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On the Engquist Majda Absorbing Boundary Conditions
for Hyperbolic Systems
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This paper is dedicated to Stan Osher on the occasion of his 60th birthday

Abstract. In their classical paper [2], the authors presented a methodology
for the derivation of far field boundary conditions for the absorption of waves
that are almost perpendicular to the boundary. In this paper we derive a gen-
eral order absorbing boundary conditions of the type suggested by Engquist
and Majda. The derivation utilizes a different methodology which is more
general and simpler. This methodology is applied to the two and three dimen-
sional wave equation, to the three dimensional Maxwell’s equations and to the
equations of advective acoustics in two dimensions.

I. Introduction

A long standing problem in simulating wave phenomena has been the issue
of finding infinite space solutions on a finite numerical domain. Reflections from
the boundaries of the numerical domain may distort the solution and even lead to
instabilities. A pioneering contribution to this field has been the work of Engquist
and Majda [2]. They presented a methodology to construct boundary conditions
that minimize reflections of waves traveling in directions close to perpendicular to
the boundary. In their paper they show how to construct absorbing boundary con-
ditions with reflection coefficients that are O(θ2p) where θ is the angle between the
incident wave and the normal to the boundary. Higdon [8] derived their boundary
conditions in a simpler and more general form - for the classical wave equation.

In this paper we present a different methodology for deriving pth order bound-
ary conditions for three different cases. We start in Section II by discussing the
wave equation in two space dimensions and construct the most general pth order
absorbing boundary condition. We also prove a uniqueness theorem for this case,
showing that there is basically only one scheme that yields a pth order method. We
use this relatively simple equation to demonstrate, in detail, our methodology. The
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boundary conditions derived are easily extended to general boundaries and three
dimensions.

In Section III we discuss the three dimensional Maxwell’s equations in half
space. In this case there are two incident waves and two reflected waves and, thus,
we have four reflection coefficients. By using the methodology presented in Section
II we construct a simple pth order absorbing boundary conditions that is easily
extendable to complicated smooth boundaries.

In Section IV we discuss the advective acoustics case in two space dimensions.
In this case there are three families of waves, two acoustics waves and an entropy
wave, and therefore there is a difference between the inflow and outflow boundaries.
We use the methodology of Section II to derive boundary conditions of arbitrary
order in both cases.

An important issue is whether this type of boundary conditions are well posed.
Gustafsson observed that the Engquist Majda boundary conditions admit a gen-
eralized eigenvalue in the classical wave equation case. This eigenvalue exists also
in the case of the Maxwell’s equations ( for p > 1) and in the case of the Euler
equations for advective acoustics. In the latter case there are more generalized
eigenvalues. These results are shown in Section V, and will be discussed in future
work.

II. The Wave Equation

Consider the wave equation in two space dimensions:

Utt = Uxx + Uyy,(2.1)

In the interval 0 ≤ x < ∞.
The solution U can be represented as a sum of waves of the form

U = eiω(t+βy)
(
Aeiω

√
1−β2x + Be−iω

√
1−β2x

)
,(2.2)

where
β = sin(θ).

The first term on the right hand side of (2.2) describes a wave moving to the
left whereas the second term describes a right moving wave.

We consider a local boundary condition at x = 0 of the form

LU = 0 at x = 0.(2.3)

Upon substituting the plane wave (2.2) into the boundary condition (2.3) we get

AF1(β) + BF2(β) = 0,(2.4)

where F1 is the result of applying the boundary operator L on the left moving
wave (moving towards the boundary x = 0) and F2 is the results of applying the
boundary operator to the right moving wave (which is reflected from the boundary).

The reflection coefficient is defined as

R =
∣∣∣∣
B

A

∣∣∣∣ =
∣∣∣∣
F1

F2

∣∣∣∣ .(2.5)

The Engquist-Majda (E-M) boundary conditions at x = 0 are designed to absorb
the left moving wave by minimizing the reflection coefficient for small incident
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angles θ. In fact the pth order E-M boundary condition yields

R =
∣∣∣∣
B

A

∣∣∣∣ =
(

1− α

1 + α

)p

,

where α =
√

1− β2 = cos(θ).
The methodology proposed by Engquist and Majda involves the approximation

of the pseudo differential operator that annihilates the right moving wave (at the
boundary x = 0)

d

dx
− iω

√
1− β2

in powers of β2, and translating the polynomial in β into derivatives. The first
order approximation

√
1− β2 ∼ 1 yields the condition

(
∂

∂x
− ∂

∂t

)
U |x=0 = 0,(2.6)

yielding the reflection coefficient 1−α
1+α . Higher expansions (including Pade ex-

pansions) lead to higher order BC. Note, though, that the fourth approximation
presented in their paper is not really fourth order but only a third order one with

reflection coefficient of the form R =
(

1−α
1+α

)3
3+α
3−α , which might explain why it is

not well posed. In fact the fourth order method base on fourth order derivatives is
well posed.

Higdon [8] showed that the pth order Engquist Majda absorbing boundary
condition can be written in the following simple form (this is the same in three
dimensions)

(
∂

∂x
− ∂

∂t

)p

U |x=0 = 0.(2.7)

This result can be shown by an extremely simple argument. The result of applying
the boundary operator ∂

∂x − ∂
∂t to the left moving wave yields F1 = 1 − α, and to

the right moving wave yields F2 = 1 + α. Thus we get the reflection coefficient

(2.8) R =
(

1− α

1 + α

)p

.

We will show that the most general pth order absorbing boundary condition is
equivalent to (2.7), and in particular those obtained by Engquist and Majda. This
proves the Higdon result in a more general framework.

Although the argument presented above proves our result, we still want to
present the methodology that brought about this condition for future reference.

II.1. The Derivation of the First and Second Order EM condition.
In order to illustrate our methodology, we will discuss the first and second order
EM condition.
The most general first order BC involves linear combinations of the first order
derivatives:

LU = a0
∂U

∂t
+ a1

∂U

∂x
+ a2

∂U

∂y
= 0 at x = 0.(2.9)

Upon substituting the plane wave (2.2) into the boundary condition (2.9) we get
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F1(β) = a0 + a1

√
1− β2 + a2β,

F2(β) = a0 − a1

√
1− β2 + a2β.

In order for the reflection coefficient R, to be O(β2) we need to take

a0 = −a1

a2 = 0,

Leading to (
∂

∂x
− ∂

∂t

)
U |x=0 = 0.

For the second order boundary conditions we try the most general expression in-
volving second derivatives:

(2.10) a0Utt + a1Utx + a2Uty + a3Uxx + a4Uxy + a5Uyy = 0.

We get

F1 = a0 + a1

√
1− β2 + a2β + a3(1− β2) + a4β

√
1− β2 + a5β

2

F2 = a0 − a1

√
1− β2 + a2β + a3(1− β2)− a4β

√
1− β2 + a5β

2

Expanding the square root
√

1− β2 ∼ 1− β2

2
we get

F1 ∼ a0 + a1

(
1− β2

2

)
+ a2β + a3(1− β2)− a4β

(
1− β2

2

)
+ a5β

2.

To get the correct order we must require:

a0 + a1 + a3 = 0,

a2 + a4 = 0,
a1

2
+ a3 − a5 = 0,

a4 = 0.

This leads to the following solution depending on two free parameters a and b

a0 = a

a1 = −2(a + b)
a3 = 2b + a

a4 = 0
a5 = b

and we get the most general second order B.C. at x = 0 of the form:

LU = aUtt − 2(a + b)Utx + (2b + a)Uxx + bUyy = 0.

Note that

LU = (a + b)
(

∂

∂x
− ∂

∂t

)2

U − b (Utt − Uxx − Uyy) .

Since U is a solution to the wave equation the general BC is of the form (2.7)
with p = 2.
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II.2. The General Order E-M Method - Uniqueness. In this section
we will prove the uniqueness of the boundary condition (2.7). We claim that the
general pth order boundary condition is of the form (2.7) with a possible addition
of derivatives of the wave equation (2.1) itself.

Theorem 2.1 :
The most general absorbing boundary condition of order p at x = 0, is of the

form
(

∂

∂t
− ∂

∂x
)p − (

∂2

∂t2
− ∂2

∂x2
− ∂

∂y2
)

∑

i+j+k=p−2

aijk
∂

∂t

i ∂

∂x

j ∂

∂y

k


 U = 0(2.11)

Proof
We start by showing that (2.11) is of the correct order. Note that (2.11) yields:

F1(β) = (1− α)p = O(θ2p)
F2(β) = (1 + α)p = O(1),

and therefore the reflection coefficient R is given by

R =
(

1− α

1 + α

)p

= O(θ2p)

i.e the correct order.
We turn now to the issue of uniqueness. The most general pth order BC can

be written as


 ∑

i+j+k=p

bijk
∂

∂t

i ∂

∂x

j ∂

∂y

k


U = 0(2.12)

This leads to the following expression for F1(θ)

F1(θ) =
∑

i+j+k=p

bijk cosj(θ) sink(θ),

which can be rewritten as

F1(θ) =
∑

j+k≤p

cjk cosj(θ) sink(θ).

Denote now

g(θ) = F1(θ)− cp0(1− cos(θ))p(2.13)

=
p−1∑

j=0

p−j∑

k=0

cjk cosj(θ) sink(θ)(2.14)

We want to verify that g(θ) is identically zero. In fact we can rewrite it as

g(θ) = g1(θ) + sin(θ)g2(θ),

where g1, g2 are polynomials in cos(θ) (and thus even functions of θ). Now the
highest power of cos(θ) in g1 is p− 1 so that the only way for it to be O(θ2p) is to
vanish for any θ. We apply the same consideration to g2. Thus

(2.15) F1(θ) = (1− cos(θ))p.
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By taking − cos(θ) instead of cos(θ) in (2.15) we get

(2.16) F2(θ) = (1 + cos(θ))p,

and indeed the reflection coefficient (2.8). The only boundary conditions that pro-
duce these F1 and F2 are (2.11).

II.3. Summary. We have shown that the general pth order absorbing bound-
ary conditions for the wave equation (2.2) is given by (2.11) and that it is unique
up to addition of derivatives of the original wave equation. The analysis has been
carried out explicitly for the two dimensional case, however the extension to an
arbitrary number of dimensions is straightforward.

III. The 3-D Maxwell’s Equations

We discuss, in this Section, the application of the methodology, presented in
the last Section to the construction pth order absorbing boundary conditions for
the Maxwell’s equations in three space dimensions.

The 3-D non dimensional Maxwell’s equations in vacuum is of the form:

∂E
∂t

= ∇×H(3.1)

∂H
∂t

= −∇×E(3.2)

Where E and H are the electric and magnetic fields, respectively.
We consider the equations in Cartesian coordinates in the domain
0 ≤ x < ∞, −∞ < y, z < ∞.

∂E1

∂t
=

∂H3

∂x2
− ∂H2

∂x3
,

∂E2

∂t
=

∂H1

∂x3
− ∂H3

∂x1
,

∂E3

∂t
=

∂H2

∂x1
− ∂H1

∂x2
,(3.3)

∂H1

∂t
= −

(
∂E3

∂x2
− ∂E2

∂x3

)

∂H2

∂t
= −

(
∂E1

∂x3
− ∂E3

∂x1

)
,

∂H3

∂t
= −

(
∂H2

∂x1
− ∂H1

∂x2

)
.(3.4)

This can be written as
∂W
∂t

= A1
∂W
∂x

+ A2
∂W
∂y

+ A3
∂W
∂z

The number of boundary conditions to be specified at x = 0 corresponds to the num-
ber of negative eigenvalues of the coefficient matrix A1. Those are {1, 1, 0, 0,−1,−1}
thus two conditions are needed at x = 0. In this section we derive the most general
absorbing boundary conditions of the Engquist Majda type.
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The general plane wave solution of the Maxwell’s equations is given by(
E
H

)
= (Aq1 + Bq2) eiω(t+αx+βy+γz) + (Cq3 + Bq4) eiω(t−αx+βy+γz)(3.5)

= AQ1 + BQ2 + CQ3 + DQ4(3.6)

Where
α =

√
1− β2 − γ2.

The vectors qi are not unique, but a convenient choice is

(3.7) q1 =




0
γ
−β

β2 + γ2

−αβ
−αγ




, q2 =




β2 + γ2

−αβ
−αγ

0
−γ
−βγ




,

and

q3(α, β, γ) = q1(−α, β, γ),
q4(α, β, γ) = q2(−α, β, γ).

We note that the first two terms in (3.7), Q1,Q2, correspond to left moving
waves. We would like to design two boundary conditions of the form

L1W = 0,

(3.8)
L2W = , 0

to minimize reflections of those waves from the boundary x = 0.
Upon substituting the plane wave (3.5) into the boundary conditions (3.8) we

get a system of two equations in the unknowns A,B,C, D

AF1 + BF2 + CF3 + DF4 = 0,(3.9)
AG1 + BG2 + CG3 + DG4 = 0.(3.10)

Here Fj = Fj(α, β, γ) is the action of the first boundary operator on the wave
Qj, and Gj is obtained as a result of the action of the second boundary condition
i.e.

Fj = e−iω(t−βy−γz)L1Qj ,

(3.11)

Gj = e−iω(t−βy−γz)L2Qj .

The coefficients of the reflected waves, C, D are thus given by

C = A
F1G4 −G1F4

F3G4 −G3F4
+ B

F2G4 −G2F4

F3G4 −G3F4
(3.12)

= ARCA + BRCB(3.13)

D = −A
F1G3 −G1F3

F3G4 −G3F4
−B

F2G3 −G2F3

F3G4 −G3F4
(3.14)

= ARDA + BRDB(3.15)

We have thus four reflection coefficients - two of them, RCA, RDA, measure the
reflections of the first family of left moving waves, where as RCB , RDB measure the
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reflections of the second family. The pth order Engquist-Majda boundary conditions
are designed such that all reflection coefficients are O((β2+γ2)p). This can be done
easily:

Theorem 3.1:
The Engquist-Majda boundary condition of order p is given by:

L1

(
E
H

)
=

(
∂

∂t
− ∂

∂x

)p−1

(E3 −H2) = 0(3.16)

L2

(
E
H

)
=

(
∂

∂t
− ∂

∂x

)p−1

(E2 + H3) = 0(3.17)

Proof:
We construct the Fj and the Gj as defined in (3.11) using the boundary oper-

ators in (3.16, 3.17), to obtain

F1 = −β(1− α)p ; G1 = γ(1− α)p,

F2 = γ(1− α)p ; G1 = β(1− α)p,

F3 = −β(1 + α)p ; G3 = γ(1 + α)p,

F4 = γ(1 + α)p ; G1 = β(1 + α)p.

This leads to the following reflection coefficients

(3.18) RCA = RDB =
(

1− α

1 + α

)p

; RCB = RDA = 0.

Since α =
√

1− β2 − γ2 the reflection coefficients are all O
(
(β2 + γ2)p

)
Which

proves the theorem.
¤

Note that the functions E3 − H2 and E2 + H3 are the one dimensional char-
acteristic variables in the x-direction. They emerge naturally when one looks for a
first order boundary operators of the form

∑

i=1,3

a1iEi +
∑

i=1,3

b1iHi = 0,

∑

i=1,3

a2iEi +
∑

i=1,3

b2iHi = 0.

Note also that the boundary conditions are not unique, in fact one can add combi-
nations of the derivatives of each of the equations in (3.3).

We conclude this section by showing that the boundary conditions (3.16, 3.17)
can be trivially generalized to a general smooth boundary. Denote by n the unit
normal at the outer boundary of the computational domain. The characteristic
vector in this direction v is given by [7] v = n× [E + n×H]. The Engquist Majda
boundary condition will then be

(
∂

∂t
− ∂

∂n

)p

v = 0.
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It should be mentioned that because v · n = 0 we get only two independent condi-
tions.

IV. Advective Acoustics

We consider the propagation of waves induced in a uniform two dimensional flow
of a compressible fluid, by small perturbations. This phenomenon is described by
the linearized Euler equations for the density perturbation, ρ, and the perturbation
velocities, u and v which becomes after a standard nondimensionalization:

pt + Mρx + ux + vy = 0,

ut + Mux + ρx = 0,

vt + Mvx + ρy = 0,

where M is the Mach number.
This set of equations was transformed in [1] to

vτ + Mvξ + γρη = 0,

uτ + ρξ − M

γ
vη = 0,(4.1)

ρτ + uξ +
vη

γ
= 0.

Here γ =
√

1−M2.
Note that for M = 0, (γ = 1), the system (4.1) corresponds to the two dimen-

sional electro-magnetic case. In the discussion below we will use x, y, t for ξ, η, τ .
The solution of the system (4.1) can be represented as a sum of three families

of waves:

q = eiω(t+βy)
[
Aq1e

−i ω
M x + Bq2e

−iωαx + Cq3e
iωαx

]
(4.2)

= Q1 + Q2 + Q3(4.3)

With

(4.4) q1 =




M
M2β

γ

0


 q2 =




−βγ
α−M
1−Mα


 q3 =




−βγ
−α−M
1 + Mα


 ,

and α =
√

1− β2.
The entropy wave Q1 is a right moving wave, (since we assume a positive

mean velocity U0), Q2 is a right moving acoustic wave whereas Q3 is a left moving
acoustic wave. When considering bounded domains, therefore, we have two different
situations. In the first case. where the boundary is to the left of the domain, only
the left moving acoustic wave (Q3 ) reaches the boundary from the domain and is
reflected in the form of the two right moving waves, the entropy wave Q1, and the
acoustic wave Q2. The situation is different in the case where the boundary is to
the right of the domain: here two waves (the right moving ones, Q1,Q2 ) reach the
boundary and are reflected in the form of the left moving acoustic wave Q3. We
will discuss these two situations separately.
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IV.1. Left Boundary. We consider the domain 0 ≤ x < ∞. In this case two
boundary conditions have to be prescribed. We seek boundary conditions, at x = 0,
that will minimize reflections of the left moving acoustic wave for small incident
angles (small β). We denote the boundary conditions by

L1




v
u
ρ




∣∣∣∣∣∣
x=0

= 0(4.5)

L2




v
u
ρ




∣∣∣∣∣∣
x=0

= 0.(4.6)

Upon substituting the solution (4.2)- (4.4) to the boundary condition (4.5, 4.6) one
gets

AF1(β) + BF2(β) + CF3(β) = 0,(4.7)
AG1(β) + BG2(β) + CG3(β) = 0.(4.8)

Here Fj = e−iω(t+βy)L1Qj and Gj = e−iω(t+βy)L2Qj , evaluated at x = 0.
We get the two reflection coefficients:

RAC =
∣∣∣∣
A

C

∣∣∣∣ =
∣∣∣∣
F3G2 −G3F2

F1G2 −G1F2

∣∣∣∣(4.9)

RBC =
∣∣∣∣
B

C

∣∣∣∣ =
∣∣∣∣
F3G1 −G3F1

F2G1 −G2F1

∣∣∣∣ .(4.10)

The first reflection coefficient RAC measures the component of the entropy wave
Q1, the reflection of the left moving acoustic wave Q3 (Q3 → Q1) , the second one
RBC measures the component of the right moving acoustic wave Q2 reflected from
the boundary as the result of the left moving acoustic wave Q3 (Q3 → Q2) .

We observe that, contrary to the elecromagnetics case, we can not get a first
order condition using the variables themselves, we need to use the derivarives. To
see that, consider the most general linear combination

L1




v
u
ρ




∣∣∣∣∣∣
x=0

= a0v + a1u + a2ρ = 0(4.11)

L2




v
u
ρ




∣∣∣∣∣∣
x=0

= b0v + b1u + b2ρ = 0.(4.12)

This yield

F3 = (1 + M)(a2 − a1)− a0γβ + (a1 −Ma2)(1− α),(4.13)
G3 = (1 + M)(b2 − b1)− b0γβ + (b1 −Mb2)(1− α).(4.14)

Clearly the lowest order term must vanish and thus

a2 = a1,

b2 = b1.

To eliminate the next order in β we have to take a0 = b0 = 0, but this implies that
L2 is identical to L1, so that one of the parameters a0,b0 must be different from
zero. Hence we get that the boundary condition yield an error O(θ), that is it is of
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order 1
2 . Note that by choosing a1 = a2 = 0, a0 = 1 and b0 = 0, b1 = b2 = 1 we get

the characteristic boundary conditions

v = 0(4.15)
u + ρ = 0(4.16)

We conclude that the characteristic boundary conditions are of order 1
2 only.

The generalization of this type of boundary conditions is trivial when observing
that the result of applying the operator

(
∂
∂t − ∂

∂x

)
to Q3 is multiplying the vector

q3 by 1− α. We can state:

Theorem 4.1:
Consider the acoustics equations (4.1) in the domain 0 ≤ x < ∞, then the

boundary conditions
(

∂

∂t
− ∂

∂x

)p−1

v(x, y, t)|x=0 = 0(4.17)

(
∂

∂t
− ∂

∂x

)p−1

(u(x, y, t) + ρ(x, y, t))|x=0 = 0(4.18)

are of order p− 1
2 in the incident angle β = sin θ.

Proof:
Upon evaluating the Fj and Gj , j = 1, ..., 3 we get

RAC = β(1− α)p−1 2αγ(1−M)
(1− 1

M )p−1 [M(1−M)(1 + α) + M2β2]

RBC = (1− α)p M2(1 + α) + M(1−M)
(1 + α)p−1 [M(1−M)(1 + α) + M2β2]

Which proves the theorem. Note that the reflected right moving acoustic wave
Q2 is of order p. However the reflected entropy wave, Q1 is of order p− 1

2 only.

¤

A better set of boundary conditions, one that yields pth order by using deriva-
tives of order p − 1 can be obtained for p > 1. We note that (4.18) yields
G3 = (1 − α)p(1 − M), which is the correct order, so one has to find a better
condition then (4.17). We start with the second order case, seeking a linear com-
bination of the first derivative that will yield a second order reflection coefficient
(error of β4). To avoid nonuniqueness by the possibility of adding the acoustic
system of equation (4.1), we do not include the temporal derivatives. Thus we seek

L1




v
u
ρ


 = a11

∂v

∂x
+ a12

∂v

∂y
a21

∂u

∂x
+ a22

∂u

∂y
a31

∂ρ

∂x
+ a32

∂ρ

∂y
= 0

Demanding second accuracy we get the condition:
√

1−M2
∂v

∂x
− ∂u

∂y
−M

∂ρ

∂y
= 0.(4.19)
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The boundary conditions (4.19),(4.18) yield

F1 = M − 1
M

−Mβ2, F2 = 0, F3 = 0(4.20)

G1 =
M(M + 1)

γ
β, G2 = (1−M)(1 + α2), G3 = (1−M)(1− α)2(4.21)

and therefore

RAC = 0 RBC =
(

1− α

1 + α

)2

.(4.22)

The surprising fact is that only the acoustic wave Q2 is reflected into the domain
and not the density wave.

The generalization to an arbitrary order is now straightforward:

Theorem 4.2:
Consider the acoustics equations (4.1) in the domain 0 ≤ x < ∞. Then the

following set of boundary conditions (p > 1),
(

∂

∂t
− ∂

∂x

)p−2 (√
1−M2

∂v

∂x
− ∂u

∂y
−M

∂ρ

∂y

)∣∣∣∣∣
x=0

= 0(4.23)

(
∂

∂t
− ∂

∂x

)p−1

(u(x, y, t) + ρ(x, y, t))

∣∣∣∣∣
x=0

= 0(4.24)

is of order p in the incident angle β = sin θ. In fact, the only reflection is the right
acoustic wave moving into the domain. There is no reflection in the form of the
density wave.

¤

We end this section by noting that, as before, the boundary conditions (4.23)
and (4.24) can be modified by adding derivatives of the equations (4.1).

IV.2. Right boundary. We consider now the case −∞ < x ≤ 0. Now two
waves reach the boundary x = 0, one is the density wave Q1 and the other is the
right moving acoustic wave Q2, and one wave is reflected from the boundary. We
thus need to provide one boundary condition

(4.25) L



v
u
ρ




∣∣∣∣∣∣
x=0

= 0

Upon substituting the solution (4.2)- (4.4) into the boundary condition (4.25) one
gets

AF1(β) + BF2(β) + CF3(β) = 0,(4.26)

were, as before, we define Fj = e−iω(t+βy)L1Qj .
We have now two reflection coefficients RCA = |F1

F3
| and RCB = |F2

F3
|. The first,

RCA, measures the intensity of the reflected acoustic wave Q3 , due to the incident
density wave Q1. The second reflection coefficient RCB measure the intensity of
the reflected acoustic wave Q3 due to the incident acoustic wave Q2 . For these
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coefficients to be small in the incident angle θ we need that both F1 and F3 will be
small.

We start by seeking a boundary condition based on the variable themselves

(a0v + a1u + a2ρ)|x=0 = 0.

This yields

F1 = a0M + a1
M2β

γ
,(4.27)

F2 = −βγa0 + (α−M)a1 + (1−Mα)a2,(4.28)
F3 = −βγa0 − (α + M)a1 + (1 + Mα)a2,(4.29)

For F1 to tend to zero with β we need a0 = 0, and for F2 to be the same
a1 + a2 = 0, we thus get the characteristic boundary condition

(4.30) (u− ρ)|x=0 = 0,

with

(4.31) RCA =
M2

γ(1 + α)(1 + M)
β RCB =

1− α

1 + α
.

Thus we get first order for the acoustic wave reflection but only half order for
the density wave reflection. Moreover, the trick used before to increase the order
of the boundary condition, namely applying the operator ∂

∂t + ∂
∂x to the boundary

condition (4.30) is not successful here, since it leads to

RCA =
(

1− 1
M

)
M2

γ(1 + α)(1 + M)
,

We look, therefore, for combinations of the derivatives of the primitive variables

in order to gain higher order. This task turns out to be impossible - we can not
get higher than first order in the reflection coefficient RCB of the acoustic wave,
however we can eliminate completely the reflection in the form of density wave.
The boundary condition is

(4.32)
(

∂

∂t
+

∂

∂x

)
ρ = 0,

yielding

FCA = 0 FCB =
1− α

1 + α
.

It is not surprising that there is no density wave reflection : the boundary con-
dition (4.32) uses only the variable ρ which does not appear in Q1. This boundary
condition can be generalized:

Theorem 4.3
Consider the system (4.1) in the domain −∞ < x ≤ 0. Then the boundary

condition

(4.33)
(

∂

∂t
+

∂

∂x

)p

ρ = 0,
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is of order p. Moreover there is no density wave reflection:

RCA = 0,(4.34)

RCB =
(

1− α

1 + α

)p

(4.35)

¤

As before any combination of the derivative of (4.1) can be added to (4.33). We
also note that the pth order derivative is needed to get a pth order BC, in contrast
to the case of left boundary, in which one could get pth order with p−1 derivatives,
see (4.23), (4.24).

V. Well Posedness

We will discuss here the wellposedness of the Engquist Majda boundary con-
ditions for the three systems of equations discussed in the former sections. To do
that we utilize the Kreiss theory (see [9], [2], [4]). We find out that, as pointed out
by Gustafsson (see [3]) all the three cases discussed above allow one generalized
eigenvalue. This is something inherent in the E-M conditions. The meaning of this
generalized eigenvalue is not clear. Gustafsson argues that it does not cause illposed-
ness, but rather growth in time and degradation of accuracy when the equations
are being solved numerically. However many other researchers (see the excellent
review paper [5]) report using successfully E-M like boundary conditions up to very
high order, so it seems that the particular numerical application of the boundary
condition is important. We plan to discuss this matter in detail in future work,
hence the following Section is concern with the analysis of the methods modulo
this eigenvalue.

V.1. The Wave Equation. To apply the Kreiss theory to (2.7) we seek a
solution of the form

u(x, y, t) = eSteRxeiνy(5.1)
S2 = R2 − ν2(5.2)

Where ν is real.
If a solution, satisfying the boundary conditions, with RealS > 0 and iRealR <

0 exists, than S is called an eigenvalue and the problem is not well posed. The case
RealS = 0 and RealR = 0 is called generalized eigenvalue if a perturbation of S,
δS > 0 corresponds to δR < 0 in (5.2).

Substituting the solution (5.1) in the boundary condition (2.7) we get

(S −R)p = 0,

So S = R, and from (5.2) S = R = ν = 0. Perturbing S = 0 by δS > 0 can
yield δR = −δS and hence S = 0 is a generalized eigenvalue. However there is
no other generalized eigenvalue or eigenvalue. We speculate that this generalized
eigenvalue is a manifestation of the fact that the solution to the problem (2.1) with
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the absorbing boundary condition(2.7) is not unique. In fact consider

Utt = Uxx 0 ≤ x ≤ ∞
U(x, 0) = 0 Ut(x, 0) = 0(

∂

∂x
− ∂

∂t

)p

U |x=0 = 0.

This equation has in addition to the trivial solution also the solution

(5.3) U =
{

0 t ≤ x
(t− x)p−1 t > x

V.2. Maxwell’s Equations. Consider now the Maxwell’s equations (3.3)
with the Engquist Majda absorbing boundary conditions (3.16,3.17). For illposed-
ness we look for solutions of the form

(5.4) U = eSteiµyeiνzU0(x),

with RealS > 0,µ and ν real, and U(x) ∈ L2[0,∞].
Substituting (5.4) into (3.3) we get

(5.5) U = eSteiµyeiνzeRx




A




0
iνS
−iµS

−(µ2 + ν2)
−iµR
−iνR




+ B




−(µ2 + ν2)
−iµR
−iνR

0
−iνS
iµS







with R = −
√

S2 + µ2 + ν2.
We substitute (5.5) in (3.16, 3.17) to get

(R− S)p [Aiµ + B(−iν)] = 0
(R− S)p [A(−iν) + B(−iµ)] = 0.

Thus for a nontrivial solution we get

(5.6) (R− S)2p(µ2 + ν2) = 0

Again we have a generalized eigenvalue S = 0.

V.3. Acoustics.
V.3.1. Left Boundary. We consider the Euler equations (4.1) in the domain

0 ≤ x < ∞, and discuss the well posedness of the absorbing boundary conditions
(4.17,4.18). Again we look for a solution of the form

eSteiµyU0(x)

Where RealS > 0 , µ is real and U0 is in L2[0,∞].
Such a solution for the differential equations (4.1) is given by

(5.7)




v
u
ρ


 = eSteiµy


A




S
iMµ

γ

0


 e−

S
M x + B




−iγµ
−R−MS
S + MR


 eRx


 ,

where R is a solution of R2 = S2 + µ2 and RealR < 0. Note that in (5.7) it is
implicitly assumed that R 6= − S

M .
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Substituting the solution (5.7) into the boundary conditions (4.17,4.18) we get
the following algebraic system:

AS

(
S +

S

M

)p−1

+ B(S −R)p−1(−iγµ) = 0,

A

(
S +

S

M

)p−1

+ B(S −R)p(1−M) = 0.

Thus, for a nontrivial solution, the Kreiss determinant
(

S +
S

M

)p−1

(S −R)p(S + MR) = 0.

has to vanish.
Since S+MR 6= 0 we have to consider two pairs S = R = 0 which is as before a

generalized eigenvalue. Another generalized eigenvalues is given (for p > 1), S = 0,
R = −µ.

We turn now to the boundary conditions (4.23, 4.24). The Kreiss determinant
condition is now

(
S +

S

M

)p−2

(R− S)p(S2 −M2R2) = 0

For p = 2 the only generalized eigenvalue comes from S = 0 = R, for p > 2 we
have the pair S = 0,R = −|µ|. The meaning of those generalized eigenvalues is not
clear and further investigation has to be carried out.

V.3.2. Right Boundary. Consider now the domain −∞ < x ≤ 0, an L2 solution
for the equation (4.1) is

(5.8) eSteiµyeRx




iγµ
MS + R
−S −MR




With
R2 = S2 + µ2

To check the wellposedness we substitute (5.8) in the boundary condition (4.33) to
get:

(S + R)p(S + MR) = 0.

It is clear that the only generalized eigenvalue is S = 0 = R.
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Appendix A

The boundary conditions derived in the Section IV are given in terms of the
transform variables ξ, η and τ , see equation (4.1). In this Appendix we would like
to express those boundary conditions in terms of the physical variables x, y, t. The
transformation used in [1] is:

ξ = x

η =
√

1−M2y = γy(0.1)
τ = Mx + γ2t.

Note the the boundary ξ = 0 is at x = 0.
We first deal with the operator:

∂

∂τ
− ∂

∂ξ
In the physical variables this operator becomes

(1−M2)
∂

∂t
+ (M − 1)

∂

∂x

We start with the boundary conditions (4.17,4.18) applied at x = 0, they
become (

(M + 1)
∂

∂t
− ∂

∂x

)p−1

v(x, y, t) = 0(0.2)

(
(M + 1)

∂

∂t
− ∂

∂x

)p−1

(u(x, y, t) + ρ(x, y, t)) = 0.(0.3)

In Section IV we recommended the boundary conditions (at x = 0) (4.23,4.24),
which become in the physical space

(
(M + 1)

∂

∂t
− ∂

∂x

)p−2 [
∂v

∂x
− ∂u

∂y
−M

∂ρ

∂y

]
= 0(0.4)

(
(M + 1)

∂

∂t
− ∂

∂x

)p−1

(u(x, y, t) + ρ(x, y, t)) = 0.(0.5)

We consider now the domain −∞ < x ≤ 0. The boundary condition (4.33)
becomes:

(0.6)
(

(1−M)
∂

∂t
+

∂

∂x

)p

ρ = 0.

Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912

Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912


