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Abstract� Geometric numerical integration is synonymous with structure�preser�
ving integration of ordinary di	erential equations� These notes� prepared for the
Durham summer school �

�� are complementary to the monograph of Hairer�
Lubich and Wanner ����� They give an introduction to the subject� and they discuss
and explain the use of Matlab programs for experimenting with structure�preserving
algorithms�

We start with presenting some typical classes of problems having properties
that are important to be conserved by the discretization Section ��� The �ow of
Hamiltonian di	erential equations is symplectic and possesses conserved quanti�
ties� Conservative systems have a time�reversible �ow� Di	erential equations with
�rst integrals and problems on manifolds are also considered� We then introduce
in Section � simple symplectic and symmetric integrators� partitioned� Runge�
Kutta methods� composition and splitting methods� linear multistep methods� and
algorithms for Hamiltonian problems on manifolds� We brie�y discuss their sym�
plecticity and symmetry� The improved performance of such geometric integrators
is best understood with the help of a backward error analysis Section ��� We ex�
plain some implications for the long�time integration of Hamiltonian systems and
of completely integrable problems�

Section � is devoted to a presentation and explanation of Matlab codes for
implicit Runge�Kutta� composition� and multistep methods� The �nal Section �
gives a comparison of the di	erent methods and illustrates the use of these programs
at some typical interesting situations� the computation of Poincar�e sections� and
the simulation of the motion of two bodies on a sphere� The Matlab codes as well
as their Fortran �� counterparts can be downloaded at

http���www�unige�ch�math�folks�hairer

under the item �software��

� Problems to be Solved

For the numerical solution of ordinary di�erential equations there exist well�
developed theories� and excellent general purpose codes are available and
widely used� If the �ow of the di�erential equation has a particular struc�
ture� then its preservation by the discretization scheme can improve con�
siderably its performance and its qualitative behaviour� This article focuses
on structure�preserving algorithms for some important classes of problems �
Hamiltonian systems and reversible di�erential equations�
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��� Hamiltonian Systems

For a smooth function H�p� q� de�ned on an open set D � Rd � Rd we
consider the di�erential equation

	pi 
 �
�H

�qi

�
p� q
�
� 	qi 


�H

�pi

�
p� q
�
� i 
 �� � � � � d� �����

The dimension d of the vectors p and q is called the �degree of freedom of
the system� We also use the more compact notation

	p 
 �rqH�p� q�� 	q 
 rpH�p� q��

or

	y 
 J��rH�y�� y 


�
p
q

�
� J 


�
� I
�I �

�
� �����

where rpH�rqH�rH denote the column vectors of partial derivatives with
respect to the components of p� q� y� respectively� The matrix J is the struc�
ture matrix of Hamiltonian systems in canonical form�
Throughout this article we denote by �t�y� the exact �ow of the system

������ i�e�� �t�y�� 
 y�t� is the solution at time t of the problem ����� with
initial value y��� 
 y��

Example ��� �Classical Mechanical Systems�� Consider a mechanical system
that can be described with �minimal� coordinates q � Rd� Denote its kinetic
energy by T �q� 	q� 
 �

� 	q
TM�q� 	q �with a symmetric positive de�nite matrix

M�q�� and its potential energy by U�q�� The motion of the system is then
given as the solution of the Euler�Lagrange equations

d

dt

�
M�q� 	q

�



�

�q

�
T �q� 	q�� U�q�

�
�����

corresponding to the variational problem
R �
T �q� 	q� � U�q�

�
dt � min� In�

troducing the new variables p �
M�q� 	q �momenta or Poisson variables� the
di�erential equation ����� is equivalent to the Hamiltonian system ����� with

H�p� q� 

�

�
pTM�q���p� U�q�� �����

This is an immediate consequence from computing the partial derivatives of
this function H�p� q�� A simple example� often used for illustrations� is the
mathematical pendulum for which the Hamiltonian is

H�p� q� 

�

�
p� � cos q� �����

Due to their special structure� Hamiltonian systems have several interest�
ing properties�
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Fig� ���� Level curves Hp� q� � const for the pendulum problem left picture��
and area�preservation of its exact �ow right picture��

� the Hamiltonian H�p� q� is constant along solutions of ������ for classical
mechanical systems this means that the total energy �sum of kinetic and
potential energies� is a conserved quantity�

� for systems with one degree of freedom the �ow �t is area�preserving� for
the general case it is volume�preserving� This means that

�
�
�t�A�

�

 ��A� for t � � �����

for any compact set A � Rd �Rd�
� the �ow �t is a symplectic transformation� i�e��

��t�y�
T J ��t�y� 
 J for t � �� �����

where the prime in ��t�y� denotes the derivation with respect to y�

The �rst property is immediately veri�ed by di�erentiating d
dtH

�
p�t�� q�t�

�



� � � 
 �� The solutions of the mathematical pendulum are therefore on the
level curves of the Hamiltonian ������ see Fig� ���� The second property is
a consequence of the third� because ����� and the continuous dependence of
��t�y� on t imply det�

�

t�y� 
 �� This together with the transformation formula
for multiple integrals proves ������ The right picture of Fig� ��� illustrates the
area�preservation of the exact �ow for the pendulum equation�
The symplecticity condition ����� has a nice geometric interpretation� It

is equivalent to the property that

�
�
�t�A�

�

 ��A� for t � �

holds for any two�dimensional sub�manifoldA ofRd�Rd� where ��A� denotes
the sum of the oriented areas of the projections of A onto the �pi� qi��plane�
The important feature is that this property is characteristic for Hamiltonian
systems �cf� ���� chap�VI��� which means that whenever the �ow of a di�er�
ential equation 	y 
 f�y� is symplectic for all t and all y� then f�y� is locally
of the form f�y� 
 J��rH�y�� This characteristic property of Hamiltonian
systems motivates the search for discretizations that are symplectic�
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��� Reversible Di�erential Equations

Consider �rst a mechanical system for which the equations of motion are given
by the second order di�erential equation ������ Since T �q� 	q� is quadratic in
	q� they are equivalent to the system

	q 
 v� 	v 
 g�q� v�� �����

satisfying g�q��v� 
 g�q� v�� This implies the time�reversibility of the system
and means that whenever

�
q�t�� v�t�

�
is a solution of ������ also

�
q��t���v��t�

�
is a solution� For example� in the study of planetary motion� the same dif�
ferential equation permits us to investigate the future and the past� one only
has to change the sign of the velocity vector v�
More generally� we consider a di�erential equation 	y 
 f�y� and a linear

invertible transformation �� We call the di�erential equation ��reversible if

�� � f��y� 
 ��f � ���y�� �����

For the previous situation we have y 
 �q� v�� ��q� v� 
 �q��v�� and the vector
�eld f�y� 


�
v� g�q� v�

�
indeed satis�es ����� whenever g�q��v� 
 g�q� v��

This is illustrated in the left picture of Fig� ��� at the hand of the perturbed
pendulum equation 	q 
 v� 	v 
 � sin q � v���� which is still ��reversible with
respect to ��q� v� 
 �q��v�� but which is no longer Hamiltonian�
The �ow of a ��reversible di�erential equation has a remarkable property�

� it is ��reversible� i�e�� it satis�es �see the right picture of Fig� ����

�� � �t��y� 
 ��
��
t � ���y� for all t and all y� ������

The proof of this statement is straightforward� One checks by di�erentiation
that ����t��y� and ��

��
t ����y� 
 ���t ����y� are both solutions of the same

di�erential equation 	z 
 �f�z�� and are identical for t 
 �� Formula ������
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Fig� ���� The ��reversibility of the vector �eld fq� v� � v�� sin q � v����T left
picture�� and the ��reversibility of the corresponding �ow�
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thus follows from the uniqueness of the solution of an initial value problem�
Analogous to the situation of Hamiltonian problems� this property is charac�
teristic for ��reversible di�erential equations� This means that whenever the
�ow of a di�erential equation 	y 
 f�y� satis�es ������� then ����� holds� It is
thus natural to look for numerical methods that share this property�

Example ��� �Kepler Problem�� The relative motion of two bodies which at�
tract each other is described by the di�erential equation

	q� 
 v�� 	q� 
 v�� 	v� 
 �
q�

�q�� � q���
���

� 	v� 
 �
q�

�q�� � q���
���

� ������

Since it can be considered as a classical mechanical system� it is ��reversible
for ��q�� q�� v�� v�� 
 �q�� q���v���v��� However� there are more symmetries
in this problem� and it is seen to be ��reversible also for ��q�� q�� v�� v�� 

�q���q���v�� v���

Example ��� �Second Order Di�erential Equations�� Many problems of prac�
tical applications lead to �q 
 g�q�� or equivalently�

	q 
 v� 	v 
 g�q�� ������

For example� all classical mechanical systems for which M�q� 
M is a con�
stant matrix are of this form� The di�erential equation ������ is ��reversible
for ��q� v� 
 �q��v� independent of the form of g�q�� It is Hamiltonian only
if g�q� 
 �rqU�q� for some potential function U�q��

��� Hamiltonian and Reversible Systems on Manifolds

It is often di�cult to �nd suitable minimal coordinates for describing the
motion of mechanical systems� Moreover� minimal coordinates are in general
de�ned only locally and frequent changes of charts may be necessary� To avoid
this di�culty we consider coordinates q � Rd that are subject to constraints
g�q� 
 �� Expressing the Euler�Lagrange equations and their Hamiltonian
formulation in terms of these coordinates� we are led to a system of the form

	p 
 �rqH�p� q��rqg�q��

	q 
 rpH�p� q�� � 
 g�q��
������

where the additional term with the Lagrange multiplier � forces the solution
to satisfy g�q� 
 �� Here� p and q are vectors inRd� g�q� 
 �g��q�� � � � � gm�q��

T

is the vector of constraints� and rqg 

�
rqg�� � � � �rqgm

�
is the transposed

Jacobian matrix of g�q��
Di�erentiating the constraint � 
 g

�
q�t�

�
with respect to time yields

� 
 rqg�q�
TrpH�p� q� ������
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�the so�called hidden constraint� which is an invariant of the �ow of �������
A second di�erentiation gives the relation

� 

�

�q

�
rqg�q�

TrpH�p� q�
�
rpH�p� q�

�rqg�q�
Tr�

pH�p� q�
�
rqH�p� q� �rqg�q��

�
�

������

which allows us to express � in terms of �p� q�� if the matrix

rqg�q�
Tr�

pH�p� q�rqg�q� is invertible ������

�r�
pH denotes the Hessian matrix of H�� Inserting the so�obtained function

��p� q� into ������ gives a di�erential equation for �p� q� on the manifold

M 

�
�p� q� j g�q� 
 �� rqg�q�

TrpH�p� q� 
 �
�
� ������

This interpretation allow us to deduce the existence and uniqueness of the
solution from the standard theory for ordinary di�erential equations� provided
that the initial values satisfy �p�� q�� �M�

Important properties of the system ������ that should be conserved by a
discretization are the following�

� for �p�� q�� � M the solution stays on the manifold M for all t� hence�
the �ow is a mapping �t �M�M�

� the �ow �t is a symplectic transformation onM which means that

���t�y�	�
T J ��t�y�
 
 	TJ 
 for 	� 
 � TyM� ������

here� the product ��t�y�	 has to be interpreted as the directional deriva�
tive�

� for Hamiltonians satisfying H��p� q� 
 H�p� q� the �ow �t is ��reversible
for ��p� q� 
 ��p� q� in the sense that ������ holds for y 
 �p� q� � M�

Example ��� �Two�Body Problem on the Sphere�� We are interested in the
motion of two bodies which attract each other� but which are restricted to
stay on a sphere� Using Cartesian coordinates q�� q� � R

� for the positions of
the two bodies and p�� p� � R

� for their velocities� the Hamiltonian becomes
�after a suitable normalization�

H�p�� p�� q�� q�� 

�

�

�
pT� p� � pT� p�

�
� U�q�� q��� ������

and the constraint equations g�q�� q�� 
 � with g � R
� � R� are given by

qT� q� � � 
 �� qT� q� � � 
 �� ������
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Fig� ���� A solution of the two�body problem on the sphere� initial values are
indicated by larger symbols� the geodesic connection between the two bodies is
plotted at every second time step in the right picture�

According to Kozlov and Harin ����� we choose U�q�� q�� 
 � cos�� sin� as
potential� where � is the distance between the two bodies along a geodesics�
We have cos� 
 qT� q�� so that the equations of motion become

	q� 
 p�� 	p� 
 f�qT� q��q� � ��q��

	q� 
 p�� 	p� 
 f�qT� q��q� � ��q��
������

together with ������� where

f�c� 

�

��� c�����
�

The initial values have to lie on the manifold

M 

�
�p�� p�� q�� q�� � q

T
� q� 
 �� q

T
� q� 
 �� q

T
� p� 
 �� q

T
� p� 
 �

�
�

and the solution stays onM for all t�
A particular solution is plotted in Fig� ���� We have chosen

qi 

�
cos�i sin i� sin�i sin i� cos i

�T
with ���� �� 
 ����� ���� and ���� �� 
 ����� ���� as initial values for the
positions� and

pi 

�
� 	�i sin�i sin i � 	i cos�i cos i� 	�i cos�i sin i � 	i sin�i cos i�� 	i sin i�

with � 	��� 	�� 
 ���������� and � 	��� 	�� 
 ������ ���� as initial values for the
velocities� The two bodies are indicated by small squares in di�erent colors�
The right picture of Fig� ��� also shows the geodesic connection between the
two bodies�
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Example ��	 �Rigid Body Simulation�� The motion of a rigid body with a
�xed point chosen at the origin can be described by an orthogonal matrix
Q�t�� Denoting by I�� I�� I� the moments of inertia of the body� its kinetic
energy is

T 

�

�

�
I��

�
� � I��

�
� � I��

�
�

�
�

where the angular velocity � 
 ���� ��� ���
T of the body is de�ned by

b� 

�
	 � ��� ��

�� � ���

��� �� �



A 
 QT 	Q�

�see ��� Chap� ���� In terms ofQ� the kinetic energy on the manifold fQ jQTQ 

Ig becomes

T 

�

�
trace � b�D b�T � 


�

�
trace �QT 	QD 	QTQ� 


�

�
trace � 	QD 	QT ��

where D 
 diag �d�� d�� d�� is given by the relations I� 
 d��d�� I� 
 d��d��
and I� 
 d� � d�� With P 
 �T�� 	Q 
 	QD� we are thus concerned with

H�P�Q� 

�

�
trace �PD��P T � � U�Q��

and the constrained Hamiltonian system becomes

	P 
 �rQU�Q��Q��

	Q 
 PD��� � 
 QTQ� I�
������

where � is a symmetric matrix consisting of Lagrange multipliers� This is of
the form ������ and satis�es the regularity condition �������

� Symplectic and Symmetric Integrators

A numerical integrator is a family �h�y� of maps on the phase space that
approximates the exact �ow �h�y� of the di�erential equation� It is the aim
of �geometric integration to construct and to study methods for which the
numerical solution� given by yn�� 
 �h�yn�� preserves the structure of the
problem� We are mainly interested in methods for which �h is symplectic or
��reversible� when it is applied to a Hamiltonian or ��reversible di�erential
equation� respectively�

��� Simple Symplectic Methods

The simplest numerical methods for general di�erential equations 	y 
 f�y�
are the explicit Euler method

yn�� 
 yn � hf�yn� �����
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Fig� ���� Numerical �ow with step size h � ��� for the four �Euler methods� of
Sect� ���� The exact �ow is included as a white shadow�

and the implicit Euler method

yn�� 
 yn � hf�yn���� �����

Here� h is the step size� and yn is an approximation to the solution y�t� at
time t 
 nh� For Hamiltonian systems ����� we consider the method

pn�� 
 pn � hrqH�pn��� qn�� qn�� 
 qn � hrpH�pn��� qn�� �����

which treats the p�variable by the implicit Euler method and the q�variable
by the explicit Euler method� Similarly� we also consider

pn�� 
 pn � hrqH�pn� qn���� qn�� 
 qn � hrpH�pn� qn���� �����

Both methods are called symplectic Euler method�

Example ���� We apply all four methods to the pendulum problem which is
Hamiltonian with H�p� q� given by ������ and we consider initial values in the
set A of Fig� ���� The numerical solution obtained with the large step size
h 
 ��� is illustrated in Fig� ���� Neither the explicit nor the implicit Euler
methods are area�preserving �i�e�� symplectic�� We shall see in the following
theorem that both �symplectic Euler methods are area�preserving �hence
the name symplectic�� Due to the large step size� however� the numerical
solution di�ers signi�cantly from the exact solution which is included as a
white shadow in the pictures �compare with Fig� �����
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Theorem ���� For the numerical schemes ����� and ����� the mapping

�h �

�
pn
qn

�
��

�
pn��

qn��

�

is a symplectic transformation�

The proof of this theorem is straightforward �de Vogelaere ���� and ����
p� ������ One computes the Jacobian of �h by implicit di�erentiation� and
one checks the identity ������

��� Simple Reversible Methods

We next consider ��reversible di�erential equations �i�e�� � � f 
 �f � �� as
discussed in Sect� ����

Theorem ���� If a numerical method �h satis
es

� � �h 
 ��h � � and �h 
 ���
�h� �����

then it is ��reversible� i�e�� � � �h 
 ���
h � ��

This statement is obvious� The interest of this theorem lies in the fact that
the second condition of ����� is independent of �� whereas the �rst condition of
����� is easy to check and satis�ed by all �reasonable methods� For example�
the explicit Euler discretization ����� yields

�� � �h��yn� 
 �yn�� 
 �yn � h�f�yn� 
 �yn � hf��yn� 
 ���h � ���yn��

and a similar simple computation shows that the implicit Euler method and
all �explicit and implicit� Runge�Kutta methods satisfy the �rst condition of
������ For partitioned Runge�Kutta methods� such as the symplectic Euler
scheme� this is true for transformations � which are of the form ��q� v� 

����q�� ���v���
If �h�y� represents a numerical method of order at least one� i�e�� �h�y� 


y � hf�y� �O�h��� then also ���
�h�y� 
 y � hf�y� �O�h�� and

��h �
 ���
�h �����

is a numerical method of order at least one� It is called the adjoint method of
�h� Whenever an integrator satis�es

��h 
 �h� �����

it is called a symmetric method� The second condition in ����� of Theorem ���
is thus equivalent to the symmetry of the method �h�
Exchanging h	 �h and yn 	 yn�� in ����� shows that the adjoint of the

explicit Euler method is the implicit Euler method and vice versa� Similarly�
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the adjoint of the symplectic Euler method ����� is the method ������ None
of these methods is symmetric�
Using the notion of the adjoint method it is easy to construct symmet�

ric methods� let �h be an arbitrary method of order at least one� then the
compositions

�h�� � �
�

h�� and ��

h�� � �h�� �����

are symmetric methods of order at least two� The symmetry follows from the
properties ��h � �h�

� 
 ��

h � �
�

h and ��
�

h�
� 
 �h� and order at least two is a

consequence of the fact that symmetric method always have an even order�
For example� if we let �h be the explicit Euler method� then the methods

of ����� are

yn�� 
 yn � h f
�yn � yn��

�

�
� �����

the implicit midpoint rule� and

yn�� 
 yn �
h

�

�
f�yn� � f�yn���

�
� ������

the trapezoidal rule� respectively�

��� St�ormer�Verlet Scheme

We next consider Hamiltonian systems ����� and the symplectic Euler method
����� in the role of �h� The compositions ����� then yield

qn���� 
 qn �
h

�
rpH�pn� qn�����

pn�� 
 pn �
h

�

�
rqH�pn� qn����� �rqH�pn��� qn�����

�
qn�� 
 qn���� �

h

�
rpH�pn��� qn�����

������

and

pn���� 
 pn �
h

�
rqH�pn����� qn�

qn�� 
 qn �
h

�

�
rpH�pn����� qn� �rpH�pn����� qn���

�
pn�� 
 pn���� �

h

�
rqH�pn����� qn���

������

respectively� For the important special case H�p� q� 
 �
�p

� � U�q�� method
������ reduces to �after elimination of the p�variable�

qn�� � �qn � qn�� 
 �h
�rqU�qn�� ������

This discretization of �q 
 �rqU�q� is attributed to Newton �cf� ������ De�
lambre �cf� ������ Encke� St�ormer ����� and Verlet ����� The methods ������
and ������ are nowadays often called St�ormerVerlet scheme�
Let us collect the most important properties of the St�ormer�Verlet scheme�
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Fig� ���� Numerical �ow with step size h � ��� for the two versions of the
St�ormer�Verlet method� The exact �ow is included as a white shadow�

� the method is of order two�
� it is a symplectic method�
� it is a symmetric method�
� for separable Hamiltonians T �p� � U�q� the method is explicit�
� the method exactly conserves quadratic �rst integrals pTCq� e�g�� the
angular momentum in N �body problems�

The �rst four statements are immediate consequences of the above discus�
sions� A proof of the last property is given in ���� p� ����
In Fig� ��� we repeat the experiment of Example ���� but this time with

the two versions of the St�ormer�Verlet method� We clearly observe the higher
accuracy �compared to the �rst order methods� and the area�preservation�
The St�ormer�Verlet scheme is an excellent geometric integrator and it

is widely used� in particular in molecular dynamics where a correct qual�
itative simulation is of utmost importance� For long�time computations in
astronomy� where a very high accuracy is demanded� the order two of the
St�ormer�Verlet scheme is too low�

��� Splitting Methods

A di�erent approach for constructing simple geometric integrators is based
on the idea of splitting the vector �eld as

	y 
 f ����y� � f ����y�� ������

If by chance the exact �ows �
���
t and �

���
t of the systems 	y 
 f ����y� and

	y 
 f ����y� can be calculated exactly� we can consider

�h 
 �
���
h � �

���
h ������

as simple numerical integrator� It follows from Taylor expansion that this
method is of order one� Even more important is the symmetric �second order�
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composition

�h 
 �
���
h�� � �

���
h � �

���
h�� ������

which is usually called Strang splitting � These splitting methods have the
following obvious properties�

� if both� f ����y� and f ����y�� are Hamiltonian vector �elds� then the com�
positions ������ and ������ are symplectic integrators�

� if both� f ����y� and f ����y�� are ��reversible� then the symmetric method
������ is ��reversible�

For some situations the splitting ������ is obvious� For example� if a Hamil�
tonian system has H�p� q� 
 T �p� � U�q� as Hamiltonian� then the �ows
corresponding to H ����p� q� 
 T �p� and H ����p� q� 
 U�q� are given explicitly
by

�
���
t �p� q� 


�
p� q � trpT �p�

�
� �

���
t �p� q� 


�
p� trqU�q�� q

�
�

The resulting splitting methods ������ and ������ are then equivalent to the
symplectic Euler method ����� and to the St�ormer�Verlet scheme ������� re�
spectively� In general� however� it is an art to �nd a suitable splitting �cf� ������

��� High Order Geometric Integrators

We start this section with a numerical experiment that motivates the search
for high order symplectic and symmetric numerical integrators� We consider
the Kepler problem which is Hamiltonian with

H�p�� p�� q�� q�� 

�

�
�p�� � p����

�p
q�� � q��

� ������

and we take as initial values

q���� 
 �� e� q���� 
 �� p���� 
 �� p���� 

p
�� � e���� e����

such that the solution is an ellipse with eccentricity e 
 ���� Figure ��� shows
the work precision diagrams �global error at the endpoint after ��� revolu�
tions against the required number of function evaluations and the computer
time� respectively� for the second order St�ormer�Verlet scheme as well as for
various methods of order eight� It clearly demonstrates that for high accu�
racy requirements �say �� digits� the low order method cannot compete with
the high order ones� It would need about ���� times more cpu time� The
irregularities at the right bottom corner of the pictures are due to round�o��



�� Ernst Hairer and Martin Hairer

105 106
10−12

10−9

10−6

10−3

100

10−1 100
10−12

10−9

10−6

10−3

100

er
ro
r

fcn� eval�

comp

irk�

lmm�

verlet

er
ro
r

cpu time

irk�

comp

lmm�

verlet

Fig� ���� Work precision diagrams for the St�ormer�Verlet scheme and for three
methods of order eight� implicit Runge�Kutta method irk��� composition method
comp�� and linear multistep method lmm���

Implicit Runge	Kutta Methods In the end of the ��th and the beginning
of the ��th century Runge ���� and Kutta ���� introduced generalizations of
the explicit Euler method with the aim of getting more accurate numerical
approximations� These explicit methods can neither be symplectic nor sym�
metric as follows from the characterizations given below� Much more impor�
tant for our purpose are implicit Runge�Kutta methods� introduced mainly
in the work of Butcher ���� For Hamiltonian systems or for general partitioned
di�erential equations

	q 
 f�q� v�� 	v 
 g�q� v� ������

we consider so�called partitioned Runge�Kutta methods� which treat the com�
ponents of q and those of v by possibly di�erent implicit Runge�Kutta meth�
ods� They are de�ned by

ki 
 f
�
qn � h

sX
j��

aijkj � vn � h

sX
j��

baij�j��
�i 
 g

�
qn � h

sX
j��

aijkj � vn � h

sX
j��

baij�j��
qn�� 
 qn � h

sX
i��

biki� vn�� 
 vn � h

sX
i��

bbi�i�
������

The equations for ki� �i �i 
 �� � � � � s� are nonlinear and have to be solved by
�xed�point iteration� provided that the step size h is su�ciently small�
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It turns out that the method ������ is symplectic for general Hamiltonian
systems� if the following relations are satis�ed�

bibaij �bbjaji 
 bibbj for i� j 
 �� � � � � s�

bi 
 bbi for i 
 �� � � � � s�
������

It is symmetric� if

as���i�s���j � aij 
 bj for all i� j�

bas���i�s���j � baij 
 bbj for all i� j�
������

If the method does not contain super�uous stages and if the stages are suit�
ably ordered� the conditions ������ and ������ are also necessary for symplec�
ticity and symmetry� respectively� These characterizations have been obtained
originally by Lasagni ����� Sanz�Serna ���� and Suris ���� for symplecticity�
and by Stetter ���� and Wanner ���� for symmetry� They are discussed in
detail in Chapters V and VI of �����
For the important special case �q 
 g�q�� i�e�� f�q� v� 
 v in ������ and

g�q� v� independent of v� the variables ki can be eliminated explicitly and the
method ������ reduces to

�i 
 g
�
qn � hcivn � h�

sX
j��

eaij�j�� i 
 �� � � � s�

qn�� 
 qn � hvn � h�
sX

i��

ebi�i� vn�� 
 vn � h

sX
i��

bbi�i�
������

where ci 

Ps

j�� aij � and
ebi� eaij are the coe�cients of ebT 
 bT bA and eA 
 A bA�

Example ��� �Method Used as �irk�� in Fig� ����� The most important sym�
plectic implicit Runge�Kutta methods are the so�called Gauss methods� They
are built on the Gaussian quadrature �bi� ci�

s
i��� which is interpolatory and

for which c�� � � � � cs are the zeros of the sth shifted Legendre polynomial

ds

dxs

�
xs�x� ��s

�
�

The coe�cients aij are computed from the linear system

sX
j��

aijc
k��
j 


cki
k

for i� k 
 �� � � � � s�

We let bbi 
 bi and baij 
 aij in ������� so that all components of the di�erential
equation are treated by the same method�
The method obtained in this way has originally been introduced by Butcher

���� and it has many nice properties� It is of order �s �which is maximal among
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all s�stage Runge�Kutta methods�� it is symplectic and symmetric� so that
it is extremely well suited in the context of geometric integration� The only
disadvantage is that even for simple situations such as �q 
 g�q�� it gives an
implicit discretization� In the experiment of Fig� ��� we use this method with
s 
 �� The �� in �irk� indicates that the code is for second order di�erential
equations �q 
 g�q� only� and that it is implemented as �������

Partitioned Multistep Methods Another extension of the Euler methods
are linear multistep methods� originally introduced by Adams in ���� and
published in Bashforth ���� Neither explicit nor implicit classical multistep
methods have been successful in geometric integration� Lambert and Watson
���� considered special classes for second order di�erential equations �q 

g�q�� which have been revived by Quinlan and Tremaine ���� for the long�
time integration of planetary orbits� For partitioned di�erential equations
������� which are more general than 	q 
 v� 	v 
 g�q�� these methods can be
interpreted as partitioned linear multistep methods� de�ned by

kX
j��

�jqn�j 
 h

kX
j��

�jf�qn�j � vn�j��

bkX
j��

b�jvn�j 
 h

bkX
j��

b�jg�qn�j � vn�j��
������

It is not evident to discuss symplecticity and symmetry of multistep methods�
because we are concerned with an algorithm �yn� � � � � yn�k��� �� yn�k and
not with a one�step method yn�� 
 �h�yn� which is a transformation on
the phase space� However� Kirchgraber ���� showed that to every consistent
strictly stable multistep method one can associate a so�called underlying one�
step method �h which has the same long�time dynamics� More precisely� it
satis�es the following properties�

� for every y�� the sequence de�ned by yn�� 
 �h�yn� is a solution of the
multistep method�

� for an arbitrary starting approximation y�� � � � � yk��� the numerical ap�
proximation of the multistep method tends exponentially fast to a par�
ticular solution obtained by the underlying one�step method�

The existence of an underlying one�step method �as a formal series in powers
of h� satisfying the �rst of these properties� can be shown for general con�
sistent methods ������� see ���� Chap�XIV�� The second property cannot be
ful�lled by methods that are not strictly stable� Assuming that for arbitrary
starting approximations the multistep solution remains close to that obtained
by the underlying one�step method� it is natural to call a method ������ sym�
plectic and symmetric� if the underlying one�step method is symplectic and
symmetric� respectively�
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Unfortunately� it turns out that partitioned multistep methods cannot
be symplectic �Tang ������ However� they can be symmetric� In terms of the
coe�cients of the method ������� the symmetry of the underlying one�step
method is equivalent to �assuming irreducibility of the methods�

�j 
 ��k�j � �j 
 �k�j for j 
 �� � � � � k�

b�j 
 �b�bk�j � b�j 
 b�
bk�j for j 
 �� � � � � bk� ������

For stable symmetric multistep methods the zeros of the generating poly�

nomials ���� 

Pk

j�� �j�
j and b���� 
 P

bk
j�� b�j�j have to lie on the unit

circle� Such methods cannot be strictly stable� and for this reason symmetric
multistep methods have been disregarded for a long time�
Also for this class of methods we are mainly interested in the numerical

solution of second order di�erential equations �q 
 g�q�� Elimination of the
v�variables in ������ yields the formula

KX
j��

Ajqn�j 
 h�
KX
j��

Bjg�qn�j�� ������

where the generating polynomials R��� 

Pk

j�� Aj�
j and S��� 


Pk
j��Bj�

j

are obtained from those of ������ by

R��� 
 ���� 
 b����� S��� 
 ���� 
 b�����
Here� ����� b����� ����� b���� are the generating polynomials of �j � b�j � �j � b�j �
respectively� We recall that method ������ is of order p� if

R�eh�� h�S�eh� 
 O�hp��� for h� �� ������

Formula ������ does not involve derivative approximations vn� If they are
needed� they can be obtained by �nite di�erences from the position approxi�
mations qn�

Example ��� �Method Used as �lmm�� in Fig� ����� We put K 
 � and we let

R��� 
 �� � ����	 � �� 
 �� � ������ � �
 � �� � �� � �� � � � ���

so that all zeros lie on the unite circle and� apart from � 
 �� all zeros are
simple� To get a method of order p 
 �� the polynomial S��� has to satisfy

S��� 
 R���� log� � �O
�
�� � ��p

�
�cf� condition �������� Expanding the right�hand expression into a Taylor
series at � 
 � and truncating to get a polynomial of degree �� we obtain the
generating polynomial

S��� 

���
�

���


�
�	 � �� �

����

���


�
�� � ��� �

�����

���


�
�
 � ����

�����

���

���
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The resulting method ������ is of order � for problems �q 
 g�q�� symmet�
ric� and explicit �because BK 
 ��� An approximation to the derivative is
obtained by symmetric di�erences as

	yn 

�

��
h

�
��� �yn�� � yn���� ��� �yn�� � yn���

� �� �yn�� � yn���� � �yn�� � yn���
�
�

Composition Methods We consider the composition of a given basic one�
step method �h�y� with di�erent step sizes�

�h 
 ��sh � � � � � ���h � ���h� ������

The aim is to increase the order �and hence the accuracy� while preserving
desirable properties �symplecticity� symmetry� of the basic method� This idea
has mainly been developed in the papers of Suzuki ����� Yoshida ����� and
McLachlan ����� For a recent comprehensive survey see ���� and Chapters II�
III� and V of �����
The reason of the success of composition methods within geometric inte�

grators are the following properties�

� if �h is symplectic� then the composition method �h is symplectic�
� if �h is symmetric and if the step size parameters �i satisfy �i 
 �s���i�
then the composition �h is symmetric�

The main problem consists in �nding parameters �i such that the composition
�h is of a given order� Suzuki ���� and Yoshida ���� propose general simple
procedures that allow one to construct composition methods of arbitrarily
high order� For orders higher than four they are� however� not very e�cient�
One is therefore obliged to investigate and to solve the set of order conditions
for the �i which guarantee that the method �h of ������ has a certain order�

Example ��� �Method Used as �comp� in Fig� ����� From the many published
examples of composition methods� let us present the coe�cients of a method
of order � with s 
 �� steps�

�� 
 ��	 
 ����������������������������
�� 
 ��� 
 ����������������������������
�� 
 ��
 
 �����������������������������
�� 
 ��� 
 ����������������������������
�
 
 ��� 
 �����������������������������
�� 
 ��� 
 ����������������������������
�	 
 ��� 
 ����������������������������
�� 
 ��� 
 ����������������������������

� 
 �����������������������������

0 1

This set of coe�cients is due to Kahan and Li ����� The little picture to
the right illustrates the �� steps necessary for obtaining order �� The zig�zag
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behaviour is typical for composition methods� It is impossible to get high
order without negative step sizes�
For the computations of Fig� ��� we use the St�ormer�Verlet scheme ������

as basic integrator� The resulting composition method is symplectic and �due
to �i 
 ����i� symmetric�

��
 Rattle for Constrained Hamiltonian Systems

Let us explain here� how the St�ormer�Verlet method ������ can be generalized
to solve constrained Hamiltonian systems of the form ������� Without taking
much care of velocity approximations Ryckaert� Ciccotti and Berendsen ����
show how constraints g�q� 
 � can be included in the formulation �������
Anderson ��� reformulates their method and includes a velocity approxima�
tion that satis�es the hidden constraint ������� The resulting algorithm� still
for separable Hamiltonians� is called �Rattle� Later� Jay ���� and Reich ����
observed that the Rattle algorithm can be extended to general Hamiltonians�
Recall that the exact �ow of a constrained Hamiltonian system lies on

the manifoldM� de�ned in ������� Assume therefore that an approximation
�pn� qn� �M is given� One step of the algorithm is de�ned as

pn���� 
 pn �
h

�

�
rqH�pn����� qn� �rqg�qn��n

�
qn�� 
 qn �

h

�

�
rpH�pn����� qn� �rpH�pn����� qn���

�
� 
 g�qn���

pn�� 
 pn���� �
h

�

�
rqH�pn����� qn��� �rqg�qn����n

�
� 
 rqg�qn���

TrpH�pn��� qn����

������

For �xed �n� the �rst two equations de�ne uniquely pn���� and qn��� if h is
su�ciently small� The parameter �n has to be chosen to satisfy g�qn��� 
 ��
This is possible if the matrix ������ is invertible� In the last two equations�
�n has to be chosen to satisfy the constraint for pn���
Similar to the St�ormer�Verlet method for unconstrained Hamiltonian sys�

tems� this algorithm has many nice properties that are useful within geometric
integration�

� the numerical solution stays on the manifoldM� i�e�� the method ������
de�nes a numerical �ow �h �M�M�

� the numerical �ow �h �M�M is a symplectic transformation onM�
� the method is symmetric�
� the method is convergent of order two�

The symplecticity of the numerical �ow has �rst been shown by Leimkuhler
and Skeel ����� The other properties are easy consequences of the de�nition
of the method� This integrator is an ideal candidate as basic method for
compositions of the form ������� For elaborate proofs and for extensions to
higher orders we refer to Sect� VII�� of �����
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� Theoretical Foundation of Geometric Integrators

Intuitively� it is quite obvious that a symplectic method should be preferred
for the integration of Hamiltonian systems� Similarly� symmetric �more pre�
cisely� ��reversible� integrators should be preferred for ��reversible di�erential
equations� This is motivated by the fact that the symplecticity of the �ow is
characteristic for Hamiltonian systems� and the ��reversibility of the �ow is
characteristic for ��reversible di�erential equations�
In this section we give some more precise statements on the long�time be�

haviour of geometric integrators� In particular� we discuss the idea of backward
error analysis which is the key for a deeper understanding of most numeri�
cal phenomena� This idea was common to many numerical analysts already
before a systematic study started with the work of Feng ���� Sanz�Serna �����
Yoshida ����� Hairer ��� and many others�

��� Backward Error Analysis

Consider an ordinary di�erential equation

	y 
 f�y� �����

and a numerical method yn�� 
 �h�yn�� The idea of backward error analysis
consists in searching and studying a modi
ed di�erential equation

	y 
 f�y� � hf��y� � h�f��y� � � � � � �����

such that the exact time�h �ow e�h�y� of ����� is equal to the numerical �ow
�h�y�� Already simple examples �e�g�� trapezoidal rule applied to a quadrature
problem 	y 
 f�t�� show that the series in ����� cannot be expected to converge
in general� The precise statement is the following�

Theorem ���� Consider the di�erential equation ����� with an in
nitely dif�
ferentiable vector 
eld f�y�� Assume that the numerical �ow admits a Taylor
series expansion of the form

�h�y� 
 y � hf�y� � h�d��y� � h�d��y� � � � � � �����

Then� there exist unique vector 
elds fj�y� such that for any N � �

�h�y� 
 e�h�N �y� �O�hN����

where e�t�N is the exact �ow of the truncated modi
ed equation

	y 
 f�y� � hf��y� � � � �� hN��fN�y�

�notice that the �ow e�t�N also depends on h� because h is a parameter in the
modi
ed di�erential equation��
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Let us outline a constructive proof � Without taking care of convergence
we expand the exact �ow of ����� into a Taylor series

e�h�y� 
 y � h ey ���� �
h�

��
ey ����� �

h�

��
ey ������ � � � �


 y � h
�
f�y� � hf��y� � h�f��y� � � � �

�
�
h�

��

�
f ��y� � hf ���y� � � � �

��
f�y� � hf��y� � � � �

�
� � � �

�����

�where the prime denotes derivation with respect to time� and compare like
powers of h in the expressions ����� and ������ This yields recurrence relations
for the functions fj�y�� namely�

f��y� 
 d��y��
�

� 
f �f�y� �����

f��y� 
 d��y��
�

� 

�
f ���f� f��y� � f �f �f�y�

�
�

�

� 

�
f �f��y� � f ��f�y�

�
�

Example ���� We consider the pendulum equation 	q 
 p� 	p 
 � sin q and
apply the explicit Euler discretization ������ We have dj�y� 
 � for all j � ��
so that ����� yields for the modi�ed equation�

	q
	p

�



�
p

� sin q

�
�
h

�

�
sin q
p cos q

�
�
h�

��

�
�� p cosq

�p� � � cos q� sin q

�
� � � � � �����

For the implicit Euler method ����� we get ����� with h replaced by �h� A
similar computation yields for the symplectic Euler method ����� the modi�ed
di�erential equation�

	q
	p

�



�
p

� sin q

�
�
h

�

�
� sin q
p cos q

�
�
h�

��

�
� p cos q

�p� � � cos q� sin q

�
� � � � � �����

whereas the same equation with h replaced by �h is obtained for the method
������ The four pictures of Fig� ��� show the exact �ow of the modi�ed dif�
ferential equations �truncated after the O�h�� term� corresponding to these
four Euler methods together with the numerical solution for the initial value
�p�� q�� 
 ������ ����� We observe a surprisingly good agreement� This �gure
should be compared to the exact �ow of the unperturbed system �cf� Fig� �����
The O�h� perturbation in ����� provokes the origin to become a source for

the explicit Euler method� and a sink for the implicit Euler method� For the
two symplectic discretizations we observe that the solutions of the modi�ed
equation are periodic� and that the numerical approximation lies near a closed
curve� It has thus the correct qualitative behaviour� This is explained by the
fact that the di�erential equation ����� is Hamiltonian with

eH�p� q� 
 �

�
p� � cos q �

h

�
p sin q �

h�

��
�p� � cos q� cos q � � � � �

so that the exact solutions stay on the level curves of eH�p� q��
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Fig� ���� Numerical solution with step size h � 
�� for the four �Euler methods� of
Sect� ��� compared to the exact �ow of their modi�ed di	erential equations trun�
cated after the Oh�� term�

��� Properties of the Modi�ed Equation

The previous example demonstrates that the numerical solution is extremely
close to the exact solution of the modi�ed di�erential equation� To study
properties of the numerical solution� it is therefore justi�ed to investigate
instead the corresponding properties of the modi�ed di�erential equation�
and this is often much simpler� Let us collect some properties valid for general
di�erential equations�

� if the method is of order r� i�e�� �h�y�� �h�y� 
 O�h
r���� then we have

fj�y� 
 � for j 
 �� � � � � r �
� if hr���r���y� is the leading term of the local truncation error� i�e��
�h�y���h�y� 
 hr���p���y��O�h

r���� then we have fr���y� 
 �r���y��
� if �h�y� has the modi�ed equation ������ then the adjoint method has
f�j �y� 
 ����

j��fj�y� as coe�cient functions of the modi�ed equation�
� for symmetric methods the modi�ed equation is an expansion in even
powers of h� i�e�� f�k�y� 
 � for all k�

We now turn our attention to Hamiltonian systems and to ��reversible dif�
ferential equations�

Theorem ��� �Local Modi�ed Hamiltonian� Consider a Hamiltonian
system ����� with smooth Hamiltonian H � D � R �D � R�d� and apply
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a symplectic numerical method �h�y�� Then� the vector 
elds fk�y� of the
modi
ed di�erential equation are locally Hamiltonian� i�e�� locally we have
fk�y� 
 J��rHk�y��

The proof is by induction on k� Its ideas can be traced back to Moser
����� and it can be found in Benettin  Giorgilli ���� Tang ����� Reich �����
and in Chapter IX of ����� Since the idea of proof is applicable to many other
situations� we outline it shortly�
We assume �by induction� that the truncated modi�ed equation

	y 
 f�y� � hf��y� � � � �� hk��fk�y� �����

is Hamiltonian� Its �ow e�t�k�y� satis�es
�h�y� 
 e�h�k�y� � hk��fk���y� �O�h

k����

Since �h and e�h�k are symplectic transformations�
J 
 ��h�y�

TJ��h�y� 
 J � hk��
�
f �k���y�

TJ � Jf �k���y�
�
�O�hk���

holds� Consequently� the matrix Jf �k���y� is symmetric and the existence of
Hk���y� satisfying fk���y� 
 J��rHk���y� follows from the integrability
lemma� ut

If H and �h are both de�ned and smooth on the whole of R
�d or on a

simply connected domain D� the functions Hk of the modi�ed Hamiltonian
are globally de�ned� However� as shown by the following example� the func�
tions Hk are in general not globally de�ned� and the above theorem cannot
be used for the study of the long�time behaviour of numerical solutions�

Example ���� For the harmonic oscillator 	p 
 �q� 	q 
 p� consider the dis�
cretization

pn�� 
 pn � hqn � h�� pn��� qn�� 
 qn � hpn�� � h�� qn �����

where � 
 ������p�n���q
�
n�� It is aO�h

�� perturbation of the symplectic Euler
method and therefore it is a method of order �� Its symplecticity follows from
the fact that it can be written as

pn�� 
 pn � hrqS�pn��� qn�� qn�� 
 qn � hrpS�pn��� qn�

with S�p� q� 
 �
� �p

��q��� h
� arg�q�ip�� Its numerical approximation� plotted

in the right picture of Fig� ���� is disappointing and does not show the correct
qualitative behaviour� This is due to the fact that S�p� q�� and hence H��p� q��
are not globally de�ned�
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explicit Euler implicit Euler symplectic Euler sympl� meth� ����

Fig� ���� Numerical solution of di	erent �rst order methods applied to the harmonic
oscillator with step size h � 
����

Theorem ��� �Global Modi�ed Hamiltonian� Consider a Hamiltonian
system ����� with smooth Hamiltonian H � D � R �D � R�d� and apply the
symplectic method

pn�� 
 pn � hrqS�pn��� qn�� qn�� 
 qn � hrpS�pn��� qn�

with generating function

S�p� q� 
 S��p� q� � hS��p� q� � h�S��p� q� � � � � �

where all Sk�p� q� are globally de
ned on D� Then� the vector 
elds fk�y�
of the modi
ed di�erential equation are globally Hamiltonian� i�e�� we have
fk�y� 
 J��rHk�y� with smooth Hk � D � R�

The proof of this theorem is based on the Hamilton�Jacobi di�erential
equation �cf� Sect� IX���� of ������ Let us mention that all previous meth�
ods �symplectic Euler� St�ormer�Verlet� symplectic partitioned Runge�Kutta
methods� composition methods� satisfy the assumption of Theorem ����

Theorem ��� ��	Reversible Modi�ed Vector Field� Consider a ��re�
versible di�erential equation �cf� Sect� ���� and apply a ��reversible numerical
method �h�y�� Then� the vector 
elds fk�y� of the modi
ed di�erential equa�
tion are ��reversible� i�e�� they satisfy ������

The proof uses the same ideas as that of Theorem ����

��� Long	Time Behaviour of Geometric Integrators

Using backward error analysis and in particular the results of Theorems ���
and ���� we shall show that symplectic integrators �for Hamiltonian systems�
and ��reversible integrators �for ��reversible di�erential equations� have an
improved long�time behaviour� We study the conservation of the Hamiltonian
and of general �rst integrals� and the error growth for integrable systems�
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Conservation of the Hamiltonian We know that the HamiltonianH�p� q�
is constant along exact solutions of the Hamiltonian system �energy conser�
vation for mechanical systems�� Since the local error of a rth order integrator
is of size O�hr���� we have H�pn��� qn����H�pn� qn� 
 O�h

r���� Summing
up these errors� we obtain H�pn� qn� � H�p�� q�� 
 O�nhr��� 
 O�thr� for
t 
 nh� because no cancellation of errors can be expected for general integra�
tors� For symplectic integrators� however� we have the much more favourable
estimate

H�pn� qn��H�p�� q�� 
 O�h
r� for nh � T ������

with an extremely large T �in practice it can be considered as in�nity�� pro�
vided that the numerical solution stays in a compact set� This can be ex�
plained with the help of Theorem ��� as follows� the modi�ed di�erential
equation is Hamiltonian with

eH�p� q� 
 H�p� q� � hrHr���p� q� � hr��Hr���p� q� � � � � � ������

The exact �ow of the modi�ed equation� and hence also the numerical solu�
tion� keep the modi�ed Hamiltonian eH�p� q� exactly constant� If the numerical
solution stays in a compact set� the functions Hj�p� q� are bounded along the
numerical solution so that ������ holds� This argument is not yet rigorous�
because the series ������ usually does not converge� If one truncates the series
suitably� one can rigorously prove ������ on exponentially long time intervals�
i�e�� for T 
 O�e��h� with some positive � �cf� ���� ����� and Sect� IX�� of ������
It is natural to study whether also other �rst integrals can be well con�

served by numerical integrators� Recall that I�y� is a 
rst integral of 	y 

f�y�� if it is constant along all solutions of the di�erential equations� i�e�� if
I ��y�f�y� 
 � vanishes identically�

Example ���� Consider the Kepler problem ������� Besides the Hamiltonian
������� it has also the angular momentum

L�p�� p�� q�� q�� 
 q�p� � q�p�� ������

and the so�called Runge�Lenz�Pauli vector

A�p� q� 


�
	p�p�
�



A�

�
	 �

�
q�p� � q�p�



A�

�p
q�� � q��

�
	q�q�
�



A ������

as �rst integrals� As numerical scheme we take the St�ormer�Verlet method�
We apply it to the Kepler problem with initial values as in Sect� ���� and we
use the step size h 
 ����� Figure ��� shows the values of H�pn� qn��H�p�� q��
and of the �rst two components of A�pn� qn��A�p�� q�� along the numerical
solution� The angular momentum L�p� q� is exactly preserved by the method
and therefore not visible in the �gure� We see that� in agreement with �������
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Fig� ���� Kepler problem� the Hamiltonian and the �rst two components of
the Runge�Lenz�Pauli vector along the numerical solution of the St�ormer�Verlet
method with step sizes h � 
�
� black� and h � 
�
� grey��

the error in the Hamiltonian is bounded by O�h�� on the whole interval of
integration� The Runge�Lenz�Pauli vector ������� however� is not preserved�
The lower picture of Fig� ���� where the errors obtained with step size h 
 ����
are included in grey� indicates that they behave like e�h�t� �O�h���

Completely Integrable Systems The example above demonstrated that
it is di�cult to predict the conservation of general �rst integrals by numerical
methods �even when they are symplectic�� There is� however� an important
special case for which more information can be obtained� We mention some
facts and refer the reader to Chapters X and XI of �����
We call a Hamiltonian system ����� completely integrable� if there exists

a symplectic transformation

�p� q� 
 ��a� �� ���periodic in � ������

such that the Hamiltonian becomes

H�p� q� 
 H
�
��a� �

�

 K�a�� ������

The new variables �a� � are called action�angle variables� Suppose we know
explicitly the transformation �� Since it is symplectic� the Hamiltonian sys�
tem ����� becomes in the new variables

	ai 
 �� 	 
 �i�a�� i 
 �� � � � � d

with �i�a� 
 �K��ai�a�� This system can be readily solved� and gives ai�t� 

ai�� i�t� 
 i� � �i�a��t� so that�

p�t�� q�t�
�

 �

�
a�� � � ��a��t

�
�
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The gives a periodic or quasi�periodic �ow on the torus de�ned by a 
 const �
Among the problems seen in this survey article� Hamiltonian systems with
one degree of freedom �harmonic oscillator� pendulum� and the Kepler prob�
lem are completely integrable� Under some additional technical assumptions
�see the general reference ������ symplectic numerical integrators applied to
such completely integrable Hamiltonian systems have the following interest�
ing properties�

� the global error grows at most linearly with time� more precisely� for
t 
 nh we have

pn � p�t� 
 O�hrt�� qn � q�t� 
 O�hrt��

� �rst integrals that only depend on the action variables are well preserved
on exponentially long time intervals� i�e�� if I�p� q� is such that I���a� ��
is independent of � then

I�pn� qn�� I�p�� q�� 
 O�h
r� for nh � T

with T as in �������

This result has to be seen in contrast to general methods� where the global
error increases typically quadratically with time� and where the error in �rst
integrals drifts linearly from the correct value�
We �nally mention that the notion of complete integrability can be re�

interpreted for ��reversible di�erential equations �not necessarily Hamilto�
nian�� and the same results �linear error growth� conservation of action vari�
ables� hold for ��reversible integrators applied to such systems� Let us illus�
trate this at an interesting example�

Example ��� �Toda lattice�� Let us consider particles on a line interacting
pairwise with exponential forces� and suppose periodic boundary conditions
qd�� 
 q�� The Hamiltonian is given by

H�p� q� 

dX

k��

�
�

�
p�k � exp�qk � qk���

�
�

The corresponding Hamiltonian system has the interesting property that the
d eigenvalues of the matrix

L 


�
BBBBBB	

a� b� bd
b� a� b� �

b�
� � �

� � �

�
� � � ad�� bd��

bd bd�� ad



CCCCCCA

�
ak 
 � �

�pk

bk 

�
� exp

�
�
� �qk � qk���

�
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Fig� ���� The Toda lattice� error in the eigenvalues of L upper picture�� and global
error of the numerical solution for an implicit Runge�Kutta method�

are �rst integrals� This Hamiltonian system is completely integrable within
the class of Hamiltonian systems and also within the class of ��reversible sys�
tems� and the action variables are related to the eigenvalues of the matrix L�
We consider the case d 
 �� and we apply an implicit Runge�Kutta

method �Lobatto IIIB� s 
 �� order r 
 �� which is symmetric but not
symplectic� The upper picture of Fig� ��� shows the Euclidean norm of the
vector of errors in the eigenvalues of L� It is of size O�h�� on the whole in�
terval of integration� The lower picture shows the norm of the global error�
and we nicely observed the linear error growth� This con�rms the statement
about integrable systems of this section�

� Matlab Programs of �GniCodes�

We explain a few Matlab programs that implement the most important geo�
metric integrators of the previous sections� They are collected in the Matlab
package GniCodes which is available �together with short installing instruc�
tions� on the web at the address

http���www�unige�ch�math�folks�hairer
Fortran �� versions of the programs are also available at the same address�
Another Matlab package related to geometric integration is DiffMan of ����
The philosophy of our package� however� is completely di�erent and it is
closer to the standard Matlab ODE suite �ode��� ode��� etc� of Shampine
and Reichelt �����

��� Standard Call of Integrators

We give an overview of how to use the three classes of geometric integrators
that are implemented in the package GniCodes for the moment� For the
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solution of second order initial value problems

�q 
 g�q�� q��� 
 q�� 	q��� 
 	q� �����

all these methods have the same syntax� and are usually called as

�T�P�Q� � gni�meth��g��tspan�y��options����	


where gni meth has to be replaced by gni irk� for the implicit Runge�Kutta
method� by gni lmm� for the linear multistep method� and by gni comp for
the composition method based on the St�ormer�Verlet scheme� The �� in irk�
and in lmm� expresses the fact that these programs are applicable only to sec�
ond order di�erential equations ������ For the composition method gni comp

there is the possibility to de�ne the basic integrator by altering the options
structure� so that the method can be used for the solution of any di�erential
equation� The relevant syntax will be explained in Sect� ��� below�

The meaning of the arguments in a call of gni meth is as follows�

�g� This argument must be a string containing the name of a Matlab �le
describing the problem� The syntax for such a �le is described in Sect� ���
below�

tspan should contain the time span over which the problem is to be solved�
It has to be given in the form �t��tf��

y� This is a vector containing the initial values for q and 	q� The initial values
for q are given by the �rst d components and those for 	q by the remaining
d components of y��

options This argument should contain a GNI options structure created by
gniset �the syntax of gniset is the same as for the standard odeset

function�� This option structure contains additional instructions for the
integrator�

			 After options� an arbitrary number of optional arguments can be given�
These arguments are passed over to the function F�

The list of available options di�ers slightly from the standard ODE suite�
Some of these options are also function�dependent and will be explained in
the sequel� The following options are available for every integrator�

�OutputFcn� This is a string containing the name of an output function� The
format for the output functions is the same as for the standard ODE suite�
in particular the standard odeplot output function can be used �and will
be used as the default output function�� The vector passed to the output
function contains in its d �rst components the value of the solution and
in its d remaining components the values for its time�derivatives� If this
parameter is set to phaseplot� the solution is drawn in the phase space
corresponding to the �rst components of �q� 	q��
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�OutputSel� As for the standard ODE suite� this contains a vector of indices
determining which components of the solution will be passed to the out�
put function� By default� all the indices �including those corresponding
to the time�derivative of the solution� are passed through�

�OutputSteps� tells the integrator which steps to take into account for the
output� For example� if OutputSteps is equal to ��� only every ��th step
generates some output� Putting OutputSteps equal to �� output is made
available only at the beginning and the end of the integration interval�

�Vectorized� has the same meaning as for the standard ODE suite�
�Events� If this option is set to �on�� event location is enabled� See Sect� ���

for an explanation of how to use event location�
�StepSize� Size h of one integration step� It is slightly altered by the code�

if the length of the integration interval is not an integer multiple of h�
�NumSteps� is the number of integration steps� This option is only used when

StepSize is not speci�ed� If neither is speci�ed� a warning is issued and
the default step size h 
 ���� is used�

�Method� allows to select the type of method to use� The list of available
methods depends on the integrator and is listed in the corresponding
sections below�

Note that �like for ode�� for example� the arguments tspan� y�� and options
are optional and can be de�ned in the �le F	m instead�
On output� gni meth returns three vectors �T�Q�P�� containing the times

at which the solution was evaluated� as well as the values of q and 	q at these
times� If event location is turned on� additional return values are given as
described in Sect� ��� below�

��� Problem Description

The problem to be solved should be described in a 	m �le� In the most simple
case� this �le only returns the right�hand side of the second�order di�erential
equation� E�g�� in order to solve the equation �q 
 �q�� one may create a �le
trivial	m containing the following�

function out � trivial�t�q	
out � �q�


From the command line� one would then use it for example as

options � gniset��StepSize�� ���	

gni�meth��trivial�� �� ���� �� ����� options	


An additional parameter flags can be used by the integrator to retrieve
default parameters for the problem� Assume we want to solve the previous
problem between t 
 � and t 
 ��� using a step size of ��� and with initial
values q��� 
 � and 	q��� 
 ���� We could then de�ne the �le trivial	m as
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function �out�out��out� � trivial�t�q�flags	
if �nargin � 	 � isempty�flags	

out � �q�

else

switch flags
case �init��

out � �� ���

out� � �� ����

out � gniset��StepSize�� ���	


end
end

and call it from the command line in the most simple possible way as

gni�meth��trivial�	


For a system of di�erential equations� out and q are column vectors� If the
option �Vectorized� is set to �on� in the GNI options structure� the inte�
grator may request to evaluate the right�hand side of the problem for several
values of t and q in one call� If the problem is of dimension d and the inte�
grator requests m values� t is a line vector of size m and q is a d�m matrix�
The right�hand side is expected to be also a d�m matrix� If �Vectorized�
is set to �off�� one can safely assume that m 
 ��

When vectorized correctly� the 	m �le for the Kepler problem with initial
values as in Sect� ��� looks like

function �out�out��out� � kepler�t�q�flags�ecc	
if �nargin � 	 � isempty�flags	

rad�q����	��q����	�q����	��q����	

rad�rad��sqrt�rad	

out����	��q����	��rad

out����	��q����	��rad


else
switch flags
case �init��

if �ecc � �	 � �ecc �� �	
error��The�eccentricity�must�lie�between���and���	


end
out � �� ��pi�

out� � ���ecc�����sqrt����ecc	����ecc		�

out � gniset��NumSteps������Vectorized���on���Events���off�����

�OutputFcn���phaseplot���OutputSel�������	

end

end

Notice that this problem depends on the eccentricity ecc� which has been
appended to the end of the parameter list� To solve this problem with ecc

���� just type

gni�meth��kepler��� ��� ��� �����	
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Entering � � in the parameter list tells the integrator to use the default
values of the problem de�nition �le instead� The parameter ecc is again
simply appended at the end of the parameter list�

��� Event Location

In many situations �for example the computation of Poincar!e sections�� it is
useful to know at which times some event function g�t� q�t�� p�t�� vanishes�
This is usually referred to as event location�
Event location is implemented in the GNI suite in a way that is again

very similar to the standard ODE suite implementation� It can be enabled
by specifying the value �on� for the �Events� selector of the GNI options
structure�
When event location is turned on� the integrator can be called as

�T�P�Q�TE�PE�QE�IE� � gni�meth��g��tspan�y��options����	


The output vector TE contains the times at which events occurred� The vec�
tors PE and QE contain the values of the solution and its derivative at these
times� If more than one event function is de�ned� the vector IE contains the
index of the event function that triggered the event�
When event location is turned on� the problem description �le is expected

to respond to the flags set to �events� by returning in the �rst output
argument a vector of event functions� Furthermore it is supposed to return in
the second and third output arguments vectors telling the integrator whether
the corresponding event is terminal or not and which types of zero�crossings
to consider� When a terminal event is encountered� the integration stops�
whether the end of the integration interval has been reached or not� The
following example shows how to de�ne a problem description �le that allows
to retrieve the times at which the solution either crosses � upwards or � in any
direction� The integration stops whenever the solution crosses�� downwards�

function �out�out��out� � trivial�t�q�flags	
if �nargin � 	 � isempty�flags	

out � �q�

else

switch flags
case �init��

out � �� ���

out� � ��� ��

out � gniset��StepSize�� �����Events���on�	


case �events��
out � �q��	���q��	�q��	���

out� � �� � ��

out � �� � ���


end
end
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��� Program gni irk�

The program gni irk� uses an implicit Runge�Kutta scheme to solve second
order di�erential equations �q 
 g�q�� The following selectors of the GNI
options structure are speci�c to gni irk��

�Method� This selector allows to specify which scheme is to be used� The
accepted values for �Method� are �G��� �G
�� and �G���� The letter �G
refers to the fact that all of these methods are Gauss methods �cf� Example
����� and the number that follows indicates the order of the corresponding
method� If no method is speci�ed� �G��� is used�

�MaxIter� Since the schemes are implicit� a non�linear system of equation
has to be solved at every integration step� This is achieved through a
�xed point iteration� This selector allows to specify the maximal number
of iterations that are performed� The default value is ���

The coe�cients of the di�erent methods are contained in the �le coeff irk��
New methods can easily be incorporated�
Let us shortly explain the meaning of the required coe�cients� The arrays

C� B� BC correspond to the vectors with coe�cients ci� bbi� ebi of ������� the ��
dimensional array AA to the matrix eA� Further coe�cients are needed for an
e�cient solution of the nonlinear Runge�Kutta equations of ������� which are
equivalent to

Qi 
 qn � hcivn � h�
sX

j��

eaij g�Qj�� i 
 �� � � � � s� �����

We solve this system by �xed point iteration and we use

Q�
i 
 qn � hcivn � h�

s��X
j��

eij g�Qj�n��� �����

as starting guess� where Q��n��� � � � � Qs�n�� are the internal stage values of
the previously computed step� Qs���n�� 
 qn��� Qs���n�� 
 qn� and

Qs���n�� 
 qn �

sX
i��

�i
�
Qi�n�� � qn��

�
� h�s��vn�� � h�s��vn

is an approximation to the solution at t 
 tn�� � �h� The coe�cients ��
�i� eij �stored in the arrays SM� AM� and E� are determined such that �����
coincides as far as possible with the Taylor series of the solution of ������ We
refer to ���� Sect� VIII����� and ���� for more details�

��� Program gni lmm�

Linear multistep methods ������ for second order di�erential equations are
implemented in the code gni lmm�� Since these methods are not self�starting�
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we have to provide starting approximations� This is done by a call to gni irk�

with �Method� set to �G���� For the moment we have implemented the three
methods of Table �� and the �Method� options are �
���� �
���� and �
����
respectively�

Table �� Symmetric multistep methods for second order problems�

method �
� method �
� method �
�

i Ci�� ��
��Bi Ci�� ��
��
 Bi Ci�� ���
Bi

� � ����� � ������ � ���
�
� 
 ������ � ���� � �����
� � ����� � ������ � �����
� � ��
��� ��� ������� � ������

The coe�cients of the methods are stored in the separate �le coeff lmm�

as follows� The generating polynomial R��� has � 
 � as a double zero� and
therefore it can be written as

R��� 
 �� � ����C� � C�� � C��
� � � � �� Ck���

k����

Since for explicit symmetric methods these coe�cients satisfy BK�i 
 Bi

�with B� 
 �� and CK���i 
 Ci� only those given in Table � have to be
speci�ed� The coe�cients Ci and Bi uniquely determine the method �������

��
 Program gni comp

This program allows to easily implement general composition methods� A
composition method ������ is characterized by the set of coe�cients f�ig and
by the basic method �h� They are controlled by the following two options�

�Method� This option allows to choose between several prede�ned sets of
coe�cients �i� The available methods are ����� ����� ����� ���� �����
�
���� �
��� and ������� These methods are of order �� �� �� �� and ��
respectively�

�PartialFlow� This option allows the user to specify the name of a Matlab
�le de�ning the basic method �h� The default method is the St�ormer�Ver�
let method�

For reasons of e�ciency we assume the basic method to be of the form

�h 
 �h�� � �h���h�h�� � �h�� � �����

where the following simpli�cation formula holds�

�����ha � �ha � �hc � �hc���� 
 �����ha�hc � �ha�hc���� � �����
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Every one�step method can be written in the form ����� by choosing �h�� 

�h�� 
 id �the identity�� and �hc�hb�ha 
 �hb� But this is not the reason for
writing �h in this apparently complicated form� The advantage of the repre�
sentation ����� is that in many important situations a large part of the work
for evaluating �h can be put into �h�� and �h�� and� by the simpli�cation
formula ������ this part can be avoided unless at grid points where an output
of the solution is required�
The code for the basic method must have the following structure�

function �outP�outQ� � basic�t�P�Q�ode�ha�hb�hc�first�last�flags�args	
if isempty�flags	

if �first	
apply �ha to the vectors P and Q

end
apply �hc�hb�ha
if �last	

apply �hc

end
else

switch flags
case �init��

perform some initialization
case �done��

perform some cleanup
end

end

For example� the St�ormer�Verlet method ������ for �q 
 g�q�� considered as a
splitting method ������� can be written as ����� with �h�� 
 id� �hc�hb�ha 


�
���
hc ��

���
hb� and �ha 
 �

���
ha� This presentation satis�es condition ������ because

�
���
t has the group property� The Matlab program for this basic method is

function �outP�outQ� � stverl�t�P�Q�ode�ha�hb�hc�first����
last�flags�varargin	

if isempty�flags	
if �first	

Q � Q � ha�P

end
F � feval�ode�t�Q�varargin���	

outP � P � hb�F

outQ � Q � hc�outP


end

The actual implementation uses compensated summation �to reduce round�
o� error� and it is the default method used by gni comp�

� Some Typical Applications

Let us �nally illustrate the use of our programs at some typical examples�
where geometric integrators are recommended� We start with a comparison
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of geometric integrators for second order ordinary di�erential equations� We
then show how Poincar!e sections can be computed� and we terminate with a
slightly more sophisticated use of composition methods�

��� Comparison of Geometric Integrators

Often it is di�cult to decide which integrator is the best for a given problem�
The implicit Runge�Kutta and composition methods have a sound theoretical
basis� but they typically need more function evaluations per step than linear
multistep methods� On the other hand� multistep methods have larger local
error� so that smaller step sizes are required� The best choice is in general
problem dependent�

Consider �rst the Kepler problem with eccentricity ecc
 ���� The �le
kepler	m� containing the problem description� is explained in Sect� ���� We
compute the solution over the interval ��� ����� with many di�erent step sizes�
As we have seen in Fig� ��� the e�ciency of all three classes of integrators
�implicit Runge�Kutta� multistep� composition� is about the same for this
problem� This need not always be the case�

As another example consider the ��body problem �sun and the �ve outer
planets� with data and initial values as in Chap� I of ���� on a relatively short
time interval ��� ��� ����� Similar as in Fig� ��� we show in Fig� ��� the work
precision diagram of the di�erent methods� It is somewhat surprising that
for this problem �with orbits of very small eccentricity� the linear multistep
method is the most e�cient integrator� The cpu times in Fig� ��� and in
Fig� ��� are obtained with Fortran implementations of the codes�
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Fig� ���� Work precision diagrams for the St�ormer�Verlet scheme and for three
methods of order eight� implicit Runge�Kutta method irk��� composition method
comp�� and linear multistep method lmm��� applied to the outer solar system�
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��� Computation of Poincar�e Sections

Consider the H�enon�Heiles Hamiltonian

H�p�� p�� q�� q�� 

�

�
�p�� � p��� �

�

�
�q�� � q��� � q��q� �

�

�
q�� � �����

The corresponding Hamiltonian system is integrable for su�ciently small
energy� e�g�� for the initial values p���� 
 p���� 
 q���� 
 q���� 
 �����
which we take for our computations� This means that the solution stays on
a two�dimensional torus in the four�dimensional phase space� Its intersection
with the hyperplane q� 
 � �Poincar!e section� thus gives a closed curve in the
phase space� We study the projection of this curve onto the �q�� p���plane�
The left picture of Fig� ��� shows the Poincar!e section for the numerical

solution obtained by dop
�� �an explicit Runge�Kutta method of order eight
with step size control� see ���� Appendix�� and tolerance Atol 
 Rtol 
 ���


on the interval ��� ��� ����� The picture clearly demonstrates that the nu�
merical solution is qualitatively wrong as it does not remain on a closed
curve� The same experiment with the three geometric integrators gni lmm��
gni irk�� and gni comp gives a correct simulation of the system� and it can�
not be distinguished from a picture for the exact solution �right picture of
Fig� ����� If we use step sizes such that the error of the Hamiltonian remains
below ���
� the code gni lmm� �with h 
 ����� requires ��� ��� function
evaluations� gni irk� �with h 
 ���� needs � ��� ��� function evaluations�
and gni comp �with h 
 ���� � ��� ��� function evaluations� For comparison�
the code dop
�� requires � ��� ��� evaluations of the vector �eld� but the
error in the Hamiltonian increases linearly with time� The high number of
function evaluations for gni irk� is due to the fact that for low accuracy

dop��� gni lmm�

Fig� ���� Poincar�e section for the H�enon�Heiles problem� dop�� with tolerance
Atol � Rtol � �
�� left picture� and gni lmm� with step size h � 
��� right
picture�� integration interval �
� �

 


��
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requirements �large step size� the convergence of the �xed point iterations
for solving the nonlinear Runge�Kutta equations is rather slow�
For the computation of the Poincar!e section �Fig� ���� we have used the

following program�

function �out�out��out� � henon�t�q�flags	
if �nargin � 	 � isempty�flags	

out����	��q����	�������q����		

out����	��q����	�����q����		 � q����	���


else
switch flags
case �init��

out � �� �������

out� � ����� ���� ���� �����

out � gniset��StepSize��������Vectorized���on�����

�Events���on���OutputSteps���	

case �events��

out � �q��	�

out� � ���

out � ���


end
end

The plot of the Poincar!e section is then obtained with

�T�Q�P�TE�QE�PE��gni�lmm���henon�	

plot�QE����	�PE����	����	


��� �Rattle� as Basic Integrator for Composition

As a �nal example� we present a Matlab implementation of the Rattle algo�
rithm ������ applied to the two�body problem on the sphere as introduced in
Example ���� We follow the description of Sect� ��� and we do it in such a way
that it can be used as basic integrator for the composition method gni comp�
A possible implementation is the following program�

function �outP�outQ� � rattwo�t�P�Q�gradpot�ha�hb�hc�first�last����
flags�varargin	

if isempty�flags	
F � feval�gradpot�t�Q�varargin���	

EP � P � ha�F

EQ � Q � hb�EP

EE� � EQ���	��EQ���	

EQ� � EQ���	��Q���	

EE� � EQ����	��EQ����	

EQ� � EQ����	��Q����	

BET� � � � EE�

ALAM� � �BET���hb��EQ��sqrt�BET��EQ���			

BET� � � � EE�

ALAM� � �BET���hb��EQ��sqrt�BET��EQ���			
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outP � EP � �ALAM��Q���	
ALAM��Q����	�

outQ � Q � hb�outP

if �last	

F � feval�gradpot�t�outQ�varargin���	

outP � outP � hc�F

AMU� � sum�outP���	��outQ���		

AMU� � sum�outP����	��outQ����		

outP � outP � �AMU��outQ���	
AMU��outQ����	�


end
end

We remark that� due to the simple structure of the Hamiltonian� the method
is explicit in pn����� qn�� and pn��� and it is implicit only in the Lagrange
multipliers� Since the constraints are quadratic� we are only concerned with
the solution of a scalar quadratic equation for each of the components of �n�
This is why no iterations are involved in the above program� Since rqH�p� q�
does not depend on p� the �rst equation of ������ can be combined with the
fourth equation of the preceeding step into one formula to give pn���� 

pn���� � � � � � This is the reason for putting the computation of pn�� into
�h�� of the decomposition ������

The argument gradpot in the function rattwo is a function that computes
the gradient of the potential �i�e�� rqU�q� 
 rqH�p� q��� For the two�body
problem on the sphere it is given by

function �out�out��out� � twobodysphere�t�q�flags	
if �nargin � 	 � isempty�flags	

prod � q���	��q����	

out � �q���������	����prod��	����	


else
switch flags
case �init��

out � �� ���

phi � ��� �����

theta � ���� �����

out���� ��	 � cos�phi	��sin�theta	

out���� ��	 � sin�phi	��sin�theta	

out��� ��	 � cos�theta	

dphi � ���� ����

dtheta � ���� �����

out���� ���	 � �dphi��sin�phi	��sin�theta	 ���

� dtheta��cos�phi	��cos�theta	

out���� ���	 � dphi��cos�phi	��sin�theta	 ���

� dtheta��sin�phi	��cos�theta	

out���� ���	 � �dtheta��sin�theta	

out � gniset��StepSize��������Vectorized���off�����

�Events���off���PartialFlow���rattwo���OutputFcn�����
�sphereplot���OutputSteps�����Method�������	


end
end
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Fig� ���� Error in the Hamiltonian of an �th order composition method with Rattle
as basic integrator� step size h � 
���

Here� the option sphereplot permits us to get a ��dimensional plot of the
solution� The problem is then simply solved by calling

gni�comp��twobodysphere�	


The experiment of Fig� ��� con�rms the statement of Theorem ��� for the
Rattle algorithm applied to constrained Hamiltonian systems� We have plot�
ted the error of the Hamiltonian for the composition method of Example ����
applied with step size h 
 ���� to the interval ��� ������ As expected for a
symplectic integrator� there is no drift in the error of the Hamiltonian� This
is also con�rmed by integrations over much longer time intervals�

Hints for the implementation of the rigid body problem of Example ��� can
be found in ����� where also the extension of Theorem ��� to numerical meth�
ods for Hamiltonian systems on manifolds �including the Rattle algorithm�
is proved�
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