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We present numerical evidence that singularities form in finite time during the
evolution of 211 wave maps from spherically equivariant initial data of sufficient
energy. © 2002 American Institute of Physics.@DOI: 10.1063/1.1418717#

I. INTRODUCTION

While it has been shown that wave maps on a 111-dimensional Minkowski spacetime bas
evolved from smooth initial data exist for all time,1,2 and that those on anm11 (m>3)
Minkowski spacetime base can blow up in finite time,3 the global existence for the 211 case
remains as yet unresolved. Scaling considerations identify 211 as the critical dimension for wav
maps, and so there is considerable interest in determining if indeed 211 wave maps develope
from smooth initial data can become singular in finite time or not. Here, we describe num
work that strongly supports the contention that, at least for some sets of smooth initial data
can.

There are special classes of 211 wave maps for which global existence has been show
hold: ~a! spherically equivariant wave maps with convex,4 or slightly more general targets,5 ~b!
spherically symmetric wave maps with compact targets~plus a further technical condition on th
target!,6 ~c! general wave maps~general target! with sufficiently small energy.

Not included in any of these three classes are spherically equivariant wave maps from11
Minkowski spacetime into the round two-sphere with initial data of arbitrary energy. Shatah
Struwe7 have conjectured that singular behavior should be found in this class. Our num
results reported here strongly support the validity of this conjecture.

We examine one-parameter families of data, with small values of the parameter corresp
to small energy data and therefore global existence, and with large values of the par
corresponding to data possibly leading to singularity formation. One might hope to find espe
interesting wave map development for data at or near the transition between small and
values. While this sort of ‘‘critical’’ behavior has been seen and studied in 311 wave maps,8,9 we
have not found nearly as clear an indication of universal critical behavior for the present11
case. This criticality issue needs further study, and is not treated in this paper. Here, our fo
on numerical evidence for singular wave map evolution from regular initial data.

We note that our studies of singularity formation in 211 wave maps have been carried o
independently of the work of Bizon´, Chmaj, and Tabor10 using numerical algorithms that diffe
from theirs. However, their results and ours agree substantially.

II. THE EQUATIONS

Generally a wave map is defined to be a mapfA from a spacetime~the ‘‘base’’! into a
Riemannian geometry~the ‘‘target’’!, with fA a critical point for the action
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S@f#5E
Mm11

hmngAB~f!~]mfA ]nfB!, ~1!

wheregAB is the Riemannian metric on the target manifoldNn, andhmn is the~inverse! Lorentz-
signature metric on the spacetimeMm11. The Euler–Lagrange equations for this action take
form

]m]mfA1GBC
A ]mfB ]mfC50, ~2!

whereGBC
A represents the Christoffel symbols corresponding to the target metricgAB . This is a

semilinear hyperbolic PDE system forfA. We note that for certain targets, wave maps are kno
to physicists as ‘‘nonlinear sigma models.’’

As noted above, the case of primary interest here is 211 Minkowski spacetime for the bas
and the round two sphere for the target. In this case, the wave map PDE system~2! may be
rewritten in the following form:

hfa1~]mfb ]mfc!dbcf
a50, ~3!

where the indicesa,b,c take the values$1,2,3% ~indexing the ambient Euclidean 3-space for t
target two sphere!, anddbc is the metric for this ambient space. If we now impose the condi
that the mapsfa be spherically equivariant with angular wrapping numberk, and writefa(r ,u,t)
in the ‘‘hedgehog’’ form

fa5S sinx~r ,t !sinku
sinx~r ,t !cosku

cosx~r ,t !
D , ~4!

wherer is the radial distance from the origin andu is the azimuthal angle; then the wave map PD
system~2! reduces to the single equation,

ẍ5
1

r
~rx8!82

k2 sin 2x

2r 2 ~5!

where a prime and an overdot denote partial derivatives with respect tor andt, respectively. Thus,
the study of the Cauchy problem for 211 spherically equivariant~k-wrapped! wave maps into the
round two sphere focuses on finding solutionsx(r ,t) to Eq. ~5! with regular initial data
x(r ,0),ẋ(r ,0). Note that regularity atr 50 requires that we setx(0,t)50 for all t.

While it may be interesting to examine if there is any variation of the behavior of solution
wrapping numbersk greater than one, we restrict our attention here to the single angular wra
casek51.

As for any field theory on Minkowski space, there is a divergence-free stress–energy
Tmn associated with wave maps. FromTmn , we obtain the energy density function for spherica
equivariant wave maps,

r~r ,t !5
1

2
@ ẋ21~x8!2#1

sin2 x

2r 2 , ~6!

whose integral

E~ t !5E
r
r~r ,t !r dr ~7!

is conserved@i.e., E(t)5E(0) for all t#. The energy is a useful monitor of numerical accuracy,
discussed below.
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III. NUMERICAL STUDIES OF SINGULARITY FORMATION

Our numerical experiments consist of specifying parametrized families of initial
$xl(r ,0),ẋl(r ,0)% and numerically evolving a number of sets of such data in each famil
typical family—one of the simplest—is the approximately ingoing Gaussian pulse,

x~r ,0!5Ae2~r 2R0!2/d2
, ẋ~r ,0!5x8~r ,0!. ~8!

This family has three parametersA, R0 , andd, with the most important one for our discussio
being the scale parameterA. Note that the ingoing character of these solutions, which results f
the choice ofẋ(r ,0), minimizes outer boundary effects. Note also that while, analytically,x~0,0!
is not zero, for the choices ofR0 andd that we make, we can forcex~0,0! to be zero and retain
smoothness to within numerical accuracy.

We evolve using a second-order finite difference approximation to Eq.~5!. We use an iterative
Crank–Nicholson scheme implemented with RNPL,11 and also make use of the adaptive me
framework developed by Choptuik.12 We have verified that the code generates solutions
converge quadratically in the grid spacing and conserve energy. In arguing that we are
generating singularities, we will discuss the convergence and energy conservation tests i
detail below.

For a general set of ingoing Gaussian pulse data, regardless of amplitude, the wav
evolution has the pulse maximum and energy density maximum initially moving inward~decreas-
ing r!. For small~subcritical! values ofA, this inward motion of the maximum proceeds for a fin
time, after which the maximum ‘‘bounces’’ away from the origin and begins to move outward~see
Fig. 1!. There is a general dispersal of the energy density; and for larget, there is very little energy
density remaining near the origin.

For large~supercritical! values ofA, the behavior of the evolving wave map is qualitative
the same initially. However, rather than bouncing away from the origin, the maxima for s
critical data continue to approach the origin~Fig. 1!, with the concentration of energy around th
origin appearing to grow without bound. As the energy density and the gradient of the funcx
grow very large at the origin, the numerical evolution inevitably becomes unable to resolv
gradient, and the solution becomes sufficiently nonsmooth to cause the numerical evolu

FIG. 1. Snapshots of the energy densities~timesr! for a single family of initial data with varying amplitude. Att50 the
initial energy densities corresponding to ingoing Gaussian initial data (R058,d52.3) are shown. Supercritical (A51.4) is
shown as long-dashed line that exists only untilt56. Subcritical (A51.0) is shown as a solid line. Two near-critica
evolutions are also shown: slightly subcritical (A51.19) is shown as a dotted line and slightly supercritical (A51.195) is
shown as a short-dashed line. The two near-critical evolutions coincide at the scale of this graph untilt512 after which we
cannot compute the apparently singular supercritical solution. The energy densities reached by the supercritical
extend significantly off the scale of this graph.
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stop. If this accumulation is indeed a singularity forming, there is no hope for the nume
evolution to resolve it, being itself of finite resolution. The task then is to examine the behav
the numerical solution up to this point.

Before doing so, we first discuss a couple of standard tests of a numerical solution. W
x(r ,t) be some solution to the~continuum! partial differential equation~5! and letx̃h(r ,t) be the
solution to a discrete form of that equation, for corresponding initial data, on a grid spach
[Dr . The hope is that, as the grid spacingDr gets smaller, the solutions to the discrete equat
generated by the evolution code converge to the solutions of the PDE,x̃(r ,t)→x(r ,t). Because in
general the explicit solutions to the PDE are unknown, we instead consider a series of num
solutions on grids of increasing resolution, sayx̃4h ,x̃2h ,x̃h . If these are to converge to the PD
solution, then they must converge themselves. To examine this convergence, we define a
gence factor~Q! as follows:

Q[
ux̃4h2x̃2hu2
ux̃2h2x̃hu2

, ~9!

where the norms are thel 2 norm. For these solutions to converge, the difference between solu
for increasing resolution must decrease and henceQ must be greater than one. For second-or
schemes,Q is expected to be 4.

Another common test of numerical accuracy focuses on the degree to which energy i
served by the numerical evolution. The evolution governed by the PDE~5! does conserve energy
the question is whether this remains true for the numerical evolution. LettingEnum(t) denote the
energy calculated from the numerical solution at timet ~on the finite grid!, and settingD(t)
[ lnu(Enum(t)2Enum(0))/Enum(0)u, we monitorD(t) for different choices of grid spacing. Th
expectation is thatD(t) should decrease with increasing resolution; if we observe this, our
fidence in the accuracy of our numerical solution is enhanced.

In Fig. 2, we show the evolution in time of three quantities—lnx8(0,t), Q(t), andD(t)—for
numerical runs of supercritical ingoing Gaussian pulse data, done with nine different grid
ings. In the top frame, we show the behavior of the derivative ofx at the origin as a function o
time. The figure shows that as the pulse travels inward, the derivative increases. Until just
t58, all the resolutions show the same behavior as would be expected for a convergent evo

FIG. 2. Results of a supercritical evolution for an initially ingoing Gaussian pulse (A52,R0510,d52.3,Rmax530). The
results are shown for increasing resolutionsn528 ~solid!, n529 ~dot!, n5210 ~short dash!, n5211 ~long dash!, n5212

~dot–short dash!, n5213 ~dot–long dash!, n5214 ~short dash–long dash!, n5215 ~solid!, and n5216 ~dot!, where h
5Rmax/n. The top frame shows the rapid growth ofx8(0,t) near the time of the blowup (t'8). The middle frame shows
the convergence factor@defined in Eq.~9!#. Factors greater than one indicate convergence. The bottom frame show
change in energy with respect to the initial energy. As the resolution increases, so does the level of energy cons
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However, near the blow-up time, the solutions diverge with higher resolutions providing a l
derivative. The convergence factorQ(t) is shown in the middle frame; it likewise shows secon
order convergence up to times close to the blow-up time. In the bottom frame, the chan
energyD(t) is shown. We see that as the resolution is increased, energy conservation imp

What does this tell us about singularity formulation in wave maps evolved from~supercritical!
ingoing Gaussian pulse data? We first argue that these results are consistent with what w
expected for such a formation. As the singularity forms, higher- and higher-frequency compo
become important, and they are represented numerically only if one uses higher and high
resolutions. Hence, the behavior of the derivative ofx as the resolution improves would b
expected to show larger and larger gradients, as seen in Fig. 2~a!. Next, we note that the formation
of a singularity should not hinder convergence except quite near the formation time, as is s
Fig. 2~b!. Finally, energy conservation should be fine until the high-frequency components
their role, as we see in Fig. 2~c!. Hence, the results observed appear to be consistent w
singularity forming neart58.

This does not guarantee that a singularity forms in these wave maps. There are other
that might produce the apparently unbounded growth of the derivative ofx and of the energy
density near the origin in these numerical simulations. For example, perhaps some unph
unstable mode grows because of the particulars of our chosen evolution scheme. We belie
this is not the case, for a number of reasons. First, the presence of such a mode would likel
much larger growth inD(t) than we see. Second, such modes would have to be excited only
some time~roughly independent of resolution! and only for families of sufficiently large energy
This is not consistent with our observations. Third, the excitation of this sort of instability w
almost certainly depend critically on the precise finite difference scheme. Because Bizon´ and his
collaborators10 observe similar behavior, using a different numerical evolution scheme, this
not appear to be the case. Thus, we believe it very unlikely that the effects we are seeing
result of a numerically unstable nonsingular mode.

Another situation in which one might numerically observe the formation of singularities
do not, in fact, evolve analytically from the corresponding data is if the continuum PDE sol
is regularized by high-frequency components which cannot be seen by the finite grid reso
we use. The rather strong convergence behavior we see in our numerical solutions lead
believe that this is not happening. We note in particular that such unresolved components
have to be separated in frequency space from the nontrivial low-frequency components
substantial margin, with a large range of dynamically irrelevant frequencies separating th
regimes. This seems to be very unlikely.

IV. CONCLUSION

The numerical studies we present here very strongly support the contention, previousl
jectured by Shatah and Struwe,7 that smooth initial data for wave maps from 211 Minkowski
spacetime into the round two sphere can develop singularities~with unbounded derivatives! in
finite time. As we note, there are many ways in which the numerical exploration of pos
singularity formation might produce misleading indications. However, we believe that as a
sequence of the numerical tests we have carried out, together with those done independe
Bizoń and his collaborators,10 the formation of singularities is the most likely conclusion.

There is much more one would like to know about these spatially equivariant wave ma
well as about those without such symmetry. One would like to know, for example, if the solu
assume any universal form as one approaches the singularity. Our work~see Fig. 3! supports the
results of Bizon´ et al.,10 which indicate that indeed the family of static spherically equivari
wave maps,

x~r !562 arctan~lr !, ~10!

does serve as a sort of universal model for singularity formation. This needs to be studied f
One would also very much like to understand the behavior of the wave maps that evolve
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initial data near the transition from subcritical to supercritical data. The recent numerical wo
Bizoń et al.10 suggests that the static solutions~10! play a central role in the evolution of th
transitional wave maps as well in that of supercritical ones; however, this issue needs
investigation.~Note the absence of any self-similar solutions to the 211 wave map equations; fo
311 wave maps, such solutions play a key role in the behavior of solutions evolving from cr
or near critical data!.
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FIG. 3. Near-critical evolutions approach the static solution, Eq.~10!. Nine frames equally spaced in time are shown f
both sub- andsupercritical evolutions. The solutions are indistinguishable in the graph at these times and are show
dots. Aftert514.24, the two solutions have quite different fates, but both approach the form of the static solution.
final frame, the static solutionx(r )522 arctan (1116r ) is shown.
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