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We consider solutions to the nonlinear sigma madelve mapswith target space

S® and base spacet31 Minkowski space, and we find critical behavior separating
singular solutions from nonsingular solutions. For families of solutions with local-
ized spatial support a self-similar solution is found at the boundary. For other
families, we find that a static solution appears to sit at the boundary. This behavior
is compared to the black hole critical phenomena found by Choptuik20@0
American Institute of Physic§S0022-2488)0)04908-2

[. INTRODUCTION

Nonlinear sigma models have been of considerable interest to both physicists and mathema-
ticians for a number of years. Physicists use them to model symmetry breaking in the study of
pions and other fundamental particles, and also use them to model cosmological structure forma-
tion. Mathematicians, who call them wave maps, use them as geometrically motivated, nonlinear
systems of hyperbolic partial differential equations with which to study the formation and avoid-
ance of singularities.

During the past ten years, mathematicians have proven first, that for “small data,” solutions
of the Cauchy problem for wave maps avoid singularities and exist for all tifgiobal
existence’).}2 They have also been able to show that, for three or more spatial dimefisidhe
base manifolil there are sets of initial data which become singular in finite firfie.one spatial
dimension, this cannot happén;it is not yet clear whether singularities form in two spatial
dimensions.

These results together suggest that it could be interesting to consider one-parameter families
of initial data such that for small parameter values no singularities occur, while for large values of
the parameter the fields become singular. Studying the evolution of such families, one expects to
see critical behavior of some sort occurring near the transition values of the parameter. The recent
work by Choptuik and others in which experiments such as these have been carried out with
gravitational systems—collapse to a black hole for large parameter values, and dispersal for small
values of the parameters—shows that very interesting phenomenology can be found at the critical,
transitional, values of the parameters.

Using primarily numerical methods, we carry out such studies for spherically equivariant
nonlinear sigma models witB® target[corresponding to the symmetry breaking (80-SQ(3)].

We find critical behavior which is similar in some ways to that seen by Choptuik and collabora-
tors, but very different in other ways.

We first focus on sets of initial data with localized support and finite energy. For families of
such solutions, the small data global existence results hold for small values of the parameters, and
the presence of critical behavior is unambiguous. We find for these families a unique, continuously
self-similar solution at the threshold. This critical solution is an intermediate attractor so the
critical behavior is “type II,” like that seen in critical collapse to a black hole.
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Motivated by the Turok—Spergel solutiérwhich is the only known explicit wave map
solution which evolves from regular initial data to a singularity, we also examine sets of initial
data which do not have localized support and have infinite energy. Although the small data
theorem does not apply to solutions generated by such data, the “texture” studies of wave maps
suggest that both nonsingular and singular solutions should 8&dur numerical studies sup-
port this contention, and we have found that the transition is marked in some cases by the
self-similar solution noted above, but in others by static solutions. While the static solutions we
see at the transition are not intermediate attractors, and therefore, are not critical solutions in the
usual sense, our studies indicate interesting behavior which deserves further exploration.

We describe in more detail what we have learned about critical and threshold behagdr for
wave maps in Secs. lll and IV. Before doing this, we briefly review in Sec. Il what wave maps are,
the equations for spherically equivariant wave maps, and some of the families of initial data we
use to probe the critical boundary. We describe the results of these numerical probes in Sec. lll for
the families of data with localized support, and in Sec. IV for the other families. We also note in
Secs. Il and IV some of the properties of the solutions found on this boundary. We make a few
concluding remarks in Sec. V.

II. SPHERICALLY EQUIVARIANT WAVE MAPS

A nonlinear sigma model, or wave map, is defined to be a #fafrom a(Lorentz signature
space—timdthe “base”) into a Riemannian geomet(the “target”), with the map satisfying the
differential equation

99, ¢"+Tgcd, B pC=0, (1)

Wherel“éc represents the Christoffel symbols corresponding to the metric on the target space.

In this work, we fix the base to bet31 Minkowski spacetime, and we fix the target to®e
Furthermore, we make the spherical equivariance ansatz, which may be expressed in “hedgehog”
coordinate formfor SSCR?*) as follows:

siny(r,t)sin @ sinme
siny(r,t)sin 8 cosme
siny(r,t)coséd ’
cosy(r,t)

a:

@

with m a positive integer.
The only free function in(2) is the spherically symmetric functiog(r,t). It satisfies the
nonlinear wave equation

1 sin(2
x—;z(r2x'>'=—m<m+1>'—r§rzx—), 3

where prime denoteg/dr and an overdot denoteddt. We enforce the regularity condition
x(0t)=0 at the origin, and apply a standard out-going radiation boundary condition at large
radius. The radial energy density corresponding to this system is

2 m(m+1)

r . .
p(rt)== X+ (x)2+ r—ZSIan : 4
with the corresponding energy function
e | ptr.nar. ©
r
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One of the features of this spherical equivariance ansatz is the possibility of nontrivial “texture
charge” or “degree.” The degree of a particular wave mapr,0,¢,ty) at a fixed timet,
corresponds to the multiplicity of the covering of the target splgré.e., the order of the third
homotopy groujp In terms of the hedgehog for(3), the degree depends om on the range of
x(r,ty), and on certain continuity conditions at the polesSéf We note that the degree is zero so
long as the range of(r,tp) is less thang; if the range ofy(r,ty) is greater thanr, the degree may

or may not be nonzero. The degree does not change during a smooth evolution.

If the degree of a wave map is nonzero, the energy cannot be arbitrarily small. Hence, small
data arguments for global existence cannot be used. Indeed, numerical evinarscand that of
others suggests that degree nonzero wave maps are inevitably singular. While this has not been
proven, it leads us, in studying criticality, to focus on zero degree initial data.

To fully specify initial data, we must specify boif(r,0) and its time derivative at the initial
time, x(r,0). We then evolve this initial data with a first order formulation in which we take our
fundamental fields to bg(r,t) andII(r,t)=x(r,t). As a matter of convenience, we generally
take as initial datdI(r,0)= x'(r,0) such that the fielg/(r,0) represents an approximately in-
going pulse. This choice has no affect on the critical behavior but helps to mitigate reflection from
the outer boundary. Our method makes use of an iterative, second order accurate, Crank—
Nicholson finite difference scheme which we have incorporated into the adaptive framework
developed by Choptuik.We have tested this code and shown it to converge quadratically, to
conserve energy, and to be stable.

The first two families of initial data we have used to probe criticality have been chosen to
have localized support and finite energy. The parameters in these families can be chosen so that
the energy is very small, in which case the small data global existence results guarantee that no
singularity will develop. For other parameter values, the energy is large, and the development of
singularities is expected. Note that in each case, there is an amphtudiéch we use to scale the
data from nonsingular to singular solutions, and in addition there are two other paraRterd
6 which we can use to change some of the qualitative features of the family:

Gaussian Pulse Data

X(r,0)=Ae (R,

H(r,00=x'(r,0). (6)
Logarithmic Data
In(r +Rp)
)((I‘,O)ZAT&O,
I1(r,00=x'(r,0). (7)

We also examine two other families of data. One of them is special in that it includes the initial
data (for e=1) which generates the Turok—Spergel solutiohhis is the explicit self-similar
solution which is known to evolve into a singularity in finite time. Note that the Turok—Spergel
solution has nonzero degree; all others in this farith e<2) have zero degree. Note also that

the energy for all of the data in this family is infinite. Therefore, we cannot use the small data
global existence theorem to guarantee that solutions generated by data entiall will be
nonsingular. This does, however, appear to be the ¢zse Sec. IY. The same is true for our
fourth family of data; while there is no theoretical guarantee that both nonsingular and singular
solutions are generated by data in this family, our numerical evidence supports the contention that
both do occur, and so transition behavior can be studied.
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Generalized TurokSpergel Daté

r
x(r,00=2etan™?! K)’
I B 2er
(r0=xz 72 (8)

Tanh Data

1 [r=Ry| 1
Etan 5 +§

H(r,00=x'(r,0). ©)

x(r,00=A

For each of the families of data listed above, our numerical studies proceed as follows: We fix
a specific family by fixing a choice dR, and & (or a choice ofA) in one of the family classes
listed above. With that fixed family, we run through a number of choice& @r €), from very
small to large, and we evolve the solution for each choice.

In the evolved solutions, we carefully monitor the behavior of the energy density function
p(r,t) as well as that of(r,t); and we use these behaviors to determine which solutions become
singular and which do not. Singularity formation is indicated by the unbounded growth of the
derivativesy’ andy (and hencep/r?). We find in each case that there is a critical valudbr
€) which divides the initial data that evolve into a singularity from those which do not. We study
very carefully the solutions at or near this critical value.

We note that while numerical results never prove that a solution is singular or not, in these
studies the singular behavior appears dramatically as much of the energy density concentrates and
grows without apparent bound at the origin. Note that for all of the solutions, the energy density
initially flows towards the origin. In the nonsingular cases, the energy density grows at the origin,
and then disperses; while in the singular cases, it continues to grow.

In the course of our studies, we have noticed another useful signal of impending singular
evolution: In all cases, whenever the rangex@f,t) exceedsr at a given time, a singularity
occurs to the future. Whether or not one can indeed prove such a result, it is useful in sorting the
evolutions.

[ll. SELF-SIMILAR SOLUTIONS AT CRITICALITY

If we consider Gaussian Pulse data for various fixed valueR,adind 6, we find that asA
approaches its critical valu&*, the corresponding solution approaches a particular self-similar
solution. This critical solution isot the solution found by Turok and Spergel; rather it appears to
be one of the sequence of self-similar solutions discovered by Aminneborg and Ber{fstnodh,
subsequently Bizoltt These regular, self-similar solutions obey E8). together with the scaling
assumption thag(r,t) = x(—r/t). The resulting equation is

ZX(22— 1) x o+ 22(2%— 1) x ,+SiN(2)) =0, (10

where the differentiation is with respect #&= —r/t. This equation admits a countably infinite
number of solutions, labeled oy the number of times the solution crosse? betweerz=0 and
z=1. The Turok—Spergel solution is the= 0 solution. For alh exceptn=0, these solutions have
zero texture charge. Figure 1 plots the first several solutions in this family.

Within the range of values af in which the near-critical solutions approach self-similarity, it
is not easy to distinguish the various members of the AB sequence of solutions. In order to
determine which of these solutions, which we will cAB,,, does occur on the boundary between
singular and nonsingular solutions, we have examined the behavior of solutions near to several of
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FIG. 1. These are the first nine members of the family of self-similar solutions found by Aminneborg and Befg&fom

10) as well as Bizor{Ref. 11). Then=0 solution is the original Turok—Spergel solution while tive 1 solution(the solid

line) is the critical solution which serves as an intermediate attractor for the collapse of certain families of initial data. The
label n labels the number of timeg crosses the liner/2 on the interval0, 1).

the AB,, solutions. Specifically, on evolving members of this family, we choose atijraed add

a parametrized set of small amplitude Gaussian pulses to the exactly self-similar solution as initial
data atty for AB,. Only for AB; do we find that for negative amplitude pulses, the solution is
nonsingular while for positive amplitude pulses, the solution is singular. This is particularly
convincing evidence thaB, is the critical solution, and the others are not.

In addition to the nonlinear evolution of these self-similar solutions, we obtain further con-
firmation thatAB, is the critical solution by carrying out a linear perturbation analysis for it, as
well as for some of the othekB,, solutions.

Our linear perturbation analysis around this family of self-similar solutions is standard. In
coordinates adapted to the self-similarig=(—r/t and 7=In|—t|), the perturbed solution to lead-
ing order will be

XD =xo(2)+ 8- f Rz NN, (11

wherexo(z) refers to any member of th&B,, family and y, is an eigenmode of the perturbation
expansion associated with the eigenvaluéVith this expansion, the eigenmodes obey the linear
equation

22— 1) X120+ 22(Z2—1—\Z%) ¥1,+ (2 cO$ 2)) + N 22>~ \Z%) 1 =0. (12

In general,\ can be complex, but in this case it will suffice to considereal. Ast—0, 7—
— oo, thus ifA >0, the corresponding perturbations will decay. Howevex <f0, the perturbations
will grow and render the original self-similar solution unstable.

In order to solve the above equation it is sufficient to demand regularity tandz=1. On
performing the integration, we find that there is a single gauge modeat1 for all members of
the AB,, family. This gauge mode arises because of the freedom we have in choosing the zero of
time: t—t+c. In addition to this gauge mode we confirm that the Turok—Spergel sol(itien
n=0 member of this familyhas no unstable modes, the-1 member of this family has a single
unstable mode, and that for all the exactly self-similar solutions we have considered>with
there always exists more than a single unstable mbde.
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FIG. 2. Demonstration of the self-similarity of the critical solution using initial data of the form(Bq.Letting 7

=In|T* —T| whereT is the time of collapse, the four frames are equally spaced in “log time” progressing towards collapse
(7— — ). A near-critical solution for(r,t) is shown(circleg for Ry=1 andé=1 vs Inr. Then=1 self-similar solution

is shown(solid) with the freedom to set the collapse time used to make the two solutions coincide in the first frame only.
That the solutions coincide at the other times demonstrates that the critical solution is self-similar and approathes the
=1 solution.

Thus this serves as further evidence & is the critical solution. In the sense of dynamical
systems, that this exactly self-similar solution has a single unstable mode indicates that it is an
intermediate attractor on the boundary between the basin of attraction for singular solutions and
the basin of attraction for nonsingular solutions. When such an attractor exists for critical behav-
ior, one is said to have a “type Il transition.”

For the case of this intermediate attractor, B, solution, the eigenvalue for the single
unstable mode is found to be~ —6.33.

In general, we find the same critical behavior occurring at the transition for all families of
Gaussian Pulse data that we have evolved. In addition, for a number of families of Logarithmic
data and even some families of the nonlocaly supported Tanh data, waBindccurring at the
transition as well(Figure 2 indicates the closeness of the evolution of a near critical solution for
Logarithmic data and the evolution éfB,.) This suggests thaB, is, at least in a local sense,
“universal.” Universality is a familiar occurrence in nonlinear dynamics. For example, for a
damped pendulum, for all initial data except that corresponding to the stationary straight up
position, the pendulum eventually ends up in the stationary straight down state. This down state is
a universal attractor for the whole system.

A particularly pertinent example of similar behavior has been found in the study of black hole
collapse critical behavioffor a review see Refs. 13 and )14rhis work has demonstrated that
gravitational collapse exhibits critical solutions at the threshold of black hole formation. There, the
exactly critical solution within a specific model exhibits universality as well as self-similarity
(which, depending on the model investigated, can be discrete or, as here, contifiineugravi-
tational critical solutions are also intermediate attractors, likeAtBe solution, in that they have
a single unstable mode and sit on the boundary between the dispersal of the collapsing matter and
the formation of a black holé.e., singularity. Presumably, if we were to couple this nonlinear
sigma model to gravity and evolve similar initial data, we would get black hole formation. But
what is especially significant here is that even without gravity, we get singularity formation
together with the universality and self-similarity seen in the gravitational context.
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FIG. 3. Demonstration of the instability of the static solution. The static soluiotid) is perturbed with a positive
amplitude Gaussian pulgdashegland negative amplitud@lotted. The positive perturbation collapses while the negative
one disperses suggesting that the static solution sits on threshold.

IV. THE ROLE OF STATIC SOLUTIONS

Consider now evolving the Generalized Turok—Spergel data for various valeeByfixing
a value ofA and considering solutions parametrized dwe might expect to again get critical
behavior as before. Though we do observe some sort of threshold behavidiBtheelf-similar
solution doesnot occur at the transition. Instead, our numerical evolutions suggest that static
solutions play a role in the threshold behavior.

The possibility that static solutions occur at the transition between singular and nonsingular
data has led us to consider whether the static solutions are critical in this sense. To investigate this
possibility, let us first consider the stability properties of the strictly static solutions.

Static solutions are studied in Ref. 15 and here we consider only those for y{ti¢k- 0. We
could parametrize this family bg= x'(0), however, Lichtensteiger and Durrer observe that the
static solutions are all related by a simple radial rescaling so we need considea-oflyWe
consider initial data of the form

X(r, 0= xo(r) + Ag™ (R,

r-RrR
(r,0)= __570}Ae—(r—Ro)2/52’ (13)

which we proceed to evolve. The above initial data represents the static sojufion, perturbed

by an in-going Gaussian pulse. As with our nonlinear perturbation of the self-similar solution, our
expectation is that threshold behavior would be demonstrated if dor) the solution becomes
singular for positive amplitude perturbation8>%0) but remains nonsingular for perturbations
with A<0. A similar test is used in Refs. 16 and 17 to determine whether static solutions sit on the
threshold of black hole formation.

An example of this experiment is shown in Fig. 3. The figure demonstrates that nonlinear
perturbations of opposite sign send the static solution either to collapse or dispersal depending on
the sign of the perturbation. This suggests that the static solytion does indeed sit on thresh-
old.

However, if the static solution sits on threshold, one would expect that it has a single unstable
mode. If so, then it should be an intermediate attractor within some basin of attraction. If it has
more than one unstable mode, then we would not expect to find it via a one parameter tuning.
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The mode structure for the static solution is determined by doing a linear perturbation study.
Writing

x(r,t>:xs<r>+5-f & 1% (11 0)do, (14

with y4(r) denoting the static solution, witR,(r; w) denoting the perturbation, and withbeing
the eigenvalue associated with the perturbative nipdewe determindafter substituting(14)
into (3)], that the perturbation modes obey

~n 2X1C092x,) 9 -,
Xlz—rZ—a_wZXI_FXL (19

with the regularity conditions
X1(0)=0, X1(0)=free. (16)

Unstable perturbation modes are signaled df<0. We find solutions numerically, using a
standard shooting technique with the regularity condition at infinity bgif{g—)=0. Due to

the linearity of the problem, we I8t;(0)=1 and adjust»? until our regularity conditions are met.
We find a number of unstables<0) modes; it follows that the static solution does not represent
an intermediate attractor.

Since the static solution is clearly not an intermediate attractor, we might not expect it to be
found by tuning the Generalized Turok—Sper@e$) initial data. For this reason, we do not view
the static solution as a critical solution in the usual sense. However, it does seem to occur at the
threshold, both for the Generalized TS initial data and for a number of families of Tanh data.

Here, we might comment on some of the difficulties associated with the numerical study of
solutions generated from data with infinite support:

As stated previously, fixingd and picking a larges for the TS data, the evolution clearly
demonstrates singular collapfer e=1 collapse is known With a small value of, one might
expect to observe dispersal. That is, one might expect to observe some energy density initially
moving towards the origin, turning around, and then traveling outwards forever. The problem here
is that numerically we can neither evolve forever nor evolve over an infinite domain. Our evolu-
tions are limited in domain because of finite computer resources and limited in time by the
adulteration of boundary effects exacerbated by the infinite nature of the initial data.

The problem of determining dispersal is less crucial for the case of Gaussian initial data and
other families with localized support because we can rely on the small data global existence
theorems to guarantee that the evolution is nonsingular. Here though, those theorems are not
applicable because the initial data has infinite energy.

As corroborative support for our view that we are seeing nonsingular solutions, we note the
work on textures in which scaling arguments are used to show that, at least for a particular class
of initial data of infinite support, wave map evolutions that do not collapse can d¢oufact, a
number of these papers discuss the critical winding number of such textdriedinite support
which separates dispersal from collagsee, for example, Ref.)8

Our evolutions for smalk show what appears to be dispersal, and those for largieow
apparent collapse. Tuning, however, is very difficult, sif@e seen in Ref.)8we observe solu-
tions which at first appear to be dispersing but “turn around” and then ultimately collapse. This
turn-around can occur very slowly. Hence, finding the transition is very hard.

Our evolutions therefore suggest three regimeg fior the TS initial data, as well as for
certain families of the Tanh datf.For largee, the evolutions quickly collapse. For smallthe
evolutions suggest that the solutions do not collapse but instead disperse. For mgderati&ons
appear to be dispersing but then turn around and collapse.

Given the resulting difficulty in finding a criticad, one is led to ask in what sense the static
solution exhibits threshold behavior. It seems to arise for the intermediate rangea®fan
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FIG. 4. Apparent approach of the tuned Turok—Spergel initial data to the static solution. Stemstredl is the evolution

of the energy densityg(r,t) for the Turok—Spergel initial data, E(B), with e=0.302. The energy quickly begins to move
outward to large . However, byt~126, the evolution has shed a large component of its energy density leaving behind an
approximately static solution. Shown also is the energy density foath@.12 static solutiorisolid), chosen for the best
correspondence to the static part of the evolution.

evolving solution turns around from its initially outgoing, dispersive behavior and begins its
collapse to a singularity. As this turn around point is approached, the field profiles approach that
of the static solution and remain there for a certain amount of e example of this is shown

in Fig. 4. Although this behavior is certainly reminiscent of observed critical behavior, since the
static solution has multiple unstable modes, it is not an intermediate attractor, and so not a critical
solution in the accepted sense. However, it appears that this static solution does arise in some
sense, and does play some role in wave map threshold behavior.

The above discussion simply describes what our numerical evolutions suggest, but is clearly
not definitive. Nonetheless, we conjecture that while for smdhta the solutions do disperse, for
somewhat largee data, the solution will appear to be dispersing, but then will approach the static
solution y¢(r) (in general, for some-dependeng), and will finally collapse. Further, we conjec-
ture that as one decreasesone will observe the solution turning around at later and later times
(and larger and larger) until for some nonzero valug*, the solution turns around at infinite
time and radius. Any further reduction efbelow €* results in dispersal.

V. CONCLUSION

Our work shows that nonlinear sigma models, or wave maps, frert 3linkowski space-
time into S® exhibit critical behavior which is similar to that seen in the study of black hole
collapse for Einstein’s equations with various source fields. We find that the boundary between
sets of data evolving into nonsingular solutions and sets of data evolving into singular solutions
includes a self-similar solution. The static solutions are found to play a role as well. The self-
similar solution is an intermediate attractor, while the static solutions are not.

While this work is a first step toward understanding critical behavior in wave maps, it leaves
a number of questions unanswered:

(1) Does the critical boundary for spherically symmetric wave maps froml 3Minkowski
spacetime int&® include other solutions besides those we have seen?

(2) How do the solutions on this boundary fit together?

(3) What happens if one removes the spherical equivariance condition?

(4) What happens for target spaces other tB3n
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(5) What happens for base spaces other tharl aMinkowski spacetime?

A base space of particular interest is-2 Minkowski spacetime. For21 wave maps, it is
not yet known whether in fact there are any singular solutions which evolve from regular initial
data (2+1 is the “critical dimension” for the wave map system of partial differential equations,
just as 4+ 1 is the critical dimension for Yang—MillsIf such solutions exist, there would likely
be critical behavior. However, one expects the nature of the critical boundary between singular
and nonsingular solutions to be very different in this case. This issue is currently under study.
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