) denotes
the sum of the oriented areas of the projections of A onto the (p;, ¢;)-plane.
The important feature is that this property is characteristic for Hamiltonian
systems (cf. [12, chap. VI]), which means that whenever the flow of a differ-
ential equation y = f(y) is symplectic for all ¢ and all y, then f(y) is locally
of the form f(y) = J~-'VH(y). This characteristic property of Hamiltonian
systems motivates the search for discretizations that are symplectic.
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1.2 Reversible Differential Equations

Consider first a mechanical system for which the equations of motion are given
by the second order differential equation (1.3). Since T'(¢, ) is quadratic in
¢, they are equivalent to the system

qg=mv, Ozg(q,v), (18)

satisfying g(q, —v) = g(g,v). This implies the time-reversibility of the system
and means that whenever (¢(t), v(t)) is a solution of (1.8), also (g(—t), —v(—t))
is a solution. For example, in the study of planetary motion, the same dif-
ferential equation permits us to investigate the future and the past, one only
has to change the sign of the velocity vector v.

More generally, we consider a differential equation y = f(y) and a linear
invertible transformation p. We call the differential equation p-reversible if

(po flly) = =(fop)(y). (1.9)

For the previous situation we have y = (g, v), p(q,v) = (g, —v), and the vector
field f(y) = (v, 9(q, v)) indeed satisfies (1.9) whenever g(g, —v) = g(q,v).
This is illustrated in the left picture of Fig.1.2 at the hand of the perturbed
pendulum equation ¢ = v, ¥ = —sin ¢ — v?/5, which is still p-reversible with
respect to p(g,v) = (¢, —v), but which is no longer Hamiltonian.

The flow of a p-reversible differential equation has a remarkable property:

e it is p-reversible, i.e., it satisfies (see the right picture of Fig. 1.2)

(pow)w) = (o op)(y) foralltandally.  (L.10)

The proof of this statement is straightforward. One checks by differentiation
that (po ;) (y) and (¢; * 0 p)(y) = (p_top)(y) are both solutions of the same
differential equation Z = —f(z), and are identical for ¢ = 0. Formula (1.10)

Fig. 1.2. The p-reversibility of the vector field f(g,v) = (v, —sing — v?/5)T (left
picture), and the p-reversibility of the corresponding flow.
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thus follows from the uniqueness of the solution of an initial value problem.
Analogous to the situation of Hamiltonian problems, this property is charac-
teristic for p-reversible differential equations. This means that whenever the
flow of a differential equation y = f(y) satisfies (1.10), then (1.9) holds. It is
thus natural to look for numerical methods that share this property.

Ezample 1.2 (Kepler Problem). The relative motion of two bodies which at-
tract each other is described by the differential equation

. . , 0 , a2

qr =701, (g2=70V2, V1= —"75 513757 V2= 75 5375 (1.11)

(af +43)%/? (af +a3)%/?

Since it can be considered as a classical mechanical system, it is p-reversible
for p(q1,q2,v1,v2) = (q1,42, —v1, —v2). However, there are more symmetries
in this problem, and it is seen to be p-reversible also for p(q1, g2, v1,v2) =
(q1, —q2, —v1,02).

Ezample 1.3 (Second Order Differential Equations). Many problems of prac-
tical applications lead to ¢ = g(g), or equivalently,

g=v, 9=g(q). (1.12)

For example, all classical mechanical systems for which M (q) = M is a con-
stant matrix are of this form. The differential equation (1.12) is p-reversible
for p(q,v) = (¢, —v) independent of the form of ¢g(g). It is Hamiltonian only
if g(q) = —V,U(q) for some potential function U(g).

1.3 Hamiltonian and Reversible Systems on Manifolds

It is often difficult to find suitable minimal coordinates for describing the
motion of mechanical systems. Moreover, minimal coordinates are in general
defined only locally and frequent changes of charts may be necessary. To avoid
this difficulty we consider coordinates ¢ € R? that are subject to constraints
g(q) = 0. Expressing the Euler-Lagrange equations and their Hamiltonian
formulation in terms of these coordinates, we are led to a system of the form

p=-V,H(p,q) — Vyg9(q)A

q=VyH(p.q), 0= g(q), (1.13)

where the additional term with the Lagrange multiplier A forces the solution
to satisfy g(q) = 0. Here, p and q are vectorsin R%, g(q) = (91(q), .. , gm(q))T
is the vector of constraints, and V,g9 = (ngl, . ,ngm) is the transposed
Jacobian matrix of g(q).

Differentiating the constraint 0 = g(g(t)) with respect to time yields

0= Vy9(q)"V,H(p,q) (1.14)
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(the so-called hidden constraint) which is an invariant of the flow of (1.13).
A second differentiation gives the relation

0
0=2-(Va9(0)"V,H(p,q) ) V,H(p,q
5 (Vas(@) Vo H (p,0))V, H (p, ) )
~Vaug(9)" Vi H(p,q) (qu (p,a) + ng(q)k) ,
which allows us to express A in terms of (p, q), if the matrix
Ve9(@)"V2H (p,q)V9(q) is invertible (1.16)

(Vf,H denotes the Hessian matrix of H). Inserting the so-obtained function
A(p, ) into (1.13) gives a differential equation for (p, ¢) on the manifold

M ={(p,q) | 9(q) =0, Vog(a)"V,H(p,q) = 0}. (1.17)

This interpretation allow us to deduce the existence and uniqueness of the
solution from the standard theory for ordinary differential equations, provided
that the initial values satisfy (po, qo) € M.

Important properties of the system (1.13) that should be conserved by a
discretization are the following;:

e for (po,qo) € M the solution stays on the manifold M for all ¢; hence,
the flow is a mapping ¢; : M — M.
e the flow ¢; is a symplectic transformation on M which means that

(i) T oi(y)n=€"Tn  for &, € TyM; (1.18)

here, the product ¢} (y)¢ has to be interpreted as the directional deriva-
tive.

e for Hamiltonians satisfying H(—p, q) = H (p, q) the flow ¢, is p-reversible
for p(p,q) = (—p, q) in the sense that (1.10) holds for y = (p,q) € M.

Ezample 1.4 (Two-Body Problem on the Sphere). We are interested in the
motion of two bodies which attract each other, but which are restricted to
stay on a sphere. Using Cartesian coordinates q;, ¢> € R? for the positions of
the two bodies and p1,p> € R? for their velocities, the Hamiltonian becomes
(after a suitable normalization)

1
H(p1,p2,q1,42) = 5 (P p1 + P32 p2) + Ular, g2), (1.19)
and the constraint equations g(qi,¢2) = 0 with g : R® — R? are given by

G —1=0, ¢ g—1=0. (1.20)
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Fig.1.3. A solution of the two-body problem on the sphere; initial values are
indicated by larger symbols; the geodesic connection between the two bodies is
plotted at every second time step in the right picture.

According to Kozlov and Harin [18], we choose U(q1,q2) = —cos¢/sind) as
potential, where 1 is the distance between the two bodies along a geodesics.
We have cos¥ = qf ¢, so that the equations of motion become

i1 =p1, D1 =flal @) — a,

. . (1.21)
G2 =12, P2 =flaf @)@ — Ao,
together with (1.20), where

1
f(C):m-

The initial values have to lie on the manifold

M={(pi,p2.q1,0) i d a1 =1, 32 =1, ¢/ p1 =0, q3 p» =0},

and the solution stays on M for all t.
A particular solution is plotted in Fig.1.3. We have chosen

. . . T
i = (cos ¢; sin6;, sin ¢; sin 6;, cos 6;)

with (¢1,61) = (0.8,0.6) and (¢2,62) = (0.5,1.5) as initial values for the
positions, and

pi = (—(]5Z sin ¢; sin 0; + 6; cos @i cosb;, qﬁz cos ¢; sin@; + 6; sin ¢; cosb;, —6; sin 6;)

with (é1,60;) = (1.1, -0.2) and (¢2,60,) = (—0.8,0.0) as initial values for the
velocities. The two bodies are indicated by small squares in different colors.
The right picture of Fig. 1.3 also shows the geodesic connection between the
two bodies.
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Ezample 1.5 (Rigid Body Simulation). The motion of a rigid body with a
fixed point chosen at the origin can be described by an orthogonal matrix
Q(t). Denoting by I, I>, I3 the moments of inertia of the body, its kinetic
energy is

T = (L2 + L3+ [:03),

where the angular velocity {2 = (121, (25, £25)” of the body is defined by

~ 0 -2 _
Q=12 0 - | =070,
—2 2 0

(see [2, Chap. 6]). In terms of @, the kinetic energy on the manifold {Q | QTQ =
I} becomes

T = %trace (QD(A)T) = %trace (QTQDQTQ) = %trace (QDQT),

where D = diag (dy, ds, ds) is given by the relations Iy = dy+ds, I = d3 +dj,
and I3 = d; + dy. With P = 0T/0Q = QD, we are thus concerned with

H(P,Q) = %trace (PD-'PT) + U(Q),

and the constrained Hamiltonian system becomes

P =-VoU(Q) - Q4,

Q=PD™', 0=QTQ-1, (1.22)

where A is a symmetric matrix consisting of Lagrange multipliers. This is of
the form (1.13) and satisfies the regularity condition (1.16).

2 Symplectic and Symmetric Integrators

A numerical integrator is a family @, (y) of maps on the phase space that
approximates the exact flow ¢y (y) of the differential equation. It is the aim
of ‘geometric integration’ to construct and to study methods for which the
numerical solution, given by y,+1 = @5 (yn), preserves the structure of the
problem. We are mainly interested in methods for which @, is symplectic or
p-reversible, when it is applied to a Hamiltonian or p-reversible differential
equation, respectively.

2.1 Simple Symplectic Methods

The simplest numerical methods for general differential equations y = f(y)
are the explicit Euler method

Ynt1 = Yn + hf(yn) (2.1)
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Fig. 2.1. Numerical flow with step size h = 7/3 for the four ‘Euler methods’ of
Sect. 2.1. The exact flow is included as a white shadow.

—symplectic

and the implicit Euler method

Ynt+1 = Yn + hf(yn-i-l)- (2'2)

Here, h is the step size, and y,, is an approximation to the solution y(t) at
time ¢ = nh. For Hamiltonian systems (1.1) we consider the method

Pn+1 = DPn — thH(an, Qn)y Qn+1 = qn + hva(pn+la QH)v (2'3)

which treats the p-variable by the implicit Euler method and the g-variable
by the explicit Euler method. Similarly, we also consider

Pn+1 = Pn — thH(pna qn—i—l): n+1 = qn + hva(pna qn+1)- (24)
Both methods are called symplectic Fuler method.

Example 2.1. We apply all four methods to the pendulum problem which is
Hamiltonian with H(p, ¢) given by (1.5), and we consider initial values in the
set A of Fig.1.1. The numerical solution obtained with the large step size
h = /3 is illustrated in Fig.2.1. Neither the explicit nor the implicit Euler
methods are area-preserving (i.e., symplectic). We shall see in the following
theorem that both ‘symplectic Euler methods’ are area-preserving (hence
the name symplectic). Due to the large step size, however, the numerical
solution differs significantly from the exact solution which is included as a
white shadow in the pictures (compare with Fig.1.1).
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Theorem 2.1. For the numerical schemes (2.3) and (2.4) the mapping

by - L Prt1
qn Gn+1
is a symplectic transformation.

The proof of this theorem is straightforward (de Vogelaere [42] and [12,
p.176]). One computes the Jacobian of & by implicit differentiation, and
one checks the identity (1.7).

2.2 Simple Reversible Methods

We next consider p-reversible differential equations (i.e., po f = —f o p) as
discussed in Sect. 1.2.

Theorem 2.2. If a numerical method @5, satisfies
po®p=® pop and P :45:}“ (2.5)
then it is p-reversible, i.e., po @y = 95;1 op.

This statement is obvious. The interest of this theorem lies in the fact that
the second condition of (2.5) is independent of p, whereas the first condition of
(2.5) is easy to check and satisfied by all ‘reasonable’ methods. For example,
the explicit Euler discretization (2.1) yields

(P o Pr)(Yn) = PYnt1 = pYn + hpf(Yn) = pyn — hf (pyn) = (21 © p)(Yn),

and a similar simple computation shows that the implicit Euler method and
all (explicit and implicit) Runge-Kutta methods satisfy the first condition of
(2.5). For partitioned Runge-Kutta methods, such as the symplectic Euler
scheme, this is true for transformations p which are of the form p(q,v) =

(p1(q), p2(v)).

If &1, (y) represents a numerical method of order at least one, i.e., &,(y) =
y + hf(y) + O(h?), then also ¢ (y) = y + hf(y) + O(h?) and

=0T, (2.6)

is a numerical method of order at least one. It is called the adjoint method of
&),. Whenever an integrator satisfies

it is called a symmetric method. The second condition in (2.5) of Theorem 2.2
is thus equivalent to the symmetry of the method ®,.

Exchanging h <+ —h and y,, <> yp+1 in (2.1) shows that the adjoint of the
explicit Euler method is the implicit Euler method and vice versa. Similarly,



GniCodes — Matlab Programs for Geometric Numerical Integration 11

the adjoint of the symplectic Euler method (2.3) is the method (2.4). None
of these methods is symmetric.

Using the notion of the adjoint method it is easy to construct symmet-
ric methods: let ¥, be an arbitrary method of order at least one, then the
compositions

Phy2 0¥/, and Wy oWy (2.8)

are symmetric methods of order at least two. The symmetry follows from the
properties (95, o ¥y)* =¥, o ®; and (P})* = P, and order at least two is a
consequence of the fact that symmetric method always have an even order.

For example, if we let ¥, be the explicit Euler method, then the methods
of (2.8) are

M)
)

. (2.9)

Yn+1 :yn+hf(

the implicit midpoint rule, and

Uit = o+ 5 (Fa) + Fnsn) ), (2.10)

the trapezoidal rule, respectively.

2.3 Stormer/Verlet Scheme

We next consider Hamiltonian systems (1.1) and the symplectic Euler method
(2.3) in the role of ¥,. The compositions (2.8) then yield
h
qn+1/2 =qn + 5 VpH(Pan+1/2)
h
Pn+1 = Pn — B} (qu(pnv qn+1/2) + VqH(pn+1,Qn+1/2)) (2.11)

h
In+1 = Gnt1/2 + 35 VoH (Pni1s Gng1/2)

and
h
Pnt1/2 = Pn — 9 qu(pn+1/27 qn)
h
Gn+1 = qn + 9 (va(pn+1/2> Qn) + va(pn+1/2> qn+1)) (212)

h
Prt1 = Puti/2 ~ 5 VH (Prsi/2,dnt1)

respectively. For the important special case H(p,q) = p® + U(g), method

2
(2.12) reduces to (after elimination of the p-variable)
Qo+l — 2qn + Gn-1 = _h2qu(qn)- (213)

This discretization of § = —V,U(q) is attributed to Newton (cf. [13]), De-
lambre (cf. [25]), Encke, Stormer [36], and Verlet [41]. The methods (2.11)
and (2.12) are nowadays often called Stérmer/Verlet scheme.

Let us collect the most important properties of the Stormer /Verlet scheme:
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= Stérmer/Verle (2.1 1) —Stormer/Verlet (2.12)

Fig.2.2. Numerical flow with step size h = 7w/3 for the two versions of the
Stormer/Verlet method. The exact flow is included as a white shadow.

the method is of order two,

it is a symplectic method,

it is a symmetric method,

for separable Hamiltonians T'(p) + U(q) the method is explicit,

the method exactly conserves quadratic first integrals p’ Cq, e.g., the
angular momentum in N-body problems.

The first four statements are immediate consequences of the above discus-
sions. A proof of the last property is given in [12, p. 98].

In Fig.2.2 we repeat the experiment of Example 2.1, but this time with
the two versions of the Stormer/Verlet method. We clearly observe the higher
accuracy (compared to the first order methods) and the area-preservation.

The Stérmer/Verlet scheme is an excellent geometric integrator and it
is widely used, in particular in molecular dynamics where a correct qual-
itative simulation is of utmost importance. For long-time computations in
astronomy, where a very high accuracy is demanded, the order two of the
Stormer /Verlet scheme is too low.

2.4 Splitting Methods

A different approach for constructing simple geometric integrators is based
on the idea of splitting the vector field as

g =fU) + fH). (2.14)

If by chance the exact flows <p£1] and @EQ] of the systems § = fl!(y) and

y = f%(y) can be calculated exactly, we can consider
=) o)) (2.15)

as simple numerical integrator. It follows from Taylor expansion that this
method is of order one. Even more important is the symmetric (second order)
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&), = gp%l/]2 o (pf] o gp%l/]2 (2.16)

which is usually called Strang splitting. These splitting methods have the
following obvious properties:

e if both, flUl(y) and f1?(y), are Hamiltonian vector fields, then the com-
positions (2.15) and (2.16) are symplectic integrators;

o if both, flUI(y) and f1?(y), are p-reversible, then the symmetric method
(2.16) is p-reversible.

For some situations the splitting (2.14) is obvious. For example, if a Hamil-
tonian system has H(p,q) = T(p) + U(q) as Hamiltonian, then the flows
corresponding to H(p,q) = T'(p) and HP (p,q) = U(q) are given explicitly
by

0 p.a) = (p.a + V1), o (0.0) = (0 — tV,U(q),0).
The resulting splitting methods (2.15) and (2.16) are then equivalent to the
symplectic Euler method (2.3) and to the Stérmer/Verlet scheme (2.12), re-
spectively. In general, however, it is an art to find a suitable splitting (cf. [25]).
2.5 High Order Geometric Integrators
We start this section with a numerical experiment that motivates the search

for high order symplectic and symmetric numerical integrators. We consider
the Kepler problem which is Hamiltonian with

(2.17)

N =

H(p17p27q17q2) =

1
(P} +13) — ——.
Vi + ¢

and we take as initial values
0(0)=1-e, ¢(0)=0, pi(0)=0, p2(0)=+/(1+e)(l—e)?,

such that the solution is an ellipse with eccentricity e = 0.6. Figure 2.3 shows
the work precision diagrams (global error at the endpoint after 200 revolu-
tions against the required number of function evaluations and the computer
time, respectively) for the second order Stérmer/Verlet scheme as well as for
various methods of order eight. It clearly demonstrates that for high accu-
racy requirements (say 10 digits) the low order method cannot compete with
the high order ones. It would need about 1000 times more cpu time. The
irregularities at the right bottom corner of the pictures are due to round-off.
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Fig. 2.3. Work precision diagrams for the Stérmer/Verlet scheme and for three
methods of order eight; implicit Runge-Kutta method (irk2), composition method
(comp), and linear multistep method (Imm?2).

Implicit Runge-Kutta Methods In the end of the 19th and the beginning
of the 20th century Runge [30] and Kutta [19] introduced generalizations of
the explicit Euler method with the aim of getting more accurate numerical
approximations. These explicit methods can neither be symplectic nor sym-
metric as follows from the characterizations given below. Much more impor-
tant for our purpose are implicit Runge-Kutta methods, introduced mainly
in the work of Butcher [5]. For Hamiltonian systems or for general partitioned
differential equations

q= f(g,v), ©v=g(qv) (2.18)

we consider so-called partitioned Runge-Kutta methods, which treat the com-
ponents of ¢ and those of v by possibly different implicit Runge-Kutta meth-
ods. They are defined by

ki = f(qn + hzaijkj; Un + hzaiﬂj);
j=1 j=1

S 8§
Ei :g(qn+h2aijkj, vn+h26ij€j>, (219)
j=1 j=1
8§ 8§ N
gn+1 = gn + hz blkl, Upt1 = Up + h Z bil;.
i=1 i=1
The equations for k;,¢; (i = 1,... ,s) are nonlinear and have to be solved by

fixed-point iteration, provided that the step size h is sufficiently small.
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It turns out that the method (2.19) is symplectic for general Hamiltonian
systems, if the following relations are satisfied:

biaij -/|: bjaji = bibj for i,5=1,...,s, (220)
b; = b; for i=1,...,s.
It is symmetric, if
fl\s+17i,s+17j +fl\ij = Ej for all Z:;J:; (2.21)
Ast1—i,5+1—j T Ajj = bj for all ¢, 7.

If the method does not contain superfluous stages and if the stages are suit-
ably ordered, the conditions (2.20) and (2.21) are also necessary for symplec-
ticity and symmetry, respectively. These characterizations have been obtained
originally by Lasagni [22], Sanz-Serna [32] and Suris [37] for symplecticity,
and by Stetter [35] and Wanner [43] for symmetry. They are discussed in
detail in Chapters V and VI of [12].

For the important special case § = g(q), i-e., f(g,v) = v in (2.18) and
9(q,v) independent of v, the variables k; can be eliminated explicitly and the
method (2.19) reduces to

&Zg(qn+hcivn+h22’dijéj>, 1=1,...5,
s 7 . (2.22)
i1 = o+ hon + 12 bils, v = v+ B bits.
i=1 i=1

where ¢; = ijl a;j, and bi, @;; are the coefficients of b7 = b7 A and A = AA.

Ezample 2.2 (Method Used as ‘irk2’ in Fig. 2.8). The most important sym-
plectic implicit Runge-Kutta methods are the so-called Gauss methods. They
are built on the Gaussian quadrature (b;,¢;)f_,, which is interpolatory and
for which ¢, ..., ¢, are the zeros of the sth shifted Legendre polynomial

dd;s (“"s(” - DS)'

The coefficients a;; are computed from the linear system

S Ck
E aijc;?_lzf fori,k=1,...,s.
i=1

We let ?b\z = b; and @;; = a;; in (2.19), so that all components of the differential
equation are treated by the same method.

The method obtained in this way has originally been introduced by Butcher
[6], and it has many nice properties. It is of order 2s (which is maximal among
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all s-stage Runge-Kutta methods), it is symplectic and symmetric, so that
it is extremely well suited in the context of geometric integration. The only
disadvantage is that even for simple situations such as § = g(q), it gives an
implicit discretization. In the experiment of Fig. 2.3 we use this method with
s = 4. The ‘2’ in ‘irk2’ indicates that the code is for second order differential
equations ¢ = g(q) only, and that it is implemented as (2.22).

Partitioned Multistep Methods Another extension of the Euler methods
are linear multistep methods, originally introduced by Adams in 1855 and
published in Bashforth [3]. Neither explicit nor implicit classical multistep
methods have been successful in geometric integration. Lambert and Watson
[21] considered special classes for second order differential equations § =
9(q), which have been revived by Quinlan and Tremaine [27] for the long-
time integration of planetary orbits. For partitioned differential equations
(2.18), which are more general than ¢ = v, ¥ = g(q), these methods can be
interpreted as partitioned linear multistep methods, defined by

k k
D ity =h Y Bif(Gnisvnts)s
j=0 Jj=0

- : (2.23)
Y @ty =0y Big(gntj, vnss)-

j=0 j=0

It is not evident to discuss symplecticity and symmetry of multistep methods,
because we are concerned with an algorithm (yn, ..., Yntk—1) — Yntx and
not with a one-step method yp11 = Pn(y,) which is a transformation on
the phase space. However, Kirchgraber [17] showed that to every consistent
strictly stable multistep method one can associate a so-called underlying one-
step method @) which has the same long-time dynamics. More precisely, it
satisfies the following properties:

e for every yo, the sequence defined by y,+1 = @1 (y,) is a solution of the
multistep method;

e for an arbitrary starting approximation yo, ... ,yr_1, the numerical ap-
proximation of the multistep method tends exponentially fast to a par-
ticular solution obtained by the underlying one-step method.

The existence of an underlying one-step method (as a formal series in powers
of h) satisfying the first of these properties, can be shown for general con-
sistent methods (2.23); see [12, Chap.XIV]. The second property cannot be
fulfilled by methods that are not strictly stable. Assuming that for arbitrary
starting approximations the multistep solution remains close to that obtained
by the underlying one-step method, it is natural to call a method (2.23) sym-
plectic and symmetric, if the underlying one-step method is symplectic and
symmetric, respectively.
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Unfortunately, it turns out that partitioned multistep methods cannot
be symplectic (Tang [39]). However, they can be symmetric. In terms of the
coefficients of the method (2.23), the symmetry of the underlying one-step
method is equivalent to (assuming irreducibility of the methods)

aj = —arj, B =p; forj=0,...,k 1)
aj = _aE—j’ ,3]' = ﬁﬁ—j fOI'j = 0,. .. ,k.

For stable symmetric multistep methods the zeros of the generating poly-

nomials p(¢) = Efzo a;¢? and p(¢) = Z?:o @;¢’ have to lie on the unit
circle. Such methods cannot be strictly stable, and for this reason symmetric
multistep methods have been disregarded for a long time.

Also for this class of methods we are mainly interested in the numerical
solution of second order differential equations § = ¢(g). Elimination of the

v-variables in (2.23) yields the formula
K K
> Ajtntg =Y Big(ans); (2.25)
j=0 7j=0

where the generating polynomials R(() = Ef:o Aj¢7 and S(¢) = E?:o B;{?
are obtained from those of (2.23) by

R(C) = p(Q) - p(C),  S(Q) =a(C)-7(C)-

Here, p(¢),p(¢),0(¢),5(¢) are the generating polynomials of aj,a,-,ﬁj,,@,-,
respectively. We recall that method (2.25) is of order p, if

R(e") — h2S(e") = O(hP*?) for h — 0. (2.26)

Formula (2.25) does not involve derivative approximations v,,. If they are
needed, they can be obtained by finite differences from the position approxi-
mations g,.

Ezample 2.3 (Method Used as Ilmm2’ in Fig. 2.3). We put K = 8 and we let
RQO=(-DC =)=+ ++C+C+(+1),

so that all zeros lie on the unite circle and, apart from { = 1, all zeros are
simple. To get a method of order p = 8, the polynomial S(¢{) has to satisfy

S(¢) = R(¢)/log” ¢ + O((¢ ~ 1)P)

(cf. condition (2.26)). Expanding the right-hand expression into a Taylor
series at ( = 1 and truncating to get a polynomial of degree 7, we obtain the
generating polynomial

8934

¢) 42873 33812
8640

(C+P)+—=(CF+ ) — ===

13207 G
8640 8640

()= 8640
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The resulting method (2.25) is of order 8 for problems § = ¢(g), symmet-
ric, and explicit (because Bk = 0). An approximation to the derivative is
obtained by symmetric differences as

. 1
Yn = m (672 (yn+1 - Z/n—l) — 168 (yn+2 — yn_2)

+32 (Ynt3 — Yn—3) — 3 (Ynta — yn74))-

Composition Methods We consider the composition of a given basic one-
step method @, (y) with different step sizes:

théwho---o¢w2ho¢wlh- (227)

The aim is to increase the order (and hence the accuracy) while preserving
desirable properties (symplecticity, symmetry) of the basic method. This idea
has mainly been developed in the papers of Suzuki [38], Yoshida [44], and
McLachlan [24]. For a recent comprehensive survey see [25] and Chapters II,
III, and V of [12].

The reason of the success of composition methods within geometric inte-
grators are the following properties:

e if @, is symplectic, then the composition method ¥, is symplectic;
o if & is symmetric and if the step size parameters ; satisfy v; = V5414,
then the composition ¥y, is symmetric.

The main problem consists in finding parameters ; such that the composition
¥y, is of a given order. Suzuki [38] and Yoshida [44] propose general simple
procedures that allow one to construct composition methods of arbitrarily
high order. For orders higher than four they are, however, not very efficient.
One is therefore obliged to investigate and to solve the set of order conditions
for the ; which guarantee that the method ¥j, of (2.27) has a certain order.

Ezample 2.4 (Method Used as ‘comp’ in Fig. 2.3). From the many published
examples of composition methods, let us present the coefficients of a method
of order 8 with s = 17 steps:

v1 =7 = 0.13020248308889008087881763
Y2 =716 = 0.56116298177510838456196441
v3 = 7115 = —0.38947496264484728640807860
Y4 =714 = 0.15884190655515560089621075
vs = 113 = —0.39590389413323757733623154
Y6 = 7112 = 0.18453964097831570709183254
7 =711 = 0.25837438768632204729397911
Y8 =v10 = 0.29501172360931029887096624

Yo = —0.60550853383003451169892108

This set of coefficients is due to Kahan and Li [15]. The little picture to
the right illustrates the 17 steps necessary for obtaining order 8. The zig-zag
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behaviour is typical for composition methods. It is impossible to get high
order without negative step sizes.

For the computations of Fig. 2.3 we use the Stormer/Verlet scheme (2.12)
as basic integrator. The resulting composition method is symplectic and (due
to 7v; = 7Y18—;) symmetric.

2.6 Rattle for Constrained Hamiltonian Systems

Let us explain here, how the Stérmer/Verlet method (2.12) can be generalized
to solve constrained Hamiltonian systems of the form (1.13). Without taking
much care of velocity approximations Ryckaert, Ciccotti and Berendsen [31]
show how constraints g(¢g) = 0 can be included in the formulation (2.13).
Anderson [1] reformulates their method and includes a velocity approxima-
tion that satisfies the hidden constraint (1.14). The resulting algorithm, still
for separable Hamiltonians, is called ‘Rattle’. Later, Jay [16] and Reich [28§]
observed that the Rattle algorithm can be extended to general Hamiltonians.

Recall that the exact flow of a constrained Hamiltonian system lies on
the manifold M, defined in (1.17). Assume therefore that an approximation
(Pn,qn) € M is given. One step of the algorithm is defined as

h
Pri1/2 = Pn =3 (VqH(an/a, qn) + vq9(‘1n)>‘n>

h
In+1 = qn + 5 (va(pn+1/27Qn) + va(pn+1/2; qn+1))

0= g(gn+1) (2.28)

h
Pnt1 = Pnti/2 = 5 (qu(pn+1/27qn+l) + Vq!J(QnH)lM)

0= V9(@ns1)" VpH (prs1, Gni1)-

For fixed Ay, the first two equations define uniquely p,, 11,2 and g1, if A is
sufficiently small. The parameter A, has to be chosen to satisfy g(gn+1) = 0.
This is possible if the matrix (1.16) is invertible. In the last two equations,
[t has to be chosen to satisfy the constraint for p,11.

Similar to the Stérmer/Verlet method for unconstrained Hamiltonian sys-
tems, this algorithm has many nice properties that are useful within geometric
integration:

e the numerical solution stays on the manifold M; i.e., the method (2.28)
defines a numerical flow &, : M — M;

e the numerical flow @, : M — M is a symplectic transformation on M;

e the method is symmetric;

e the method is convergent of order two.

The symplecticity of the numerical flow has first been shown by Leimkuhler
and Skeel [23]. The other properties are easy consequences of the definition
of the method. This integrator is an ideal candidate as basic method for
compositions of the form (2.27). For elaborate proofs and for extensions to
higher orders we refer to Sect. VIL.1 of [12].
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3 Theoretical Foundation of Geometric Integrators

Intuitively, it is quite obvious that a symplectic method should be preferred
for the integration of Hamiltonian systems. Similarly, symmetric (more pre-
cisely, p-reversible) integrators should be preferred for p-reversible differential
equations. This is motivated by the fact that the symplecticity of the flow is
characteristic for Hamiltonian systems, and the p-reversibility of the flow is
characteristic for p-reversible differential equations.

In this section we give some more precise statements on the long-time be-
haviour of geometric integrators. In particular, we discuss the idea of backward
error analysis which is the key for a deeper understanding of most numeri-
cal phenomena. This idea was common to many numerical analysts already
before a systematic study started with the work of Feng [8], Sanz-Serna [33],
Yoshida [45], Hairer [9] and many others.

3.1 Backward Error Analysis

Consider an ordinary differential equation

y=1ry) (3.1)

and a numerical method y,+1 = @,(y,). The idea of backward error analysis
consists in searching and studying a modified differential equation

g=f)+hf2y) + b fay) + ..., (3.2)

such that the exact time-h flow @5, (y) of (3.2) is equal to the numerical flow
@y (y). Already simple examples (e.g., trapezoidal rule applied to a quadrature
problem y = f(t)) show that the series in (3.2) cannot be expected to converge
in general. The precise statement is the following;:

Theorem 3.1. Consider the differential equation (3.1) with an infinitely dif-
ferentiable vector field f(y). Assume that the numerical flow admits a Taylor
series expansion of the form

Bu(y) =y + hf(y) + hda(y) + B3ds(y) + ... . (3.3)
Then, there exist unique vector fields f;(y) such that for any N > 1
Pn(y) = Gnn(y) + O(RVH),
where @ v is the exact flow of the truncated modified equation

§=fy)+hf2ly) + ...+ bV in(y)

(notice that the flow oy n also depends on h, because h is a parameter in the
modified differential equation,).
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Let us outline a constructive proof. Without taking care of convergence
we expand the exact flow of (3.2) into a Taylor series

N N B2 _ B3
on(y) =y+hy'(0)+ gy”(o) + g

=y+h(f@) +hf2(y) + B fs(y) +...) (3.4)

Z_j(f'(y)+hfé(y)+---)(f(y)+hf2(y)+...) +...

(where the prime denotes derivation with respect to time) and compare like
powers of h in the expressions (3.4) and (3.3). This yields recurrence relations
for the functions f;(y), namely,

70 + ...

+

f2y) = daly) — 51" F(9) (3.5)
Bw) = ds(y) = 5 (£ D + 1710)) = 5 (£ 80) + £1@)).
Ezample 3.1. We consider the pendulum equation ¢ = p, p = —sing and

apply the explicit Euler discretization (2.1). We have d;(y) = 0 for all j > 2,
so that (3.5) yields for the modified equation

q) = p h [ sing n? —4pcosgq
(p> - (—SiHQ) T3 (pcosq) M) <(p2—|—4COSq)sinq +.... (36)

For the implicit Euler method (2.2) we get (3.6) with h replaced by —h. A
similar computation yields for the symplectic Euler method (2.3) the modified
differential equation

q\ _ D h (—sing n? 2pcosq
(p> - <—sinq) T3 (PCOSQ) M) <(p2 —ZCosq)sinq> +..., (37

whereas the same equation with h replaced by —h is obtained for the method
(2.4). The four pictures of Fig.3.1 show the exact flow of the modified dif-
ferential equations (truncated after the O(h?) term) corresponding to these
four Euler methods together with the numerical solution for the initial value
(po,qo) = (—1.2,0.7). We observe a surprisingly good agreement. This figure
should be compared to the exact flow of the unperturbed system (cf. Fig.1.1).

The O(h) perturbation in (3.6) provokes the origin to become a source for
the explicit Euler method, and a sink for the implicit Euler method. For the
two symplectic discretizations we observe that the solutions of the modified
equation are periodic, and that the numerical approximation lies near a closed
curve. It has thus the correct qualitative behaviour. This is explained by the
fact that the differential equation (3.7) is Hamiltonian with

~ 2

1 h . h
H(p,q) = §p2 —cosq — 5 psing + E(p2 —cosq)cosq+ ...,

so that the exact solutions stay on the level curves of H(p, q).
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Al ﬁ% \ 4

Fig. 3.1. Numerical solution with step size h = 0.4 for the four ‘Euler methods’ of
Sect. 2.1 compared to the exact flow of their modified differential equations trun-
cated after the O(h?) term.

:
)

e
ymplectlc Euler (2.3

3.2 Properties of the Modified Equation

The previous example demonstrates that the numerical solution is extremely
close to the exact solution of the modified differential equation. To study
properties of the numerical solution, it is therefore justified to investigate
instead the corresponding properties of the modified differential equation,
and this is often much simpler. Let us collect some properties valid for general
differential equations:

e if the method is of order r, i.e., 1, (y) — ¢n(y) = O(R™1), then we have
filyy=0forj=2,...,r;

o if h™™16,,1(y) is the leading term of the local truncation error, i.e.,
Py (y) —pny) = B+ 10p11 (y) + O(h™2), then we have fri1(y) = dr41(y);

e if &;(y) has the modified equation (3.2), then the adjoint method has
fiy) = (=1)7* f;(y) as coefficient functions of the modified equation;

e for symmetric methods the modified equation is an expansion in even

powers of h; i.e., for(y) = 0 for all k.

We now turn our attention to Hamiltonian systems and to p-reversible dif-
ferential equations.

Theorem 3.2 (Local Modified Hamiltonian). Consider a Hamiltonian
system (1.1) with smooth Hamiltonian H : D — R (D C R?*?) and apply
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a symplectic numerical method ®,(y). Then, the vector fields fi(y) of the
modified differential equation are locally Hamiltonian, i.e., locally we have
frly) = T 'VH(y).

The proof is by induction on k. Its ideas can be traced back to Moser
[26], and it can be found in Benettin & Giorgilli [4], Tang [40], Reich [29],
and in Chapter IX of [12]. Since the idea of proof is applicable to many other
situations, we outline it shortly.

We assume (by induction) that the truncated modified equation

§=fy)+hf2y) + ...+ fily) (3.8)

is Hamiltonian. Its flow @ 1 (y) satisfies

Bu(y) = Gnk(y) + b5 frpa(y) + O(RF2).

Since &5, and @y, i, are symplectic transformations,
T =B, I ) = T+ B (Fn )T + TFa ) + O(h)

holds. Consequently, the matrix J f; | (y) is symmetric and the existence of
Hy41(y) satisfying fri1(y) = J 'VHgi1(y) follows from the integrability
lemma. 0O

If H and &, are both defined and smooth on the whole of R2¢ or on a
simply connected domain D, the functions Hj, of the modified Hamiltonian
are globally defined. However, as shown by the following example, the func-
tions Hj, are in general not globally defined, and the above theorem cannot
be used for the study of the long-time behaviour of numerical solutions.

Ezample 3.2. For the harmonic oscillator p = —¢q, ¢ = p, consider the dis-
cretization

Pt = Pn— hagn — B*YPpi1,  Gui1 = o + Bpug1 — B2y qn (3.9)

where v = 0.25/(p2,, +42). It is a O(h?) perturbation of the symplectic Euler
method and therefore it is a method of order 1. Its symplecticity follows from
the fact that it can be written as

Pnt+1 = Pn — ths(anrl: qn): dn+1 = Qn + thS(PnH,%)

with S(p,q) = L (p*+¢?)— & arg(g-+ip). Its numerical approximation, plotted
in the right picture of Fig. 3.2, is disappointing and does not show the correct
qualitative behaviour. This is due to the fact that S(p, ¢), and hence Ha(p, q),
are not globally defined.
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/

explicit Euler implicit Euler symplectic Euler ~ sympl. meth. (3.9)

%

Fig. 3.2. Numerical solution of different first order methods applied to the harmonic
oscillator with step size h = 0.15.

Theorem 3.3 (Global Modified Hamiltonian). Consider a Hamiltonian
system (1.1) with smooth Hamiltonian H : D — R (D C R??) and apply the
symplectic method

Pn+1 = Pn — h qu(er-l: Qn)a n+1 = gn + h vps(pn—i-la Qn)

with generating function

where all Sk(p,q) are globally defined on D. Then, the vector fields fi(y)
of the modified differential equation are globally Hamiltonian, i.e., we have
fr(y) = J 'V Hy(y) with smooth H : D — R.

The proof of this theorem is based on the Hamilton-Jacobi differential
equation (cf. Sect.IX.3.2 of [12]). Let us mention that all previous meth-
ods (symplectic Euler, Stérmer/Verlet, symplectic partitioned Runge-Kutta
methods, composition methods) satisfy the assumption of Theorem 3.3.

Theorem 3.4 (p-Reversible Modified Vector Field). Consider a p-re-
versible differential equation (cf. Sect. 1.2) and apply a p-reversible numerical
method @, (y). Then, the vector fields fi(y) of the modified differential equa-
tion are p-reversible, i.e., they satisfy (1.9).

The proof uses the same ideas as that of Theorem 3.2.

3.3 Long-Time Behaviour of Geometric Integrators

Using backward error analysis and in particular the results of Theorems 3.3
and 3.4, we shall show that symplectic integrators (for Hamiltonian systems)
and p-reversible integrators (for p-reversible differential equations) have an
improved long-time behaviour. We study the conservation of the Hamiltonian
and of general first integrals, and the error growth for integrable systems.
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Conservation of the Hamiltonian We know that the Hamiltonian H (p, q)
is constant along exact solutions of the Hamiltonian system (energy conser-
vation for mechanical systems). Since the local error of a rth order integrator
is of size O(h™1), we have H(pn+i1,qn+1) — H(pn, ¢n) = O(h"1). Summing
up these errors, we obtain H(pn,q,) — H(po,q) = O(nh™t) = O(th") for
t = nh, because no cancellation of errors can be expected for general integra-
tors. For symplectic integrators, however, we have the much more favourable
estimate

H(pn,qn) — H(po,q0) = O(h") for nh <T (3.10)

with an extremely large T' (in practice it can be considered as infinity), pro-
vided that the numerical solution stays in a compact set. This can be ex-
plained with the help of Theorem 3.3 as follows: the modified differential
equation is Hamiltonian with

H(p,q) = H(p,q) + h"Hyy1(p,q) + W T Hypo(pyg) + ... (3.11)

The exact flow of the modified equation, and hence also the numerical solu-
tion, keep the modified Hamiltonian H (p, q) exactly constant. If the numerical
solution stays in a compact set, the functions H;(p, ¢) are bounded along the
numerical solution so that (3.10) holds. This argument is not yet rigorous,
because the series (3.11) usually does not converge. If one truncates the series
suitably, one can rigorously prove (3.10) on exponentially long time intervals,
i.e., for T = O(e?/") with some positive v (cf. [4], [11], and Sect. IX.7 of [12]).

It is natural to study whether also other first integrals can be well con-
served by numerical integrators. Recall that I(y) is a first integral of y =
f(y), if it is constant along all solutions of the differential equations, i.e., if
I'(y) f(y) = 0 vanishes identically.

Ezample 3.3. Consider the Kepler problem (1.11). Besides the Hamiltonian
(2.17), it has also the angular momentum

L(p1,p2,q1,42) = q1p2 — @2p1- (3.12)

and the so-called Runge-Lenz-Pauli vector

b1 0 1 q1
Alp,q) = | p2 | X 0 S — (3.13)

q
/2 2
0 q1p2 — ¢2p1 awta\o

as first integrals. As numerical scheme we take the Stérmer/Verlet method.
We apply it to the Kepler problem with initial values as in Sect. 2.5, and we
use the step size h = 0.02. Figure 3.3 shows the values of H(py,, ¢,) —H (po, qo)
and of the first two components of A(p,,qn) — A(po, ¢o) along the numerical
solution. The angular momentum L(p, q) is exactly preserved by the method
and therefore not visible in the figure. We see that, in agreement with (3.10),
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Fig. 3.3. Kepler problem: the Hamiltonian and the first two components of
the Runge-Lenz-Pauli vector along the numerical solution of the Stérmer/Verlet
method with step sizes h = 0.02 (black) and h = 0.04 (grey).

the error in the Hamiltonian is bounded by O(h?) on the whole interval of
integration. The Runge-Lenz-Pauli vector (3.13), however, is not preserved.
The lower picture of Fig. 3.3, where the errors obtained with step size h = 0.04
are included in grey, indicates that they behave like e(h?t) + O(h?).

Completely Integrable Systems The example above demonstrated that
it is difficult to predict the conservation of general first integrals by numerical
methods (even when they are symplectic). There is, however, an important
special case for which more information can be obtained. We mention some
facts and refer the reader to Chapters X and XI of [12].

We call a Hamiltonian system (1.1) completely integrable, if there exists
a symplectic transformation

(p,q) = ¥(a,b), 2m-periodic in 6, (3.14)
such that the Hamiltonian becomes
H(p,q) = H(¢(a,0)) = K(a). (3.15)

The new variables (a,#) are called action-angle variables. Suppose we know
explicitly the transformation . Since it is symplectic, the Hamiltonian sys-
tem (1.1) becomes in the new variables

a; =0, 0=wi(a), i=1,...,d

with w;(a) = 0K/0a;(a). This system can be readily solved, and gives a;(t) =
@0, 0;(t) = B0 + w;(ao)t, so that

(p(t),q(t)) = ¥ (a0, 00 + w(ao)t).
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The gives a periodic or quasi-periodic flow on the torus defined by a = const .
Among the problems seen in this survey article, Hamiltonian systems with
one degree of freedom (harmonic oscillator, pendulum) and the Kepler prob-
lem are completely integrable. Under some additional technical assumptions
(see the general reference [12]), symplectic numerical integrators applied to
such completely integrable Hamiltonian systems have the following interest-
ing properties:

e the global error grows at most linearly with time, more precisely, for
t = nh we have

pn —p(t) = O(R"t), qn —q(t) = O(h™t);

e first integrals that only depend on the action variables are well preserved
on exponentially long time intervals; i.e., if I(p, q) is such that I(¢(a,8))
is independent of 6, then

I(pn,qn) — I(po,q0) = O(h") for nh<T
with 7" as in (3.10).

This result has to be seen in contrast to general methods, where the global
error increases typically quadratically with time, and where the error in first
integrals drifts linearly from the correct value.

We finally mention that the notion of complete integrability can be re-
interpreted for p-reversible differential equations (not necessarily Hamilto-
nian), and the same results (linear error growth, conservation of action vari-
ables) hold for p-reversible integrators applied to such systems. Let us illus-
trate this at an interesting example.

Ezample 8.4 (Toda lattice). Let us consider particles on a line interacting
pairwise with exponential forces, and suppose periodic boundary conditions
qa+1 = ¢1- The Hamiltonian is given by

d

1
H(p,q) = 2(5 pi; + exp(qr — q:m))-
k=1

The corresponding Hamiltonian system has the interesting property that the
d eigenvalues of the matrix

(45] bl bd
bl as b2 0

br = % exp(5(ar — qrs1))
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0008 error in the eigenvalues of L
.0006 Lobatto IIIB, h = 0.1
.0004 ‘.!'[‘
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global error
A
L Lobatto IIIB, h = 0.1
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0 bl 1 I h L L L L L L

| |
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Fig. 3.4. The Toda lattice: error in the eigenvalues of L (upper picture), and global
error of the numerical solution for an implicit Runge-Kutta method.

are first integrals. This Hamiltonian system is completely integrable within
the class of Hamiltonian systems and also within the class of p-reversible sys-
tems, and the action variables are related to the eigenvalues of the matrix L.

We consider the case d = 3, and we apply an implicit Runge-Kutta
method (Lobatto IIIB, s = 3, order r = 4) which is symmetric but not
symplectic. The upper picture of Fig. 3.4 shows the Euclidean norm of the
vector of errors in the eigenvalues of L. It is of size O(h*) on the whole in-
terval of integration. The lower picture shows the norm of the global error,
and we nicely observed the linear error growth. This confirms the statement
about integrable systems of this section.

4 Matlab Programs of ‘GniCodes’

We explain a few Matlab programs that implement the most important geo-
metric integrators of the previous sections. They are collected in the Matlab
package GniCodes which is available (together with short installing instruc-
tions) on the web at the address
http://www.unige.ch/math /folks/hairer

Fortran 77 versions of the programs are also available at the same address.
Another Matlab package related to geometric integration is DiffMan of [7].
The philosophy of our package, however, is completely different and it is
closer to the standard Matlab ODE suite (ode45, ode23, etc) of Shampine
and Reichelt [34].

4.1 Standard Call of Integrators

We give an overview of how to use the three classes of geometric integrators
that are implemented in the package GniCodes for the moment. For the
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solution of second order initial value problems

d=9(q), q(0)=q, ¢(0)=4qo (4.1)

all these methods have the same syntax, and are usually called as

[T,P,Q] = gni_meth(’g’,tspan,y0,options,...);

where gni_meth has to be replaced by gni_irk?2 for the implicit Runge-Kutta
method, by gni_1mm2 for the linear multistep method, and by gni_comp for
the composition method based on the Stérmer/Verlet scheme. The ‘2’ in irk2
and in 1mm2 expresses the fact that these programs are applicable only to sec-
ond order differential equations (4.1). For the composition method gni_comp
there is the possibility to define the basic integrator by altering the options
structure, so that the method can be used for the solution of any differential
equation. The relevant syntax will be explained in Sect. 4.6 below.
The meaning of the arguments in a call of gni meth is as follows:

’g’ This argument must be a string containing the name of a Matlab file
describing the problem. The syntax for such a file is described in Sect. 4.2
below.

tspan should contain the time span over which the problem is to be solved.
It has to be given in the form [t0,tf].

yO This is a vector containing the initial values for ¢ and ¢. The initial values
for g are given by the first d components and those for ¢ by the remaining
d components of yO.

options This argument should contain a GNI options structure created by
gniset (the syntax of gniset is the same as for the standard odeset
function). This option structure contains additional instructions for the
integrator.

. After options, an arbitrary number of optional arguments can be given.
These arguments are passed over to the function F.

The list of available options differs slightly from the standard ODE suite.
Some of these options are also function-dependent and will be explained in
the sequel. The following options are available for every integrator:

’OutputFcn’ This is a string containing the name of an output function. The
format for the output functions is the same as for the standard ODE suite,
in particular the standard odeplot output function can be used (and will
be used as the default output function). The vector passed to the output
function contains in its d first components the value of the solution and
in its d remaining components the values for its time-derivatives. If this
parameter is set to phaseplot, the solution is drawn in the phase space
corresponding to the first components of (g, §).
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’OQutputSel’ As for the standard ODE suite, this contains a vector of indices
determining which components of the solution will be passed to the out-
put function. By default, all the indices (including those corresponding
to the time-derivative of the solution) are passed through.

’OutputSteps’ tells the integrator which steps to take into account for the
output. For example, if OutputSteps is equal to 10, only every 10th step
generates some output. Putting OutputSteps equal to 0, output is made
available only at the beginning and the end of the integration interval.

’Vectorized’ has the same meaning as for the standard ODE suite.

’Events’ If this option is set to >on’, event location is enabled. See Sect. 4.3
for an explanation of how to use event location.

’StepSize’ Size h of one integration step. It is slightly altered by the code,
if the length of the integration interval is not an integer multiple of h.
’NumSteps’ is the number of integration steps. This option is only used when
StepSize is not specified. If neither is specified, a warning is issued and

the default step size h = 0.01 is used.

’Method’ allows to select the type of method to use. The list of available
methods depends on the integrator and is listed in the corresponding
sections below.

Note that (like for ode45 for example) the arguments tspan, y0, and options
are optional and can be defined in the file F.m instead.

On output, gni meth returns three vectors [T,Q,P], containing the times
at which the solution was evaluated, as well as the values of ¢ and ¢ at these
times. If event location is turned on, additional return values are given as
described in Sect. 4.3 below.

4.2 Problem Description

The problem to be solved should be described in a .m file. In the most simple
case, this file only returns the right-hand side of the second-order differential
equation. E.g., in order to solve the equation § = —¢3, one may create a file
trivial.m containing the following:

function out = trivial(t,q)
out = -q73;

From the command line, one would then use it for example as

options = gniset(’StepSize’, 0.1);
gni_meth(’trivial’, [0 10], [0 2.5], options);

An additional parameter flags can be used by the integrator to retrieve
default parameters for the problem. Assume we want to solve the previous
problem between ¢ = 0 and ¢t = 10, using a step size of 0.1 and with initial
values ¢(0) = 0 and ¢(0) = 2.5. We could then define the file trivial.m as
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function [out,out2,out3] = trivial(t,q,flags)
if (nargin < 3) | isempty(flags)

out = -q~3;
else

switch flags

case ’init’,

out = [0 10];
out2 = [0 2.5];
out3 = gniset(’StepSize’, 0.1);
end
end

and call it from the command line in the most simple possible way as

gni_meth(’trivial’);

For a system of differential equations, out and q are column vectors. If the
option ’Vectorized’ is set to ’on’ in the GNI options structure, the inte-
grator may request to evaluate the right-hand side of the problem for several
values of ¢t and ¢ in one call. If the problem is of dimension d and the inte-
grator requests m values, t is a line vector of size m and ¢ is a d X m matrix.
The right-hand side is expected to be also a d x m matrix. If ’Vectorized’
is set to off’, one can safely assume that m = 1.

When vectorized correctly, the .m file for the Kepler problem with initial
values as in Sect. 2.5 looks like

function [out,out2,out3] = kepler(t,q,flags,ecc)
if (nargin < 3) | isempty(flags)
rad=q(1,:).*q(1,:)+q(2,:) .*q(2,:);
rad=rad.*sqrt(rad);
out(1,:)=-q(1,:)./rad;
out(2,:)=-q(2,:)./rad;
else
switch flags
case ’init’,
if (ecc < 0) | (ecc >=1)
error(’The eccentricity must lie between 0,and; 1%);
end
out = [0 2*pil;
out2 = [1-ecc,0,0,sqrt((1+ecc)/(1-ecc))];
out3 = gniset (’NumSteps’,50,’Vectorized’,’on’, ’Events’,’off’,...
’OutputFcn’, ’phaseplot’, ’OutputSel’, [1,2]);
end
end

Notice that this problem depends on the eccentricity ecc, which has been
appended to the end of the parameter list. To solve this problem with ecc=
0.6, just type

gni_meth(’kepler’,[ 1,[ 1,[ 1,0.6);
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Entering [ ] in the parameter list tells the integrator to use the default
values of the problem definition file instead. The parameter ecc is again
simply appended at the end of the parameter list.

4.3 Event Location

In many situations (for example the computation of Poincaré sections), it is
useful to know at which times some event function g(t,q(t),p(t)) vanishes.
This is usually referred to as event location.

Event location is implemented in the GNI suite in a way that is again
very similar to the standard ODE suite implementation. It can be enabled
by specifying the value ’on’ for the ’Events’ selector of the GNI options
structure.

When event location is turned on, the integrator can be called as

[T,P,Q,TE,PE,QE,IE] = gni_meth(’g’,tspan,y0,options,...);

The output vector TE contains the times at which events occurred. The vec-
tors PE and QE contain the values of the solution and its derivative at these
times. If more than one event function is defined, the vector IE contains the
index of the event function that triggered the event.

When event location is turned on, the problem description file is expected
to respond to the flags set to ’events’ by returning in the first output
argument a vector of event functions. Furthermore it is supposed to return in
the second and third output arguments vectors telling the integrator whether
the corresponding event is terminal or not and which types of zero-crossings
to consider. When a terminal event is encountered, the integration stops,
whether the end of the integration interval has been reached or not. The
following example shows how to define a problem description file that allows
to retrieve the times at which the solution either crosses 1 upwards or 0 in any
direction. The integration stops whenever the solution crosses —2 downwards.

function [out,out2,out3] = trivial(t,q,flags)
if (nargin < 3) | isempty(flags)
out = -q73;
else
switch flags
case ’init’,
out = [0 10];
out2 = [-1 5];
out3 = gniset(’StepSize’, 0.1,’Events’,’on’);
case ’events’,
out = [q(1)-1,q(1),q(1)+2];

out2 = [0 0 1];
out3 = [1 0 -1];
end

end
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4.4 Program gni_irk2

The program gni_irk2 uses an implicit Runge-Kutta scheme to solve second
order differential equations § = g(¢g). The following selectors of the GNI
options structure are specific to gni_irk2:

’Method’ This selector allows to specify which scheme is to be used. The
accepted values for ’Method’ are G4, ’G87, and ’G12’. The letter ‘G’
refers to the fact that all of these methods are Gauss methods (cf. Example
2.2), and the number that follows indicates the order of the corresponding
method. If no method is specified, >G12” is used.

’MaxIter’ Since the schemes are implicit, a non-linear system of equation
has to be solved at every integration step. This is achieved through a
fixed point iteration. This selector allows to specify the maximal number
of iterations that are performed. The default value is 50.

The coefficients of the different methods are contained in the file coeff_irk2.
New methods can easily be incorporated.

Let us shortly explain the meaning of the required coefficients. The arrays
C, B, BC correspond to the vectors with coefficients ¢;, b;, b; of (2.22), the 2-
dimensional array AA to the matrix A. Further coefficients are needed for an
efficient solution of the nonlinear Runge-Kutta equations of (2.22), which are
equivalent to

j=1

We solve this system by fixed point iteration and we use

s+3
QF = @ + heivn + 17 €ij 9(Qjn1) (4.3)
=1
as starting guess, where Q1 p—1,...,Qsn—1 are the internal stage values of

the previously computed step, @s+1,n—1 = @n—1, @s+2,n—1 = qn, and

s
Qs+3,n71 =(qn + Z i (Qz}n*l - anl) + h,uerlvnfl + h;ufs+2vn

i=1

is an approximation to the solution at ¢ = ¢,,_1 + ph. The coefficients p,
Wi, eij (stored in the arrays SM, AM, and E) are determined such that (4.3)
coincides as far as possible with the Taylor series of the solution of (4.2). We
refer to [12, Sect. VIIL.6.1] and [20] for more details.

4.5 Program gni_lmm2

Linear multistep methods (2.25) for second order differential equations are
implemented in the code gni_1mm2. Since these methods are not self-starting,
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we have to provide starting approximations. This is done by a call to gni_irk2
with Method’ set to ’G12’. For the moment we have implemented the three
methods of Table 1, and the ’Method’ options are >801’, 802, and ’8037,
respectively.

Table 1. Symmetric multistep methods for second order problems.

method 801 method 802 method 803
i || Ciz1 | 12096 B; || Ci—1 | 120960 B; || Ci—1 | 8640 B;
1 1 17671 1 192481 1 13207
2 0 —23622 2 6582 1 —8934
3 1 61449 3 816783 1 42873
4 1 —50516 || 3.5 —156812 1 —33812

The coefficients of the methods are stored in the separate file coeff_1mm2
as follows. The generating polynomial R(() has ¢ = 1 as a double zero, and
therefore it can be written as

R(O) =(C—1)*Co+Cil+Col®+ ...+ Cr_a(t ).

Since for explicit symmetric methods these coefficients satisfy Bx_; = B;
(with Bg = 0) and Ck_o_; = Cj, only those given in Table 1 have to be
specified. The coefficients C; and B; uniquely determine the method (2.25).

4.6 Program gni_comp

This program allows to easily implement general composition methods. A
composition method (2.27) is characterized by the set of coefficients {y;} and
by the basic method ®,. They are controlled by the following two options:

’Method’ This option allows to choose between several predefined sets of
coefficients ;. The available methods are ’21°, 43, 7457 767, 69,
’8157, 2817, and ?1033’. These methods are of order 2, 4, 6, 8, and 10
respectively.

’PartialFlow’ This option allows the user to specify the name of a Matlab
file defining the basic method ®;,. The default method is the Stérmer/Ver-
let method.

For reasons of efficiency we assume the basic method to be of the form
D = w20 Brya,nh/2 ° Ao s (4.4)
where the following simplification formula holds:

ﬂ*,*,ha O Qphq © Whe © ﬁhc,*,* = ﬁ*,*,ha—l—he o ﬁha—i—he,*,* . (45)
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Every one-step method can be written in the form (4.4) by choosing wy,/, =
ap/2 = id (the identity), and Bhc,nb,ha = Prp. But this is not the reason for
writing @, in this apparently complicated form. The advantage of the repre-
sentation (4.4) is that in many important situations a large part of the work
for evaluating ®; can be put into oy > and wy > and, by the simplification
formula (4.5), this part can be avoided unless at grid points where an output
of the solution is required.
The code for the basic method must have the following structure:

function [outP,outQ] = basic(t,P,Q,ode,ha,hb,hc,first,last,flags,args)
if isempty(flags)
if (first)
apply an, to the vectors P and Q
end
apply Bhe,hbha
if (last)
apply whe
end
else
switch flags
case ’init’,
perform some initialization
case ’done’,
perform some cleanup
end
end

For example, the Stormer/Verlet method (2.12) for § = g(g), considered as a
splitting method (2.16), can be written as (4.4) with wy, /2 = id, Bpe,nb,ha =

gagllc], ) npfb], and ap, = np%l(l This presentation satisfies condition (4.5), because

gagl] has the group property. The Matlab program for this basic method is

function [outP,outQ] = stverl(t,P,Q,ode,ha,hb,hc,first,...
last,flags,varargin)
if isempty(flags)
if (first)
Q = Q + haxP;
end
F = feval(ode,t,Q,varargin{:});
outP P + hbxF;
outQ Q + hc*outP;
end

The actual implementation uses compensated summation (to reduce round-
off error) and it is the default method used by gni_comp.
5 Some Typical Applications

Let us finally illustrate the use of our programs at some typical examples,
where geometric integrators are recommended. We start with a comparison



36 Ernst Hairer and Martin Hairer

of geometric integrators for second order ordinary differential equations. We
then show how Poincaré sections can be computed, and we terminate with a
slightly more sophisticated use of composition methods.

5.1 Comparison of Geometric Integrators

Often it is difficult to decide which integrator is the best for a given problem.
The implicit Runge-Kutta and composition methods have a sound theoretical
basis, but they typically need more function evaluations per step than linear
multistep methods. On the other hand, multistep methods have larger local
error, so that smaller step sizes are required. The best choice is in general
problem dependent.

Consider first the Kepler problem with eccentricity ecc= 0.6. The file
kepler.m, containing the problem description, is explained in Sect.4.2. We
compute the solution over the interval [0, 4007] with many different step sizes.
As we have seen in Fig.2.3 the efficiency of all three classes of integrators
(implicit Runge-Kutta, multistep, composition) is about the same for this
problem. This need not always be the case.

As another example consider the 6-body problem (sun and the five outer
planets) with data and initial values as in Chap.I of [12] on a relatively short
time interval [0, 500 000]. Similar as in Fig. 2.3 we show in Fig.5.1 the work
precision diagram of the different methods. It is somewhat surprising that
for this problem (with orbits of very small eccentricity) the linear multistep
method is the most efficient integrator. The cpu times in Fig.2.3 and in
Fig.5.1 are obtained with Fortran implementations of the codes.

10° ? 10°
10_3r verlet 103
1076 -f 1076
10~ ; 10~

Fig.5.1. Work precision diagrams for the Stérmer/Verlet scheme and for three
methods of order eight; implicit Runge-Kutta method (irk2), composition method
(comp), and linear multistep method (lmm?2), applied to the outer solar system.
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5.2 Computation of Poincaré Sections

Consider the Hénon-Heiles Hamiltonian
1, . . 1, . . . 1
H(p,p2, 1, 42) = 5 (PY +93) + 5 (61 + &) + diee — 5 - (5.1)

The corresponding Hamiltonian system is integrable for sufficiently small
energy, e.g., for the initial values p;(0) = p2(0) = ¢1(0) = ¢2(0) = 0.18,
which we take for our computations. This means that the solution stays on
a two-dimensional torus in the four-dimensional phase space. Its intersection
with the hyperplane ¢; = 0 (Poincaré section) thus gives a closed curve in the
phase space. We study the projection of this curve onto the (g2, p2)-plane.
The left picture of Fig. 5.2 shows the Poincaré section for the numerical
solution obtained by dop853 (an explicit Runge-Kutta method of order eight
with step size control, see [14, Appendix]) and tolerance Atol = Rtol = 107>
on the interval [0,100000]. The picture clearly demonstrates that the nu-
merical solution is qualitatively wrong as it does not remain on a closed
curve. The same experiment with the three geometric integrators gni_lmm2,
gni_irk2, and gni_comp gives a correct simulation of the system, and it can-
not be distinguished from a picture for the exact solution (right picture of
Fig.5.2). If we use step sizes such that the error of the Hamiltonian remains
below 107°, the code gni_ lmm2 (with h = 0.22) requires 454 716 function
evaluations, gni_irk2 (with A = 1.5) needs 3731867 function evaluations,
and gni_comp (with h = 1.2) 1416 661 function evaluations. For comparison,
the code dop853 requires 1216 680 evaluations of the vector field, but the
error in the Hamiltonian increases linearly with time. The high number of
function evaluations for gni_irk2 is due to the fact that for low accuracy

dop853 gni_lmm?2

Fig. 5.2. Poincaré section for the Hénon-Heiles problem: dop853 with tolerance
Atol = Rtol = 1077 (left picture) and gni_lmm2 with step size h = 0.22 (right
picture); integration interval [0, 100 000].
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requirements (large step size) the convergence of the fixed point iterations
for solving the nonlinear Runge-Kutta equations is rather slow.

For the computation of the Poincaré section (Fig.5.2) we have used the
following program:

function [out,out2,out3] = henon(t,q,flags)
if (nargin < 3) | isempty(flags)
out (1,:)=-q(1,:).*x(1+2%q(2,:));
out (2,:)=-q(2,:).*(1-q(2,:)) - q(1,:).72;
else
switch flags
case ’init’,
out = [0 100000];
out2 = [0.18 0.18 0.18 0.18]1;
out3 = gniset(’StepSize’,0.22,’Vectorized’,’on’,...
’Events’,’on’,’OutputSteps’,0);
case ’events’,

out = [q(1)];

out2 = [0];

out3 = [0];
end

end

The plot of the Poincaré section is then obtained with

[T,Q,P,TE,QE,PE]=gni_lmm2 (’henon’);
plot (QE(:,2),PE(:,2),’.7);

5.3 ‘Rattle’ as Basic Integrator for Composition

As a final example, we present a Matlab implementation of the Rattle algo-

rithm (2.28) applied to the two-body problem on the sphere as introduced in

Example 1.4. We follow the description of Sect. 4.6 and we do it in such a way

that it can be used as basic integrator for the composition method gni_comp.
A possible implementation is the following program:

function [outP,outQ] = rattwo(t,P,Q,gradpot,ha,hb,hc,first,last,...
flags,varargin)

if isempty(flags)
F = feval(gradpot,t,Q,varargin{:});

EP = P - haxF;
EQ = Q + hbxEP;
EE1 = EQ(1:3)’*EQ(1:3);
EQ1 = EQ(1:3)’*Q(1:3);
EE2 = EQ(4:6)>*EQ(4:6);
EQ2 = EQ(4:6)°*Q(4:6);

BET1 = 1 - EE1;
ALAM1 = -BET1/ (hb*(EQl+sqrt (BET1+EQ1°2)));
BET2 = 1 - EE2;
ALAM2 = -BET2/ (hb#*(EQ2+sqrt (BET2+EQ2°2)));
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outP = EP - [ALAM1x*Q(1:3);ALAM2xQ(4:6)];
outQ = Q + hb*outP;
if (last)
F = feval(gradpot,t,outQ,varargin{:});
outP = outP - hc*F;
AMU1 = sum(outP(1:3).*outQ(1:3));
AMU2 = sum(outP(4:6).*outQ(4:6));
outP = outP - [AMU1l*outQ(1:3) ;AMU2%outQ(4:6)];
end
end

We remark that, due to the simple structure of the Hamiltonian, the method
is explicit in py11/2, gn+1 and pp41, and it is implicit only in the Lagrange
multipliers. Since the constraints are quadratic, we are only concerned with
the solution of a scalar quadratic equation for each of the components of A,,.
This is why no iterations are involved in the above program. Since V,H (p, q)
does not depend on p, the first equation of (2.28) can be combined with the
fourth equation of the preceeding step into one formula to give p,ii/2 =
Pn—1/2 + ... . This is the reason for putting the computation of p,41 into
wp/2 of the decomposition (4.4).

The argument gradpot in the function rattwo is a function that computes
the gradient of the potential (i.e., V,U(q) = V4H(p, q)). For the two-body
problem on the sphere it is given by

function [out,out2,out3] = twobodysphere(t,q,flags)
if (nargin < 3) | isempty(flags)
prod = q(1:3)’*q(4:6);
out = -q([4:6,1:3])/(1-prod~2)~(3/2);
else
switch flags
case ’init’,
out = [0 10];
phi = [1.3 -2.11;
theta = [2.1 -1.1];
out2([1 4]) = cos(phi).*sin(theta);
out2([2 51) = sin(phi).*sin(theta);
out2([3 61) cos (theta);
dphi = [1.2 0.1];
dtheta = [0.1 -0.5];
out2([7 10]) = -dphi.*sin(phi).*sin(theta)
+ dtheta.*cos(phi) . *cos (theta);
out2([8 11]) = dphi.*cos(phi).*sin(theta)
+ dtheta.*sin(phi) .*cos (theta);
out2([9 12]) = -dtheta.*sin(theta);
out3 = gniset (’StepSize’,0.02, ’Vectorized’,’off’,...
’Events’,’off’,’PartialFlow’,’rattwo’,’OutputFcn’,...
’sphereplot’,’OutputSteps’,5,’Method’,’8177);

ol nu

end
end
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Fig. 5.3. Error in the Hamiltonian of an 8th order composition method with Rattle
as basic integrator; step size h = 0.15

Here, the option sphereplot permits us to get a 3-dimensional plot of the
solution. The problem is then simply solved by calling

gni_comp (’twobodysphere’) ;

The experiment of Fig. 5.3 confirms the statement of Theorem 3.3 for the
Rattle algorithm applied to constrained Hamiltonian systems. We have plot-
ted the error of the Hamiltonian for the composition method of Example 2.4,
applied with step size h = 0.15 to the interval [0,2000]. As expected for a
symplectic integrator, there is no drift in the error of the Hamiltonian. This
is also confirmed by integrations over much longer time intervals.

Hints for the implementation of the rigid body problem of Example 1.5 can
be found in [10], where also the extension of Theorem 3.3 to numerical meth-
ods for Hamiltonian systems on manifolds (including the Rattle algorithm)
is proved.
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