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Critical phenomena in nonlinear sigma models
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We consider solutions to the nonlinear sigma model~wave maps! with target space
S3 and base space 311 Minkowski space, and we find critical behavior separating
singular solutions from nonsingular solutions. For families of solutions with local-
ized spatial support a self-similar solution is found at the boundary. For other
families, we find that a static solution appears to sit at the boundary. This behavior
is compared to the black hole critical phenomena found by Choptuik. ©2000
American Institute of Physics.@S0022-2488~00!04908-2#

I. INTRODUCTION

Nonlinear sigma models have been of considerable interest to both physicists and ma
ticians for a number of years. Physicists use them to model symmetry breaking in the stu
pions and other fundamental particles, and also use them to model cosmological structure
tion. Mathematicians, who call them wave maps, use them as geometrically motivated, non
systems of hyperbolic partial differential equations with which to study the formation and a
ance of singularities.

During the past ten years, mathematicians have proven first, that for ‘‘small data,’’ solu
of the Cauchy problem for wave maps avoid singularities and exist for all time~‘‘global
existence’’!.1,2 They have also been able to show that, for three or more spatial dimensions~in the
base manifold!, there are sets of initial data which become singular in finite time.3 ~In one spatial
dimension, this cannot happen;4,5 it is not yet clear whether singularities form in two spat
dimensions.!

These results together suggest that it could be interesting to consider one-parameter f
of initial data such that for small parameter values no singularities occur, while for large valu
the parameter the fields become singular. Studying the evolution of such families, one exp
see critical behavior of some sort occurring near the transition values of the parameter. The
work by Choptuik6 and others in which experiments such as these have been carried ou
gravitational systems—collapse to a black hole for large parameter values, and dispersal fo
values of the parameters—shows that very interesting phenomenology can be found at the
transitional, values of the parameters.

Using primarily numerical methods, we carry out such studies for spherically equiva
nonlinear sigma models withS3 target@corresponding to the symmetry breaking SO~4!→SO~3!#.
We find critical behavior which is similar in some ways to that seen by Choptuik and collab
tors, but very different in other ways.

We first focus on sets of initial data with localized support and finite energy. For familie
such solutions, the small data global existence results hold for small values of the paramete
the presence of critical behavior is unambiguous. We find for these families a unique, continu
self-similar solution at the threshold. This critical solution is an intermediate attractor so
critical behavior is ‘‘type II,’’ like that seen in critical collapse to a black hole.

a!Electronic mail: steve@mozart.liu.edu
56910022-2488/2000/41(8)/5691/10/$17.00 © 2000 American Institute of Physics
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Motivated by the Turok–Spergel solution,7 which is the only known explicit wave map
solution which evolves from regular initial data to a singularity, we also examine sets of i
data which do not have localized support and have infinite energy. Although the smal
theorem does not apply to solutions generated by such data, the ‘‘texture’’ studies of wave
suggest that both nonsingular and singular solutions should occur.8,9 Our numerical studies sup
port this contention, and we have found that the transition is marked in some cases
self-similar solution noted above, but in others by static solutions. While the static solution
see at the transition are not intermediate attractors, and therefore, are not critical solutions
usual sense, our studies indicate interesting behavior which deserves further exploration.

We describe in more detail what we have learned about critical and threshold behaviorS3

wave maps in Secs. III and IV. Before doing this, we briefly review in Sec. II what wave maps
the equations for spherically equivariant wave maps, and some of the families of initial da
use to probe the critical boundary. We describe the results of these numerical probes in Sec
the families of data with localized support, and in Sec. IV for the other families. We also no
Secs. III and IV some of the properties of the solutions found on this boundary. We make
concluding remarks in Sec. V.

II. SPHERICALLY EQUIVARIANT WAVE MAPS

A nonlinear sigma model, or wave map, is defined to be a mapfa from a ~Lorentz signature!
space–time~the ‘‘base’’! into a Riemannian geometry~the ‘‘target’’!, with the map satisfying the
differential equation

]m]mfA1GBC
A ]mfB]mfC50, ~1!

whereGBC
A represents the Christoffel symbols corresponding to the metric on the target sp

In this work, we fix the base to be 311 Minkowski spacetime, and we fix the target to beS3.
Furthermore, we make the spherical equivariance ansatz, which may be expressed in ‘‘hedg
coordinate form~for S3,R4! as follows:

fa5S sinx~r ,t !sinu sinmw
sinx~r ,t !sinu cosmw

sinx~r ,t !cosu
cosx~r ,t !

D , ~2!

with m a positive integer.
The only free function in~2! is the spherically symmetric functionx(r ,t). It satisfies the

nonlinear wave equation

ẍ2
1

r 2 ~r 2x8!852m~m11!
sin~2x!

2r 2 , ~3!

where prime denotes]/]r and an overdot denotes]/]t. We enforce the regularity condition
x(0,t)50 at the origin, and apply a standard out-going radiation boundary condition at
radius. The radial energy density corresponding to this system is

r~r ,t !5
r 2

2 F ẋ21~x8!21
m~m11!

r 2 sin2 xG , ~4!

with the corresponding energy function

E~ t !5E
r
r~r ,t !dr. ~5!
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One of the features of this spherical equivariance ansatz is the possibility of nontrivial ‘‘te
charge’’ or ‘‘degree.’’ The degree of a particular wave mapf(r ,u,w,t0) at a fixed timet0

corresponds to the multiplicity of the covering of the target sphereS3 ~i.e., the order of the third
homotopy group!. In terms of the hedgehog form~3!, the degree depends onm, on the range of
x(r ,t0), and on certain continuity conditions at the poles ofS3. We note that the degree is zero s
long as the range ofx(r ,t0) is less thanp; if the range ofx(r ,t0) is greater thanp, the degree may
or may not be nonzero. The degree does not change during a smooth evolution.

If the degree of a wave map is nonzero, the energy cannot be arbitrarily small. Hence,
data arguments for global existence cannot be used. Indeed, numerical evidence~ours and that of
others! suggests that degree nonzero wave maps are inevitably singular. While this has no
proven, it leads us, in studying criticality, to focus on zero degree initial data.

To fully specify initial data, we must specify bothx(r ,0) and its time derivative at the initia
time, ẋ(r ,0). We then evolve this initial data with a first order formulation in which we take
fundamental fields to bex(r ,t) and P(r ,t)[ẋ(r ,t). As a matter of convenience, we genera
take as initial dataP(r ,0)5x8(r ,0) such that the fieldx(r ,0) represents an approximately in
going pulse. This choice has no affect on the critical behavior but helps to mitigate reflection
the outer boundary. Our method makes use of an iterative, second order accurate, C
Nicholson finite difference scheme which we have incorporated into the adaptive frame
developed by Choptuik.6 We have tested this code and shown it to converge quadraticall
conserve energy, and to be stable.

The first two families of initial data we have used to probe criticality have been chose
have localized support and finite energy. The parameters in these families can be chosen
the energy is very small, in which case the small data global existence results guarantee
singularity will develop. For other parameter values, the energy is large, and the developm
singularities is expected. Note that in each case, there is an amplitudeA which we use to scale the
data from nonsingular to singular solutions, and in addition there are two other parametersR0 and
d which we can use to change some of the qualitative features of the family:
Gaussian Pulse Data

x~r ,0!5Ae2(r 2R0)2/d2
,

P~r ,0!5x8~r ,0!. ~6!

Logarithmic Data

x~r ,0!5A
ln~r 1R0!

r 1d
,

P~r ,0!5x8~r ,0!. ~7!

We also examine two other families of data. One of them is special in that it includes the
data ~for e51! which generates the Turok–Spergel solution.7 This is the explicit self-similar
solution which is known to evolve into a singularity in finite time. Note that the Turok–Spe
solution has nonzero degree; all others in this family~with e,2! have zero degree. Note also th
the energy for all of the data in this family is infinite. Therefore, we cannot use the small
global existence theorem to guarantee that solutions generated by data withe small will be
nonsingular. This does, however, appear to be the case~see Sec. IV!. The same is true for ou
fourth family of data; while there is no theoretical guarantee that both nonsingular and sin
solutions are generated by data in this family, our numerical evidence supports the contenti
both do occur, and so transition behavior can be studied.
 Aug 2008 to 132.239.145.217. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Generalized Turok–Spergel Data7

x~r ,0!52e tan21S r

D D ,

P~r ,0!5
2er

D21r 2 . ~8!

Tanh Data

x~r ,0!5AF1

2
tanhS r 2R0

d D1
1

2G ,
P~r ,0!5x8~r ,0!. ~9!

For each of the families of data listed above, our numerical studies proceed as follows: W
a specific family by fixing a choice ofR0 andd ~or a choice ofD! in one of the family classes
listed above. With that fixed family, we run through a number of choices ofA ~or e!, from very
small to large, and we evolve the solution for each choice.

In the evolved solutions, we carefully monitor the behavior of the energy density fun
r(r ,t) as well as that ofx(r ,t); and we use these behaviors to determine which solutions bec
singular and which do not. Singularity formation is indicated by the unbounded growth o
derivativesx8 andẋ ~and hencer/r 2!. We find in each case that there is a critical value ofA ~or
e! which divides the initial data that evolve into a singularity from those which do not. We s
very carefully the solutions at or near this critical value.

We note that while numerical results never prove that a solution is singular or not, in
studies the singular behavior appears dramatically as much of the energy density concentra
grows without apparent bound at the origin. Note that for all of the solutions, the energy de
initially flows towards the origin. In the nonsingular cases, the energy density grows at the o
and then disperses; while in the singular cases, it continues to grow.

In the course of our studies, we have noticed another useful signal of impending sin
evolution: In all cases, whenever the range ofx(r ,t) exceedsp at a given time, a singularity
occurs to the future. Whether or not one can indeed prove such a result, it is useful in sorti
evolutions.

III. SELF-SIMILAR SOLUTIONS AT CRITICALITY

If we consider Gaussian Pulse data for various fixed values ofR0 and d, we find that asA
approaches its critical valueA* , the corresponding solution approaches a particular self-sim
solution. This critical solution isnot the solution found by Turok and Spergel; rather it appear
be one of the sequence of self-similar solutions discovered by Aminneborg and Bergstrom10 and
subsequently Bizon.11 These regular, self-similar solutions obey Eq.~3! together with the scaling
assumption thatx(r ,t)5x(2r /t). The resulting equation is

z2~z221!x ,zz12z~z221!x ,z1sin~2x!50, ~10!

where the differentiation is with respect toz[2r /t. This equation admits a countably infinit
number of solutions, labeled byn, the number of times the solution crossesp/2 betweenz50 and
z51. The Turok–Spergel solution is then50 solution. For alln exceptn50, these solutions have
zero texture charge. Figure 1 plots the first several solutions in this family.

Within the range of values ofr in which the near-critical solutions approach self-similarity,
is not easy to distinguish the various members of the AB sequence of solutions. In ord
determine which of these solutions, which we will callABn , does occur on the boundary betwe
singular and nonsingular solutions, we have examined the behavior of solutions near to sev
 Aug 2008 to 132.239.145.217. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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theABn solutions. Specifically, on evolving members of this family, we choose a timet0 and add
a parametrized set of small amplitude Gaussian pulses to the exactly self-similar solution as
data att0 for ABn . Only for AB1 do we find that for negative amplitude pulses, the solution
nonsingular while for positive amplitude pulses, the solution is singular. This is particu
convincing evidence thatAB1 is the critical solution, and the others are not.

In addition to the nonlinear evolution of these self-similar solutions, we obtain further
firmation thatAB1 is the critical solution by carrying out a linear perturbation analysis for it,
well as for some of the otherABn solutions.

Our linear perturbation analysis around this family of self-similar solutions is standar
coordinates adapted to the self-similarity (z[2r /t andt[ lnu2tu!, the perturbed solution to lead
ing order will be

x~r ,t !5x0~z!1d•E eltx̂1~z;l!dl, ~11!

wherex0(z) refers to any member of theABn family andx̂1 is an eigenmode of the perturbatio
expansion associated with the eigenvaluel. With this expansion, the eigenmodes obey the lin
equation

z2~z221!x̂1,zz12z~z2212lz2!x̂1,z1~2 cos~2x0!1l2z22lz2!x̂150. ~12!

In general,l can be complex, but in this case it will suffice to considerl real. As t→0, t→
2`, thus ifl.0, the corresponding perturbations will decay. However, ifl,0, the perturbations
will grow and render the original self-similar solution unstable.

In order to solve the above equation it is sufficient to demand regularity atz50 andz51. On
performing the integration, we find that there is a single gauge mode atl521 for all members of
the ABn family. This gauge mode arises because of the freedom we have in choosing the z
time: t→t1c. In addition to this gauge mode we confirm that the Turok–Spergel solution~the
n50 member of this family! has no unstable modes, then51 member of this family has a singl
unstable mode, and that for all the exactly self-similar solutions we have considered withn.1,
there always exists more than a single unstable mode.12

FIG. 1. These are the first nine members of the family of self-similar solutions found by Aminneborg and Bergstrom~Ref.
10! as well as Bizon~Ref. 11!. Then50 solution is the original Turok–Spergel solution while then51 solution~the solid
line! is the critical solution which serves as an intermediate attractor for the collapse of certain families of initial dat
label n labels the number of timesx crosses the linep/2 on the interval~0, 1!.
 Aug 2008 to 132.239.145.217. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Thus this serves as further evidence thatAB1 is the critical solution. In the sense of dynamic
systems, that this exactly self-similar solution has a single unstable mode indicates that i
intermediate attractor on the boundary between the basin of attraction for singular solution
the basin of attraction for nonsingular solutions. When such an attractor exists for critical b
ior, one is said to have a ‘‘type II transition.’’

For the case of this intermediate attractor, theAB1 solution, the eigenvalue for the singl
unstable mode is found to bel'26.33.

In general, we find the same critical behavior occurring at the transition for all familie
Gaussian Pulse data that we have evolved. In addition, for a number of families of Logari
data and even some families of the nonlocaly supported Tanh data, we findAB1 occurring at the
transition as well.~Figure 2 indicates the closeness of the evolution of a near critical solutio
Logarithmic data and the evolution ofAB1 .! This suggests thatAB1 is, at least in a local sense
‘‘universal.’’ Universality is a familiar occurrence in nonlinear dynamics. For example, fo
damped pendulum, for all initial data except that corresponding to the stationary straig
position, the pendulum eventually ends up in the stationary straight down state. This down s
a universal attractor for the whole system.

A particularly pertinent example of similar behavior has been found in the study of black
collapse critical behavior~for a review see Refs. 13 and 14!. This work has demonstrated tha
gravitational collapse exhibits critical solutions at the threshold of black hole formation. Ther
exactly critical solution within a specific model exhibits universality as well as self-simila
~which, depending on the model investigated, can be discrete or, as here, continuous!. The gravi-
tational critical solutions are also intermediate attractors, like theAB1 solution, in that they have
a single unstable mode and sit on the boundary between the dispersal of the collapsing ma
the formation of a black hole~i.e., singularity!. Presumably, if we were to couple this nonline
sigma model to gravity and evolve similar initial data, we would get black hole formation.
what is especially significant here is that even without gravity, we get singularity forma
together with the universality and self-similarity seen in the gravitational context.

FIG. 2. Demonstration of the self-similarity of the critical solution using initial data of the form Eq.~7!. Letting t
[ lnuT*2Tu whereT is the time of collapse, the four frames are equally spaced in ‘‘log time’’ progressing towards col
(t→2`). A near-critical solution forx(r ,t) is shown~circles! for R051 andd51 vs lnr. Then51 self-similar solution
is shown~solid! with the freedom to set the collapse time used to make the two solutions coincide in the first frame
That the solutions coincide at the other times demonstrates that the critical solution is self-similar and approachn
51 solution.
 Aug 2008 to 132.239.145.217. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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IV. THE ROLE OF STATIC SOLUTIONS

Consider now evolving the Generalized Turok–Spergel data for various values ofe. By fixing
a value ofD and considering solutions parametrized bye we might expect to again get critica
behavior as before. Though we do observe some sort of threshold behavior, theAB1 self-similar
solution doesnot occur at the transition. Instead, our numerical evolutions suggest that
solutions play a role in the threshold behavior.

The possibility that static solutions occur at the transition between singular and nonsin
data has led us to consider whether the static solutions are critical in this sense. To investig
possibility, let us first consider the stability properties of the strictly static solutions.

Static solutions are studied in Ref. 15 and here we consider only those for whichx(0)50. We
could parametrize this family bya[x8(0), however, Lichtensteiger and Durrer observe that
static solutions are all related by a simple radial rescaling so we need consider onlya51. We
consider initial data of the form

x~r ,t !5xs~r !1Ae2(r 2R0)2/d2
,

P~r ,0!5F2
r 2R0

d2 GAe2(r 2R0)2/d2
, ~13!

which we proceed to evolve. The above initial data represents the static solution,xs(r ), perturbed
by an in-going Gaussian pulse. As with our nonlinear perturbation of the self-similar solution
expectation is that threshold behavior would be demonstrated if forxs(r ) the solution becomes
singular for positive amplitude perturbations (A.0) but remains nonsingular for perturbation
with A,0. A similar test is used in Refs. 16 and 17 to determine whether static solutions sit o
threshold of black hole formation.

An example of this experiment is shown in Fig. 3. The figure demonstrates that non
perturbations of opposite sign send the static solution either to collapse or dispersal depen
the sign of the perturbation. This suggests that the static solutionxs(r ) does indeed sit on thresh
old.

However, if the static solution sits on threshold, one would expect that it has a single un
mode. If so, then it should be an intermediate attractor within some basin of attraction. If
more than one unstable mode, then we would not expect to find it via a one parameter tun

FIG. 3. Demonstration of the instability of the static solution. The static solution~solid! is perturbed with a positive
amplitude Gaussian pulse~dashed! and negative amplitude~dotted!. The positive perturbation collapses while the negat
one disperses suggesting that the static solution sits on threshold.
 Aug 2008 to 132.239.145.217. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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The mode structure for the static solution is determined by doing a linear perturbation
Writing

x~r ,t !5xs~r !1d•E e2 ivtx̃1~r ;v!dv, ~14!

with xs(r ) denoting the static solution, withx̃1(r ;v) denoting the perturbation, and withv being
the eigenvalue associated with the perturbative modex̃1 , we determine@after substituting~14!
into ~3!#, that the perturbation modes obey

x̃195
2x̃1 cos~2xa!

r 2 2v2x̃12
2

r
x̃18 , ~15!

with the regularity conditions

x̃1~0!50, x̃18~0!5free. ~16!

Unstable perturbation modes are signaled byv2,0. We find solutions numerically, using
standard shooting technique with the regularity condition at infinity beingx̃18(r→`)50. Due to
the linearity of the problem, we letx̃18(0)51 and adjustv2 until our regularity conditions are met
We find a number of unstable (v2,0) modes; it follows that the static solution does not repres
an intermediate attractor.

Since the static solution is clearly not an intermediate attractor, we might not expect it
found by tuning the Generalized Turok–Spergel~TS! initial data. For this reason, we do not vie
the static solution as a critical solution in the usual sense. However, it does seem to occur
threshold, both for the Generalized TS initial data and for a number of families of Tanh da

Here, we might comment on some of the difficulties associated with the numerical stu
solutions generated from data with infinite support:

As stated previously, fixingD and picking a largee for the TS data, the evolution clearl
demonstrates singular collapse~for e51 collapse is known!. With a small value ofe, one might
expect to observe dispersal. That is, one might expect to observe some energy density
moving towards the origin, turning around, and then traveling outwards forever. The problem
is that numerically we can neither evolve forever nor evolve over an infinite domain. Our e
tions are limited in domain because of finite computer resources and limited in time b
adulteration of boundary effects exacerbated by the infinite nature of the initial data.

The problem of determining dispersal is less crucial for the case of Gaussian initial dat
other families with localized support because we can rely on the small data global exis
theorems to guarantee that the evolution is nonsingular. Here though, those theorems
applicable because the initial data has infinite energy.

As corroborative support for our view that we are seeing nonsingular solutions, we no
work on textures in which scaling arguments are used to show that, at least for a particula
of initial data of infinite support, wave map evolutions that do not collapse can occur.9 In fact, a
number of these papers discuss the critical winding number of such textures~of infinite support!
which separates dispersal from collapse~see, for example, Ref. 8!.

Our evolutions for smalle show what appears to be dispersal, and those for largee show
apparent collapse. Tuning, however, is very difficult, since~as seen in Ref. 8!, we observe solu-
tions which at first appear to be dispersing but ‘‘turn around’’ and then ultimately collapse.
turn-around can occur very slowly. Hence, finding the transition is very hard.

Our evolutions therefore suggest three regimes ine for the TS initial data, as well as fo
certain families of the Tanh data.18 For largee, the evolutions quickly collapse. For smalle, the
evolutions suggest that the solutions do not collapse but instead disperse. For moderatee, solutions
appear to be dispersing but then turn around and collapse.

Given the resulting difficulty in finding a criticale, one is led to ask in what sense the sta
solution exhibits threshold behavior. It seems to arise for the intermediate range ofe as an
 Aug 2008 to 132.239.145.217. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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evolving solution turns around from its initially outgoing, dispersive behavior and begin
collapse to a singularity. As this turn around point is approached, the field profiles approac
of the static solution and remain there for a certain amount of time.19 An example of this is shown
in Fig. 4. Although this behavior is certainly reminiscent of observed critical behavior, sinc
static solution has multiple unstable modes, it is not an intermediate attractor, and so not a
solution in the accepted sense. However, it appears that this static solution does arise i
sense, and does play some role in wave map threshold behavior.

The above discussion simply describes what our numerical evolutions suggest, but is
not definitive. Nonetheless, we conjecture that while for smalle data the solutions do disperse, fo
somewhat largere data, the solution will appear to be dispersing, but then will approach the s
solutionxs(r ) ~in general, for somee-dependenta!, and will finally collapse. Further, we conjec
ture that as one decreasese, one will observe the solution turning around at later and later tim
~and larger and largerr ! until for some nonzero value,e* , the solution turns around at infinit
time and radius. Any further reduction ofe below e* results in dispersal.

V. CONCLUSION

Our work shows that nonlinear sigma models, or wave maps, from 311 Minkowski space-
time into S3 exhibit critical behavior which is similar to that seen in the study of black h
collapse for Einstein’s equations with various source fields. We find that the boundary be
sets of data evolving into nonsingular solutions and sets of data evolving into singular sol
includes a self-similar solution. The static solutions are found to play a role as well. The
similar solution is an intermediate attractor, while the static solutions are not.

While this work is a first step toward understanding critical behavior in wave maps, it le
a number of questions unanswered:

~1! Does the critical boundary for spherically symmetric wave maps from 311 Minkowski
spacetime intoS3 include other solutions besides those we have seen?

~2! How do the solutions on this boundary fit together?
~3! What happens if one removes the spherical equivariance condition?
~4! What happens for target spaces other thanS3?

FIG. 4. Apparent approach of the tuned Turok–Spergel initial data to the static solution. Shown~dashed! is the evolution
of the energy densityr(r ,t) for the Turok–Spergel initial data, Eq.~8!, with e50.302. The energy quickly begins to mov
outward to larger . However, byt'126, the evolution has shed a large component of its energy density leaving behi
approximately static solution. Shown also is the energy density for thea50.12 static solution~solid!, chosen for the best
correspondence to the static part of the evolution.
 Aug 2008 to 132.239.145.217. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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~5! What happens for base spaces other than 311 Minkowski spacetime?

A base space of particular interest is 211 Minkowski spacetime. For 211 wave maps, it is
not yet known whether in fact there are any singular solutions which evolve from regular i
data (211 is the ‘‘critical dimension’’ for the wave map system of partial differential equatio
just as 411 is the critical dimension for Yang–Mills!. If such solutions exist, there would likel
be critical behavior. However, one expects the nature of the critical boundary between si
and nonsingular solutions to be very different in this case. This issue is currently under stu
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