556: MATHEMATICAL STATISTICS 1

ASYMPTOTIC APPROXIMATIONS AND THE DELTA METHOD

To approximate the distribution of elements in sequence of random variables {X,,} for large n, we

attempt to find sequences of constants {a,} and {b,} such that Z,, = a, X,, + b, 4, Z, where Z has
some distribution characterized by cdf F;. Then, for large n, Fz, (2) = Fz(z), so

Fx, (z) = P[X,, < z| = Plap X, + by, < apx +by| = Fz, (anx + by) = Fz(apnx + by).

EXAMPLE Suppose that X1, X», ..., X, areii.d. such that X; ~ Exzp(1), and let
Y, = max{X1, Xs,..., X, }. Then by a previous result, Fy, (y) = {Fx(y)}", so fory > 0,
Fy,(y) = {1 — e ¥}" — 0, and there is no limiting distribution. However, if we take a,, = 1 and

b, = —logn, and set Z,, = a, Y, + b, then as n — oo,
Fy,(2) = Pr[Z,<2]=Pr[Y, <z+4logn] = {1 — e *718"}" — exp{—e*} = Fy(2),
Fy,(y) = PV, <y]=P[Z, <y—logn] = Fz(y—logn) = exp{—e ¥*'°8"} = exp{—ne ¥}
and by differentiating

fray) = ne”¥exp{—ne™¥} y>0.
This can be compared with the exact version
frly) =ne”?(1 —e)" y>0.

The figure below compares the approximations for n = 50, 100, 500, 1000. Solid lines use the exact

formula, dotted lines use the approximation, histograms are 5000 simulated values.
n=5 n=10
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DEFINITION (ASYMPTOTIC NORMALITY)
A sequence of random variables { X, } is asymptotically normally distributed as n — oo if there
exist sequences of real constants {y,, } and {0, } (with o, > 0) such that

X, —
Sn "l 47 L N(0,1).

On

The notation X,, ~ N(u,,,02) or X, ~ AN (,,,02) as n — oo is commonly used.

THEOREM (THE DELTA METHOD)
Consider sequence of random variables {X,,} such that

V(X — 1) L X.
Suppose that g(.) is a function such that first derivative ¢(.) is continuous in a neighbourhood of 4,
with g(u) # 0. Then
Vilg(Xa) = () = 4 X.
In particular, if
V(X — 1) —% X ~ N(0,02).

then
Vi(9(Xn) — g(1) —5 G(1)X ~ N0, {3(1)}20?).

Proof. Consider a Taylor series expansion of g(X,,) about y;

X 4
9(X) = 9() + 9 (X — 1)+ 3L (x, — pyr 1)
r=2 :

T

Now as . .
Vn(X, —p) — X = X,—pu—0 = X, — i

it can be shown that

()
S o,y o
r=2 ’

and we can rewrite equation (1) that

9(Xn) = g(p) + g(p)(Xn — p1) + 0p(1)

using the stochastic order notation, where 0,(1) indicates a term that converges in probability to zero.
Thus using Slutsky’s Theorem, we have that

Valg(Xa) = g(1) = G)Va(Xn — ) -5 §(u) X

and if X ~ N(0, 0?), it follows from the properties of the Normal distribution that

Vi(9(Xn) — g(1) ~2 N(0, {g(1)}20?).



Note: This result extends to the multivariate case. Consider a sequence of vector random variables
{X,, } such that

VX, —p) -5 X.

and g : R¥ — R%is a vector-valued function with first derivative matrix ¢(.) which is continuous in a

neighbourhood of 1 with g'(/f) # 0. Note that g can be considered as a d x 1 vector of scalar functions.

9(z) = (91(2), -, galz))

Note that §(z) is a (d x k) matrix with (i, j)th element

dgi(z)
8$j

Under these assumptions, in general

Vilg(X,) — g(w) -5 g(u) X.

and in particular, if
Vi(X, - p) 5 X ~ N(0,5).

where ¥ is a positive definite, symmetric k£ x k matrix, then

VAlg(X,) — (1)~ g X ~ N (o, {a}= {gm}T) .

THEOREM (THE SECOND ORDER DELTA METHOD: Normal case)
Consider sequence of random variables { X, } such that

\/E(Xn - /‘) i) N(0702)'

Suppose that g(.) is a function such that first derivative ¢(.) is continuous in a neighbourhood of 4,
with ¢(p) = 0, but second derivative exists at ;1 with §(u) # 0. Then

n(o(Xa) ~ g(u) % 0?20 x

where X ~ 3.
Proof. Uses a second order Taylor approximation; informally

0% = gl + (% — ) + 2 (00, — )2 4 0y(1)
thus, as g(u) =0,
9(w)

9(Xn) = g(u) = =2 (X = 1) + 0p(1)

and thus

n(g(X) - g()) = L, — 2 L 288 22

where Z2 ~ x3. 1



EXAMPLES

1. Under the conditions of the Cegtral Limit Theorem, for random variables X7, ..., X, and their
sample mean random variable X,

V(X — i) ~5 X ~ N(0,0%).
Consider g(z) = 22, so that g(x) = 2z, and hence, if 1 # 0,
V(X" = i) -5 X ~ N(0,4p%0?)

and .,
Xn~ ~ AN(p?, 4p°0” /n)

If © = 0, we proceed by a different route to compute the approximate distribution of X.,.%; note
that, if 4 =0,
VX, -5 X ~ N(0,02)

so therefore
nX,’ = (vVnXn)? -5 X2 ~ Gamma(1/2,1/(20%))

by elementary transformation results. Hence, for large n,

X, ~ Gamma(1/2,n/(20%))

2. Again under the conditions of the CLT, consider the distribution of 1/ X,,. In this case, we have a
function g(z) = 1/, s0 g(z) = —1/22, and if uu # 0, the Delta method gives

Vi(1/Xn = 1/p) —5 X ~ N(0,0%/pi)

or,
~ AN(1/pn 0% ).
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