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33405 Talence cedex, France

Received 20 November 2004; received in revised form 28 November 2004; accepted 14 March 2005
Abstract

We present two strategies dealing with the design of absorbing boundary conditions for nonlinear scalar partial dif-
ferential equations. The first one relies on the linearization of the equation and the second one relies on its paralinea-
rization. We then introduce a finite volume scheme well-suited to our absorbing boundary conditions in the case of the
semilinear wave equation. We finally present numerical experiments illustrating the efficiency of these methods in the
case of semilinear wave equations and of nonlinear Schrödinger equations.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many phenomena are modeled by partial differential equations on unbounded domains (stream in the
ocean, temperature in the atmosphere, etc.). Though the problem is defined in the whole space, it is often
sufficient to know the solution only on a bounded domain: the domain of interest. An artificial domain
which includes this region of interest is then defined. Inside the domain the equations are discretized in
the usual way but there remains the question of the choice of reliable boundary conditions on the artificial
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boundary. Thus the boundary conditions have to be well-posed and accurate to be able to approximate the
restriction of the solution to the domain of interest.

In the case of linear constant coefficients equations, the transparent boundary condition (the boundary
condition satisfied by the exact solution) can be explicitly computed when choosing special geometries for
the computational domain (half-spaces, spheres or cylinders). This boundary condition is a nonlocal oper-
ator and can be approximated by local boundary conditions [13,6,22] or fast evaluated [10,1,11,14]. One
can also replace the boundary condition by a reflectionless sponge layer damping propagating waves [3,8].

In the case of linear equations with variable coefficients, the previous methods fail since the transparent
boundary condition cannot be explicitly computed. A strategy has been developed to design boundary con-
ditions which minimizes the reflection of the solution at the artificial boundary. These absorbing boundary
conditions have been constructed for hyperbolic problems [6] and parabolic problems [12] with success
using geometrical optics. In the case of the wave equation, the method relies on the factorization of the
operator in a product of two first order operators. One operator corresponds to the incident wave and
the other to the reflected wave with respect to the boundary of the computational domain. As the boundary
is artificial, the transparent boundary condition consists in annihilating the operator corresponding to the
reflected wave. Finally, the transparent condition is not very manageable for numerical simulation and is
approximated with absorbing boundary conditions, which are easy to implement.

For nonlinear problems, very little is known. To extend the strategy for linear variable coefficients equa-
tions to nonlinear equations, a first idea is to rewrite the nonlinearity as a potential multiplied by the un-
known function. The nonlinear equation can then be reinterpreted as a linear equation with variable
coefficients and we can apply the method in [6,12]. We obtained good results in the case of reaction–diffu-
sion equations [16] using this strategy. In the case of nonlinear Schrödinger equations, we showed in [17]
that the solution computed with this method is significantly different from the solution of the nonlinear
problem set on R.

This motivates the introduction of a second method. We rely on Bony�s paralinearization theorem [4].
This consists in decomposing a nonlinearity applied to a function as the sum of a linear operator applied
to this function and a smooth remainder. Using this result, we first paralinearize the nonlinear equation and
we obtain a linear equation satisfied by the unknown function. Then, we can apply the method in [6,12] to
this linear equation. We obtained good results in the case of semilinear wave equations [19] and in the case
of nonlinear Schrödinger equations [20] using this strategy.

In this study we investigate further these two strategies in the case of the semilinear wave equation and of
nonlinear Schrödinger equations. The semilinear wave equation models in particular the dislocation in crys-
tals and laser pulses in two state media, and nonlinear Schrödinger equations are reliable models for var-
ious phenomena in plasma physics, nonlinear optic and water wave theory (see for example [23]).

The present work consists in four parts:

• In Section 2, we present the two strategies sketched above dealing with the design of absorbing boundary
conditions for nonlinear scalar partial differential equations. We then recall the zero and first order
absorbing boundary conditions obtained for the semilinear wave equation [19] and for nonlinear Schrö-
dinger equations [20].

• In Section 3, we present a finite volume discretization for the semilinear wave equation with general
absorbing boundary conditions. This scheme is simpler to implement and more efficient than the finite
difference scheme used in [19].

• In Section 4, we present a finite element scheme well-suited to nonlinear Schrödinger equations with gen-
eral absorbing boundary conditions.

• In Section 5, we compute numerically the solution of semilinear wave equations and of nonlinear Schrö-
dinger equations using a large class of absorbing boundary conditions. We show that our absorbing
boundary conditions give optimal result within this large class illustrating the efficiency of our method.
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Remark 1. The zero and first order absorbing boundary conditions presented in Section 2 have been
obtained by the author in [19] and [20]. Thus, the novelty of this work compared to [19] and [20] consists in
the finite volume scheme of Section 3 well-suited to our absorbing boundary conditions, and in the
numerical computations of Section 5 investigating the optimality of our absorbing boundary conditions
within a large class of boundary conditions. Furthermore, Section 2 has its own interest as it explains
without technicalities and in a unified way the strategies introduced in [19] and [20].
2. Design of absorbing boundary conditions for nonlinear problems

2.1. The potential and the paralinear strategies

We first recall the strategy of Engquist and Majda [6] used to design absorbing boundary conditions for
the wave equation with variable coefficients.

The simplest case is the constant coefficients wave equation set on R. Take R� as the computational do-
main. The problem becomes: find a boundary condition satisfied at x = 0 by the solution u of the wave
equation ðo2

t � o
2
xÞu ¼ 0. The wave operator admits the following factorization:
o
2
t � o

2
x ¼ �ðox � otÞðox þ otÞ. ð1Þ
Now, the solutions of (ox + ot)u = 0 correspond to incident waves with respect to the boundary x = 0 and
the solution of (ox � ot)u = 0 correspond to reflected waves (see Fig. 1). As the boundary x = 0 is artificial,
there should not be any reflected wave. Therefore, the transparent boundary condition is (ox + ot)u = 0 as it
annihilates the reflected wave.

The strategy of Engquist and Majda is to extend the factorization (1) to wave equations with variable
coefficients. If L denotes a wave operator with variable coefficients, it admits the following factorization:
L � �ðox � aÞðox � bÞ; ð2Þ

where a and b are convenient operators. Again, one operator corresponds to the incident wave and the
other to the reflected wave with respect to the boundary of the computational domain. Then, the transpar-
ent boundary condition is (ox � b)u = 0 and consists in annihilating the reflected wave.

b is given by a high frequency infinite expansion which is not manageable for numerical simulations. The
strategy of the absorbing boundary conditions consists in truncating this expansion after a finite number of
terms. For an integer k, the absorbing boundary condition of order k is obtained by keeping the first k
terms in the expansion of b. For example, for L ¼ ðo2

t � o2
xÞ þ ot, the absorbing boundary condition of order

0 is
oxuþ otu ¼ 0 at x ¼ 0
and the first order absorbing boundary condition is
oxuþ otuþ u=2 ¼ 0 at x ¼ 0.
Fig. 1. The incident wave and the reflected wave with respect to the boundary x = 0 of the computational domain R�.
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Remark 2. The absorbing boundary condition of order 0 is the transparent boundary condition of the
constant coefficient case. This will also be the case for semilinear equations.
2.1.1. The potential strategy

Let us explain this strategy in the case of the cubic nonlinear Schrödinger equation
ðiot þ o
2
xÞuþ juj

2u ¼ 0 in Rþ � R;

u ¼ u0 at t ¼ 0.

(
ð3Þ
We take R� as a spatial computational domain and look for a boundary condition at x = 0.
In the sequel, we use the operators

ffiffiffiffiffiffiffiffiffi
�iot

p
and

ffiffiffiffiffiffiffiffiffi
�iot

p �1
(see for example [9]) which are defined by
ffiffiffiffiffiffiffiffiffi

�iot

p
vðtÞ ¼ e�ip=4ffiffiffi

p
p ot

Z t

0

vðsÞffiffiffiffiffiffiffiffiffiffi
t � s
p ds

� �
;

ffiffiffiffiffiffiffiffiffi
�iot

p �1
vðtÞ ¼ eip=4ffiffiffi

p
p

Z t

0

vðsÞffiffiffiffiffiffiffiffiffiffi
t � s
p ds.

ð4Þ
Let V = juj2. Then (3) becomes
ðiot þ o2
xÞuþ Vu ¼ 0 in Rþt � R;

u ¼ u0 at t ¼ 0.

(
ð5Þ
If we neglect for a moment the dependence of V on u, we can see (5) as a linear Schrödinger equation with a
potential term, hence the name of the strategy. As (5) is now a linear equation, we can use the method of
Engquist and Majda in the frame of the Schrödinger equation. We obtain the zero order absorbing bound-
ary condition
oxuþ
ffiffiffiffiffiffiffiffiffi
�iot

p
u ¼ 0 at x ¼ 0 ð6Þ
and the second order boundary condition
oxuþ
ffiffiffiffiffiffiffiffiffi
�iot

p
u� V =2

ffiffiffiffiffiffiffiffiffi
�iot

p �1
u ¼ 0 at x ¼ 0. ð7Þ
Now, we remember that V = juj2 and (7) becomes
oxuþ
ffiffiffiffiffiffiffiffiffi
�iot

p
u� juj2=2

ffiffiffiffiffiffiffiffiffi
�iot

p �1
u ¼ 0 at x ¼ 0. ð8Þ
Remark 3. We do not present the first order condition as it coincides with the zero order condition in this
case.

The general case is handled in the same way. We first see the nonlinearity as a multiplication of functions
with u or its derivatives. Then, we neglect the dependence of these functions on u and we use the strategy of
Engquist and Majda for linear equations. Finally, we replace these functions by their expression in u in the
absorbing boundary conditions, as we did to go from (7) to (8).

Remark 4. The rigorous justification of this strategy requires that u be smooth (see [19,20]). As we may
want to approximate functions u with finite regularity, this justifies the introduction of a second strategy.
2.1.2. The paralinear strategy

Let us explain this strategy in the case of the following nonlinear Schrödinger equation:
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ðiot þ o2
xÞuþ uoxu ¼ 0 in Rþt � R;

u ¼ u0 at t ¼ 0.

(
ð9Þ
We take R� as a computational domain and look for a boundary condition at x = 0.
The idea is again to transform (9) into a linear equation but not in the same way. If we would use the

potential strategy, we would set V = u and see the nonlinearity as Voxu. Instead, we use Bony�s paralinear-
ization theorem [4] which yields
uoxu � T uoxuþ T oxuu. ð10Þ
Here Tu and T oxu are linear operator depending on u and � means = modulo a smooth remainder. The
decomposition (10) works for functions u with finite regularity and makes it therefore interesting for our
purposes. This decomposition follows from distinguishing three parts in the product uoxu. More precisely,
the Fourier transform of uoxu is given by a convolution and Bony considers three regions of integration.
Tuoxu corresponds to the region where the frequencies of oxu are big compared to those of u. T oxuu corre-
sponds to the region where the frequencies of u are big compared to those of oxu. Finally, the smooth
remainder corresponds to the region where the frequencies of u and oxu have comparable size. For a more
complete overview of the paralinearization see for example [19] where we sum up the various properties
needed for the rigorous derivation of the paralinear strategy.

Using (10), we can see (9) as a linear Schrödinger equation with variable coefficients
ðiot þ o
2
xÞuþ T uoxuþ T oxuu ¼ 0 in Rþt � R;

u ¼ u0 at t ¼ 0.

(
ð11Þ
If we neglect for a moment the dependence of Tu and T oxu on u, we can see (5) as a linear Schrödinger equa-
tion with variable coefficients. We can therefore use the method of Engquist and Majda in the frame of the
Schrödinger equation. We obtain the zero order absorbing boundary condition
oxuþ
ffiffiffiffiffiffiffiffiffi
�iot

p
u ¼ 0 at x ¼ 0 ð12Þ
and the first order boundary condition
oxuþ
ffiffiffiffiffiffiffiffiffi
�iot

p
uþ T uu=2 ¼ 0 at x ¼ 0. ð13Þ
Now, we want to get rid of the tricky operator Tu. Therefore, we use once again Bony�s paralinearization
theorem [4] which yields
u2 � T uuþ T uu. ð14Þ
This allows us to replace Tuu by u2/2 and (13) becomes
oxuþ
ffiffiffiffiffiffiffiffiffi
�iot

p
uþ u2=4 ¼ 0 at x ¼ 0. ð15Þ
The general case is handled in the same way. We first use Bony�s paralinearization theorem to transform the
nonlinearity into linear operators applied to u and its derivatives. Then, we neglect the dependence of these
operators on u and we use the strategy of Engquist and Majda for linear equations. Finally, we replace
these operators using again Bony�s paralinearization theorem, as we did to go from (13)–(15).

Remark 5. The decomposition (10) is different from the decomposition used in the potential strategy and
does not lead to the same boundary conditions as we will see in the next paragraph. The reader interested in
the rigorous derivation of this strategy is referred to [19–21,18].
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2.2. The absorbing boundary conditions

Here, we present the zero and first order absorbing boundary conditions obtained using the potential
and the paralinear strategies. We focus on four examples studied in Section 5:
Table
Zero a

Zero o
First o
Zero o
First o

Table
Zero a

Zero o
First o
Zero o
First o

Table
Zero a

Zero o

Second

Zero o

Second
ðo2
t � o

2
xÞuþ u2otu ¼ 0 in Rþt � R;

u ¼ u0; otu ¼ u1 at t ¼ 0;

(
ð16Þ

ðo2
t � o2

xÞu� u2oxu ¼ 0 in Rþt � R;

u ¼ u0; otu ¼ u1 at t ¼ 0;

(
ð17Þ

ðiot þ o2
xÞuþ juj

2u ¼ 0 in Rþt � R;

u ¼ u0 at t ¼ 0;

(
ð18Þ
and
ðiot þ o
2
xÞuþ uoxu ¼ 0 in Rþt � R;

u ¼ u0 at t ¼ 0.

(
ð19Þ
We consider the computational domain (a,b), where a < b. We sum up the various absorbing boundary
conditions at x = a and x = b in Tables 1–4.
1
nd first order abc for ðo2

t � o2
xÞuþ u2otu ¼ 0 at x = a and x = b

Potential strategy Paralinear strategy

rder abc at x = a oxu � otu = 0 oxu � otu = 0
rder abc at x = a oxu � otu � u3/2 = 0 oxu � otu � u3/6 = 0
rder abc at x = b oxu + otu = 0 oxu + otu = 0
rder abc at x = b oxu + otu + u3/2 = 0 oxu + otu + u3/6 = 0

2
nd first order abc for ðo2

t � o2
xÞu� u2oxu ¼ 0 at x = a and x = b

Potential strategy Paralinear strategy

rder abc at x = a oxu � otu = 0 oxu � otu = 0
rder abc at x = a oxu � otu + u3/2 = 0 oxu � otu + u3/6 = 0
rder abc at x = b oxu + otu = 0 oxu + otu = 0
rder abc at x = b oxu + otu + u3/2 = 0 oxu + otu + u3/6 = 0

3
nd second order abc for ðiot þ o2

xÞuþ juj
2u ¼ 0 at x = a and x = b

Potential strategy

rder abc at x = a oxu�
ffiffiffiffiffiffiffiffiffi
�iot
p

u ¼ 0

order abc at x = a oxu�
ffiffiffiffiffiffiffiffiffi
�iot
p

uþ juj2=2
ffiffiffiffiffiffiffiffiffi
�iot
p �1

u ¼ 0

rder abc at x = b oxuþ
ffiffiffiffiffiffiffiffiffi
�iot
p

u ¼ 0

order abc at x = b oxuþ
ffiffiffiffiffiffiffiffiffi
�iot
p

u� juj2=2
ffiffiffiffiffiffiffiffiffi
�iot
p �1

u ¼ 0



Table 4
Zero and first order abc for ðiot þ o2

xÞuþ uoxu ¼ 0 at x = a and x = b

Potential strategy Paralinear strategy

Zero order abc at x = a oxu�
ffiffiffiffiffiffiffiffiffi
�iot
p

u ¼ 0 oxu�
ffiffiffiffiffiffiffiffiffi
�iot
p

u ¼ 0

First order abc at x = a oxu�
ffiffiffiffiffiffiffiffiffi
�iot
p

uþ u2=2 ¼ 0 oxu�
ffiffiffiffiffiffiffiffiffi
�iot
p

uþ u2=4 ¼ 0

Zero order abc at x = b oxuþ
ffiffiffiffiffiffiffiffiffi
�iot
p

u ¼ 0 oxuþ
ffiffiffiffiffiffiffiffiffi
�iot
p

u ¼ 0

First order abc at x = b oxuþ
ffiffiffiffiffiffiffiffiffi
�iot
p

uþ u2=2 ¼ 0 oxuþ
ffiffiffiffiffiffiffiffiffi
�iot
p

uþ u2=4 ¼ 0

3766 J. Szeftel / Comput. Methods Appl. Mech. Engrg. 195 (2006) 3760–3775
Remark 6. In the case of the cubic nonlinear Schrödinger equation, the zero and first order absorbing
boundary conditions are the same. Therefore, we give in this case the second order absorbing boundary
condition. Moreover, we are not able to design absorbing boundary conditions using the paralinear
strategy in this case (see [20]). The reason is that the cubic nonlinear Schrödinger equation should be
considered as a system in ðu; �uÞ and not as a scalar equation, due to the term in �u contained in the
nonlinearity (the analog of (10) in this case is juj2u � 2T juj2 uþ T u2�u). Therefore, Table 3 gives the zero and
second order absorbing boundary conditions obtained by the potential strategy.

Remark 7. The reader interested in the design of first and second order absorbing boundary conditions in
more general cases is referred to [19,20].
3. A finite volume discretization for semilinear wave equations

In [19], we used a finite differences scheme to compute the semilinear wave equation with the boundary
conditions given in Tables 1 and 2. Here, we construct a finite volume scheme which is simpler to implement
and more efficient.

We extend to the nonlinear case the finite volume scheme described in [7]. Let X = (a,b). We discretize
the wave equation on X · (0,T), using a finite volume discretization on a rectangular grid with the mesh size
Dx and Dt. There are J + 1 points in space, numbered from 0 up to J with Dx = (b � a)/J, and N + 1 grid
points in time, numbered from 0 up to N, with Dt = T/N. We denote the numerical approximation to
u(a + jDx,nDt) by U(j,n).

We discretize the following semilinear wave equation:
ðo2
t � o2

xÞu ¼ f ðu; otu; oxuÞ in X� ð0; T Þ;
otu� oxuþ g�ðuÞ ¼ 0; at x ¼ a;

otuþ oxuþ gþðuÞ ¼ 0; at x ¼ b;

uð�; 0Þ ¼ p; otuð�; 0Þ ¼ q:

8>>><
>>>:

ð20Þ
Remark 8. The boundary conditions in Table 1 correspond to g+(u) = u3/2 and g�(u) = u3/2 for the
potential strategy and to g+(u) = u3/6 and g�(u) = u3/6 for the paralinear strategy. The boundary
conditions in Table 2 correspond to g+(u) = u3/2 and g�(u) = �u3/2 for the potential strategy and to
g+(u) = u3/6 and g�(u) = �u3/6 for the paralinear strategy.
3.1. Interior points

Denoting by D the volume around a grid point (x = a + jDx, t = nDt) in the interior of X · (0,T) given
by D = (x � Dx/2,x + Dx/2) · (t � Dt/2, t + Dt/2), we obtain the finite volume scheme by integrating the
equation over the volume D and applying the divergence theorem
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0 ¼
Z xþDx=2

x�Dx=2

otuðn; t þ Dt=2Þdn�
Z xþDx=2

x�Dx=2

otuðn; t � Dt=2Þdn

�
Z tþDt=2

t�Dt=2

oxuðxþ Dx=2; sÞdsþ
Z tþDt=2

t�Dt=2

oxuðx� Dx=2; sÞds

�
Z xþDx=2

x�Dx=2

Z tþDt=2

t�Dt=2

f ðu; otu; oxuÞdnds.
We use finite differences to approximate the integrals.
Dþt Uðj; nÞ ¼ Uðj; nþ 1Þ � Uðj; nÞ
Dt

; D�t Uðj; nÞ ¼ Uðj; nÞ � Uðj; n� 1Þ
Dt

;

Dþx Uðj; nÞ ¼ Uðjþ 1; nÞ � Uðj; nÞ
Dx

; D�x Uðj; nÞ ¼ Uðj; nÞ � Uðj� 1; nÞ
Dx

;

D0
xUðj; nÞ ¼ Uðjþ 1; nÞ � Uðj� 1; nÞ

2Dx
; D0

t Uðj; nÞ ¼ Uðj; nþ 1Þ � Uðj; n� 1Þ
2Dt

;

ð21Þ

D��x Uðj; nÞ ¼ 3Uðj; nÞ � 4Uðj� 1; nÞ þ Uðj� 2; nÞ
2Dx

;

Dþþx Uðj; nÞ ¼ 3Uðj; nÞ � 4Uðjþ 1; nÞ þ Uðjþ 2; nÞ
2Dx

;

D��t Uðj; nÞ ¼ 3Uðj; nÞ � 4Uðj; n� 1Þ þ Uðj; n� 2Þ
2Dt

;

D��t Uðj; nÞ ¼
D��t Uðj; nÞ for n P 2;

D�t Uðj; nÞ for n ¼ 1:

�
ð22Þ
The numerical approximation to otu in the finite volume scheme is a piecewise constant and given by
Dþt Uðj; nÞ for t 2 [tn, tn+1). Similarly the numerical approximation to oxu is piecewise constant in the finite
volume scheme and given by Dþx Uðj; nÞ for x 2 [xj,xj+1). The last finite derivatives are second order approx-
imation of oxu and otu we shall use for the nonlinear term, in order to design an explicit scheme. We now
write
 Z xþDx=2

x�Dx=2

otuðn; t � Dt=2Þdn � DxD�t Uðj; nÞ;
Z tþDt=2

t�Dt=2

oxuðx� Dx=2; sÞds � DtD�x Uðj; nÞ
and the scheme in the interior writes
ðDþt D�t � Dþx D�x ÞUðj; nÞ � f ðUðj; nÞ;D��t Uðj; nÞ;D0
xUðj; nÞÞ ¼ 0; 1 6 j 6 J � 1; 1 6 n 6 N � 1.

ð23Þ
3.2. Points on the initial line

For x = a + jDx in the interior of X, we integrate the equation on the half-cell (x � Dx/2,x + Dx/2) ·
(0,Dt/2), and get
0 ¼
Z xþDx=2

x�Dx=2

otuðn;Dt=2Þdn�
Z xþDx=2

x�Dx=2

otuðn; 0Þdn�
Z Dt=2

0

oxuðxþ Dx=2; sÞds

þ
Z Dt=2

0

oxuðx� Dx=2; sÞds�
Z xþDx=2

x�Dx=2

Z Dt=2

0

f ðu; otu; oxuÞdnds.
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Now the remaining derivatives can be approximated by finite differences (21), except the term otu(n, 0). But
this derivative is given explicitly by the initial condition
Z xþDx=2

x�Dx=2

otuðn; 0Þdn ¼
Z xþDx=2

x�Dx=2

qðnÞdn � DxqðxÞ.
We define the discrete initial conditions as
P ðjÞ ¼ pðaþ jDxÞ; QðjÞ ¼ qðaþ jDxÞ. ð24Þ

The nonlinear term is approximated by Dx Dt

2
f ðpðxÞ; qðxÞ; oxpðxÞÞ, and we obtain the scheme
Dþt �
Dt
2

Dþx D�x

� �
Uðj; 0Þ � QðjÞ ¼ Dt

2
f ðP ðjÞ;QðjÞ;D0

xQðjÞÞ; for 1 6 j 6 J . ð25Þ
3.3. Boundary points

Suppose the point (x = a, t = nDt) is on the left boundary of X · (0,T), for n P 1. We integrate on the
half-cell (x,x + Dx/2) · (t � Dt/2, t + Dt/2) and proceed as before
0 ¼
Z xþDx=2

x
otuðn; t þ Dt=2Þdn�

Z xþDx=2

x
otuðn; t � Dt=2Þdn

�
Z tþDt=2

t�Dt=2

oxuðxþ Dx=2; sÞdsþ
Z tþDt=2

t�Dt=2

oxuðx; sÞds

�
Z xþDx=2

x

Z tþDt=2

t�Dt=2

f ðu; otu; oxuÞdnds.
Again we can approximate otu and oxu by the finite differences given in (21), except on the left side of the
control volume, where we apply the boundary condition. For the nonlinear term, we use the one-sided
approximations of oxu, and otu
Z xþDx=2

x

Z tþDt=2

t�Dt=2

f ðu; otu; oxuÞdnds � Dt
Dx
2

f ðUð0; nÞ;D��t Uð0; nÞ;Dþþx Uð0; nÞÞ
and we obtain
0 ¼ Dx
2
ðDþt � D�t Þ � DtDþx

� �
Uð0; nÞ þ

Z tþDt=2

t�Dt=2

oxuðx; sÞds

� Dt
Dx
2

f ðUð0; nÞ;D��t Uð0; nÞ;Dþþx Uð0; nÞÞ. ð26Þ
We now introduce the left boundary condition
otu� oxuþ g�ðuÞ ¼ 0.
We integrate it over (t � Dt/2, t + Dt/2), and extract the boundary term
Z tþDt=2

t�Dt=2

oxuðx; sÞds � DtD0
t Uð0; nÞ þ

Z tþDt=2

t�Dt=2

g�ðuÞðx; sÞds � DtD0
t Uð0; nÞ þ Dtg�ðUð0; nÞÞ;
which together with (26) yields
0 ¼ D0
t � Dþx þ

Dx
2

Dþt D�t

� �
Uð0; nÞ � Dx

2
f ðUð0; nÞ;D��t Uð0; nÞ;Dþþx Uð0; nÞÞ þ g�ðUð0; nÞÞ. ð27Þ
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The treatment of the right boundary condition is the same
0 ¼ D0
t þ D�x þ

Dx
2

Dþt D�t

� �
UðJ ; nÞ � Dx

2
f ðUðJ ; nÞ;D��t UðJ ; nÞ;D��x UðJ ; nÞÞ

þ gþðUðJ ; nÞÞ n P 1. ð28Þ
3.4. Corner points

For the corner points on the initial line, there is only a quarter of the original finite volume left to inte-
grate over. For example on the left corner we obtain for x = a,
0 ¼
Z xþDx=2

x
otuðn;Dt=2Þdn�

Z xþDx=2

x
otuðn; 0Þdn

�
Z Dt=2

0

oxuðxþ Dx=2; sÞdsþ
Z Dt=2

0

oxuðx; sÞds

�
Z xþDx=2

x

Z Dt=2

0

f ðu; otu; oxuÞdnds.
Here two of the remaining derivatives can be approximated by the finite differences (21)
Z xþDx=2

x
otuðn;Dt=2Þdn � Dx

2
Dþt Uð0; 0Þ;

Z Dt=2

0

oxuðxþ Dx=2; sÞds � Dt
2

Dþx Uð0; 0Þ;
whereas ou
ot ðn; 0Þ is given by the initial condition
Z xþDx=2

x
otuðn; 0Þdn � Dx

2
Qð0Þ;
where Q is defined in (24), and ou
ox ð0; sÞ has to be obtained from the boundary condition by proceeding as

before: we integrate the left boundary condition over (0,Dt/2) and extract the boundary term
Z Dt=2

0

oxuðx; sÞds � Dt
2

Dþt Uð0; nÞ þ
Z Dt=2

0

g�ðuÞðx; sÞds.
The nonlinear term in the former equation is approximated by
Dt
2

g�ðP ð0ÞÞ
and we obtain the discrete scheme
0 ¼ Dx
2

Dþt �
Dt
2

Dþx þ
Dt
2

Dþt

� �
Uð0; 0Þ � Dx

2
Qð0Þ � DxDt

4
f ðP ð0Þ;Qð0Þ;Dþþx P ð0ÞÞ þ Dt

2
g�ðP ð0ÞÞ.
Dividing by Dt/2 yields
0 ¼ Dþt � Dþx þ
Dx
Dt

Dþt

� �
Uð0; 0Þ � Dx

Dt
Qð0Þ � Dx

2
f ðP ð0Þ;Qð0Þ;Dþþx P ð0ÞÞ þ g�ðPð0ÞÞ. ð29Þ
‘The treatment of the right boundary is the same
0 ¼ Dþt þ D�x þ
Dx
Dt

Dþt

� �
UðJ ; 0Þ � Dx

Dt
QðJÞ � Dx

2
f ðP ðJÞ;QðJÞ;D��x P ðJÞÞ þ gþðP ðJÞÞ. ð30Þ
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Remark 9. Our numerical computations indicate that this scheme is second order both in space and time.
4. The numerical scheme for nonlinear Schrödinger equations

In order to compute nonlinear Schrödinger equations with absorbing boundary conditions, we take the
interval ]a,b[ as computational domain. We want to compute the solution u of
ðiot þ o2
xÞuþ f ðu; �u; oxu; ox�uÞ ¼ 0;

oxu ¼ T au; at x ¼ a;

oxu ¼ T bu; at x ¼ b;

8><
>: ð31Þ
where Ta and Tb are operators corresponding to our absorbing boundary conditions. For the time discret-
ization, we use the scheme of Durán and Sanz-Serna [5]
i
unþ1 � un

Dt
þ oxxunþ1

2 þ f unþ1
2; unþ1

2; oxunþ1
2; oxunþ1

2

� �
¼ 0; ð32Þ
where un+1/2 = (un+1 + un)/2 and n = 0, . . . ,T/Dt � 1. We solve the nonlinear system with a fixed point
method giving un+1/2
Z ¼ 1� i
Dt
2

oxx

� ��1

un þ i
Dt
2

f ðZ; Z; oxZ; oxZÞ
� �

.

We initialize the fixed point method with un. Then un+1 = 2Z � un. For the space discretization, we use P1
finite elements based on the following weak formulation:
i

Z b

a

unþ1 � un

Dt
�vdx�

Z b

a
oxunþ1=2ox�vdxþ T bunþ1=2ðbÞ�vðbÞ � T aunþ1=2ðaÞ�vðaÞ

þ
Z b

a
f unþ1

2; unþ1
2; oxunþ1

2; oxunþ1
2

� �
�vdx ¼ 0;
where v is a test function. It remains to discretize the operators Ta and Tb. It suffices to discretize
ffiffiffiffi
ot

p
andffiffiffiffi

ot

p �1
. In [2], Antoine and Besse proposed to approximate these operators by
ð
ffiffiffiffi
ot

p �1
uÞðtnþ1=2Þ �

ffiffiffiffiffi
Dt
2

r Xn

k¼0

aku
nþ1=2�k;

ð
ffiffiffiffi
ot

p
uÞðtnþ1=2Þ �

ffiffiffiffiffi
2

Dt

r Xn

k¼0

bku
nþ1=2�k;
where un+1/2�k is an approximation of u(tn+1/2�k) and where
a0 ¼ a1 ¼ 1; and a2k ¼
Yk

j¼1

2j� 1

2j
¼ a2kþ1; k P 1;

bk ¼ ð�1Þkak; k P 0.
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5. Numerical results

5.1. The frame of the experiments for semilinear wave equations

We compute the semilinear wave equation with absorbing boundary conditions using the finite volume
scheme of Section 3. We take the interval ]0, 2[ as computational domain. We choose the stepsizes small in
order to see the errors due to the various boundary conditions and not to the discretization: Dt = 0.01 and
Dx = 0.001. We choose u0 in H 4ðRÞ and u1 in H 3ðRÞ with compact support in ]0,2[
u0ðxÞ ¼ x3ð2� xÞ3 on �0; 2½;
u0ðxÞ ¼ 0 on � �1; 0� [ ½2;þ1½;
u1ðxÞ ¼ 3x2ð2� xÞ2ðx� 1Þ on �0; 2½;
u1ðxÞ ¼ 0 on � �1; 0� [ ½2;þ1½:

8>>>><
>>>>:

ð33Þ
The solution of the semilinear wave equation on R propagates at speed 1 (see for instance [15]). In order to
compute this solution with initial data (33) and for t between 0 and 10, we compute the equation in
]�10,12[ with Dirichlet boundary conditions.

Remark 10. In order to implement the semilinear wave equation with the absorbing boundary conditions,
the support of the initial data must be included in the computational domain. In order to implement the
method using the Dirichlet boundary conditions, the support of the solution must be included in the
computational domain on the whole time interval. Therefore, the method using the absorbing boundary
conditions approaches the semilinear wave equation on R with a low numerical cost compared to the
method using Dirichlet boundary conditions.
5.2. The frame of the experiments for nonlinear Schrödinger equations

The equation ðiot þ o2
xÞuþ juj

2u ¼ 0 has a family of solitons as solutions
uðt; xÞ ¼
ffiffiffiffiffi
2a
p

sech ð
ffiffiffi
a
p
ðx� ctÞÞ exp i

c
2
ðx� ctÞ þ ih0

� �
exp i aþ c2

4

� �
t

� �
. ð34Þ
To approximate this soliton, we take ]�5,5[ as computational domain. We fix the parameters of the soliton
as a = 27, c = 15 and h0 = p/4. This solution is a good test because it has almost compact support in ]�5,5[
at t = 0 (it remains under 10�10 on the boundary), and crosses the boundary x = 5 between t = 0 and t = 1.
We take the time step Dt = 0.001 and the space step Dx = 0.025.

In the case of the nonlinear Schrödinger equation (9), we take ]0, 2[ as computational domain. We take
the time step Dt = 0.001 and the space step Dx = 0.025. We choose u0 in H 4ðRÞ with support in [0,2]
u0ðxÞ ¼ x3ð2� xÞ3 in �0; 2½;
u0ðxÞ ¼ 0 in � �1; 0� [ ½2;þ1½:

(
ð35Þ
5.3. Comments on the results

We call relative error in the L2 norm at time t the expression
kuðt; .Þ � vðt; .ÞkL2

ku0kL2

;
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where v is the solution of (16), (17), (18) or (19) i.e. the solution on R that we want to approximate, u is the
solution computed with one of the various absorbing boundary conditions, and where we take the L2 norm
on the computational domain.

In each case, we introduce a large class of absorbing boundary conditions depending on a parameter a
coinciding with our absorbing boundary conditions for a particular value of a, and we look for an a giving
optimal results.

5.3.1. The case of the equation ð@2
t � @

2
xÞuþ u2@tu ¼ 0

We want to approximate the solution of the semilinear wave equation (16) by the solution u of
Table
Maxim

T

1
2
5
10
ðo2
t � o

2
xÞuþ u2otu ¼ 0 in �0; T ½ � �0; 2½;

oxu� otu� au3 ¼ 0 at x ¼ 0;

oxuþ otuþ au3 ¼ 0 at x ¼ 2:

8><
>: ð36Þ
The zero order absorbing boundary conditions correspond to a = 0, the first order absorbing boundary
conditions obtained with the potential strategy correspond to a = 1/2, and the first order absorbing bound-
ary conditions obtained with the paralinear strategy correspond to a = 1/6.

In Table 5, we give the maximum of the relative error in the L2 norm for times between 0 and T for var-
ious T and various choices of a. We notice that for all choices of T, the first order absorbing boundary con-
ditions obtained with the paralinear strategy give the best results, except for T = 10 where it is only slightly
improved by a = 1/12. The results given by the paralinear first order condition are very satisfactory: the
error remains under 1.7% on the whole time interval [0,10].

5.3.2. The case of the equation ð@2
t � @

2
xÞu� u2@xu ¼ 0

We want to approximate the solution of the semilinear wave equation (17) by the solution u of
ðo2
t � o2

xÞu� u2oxu ¼ 0 in �0; T ½ � �0; 2½;
oxu� otuþ au3 ¼ 0 at x ¼ 0;

oxuþ otuþ au3 ¼ 0 at x ¼ 2:

8><
>: ð37Þ
The zero order absorbing boundary conditions correspond to a = 0, the first order absorbing boundary
conditions obtained with the potential strategy correspond to a = 1/2, and the first order absorbing bound-
ary conditions obtained with the paralinear strategy correspond to a = 1/6.

In Table 6, we give the maximum of the relative error in the L2 norm for times between 0 and T for var-
ious T and various choices of a. We notice that for all choices of T, the first order absorbing boundary con-
ditions obtained with the paralinear strategy give the best results. The results given by this first order
condition are very satisfactory: the error remains under 1.5% on the whole time interval [0, 10].

5.3.3. The case of the equation ði@t þ @2
xÞuþ juj

2u ¼ 0

We want to approximate the solution of the cubic nonlinear Schrödinger equation (18) by the solution
u of
5
um of the relative error in the L2 norm for times between 0 and T for various T and various choices of a in (36)

a = 0 a ¼ 1
12 a ¼ 1

6 a ¼ 1
3 a ¼ 1

2 a = 1 a = 2 a = 5 a ¼ � 1
6 a ¼ � 1

2

0.0015 0.0007 9.73e�06 0.0015 0.0029 0.0070 0.0145 0.0331 0.0030 0.0061
0.0188 0.0088 0.0008 0.0192 0.0364 0.0824 0.1561 0.3005 0.0399 0.0875
0.0362 0.0158 0.0086 0.0460 0.0806 0.1711 0.3088 0.5468 0.0804 0.1855
0.0362 0.0158 0.0170 0.0544 0.0886 0.1788 0.3108 0.5468 0.0804 0.2032



Table 6
Maximum of the relative error in the L2 norm for times between 0 and T for various T and various choices of a in (37)

T a = 0 a ¼ 1
12 a ¼ 1

6 a ¼ 1
3 a ¼ 1

2 a = 1 a = 2 a = 5 a ¼ � 1
6 a ¼ � 1

2

1 0.0015 0.0007 1.29e�05 0.0014 0.0028 0.0067 0.0139 0.0311 0.0029 0.0060
2 0.0181 0.0093 0.0008 0.0153 0.0302 0.0695 0.1300 0.2343 0.0368 0.0796
5 0.0421 0.0245 0.0077 0.0276 0.0562 0.1298 0.2366 0.3862 0.0800 0.1700
10 0.0498 0.0322 0.0154 0.0276 0.0562 0.1298 0.2366 0.4651 0.0877 0.1778

Table
Maxim

T

10

Table
Maxim

T

10
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ðio2
t þ o2

xÞuþ juj
2u ¼ 0 in �0; T ½ � � � 5; 5½;

oxu�
ffiffiffiffiffiffiffiffiffi
�iot

p
uþ ajuj2

ffiffiffiffiffiffiffiffiffi
�iot

p �1
u ¼ 0 at x ¼ �5;

oxuþ
ffiffiffiffiffiffiffiffiffi
�iot

p
u� ajuj2

ffiffiffiffiffiffiffiffiffi
�iot

p �1
u ¼ 0 at x ¼ 5:

8>><
>>: ð38Þ
The zero order absorbing boundary conditions correspond to a = 0 and the second order absorbing bound-
ary conditions obtained with the potential strategy correspond to a = 1/2.

In Table 7, we give the maximum of the relative error in the L2 norm for times between 0 and 10 and for
various choices of a. The maximum of the relative error in the L2 norm occurs before T = 1, so we do not
display the results obtained for T = 1, T = 2 or T = 5 since they are identical with those obtained for
T = 10. We notice that the second order absorbing boundary conditions obtained with the potential strat-
egy give the best results. The results given by this second order condition are satisfactory: the error remains
under 12% on the whole time interval [0, 10]. However, further improvements are possible. One could for
instance use the third order condition given by the potential strategy (see [20]).

5.3.4. The case of the equation ði@t þ @2
xÞuþ u@xu ¼ 0

We want to approximate the solution of the nonlinear Schrödinger equation (19) by the solution u of
ðio2
t þ o2

xÞuþ uoxu ¼ 0 in �0; T ½ � �0; 2½;
oxu�

ffiffiffiffiffiffiffiffiffi
�iot

p
uþ au2 ¼ 0 at x ¼ 0;

oxuþ
ffiffiffiffiffiffiffiffiffi
�iot

p
uþ au2 ¼ 0 at x ¼ 2:

8><
>: ð39Þ
The zero order absorbing boundary conditions correspond to a = 0, the first order absorbing boundary
conditions obtained with the potential strategy correspond to a = 1/2, and the first order absorbing bound-
ary conditions obtained with the paralinear strategy correspond to a = 1/4.

In Table 8, we give the maximum of the relative error in the L2 norm for times between 0 and 10 and for
various choices of a. The maximum of the relative error in the L2 norm occurs before T = 1, so we do not
display the results obtained for T = 1, T = 2 or T = 5 since they are identical with those obtained for
7
um of the relative error in the L2 norm for times between 0 and 10 and for various choices of a in (38)

a = 0 a ¼ 1
4 a ¼ 1

2 a = 1 a = 2 a = 5 a ¼ � 1
4 a ¼ � 1

2 a = �1

0.3046 0.1759 0.1178 0.1307 0.2456 0.3967 0.6135 7.0525e+93 2.1852e+68

8
um of the relative error in the L2 norm for times between 0 and 10 and for various choices of a in (39)

a = 0 a ¼ 1
8 a ¼ 1

4 a ¼ 1
2 a = 1 a = 2 a = 5 a ¼ � 1

4 a ¼ � 1
2 a = �1

0.0231 0.0136 0.0042 0.0155 0.0551 0.1390 0.3463 0.0418 0.0601 0.0949
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T = 10. We notice that the first order absorbing boundary conditions obtained with the paralinear strategy
give the best results. The results given by this first order condition are very satisfactory: the error remains
under 0.4% on the whole time interval [0, 10].

Remark 11. Tables 5–8 clearly illustrate the improvement of the first order condition with respect to the
zero order condition. There is an improvement of a factor 2 in Table 5, a factor 3 in Table 6, a factor 2.5 in
Table 7 and a factor 55 in Table 8 for T = 10. There is an improvement of more than a factor 100 in Tables
5 and 6 for T = 1. Moreover, our numerical computations indicate that these improved results are obtained
at no additional cost in numerical stability or efficiency. Finally, we notice that the first order conditions are
as easy to implement as the zero order conditions (see Tables 1–4).
6. Conclusion

The potential and the paralinear strategies are two ways of designing absorbing boundary conditions for
nonlinear scalar partial differential equations. We have derived a finite volume scheme well-suited to these
absorbing boundary conditions in the case of semilinear wave equations. We have also shown that these
absorbing boundary conditions give optimal results within a large class of boundary conditions in the case
of semilinear wave equations and of nonlinear Schrödinger equations. Therefore, these two strategies are
efficient to approximate nonlinear scalar partial differential equations on unbounded domains with a low
numerical cost.

All the results in this work are for the one dimensional case only. The multidimensional study contains in
addition difficulties due to the geometry and should be the heart of a forthcoming paper.
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Norm. Sup (4ème série) 14 (1981) 209–246.
[5] A. Durán, J.M. Sanz-Serna, The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation,

IMA J. Numer. Anal. 20 (2000) 235–261.
[6] B. Engquist, A. Majda, Radiation boundary conditions for acoustic and elastic wave calculations, Commun. Pure Appl. Math. 32

(1979) 313–357.
[7] M.J. Gander, L. Halpern, F. Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation, SIAM J.

Numer. Anal. 41 (2003) 1643–1681.
[8] M.J. Gander, L. Halpern, Absorbing boundary conditions for the wave equation and parallel computing, Math. Comput. 74

(2005) 153–176.
[9] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, in: A. Carpinteri, F.

Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, 1997.
[10] M. Grote, J. Keller, Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. Appl. Math. 55

(1995) 280–297.
[11] T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numer. 8 (1999) 47–106.
[12] L. Halpern, J. Rauch, Absorbing boundary conditions for diffusion equations, Numer. Math. 71 (1995) 185–224.
[13] E.L. Lindmann, Free-space boundary conditions for the time dependent wave equation, J. Comput. Phys. 18 (1975) 16–78.
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