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Singularity formation in 2 +1 wave maps
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We present numerical evidence that singularities form in finite time during the
evolution of 2+ 1 wave maps from spherically equivariant initial data of sufficient
energy. ©2002 American Institute of Physic§DOI: 10.1063/1.1418717

[. INTRODUCTION

While it has been shown that wave maps on-altdimensional Minkowski spacetime base
evolved from smooth initial data exist for all tinté, and that those on am+1 (m=3)
Minkowski spacetime base can blow up in finite tifthe global existence for the+21 case
remains as yet unresolved. Scaling considerations identif§ 2s the critical dimension for wave
maps, and so there is considerable interest in determining if indeed ®ave maps developed
from smooth initial data can become singular in finite time or not. Here, we describe numerical
work that strongly supports the contention that, at least for some sets of smooth initial data, they
can.

There are special classes o2 wave maps for which global existence has been shown to
hold: (a) spherically equivariant wave maps with convear slightly more general targetsib)
spherically symmetric wave maps with compact tardgptss a further technical condition on the
targe},® (c) general wave mapgeneral targetwith sufficiently small energy.

Not included in any of these three classes are spherically equivariant wave maps-frbm 2
Minkowski spacetime into the round two-sphere with initial data of arbitrary energy. Shatah and
Struwe have conjectured that singular behavior should be found in this class. Our numerical
results reported here strongly support the validity of this conjecture.

We examine one-parameter families of data, with small values of the parameter corresponding
to small energy data and therefore global existence, and with large values of the parameter
corresponding to data possibly leading to singularity formation. One might hope to find especially
interesting wave map development for data at or near the transition between small and large
values. While this sort of “critical” behavior has been seen and studiedtii 3vave map$§;° we
have not found nearly as clear an indication of universal critical behavior for the present 2
case. This criticality issue needs further study, and is not treated in this paper. Here, our focus is
on numerical evidence for singular wave map evolution from regular initial data.

We note that our studies of singularity formation if-2 wave maps have been carried out
independently of the work of BizorChmaj, and Tabdf using numerical algorithms that differ
from theirs. However, their results and ours agree substantially.

II. THE EQUATIONS

Generally a wave map is defined to be a m#p from a spacetimdthe “base”) into a
Riemannian geometrithe “target”), with ¢* a critical point for the action
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SLp]= JMmHntAB<¢><a,L¢A 2,4°), 1)

whereg,g is the Riemannian metric on the target manifdle, and »“” is the(inverse Lorentz-
signature metric on the spacetif™"*. The Euler—Lagrange equations for this action take the
form

39, ¢"+Tgc d,¢° " ¢°=0, )

Wherel“{;C represents the Christoffel symbols corresponding to the target nggjgic This is a
semilinear hyperbolic PDE system fgf*. We note that for certain targets, wave maps are known
to physicists as “nonlinear sigma models.”

As noted above, the case of primary interest heretid 2Minkowski spacetime for the base
and the round two sphere for the target. In this case, the wave map PDE syStemay be
rewritten in the following form:

O¢2+(3,¢° 9" ¢°) pcp®=0, )

where the indices,b,ctake the value$l,2,3 (indexing the ambient Euclidean 3-space for the
target two sphepe and 8, is the metric for this ambient space. If we now impose the condition
that the maps)® be spherically equivariant with angular wrapping numkeand writep(r, 6,t)

in the “hedgehog” form

siny(r,t)sinké
@?=1| sinx(r,t)coskd |, (4)
cosy(r,t)

wherer is the radial distance from the origin afids the azimuthal angle; then the wave map PDE
system(2) reduces to the single equation,

.1 KZsin2y .
X—F(f)() o2 5

where a prime and an overdot denote partial derivatives with respeetridt, respectively. Thus,
the study of the Cauchy problem for2L spherically equivariank-wrapped wave maps into the
round two sphere focuses on finding solutiogér,t) to Eg. (5) with regular initial data
x(r,0),x(r,0). Note that regularity at=0 requires that we seg(0,t) =0 for all t.

While it may be interesting to examine if there is any variation of the behavior of solutions for
wrapping number& greater than one, we restrict our attention here to the single angular wrapping
casek=1.

As for any field theory on Minkowski space, there is a divergence-free stress—energy tensor
T, associated with wave maps. Frd),, we obtain the energy density function for spherically
equivariant wave maps,

1 sir?
p(r.0= S+ )21+ S5z ©
whose integral
E(t)=fp(r,t)rdr (7

is conservedi.e., E(t) =E(0) for all t]. The energy is a useful monitor of numerical accuracy, as
discussed below.
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FIG. 1. Snapshots of the energy densifiiamesr) for a single family of initial data with varying amplitude. A0 the

initial energy densities corresponding to ingoing Gaussian initial d@a8,6=2.3) are shown. Supercriticab& 1.4) is

shown as long-dashed line that exists only ut#il6. Subcritical A=1.0) is shown as a solid line. Two near-critical
evolutions are also shown: slightly subcriticdl< 1.19) is shown as a dotted line and slightly supercritided=(.195) is

shown as a short-dashed line. The two near-critical evolutions coincide at the scale of this grah1mhafter which we

cannot compute the apparently singular supercritical solution. The energy densities reached by the supercritical solutions
extend significantly off the scale of this graph.

lll. NUMERICAL STUDIES OF SINGULARITY FORMATION

Our numerical experiments consist of specifying parametrized families of initial data
{x\(r,0),x,(r,0)} and numerically evolving a number of sets of such data in each family. A
typical family—one of the simplest—is the approximately ingoing Gaussian pulse,

X(r,0=Ae "RO¥  3(r.0)=x'(r,0). )

This family has three parametefs Ry, and 6, with the most important one for our discussion
being the scale paramet&r Note that the ingoing character of these solutions, which results from
the choice ofy(r,0), minimizes outer boundary effects. Note also that while, analytical;0)

is not zero, for the choices &, and § that we make, we can forcg0,0) to be zero and retain
smoothness to within numerical accuracy.

We evolve using a second-order finite difference approximation t@EgWe use an iterative
Crank—Nicholson scheme implemented with RNPland also make use of the adaptive mesh
framework developed by Choptutk.We have verified that the code generates solutions that
converge quadratically in the grid spacing and conserve energy. In arguing that we are indeed
generating singularities, we will discuss the convergence and energy conservation tests in more
detail below.

For a general set of ingoing Gaussian pulse data, regardless of amplitude, the wave map
evolution has the pulse maximum and energy density maximum initially moving inlamteas-
ing r). For small(subcritica) values ofA, this inward motion of the maximum proceeds for a finite
time, after which the maximum “bounces” away from the origin and begins to move out{saed
Fig. 1). There is a general dispersal of the energy density; and for tatigere is very little energy
density remaining near the origin.

For large(supercritical values ofA, the behavior of the evolving wave map is qualitatively
the same initially. However, rather than bouncing away from the origin, the maxima for super-
critical data continue to approach the origfig. 1), with the concentration of energy around the
origin appearing to grow without bound. As the energy density and the gradient of the fugction
grow very large at the origin, the numerical evolution inevitably becomes unable to resolve the
gradient, and the solution becomes sufficiently nhonsmooth to cause the numerical evolution to
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FIG. 2. Results of a supercritical evolution for an initially ingoing Gaussian plse3R,=10,6=2.3R,,,=30). The

results are shown for increasing resolutions 28 (solid), n=2° (dot), n=2° (short dash n=2'* (long dash, n=2"?
(dot—short dash n=2*% (dot—long dash n=2* (short dash—long daghn= 2% (solid), and n=2% (dot), whereh

=Rpax/n. The top frame shows the rapid growth »f(0,t) near the time of the blowup£8). The middle frame shows

the convergence factddefined in Eq.(9)]. Factors greater than one indicate convergence. The bottom frame shows the
change in energy with respect to the initial energy. As the resolution increases, so does the level of energy conservation.

stop. If this accumulation is indeed a singularity forming, there is no hope for the numerical
evolution to resolve it, being itself of finite resolution. The task then is to examine the behavior of
the numerical solution up to this point.

Before doing so, we first discuss a couple of standard tests of a numerical solution. We let
x(r,t) be some solution to th@ontinuum partial differential equatioi5) and lety,(r,t) be the
solution to a discrete form of that equation, for corresponding initial data, on a grid sgacing
=Ar. The hope is that, as the grid spacing gets smaller, the solutions to the discrete equation
generated by the evolution code converge to the solutions of the POE) — x(r,t). Because in
general the explicit solutions to the PDE are unknown, we instead consider a series of numerical
solutions on grids of increasing resolution, $ay, ,x2n.xn - If these are to converge to the PDE
solution, then they must converge themselves. To examine this convergence, we define a conver-
gence factofQ) as follows:

X an—X2nl2
[X2n—Xnl2 '

Q ©)

where the norms are thie norm. For these solutions to converge, the difference between solutions
for increasing resolution must decrease and h&peeust be greater than one. For second-order
schemesQ is expected to be 4.

Another common test of numerical accuracy focuses on the degree to which energy is con-
served by the numerical evolution. The evolution governed by the @D&oes conserve energy;
the question is whether this remains true for the numerical evolution. Ldgjpgt) denote the
energy calculated from the numerical solution at timé@n the finite grid, and settingA (t)
=In|(Enum(t) — Enumr(0))/Enun(0)|, we monitor A(t) for different choices of grid spacing. The
expectation is thal (t) should decrease with increasing resolution; if we observe this, our con-
fidence in the accuracy of our numerical solution is enhanced.

In Fig. 2, we show the evolution in time of three quantities—s¢(0,t), Q(t), andA(t)—for
numerical runs of supercritical ingoing Gaussian pulse data, done with nine different grid spac-
ings. In the top frame, we show the behavior of the derivativg af the origin as a function of
time. The figure shows that as the pulse travels inward, the derivative increases. Until just before
t=28, all the resolutions show the same behavior as would be expected for a convergent evolution.
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However, near the blow-up time, the solutions diverge with higher resolutions providing a larger
derivative. The convergence factQ(t) is shown in the middle frame; it likewise shows second-
order convergence up to times close to the blow-up time. In the bottom frame, the change in
energyA(t) is shown. We see that as the resolution is increased, energy conservation improves.

What does this tell us about singularity formulation in wave maps evolved fsapercritical
ingoing Gaussian pulse data? We first argue that these results are consistent with what would be
expected for such a formation. As the singularity forms, higher- and higher-frequency components
become important, and they are represented numerically only if one uses higher and higher grid
resolutions. Hence, the behavior of the derivativeyofs the resolution improves would be
expected to show larger and larger gradients, as seen in(@gN&xt, we note that the formation
of a singularity should not hinder convergence except quite near the formation time, as is seen in
Fig. 2(b). Finally, energy conservation should be fine until the high-frequency components play
their role, as we see in Fig.(@. Hence, the results observed appear to be consistent with a
singularity forming neat=8.

This does not guarantee that a singularity forms in these wave maps. There are other effects
that might produce the apparently unbounded growth of the derivative afd of the energy
density near the origin in these numerical simulations. For example, perhaps some unphysical,
unstable mode grows because of the particulars of our chosen evolution scheme. We believe that
this is not the case, for a number of reasons. First, the presence of such a mode would likely cause
much larger growth im (t) than we see. Second, such modes would have to be excited only after
some time(roughly independent of resolutipand only for families of sufficiently large energy.

This is not consistent with our observations. Third, the excitation of this sort of instability would
almost certainly depend critically on the precise finite difference scheme. BecauseaBitdris
collaborator¥’ observe similar behavior, using a different numerical evolution scheme, this does
not appear to be the case. Thus, we believe it very unlikely that the effects we are seeing are the
result of a numerically unstable nonsingular mode.

Another situation in which one might numerically observe the formation of singularities that
do not, in fact, evolve analytically from the corresponding data is if the continuum PDE solution
is regularized by high-frequency components which cannot be seen by the finite grid resolutions
we use. The rather strong convergence behavior we see in our numerical solutions leads us to
believe that this is not happening. We note in particular that such unresolved components would
have to be separated in frequency space from the nontrivial low-frequency components by a
substantial margin, with a large range of dynamically irrelevant frequencies separating the two
regimes. This seems to be very unlikely.

IV. CONCLUSION

The numerical studies we present here very strongly support the contention, previously con-
jectured by Shatah and StruWehat smooth initial data for wave maps from+2 Minkowski
spacetime into the round two sphere can develop singulafitiéh unbounded derivativesn
finite time. As we note, there are many ways in which the numerical exploration of possible
singularity formation might produce misleading indications. However, we believe that as a con-
sequence of the numerical tests we have carried out, together with those done independently by
Bizon and his collaborator¥ the formation of singularities is the most likely conclusion.

There is much more one would like to know about these spatially equivariant wave maps, as
well as about those without such symmetry. One would like to know, for example, if the solutions
assume any universal form as one approaches the singularity. OunsemlEig. 3 supports the
results of Bizonet al,'° which indicate that indeed the family of static spherically equivariant
wave maps,

x(r)=*2 arctaigir), (10

does serve as a sort of universal model for singularity formation. This needs to be studied further.
One would also very much like to understand the behavior of the wave maps that evolve from
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FIG. 3. Near-critical evolutions approach the static solution, (EG).. Nine frames equally spaced in time are shown for
both sub andsupecritical evolutions. The solutions are indistinguishable in the graph at these times and are shown with
dots. Aftert=14.24, the two solutions have quite different fates, but both approach the form of the static solution. In the
final frame, the static solutiog(r)= —2 arctan (1116) is shown.

initial data near the transition from subcritical to supercritical data. The recent numerical work of
Bizon et al® suggests that the static solutiofi) play a central role in the evolution of the
transitional wave maps as well in that of supercritical ones; however, this issue needs further
investigation.(Note the absence of any self-similar solutions to thel2wave map equations; for

3+ 1 wave maps, such solutions play a key role in the behavior of solutions evolving from critical
or near critical data
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