
MATH 204: Principles of Statistics 2

Dr David A. Stephens

Department of Mathematics & Statistics
Room 1235, Burnside Hall

d.stephens@math.mcgill.ca

www.math.mcgill.ca/∼dstephens/204/

1

Textbook: McClave and Sincich (2008), Statistics (11th Edition),
Chapters 10-15.

Note that the 10th Edition of McClave and Sincich contains
essentially the same material.

Prerequisites: MATH 203 (or equivalent)

Some statistical computing knowledge useful.

Method of Assessment:

� Assignments

� Mid-Term

� Final

See syllabus handout for precise details.
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Course Objectives

� Extensions of MATH 203 topics to other practical
experimental contexts

� Introduction to statistical computation using standard
software (SPSS)

� Practice in the use of statistical methods, in particular,
hypothesis testing and linear modelling.
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Three main sections

I. THE ANALYSIS OF VARIANCE AND DESIGNED
EXPERIMENTS

II. LINEAR REGRESSION MODELLING

III. NON-PARAMETRIC TESTING
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Typical experimental scenario

� two different groups of subjects

� single observation/measurement made on each subject

� scientific question of interest

ARE THE TWO GROUPS OF SUBJECTS SIGNIFICANTLY
DIFFERENT IN TERMS OF THEIR MEASURED VALUES ?
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Example: Pre-Natal Care

Objective: To compare the birthweights of babies in two groups of
mothers.

� GROUP A: Received five or fewer pre-natal visits

� GROUP B: Received more than five pre-natal visits

Do the GROUP A babies have significantly different birthweights
from those from GROUP B ?
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Data: Birthweights (grammes)

� GROUP A: 10 subjects

2164 2600 2184 2080 1820

2496 2184 2080 2184 2576

� GROUP B: 7 subjects

3224 2704 2912 2444 3120

2912 3848
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First step in analysis: statistical summary

� GROUP A:
� Sample size: nA = 10
� Sample mean: xA = 2236.8
� Sample variance: s2

A = 61190.4

� GROUP B: 7 subjects

� Sample size: nB = 7
� Sample mean: xB = 3023.429
� Sample variance: s2

B = 198679.6
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Recall, for data x1, . . . , xn

x =
x1 + · · · + xn

n
=

1

n

n∑
i=1

xi

s2 =
1

n − 1

n∑
i=1

(xi − x)2

x measures the “average” of sample
s2 measures the amount of variability around the average.
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In the birthweight example

xA = 2236.8 xB = 3023.429

so it appears that Group B birthweights are higher....

... BUT ARE THEY SIGNIFICANTLY HIGHER ?

i.e. is the difference due to chance alone

� sample sizes quite small

� birthweights quite variable
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Statistical Testing

We adopt the following procedure to assess the “significance” of
the difference between xA and xB .

1. Define a test statistic, T , that permits comparison of the two
groups

2. Predict how T will behave assuming that the two groups are
not significantly different.

3. Compare the prediction with what was actually observed.
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Formally, we

� assume a Normal distribution for the data in the two groups

i.e. xA1, . . . , xAnA
are drawn from a population of birthweights

that is well-modelled by a

Normal(μA, σ2
A)

distribution.

Similarly

xB1, . . . , xBnB
∼ Normal(μB , σ2

B)

We might initially assume that

σ2
A = σ2

B
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� consider the two hypotheses

H0 : μA = μB

Ha : μA �= μB

H0 is the NULL HYPOTHESIS
Ha is the ALTERNATIVE HYPOTHESIS

� define the test statistic

t =
xA − xB

s

√
1

nA
+

1

nB

where

s2 =
(nA − 1)s2

A + (nB − 1)s2
B

nA + nB − 2
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s2 is the estimate of the common population variance

σ2 = σ2
A = σ2

B

Here

s2 =
(10 − 1)61190.4 + (7 − 1)198679.6

10 + 7 − 2
= 116186.1

so that
s = 340.8608.

Thus

t =
2236.8 − 3023.429

340.8608

√
1

10
+

1

7

= −4.683
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Now, if the null hypothesis was true, so that

μA = μB

the test statistic t should look like an observation from a

Student-t

distribution with
nA + nB − 2 = 15

“degrees of freedom”.
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i.e. t should lie somewhere in the “high-probability region” of the
Student-t(15) probability distribution
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Student−t(15) probability distribution

Clearly, in this case, t does not lie in a high probability region.
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i.e. we are surprised to see t so far away from zero.

The predicted behaviour of t, under the assumption that H0 is
TRUE, DOES NOT MATCH THE OBSERVED BEHAVIOUR !

Therefore, the assumption that H0 is true MUST BE INCORRECT
and we

REJECT H0
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How do we quantify the “statistical significance” ?

Two approaches:

1. Define the “high-probability” region, and reject H0 if t does
not lie in this region.

2. Compute the level of “surprise” at observing t under the
assumption that H0 is TRUE.

18



For 1: Set significance level α, with 0 < α < 1, and find the
central 1 − α “high-probability” region, between the two values
−CR and CR (marked by dotted lines).
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If t < −CR or t > CR , REJECT H0.
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Typically, α = 0.05 (or 0.01), so for the Student-t(15) distribution

CR = 2.131 (or 2.947)

The regions (−∞,−CR) and (CR ,∞) form the CRITICAL
REGION or REJECTION REGION.

If t lies in the critical region, we reject H0.
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For 2: To compute the level of “surprise”, we evaluate the
probability of observing a “more extreme” test statistic under the
assumption that H0 is TRUE.

Here, this probability is

p = 0.00029.

This probability is very small, so we are very surprised by the
observed result.

p is termed the p-value or observed significance level.

If p < α = 0.05 (or 0.01), we reject H0.
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Some questions:

� How do we choose the test statistic ?

� How do we choose α ?

� Why is the distribution of T (and t) a Student-t(15)
distribution ?

� How do we compute CR and p ?
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Equal Variances ?

Is the assumption of equal population variances

σA = σB

fair in this case ?

s2
A = 61190.4

s2
B = 198679.6

so that
s2
A

s2
B

= 0.3080.

Can we test σA = σB formally ?
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Yes:

H0 : σA = σB

Ha : σA �= σB

Test statistic is

F =
s2
A

s2
B

= 0.3080

If H0 is true, F should look like an observation from a

Fisher-F

distribution with
(nA − 1, nB − 1)

“degrees of freedom”.
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From tables, for α = 0.05,

CR1 = 0.231 CR2 = 5.523

so the observed value of F does lie in the high probability region,
and there is no reason to reject H0 at α = 0.05.
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Can also compute a 95 % confidence interval for μA − μB

(xA − xB) ± tnA+nB−2(0.975)s

√
1

nA
+

1

nB

where

tnA+nB−2(0.975) = 2.131

that is, the 0.975 probability point of the Student − t(15)
distribution.

Hence the 95 % confidence interval is

(−1144.59,−428.67)

- does not contain zero !
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NOTE: Significance level α.

α = P[H0 is rejected, given that H0 is TRUE]

= P[H0 rejected|H0 is TRUE]

If

� T is the test statistic random variable

� R is the rejection region

then

α = P[T lies in R|H0 TRUE] = P[T ∈ R|H0 TRUE]

that is, α is the probability of committing a

TYPE I ERROR
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Part I

Analysis of Variance
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In this section

� introduction to the terminology of designed experiments

� extension of statistical testing theory to comparison of more
than two population means

� THE ANALYSIS OF VARIANCE (ANOVA) F-TEST
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1.1 DESIGNED EXPERIMENTS
Data collection studies typically fall into one of two categories:

(i) Observational studies: the experimenter has no control over
the variables under study, and can only measure outcomes.

� The IQ of MAC and PC users
� The relationship between environmental exposure to toxins and

health status.

i.e. The experimenter does not control the exposure to
variables that may cause changes in the outcome of interest.

This type of study is common in medicine and epidemiology
as it is relatively cheap to carry out.

Common type of observational study:

CASE-CONTROL STUDY
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Example (Smoking and Lung Cancer)

A study (Doll and Hill, 1950) investigated 649 lung cancer cases
and 649 matched healthy controls, both drawn from a population
of men in the UK. They found out what proportion in each group
were smokers.

Neither health status nor smoking status were controlled by the
experimenter, but were merely observed.

Smokers Non-smokers Total

Lung cancer 647 2 649
Controls 622 27 649
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This type of study can be unreliable, and cannot uncover all the
relationships of interest.

A preferred approach involves the experimenter controlling the
variables that cause variation in the other variables.

Note that this may not be ethical in a smoking/lung cancer study.

(ii) Designed experiments: the experimenter can the levels of
variables that may affect the variable of interest.
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Example (Birthweight study)

GROUP A : 5 or fewer visits

GROUP B : More than 5 visits.

at the control of

(a) Mothers −→ OBSERVATIONAL STUDY

(b) Doctors −→ DESIGNED EXPERIMENT

- after each mother is recruited to take part in the study, they are
RANDOMLY assigned to either GROUP A or GROUP B. This is
termed a

RANDOMIZED EXPERIMENTAL STUDY

This type of study is preferable, but can be more difficult to
implement.
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Terminology

� Response variable (dependent variable): the variable of
interest in the study

� Factors : the variables that may have an effect of the
response variable

� quantitative if measured on a numerical scale
� qualitative otherwise

� Factor Levels: the values of the factors utilized in the
experiment

� Treatments: the factor-level combinations utilized.

� Experimental Units (subjects): the objects on which the
factors are measured or observed.
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Therefore:

� A designed experiment is one for which the analyst or
experimenter controls the specification of treatments and the
method of assigning units to treatments.

� An observational experiment or study is one for which the
analyst simply observes the treatments and response on a
sample of experimental units.
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Example (Birthweight study)

� Response: Birthweight (g)

� Factor: Pre-natal treatment group

� Factor levels: GROUP A or GROUP B

that is, we have a single factor with two factor levels.
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Example (SAT scores)

The SAT scores of female and male students in four schools are to
be compared.

� Response: SAT score

� Factors: SEX and SCHOOL (both qualitative)

� Factor levels:

� SEX: Female and Male
� SCHOOL: A,B,C,D

that is, we have a two factors, SEX with two factor levels and
SCHOOL with four factor levels. There are 8 possible treatments:

(F , A), (F , B), (F , C ), (F , D), (M, A), (M,B), (M, C ), (M, D)
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Example (Pain Relief)

Different pain relief remedies are to be compared : factors are

� REMEDY (quantitative/qualitative, 3 levels)

� Dose level 0
� Dose level 1
� Dose level 2

� AGE GROUP (quantitative/qualitative, 4 levels)

� 0-16 years
� 17-40 years
� 41-65 years
� 66 years and over

� SEX (qualitative, 2 levels)

� Female
� Male

A total of 3 × 4 × 2 = 24 possible treatment combinations;
REMEDY is the only factor that can be assigned by the analyst.
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Completely Randomized Design

A completely randomized design (CRD) is a design for which
treatments are randomly assigned to experimental units, or in
which random samples of experimental units are selected for each
treatment.

The term can be applied to both experimental and observational
studies. For example,

� if the treatments are FEMALE/MALE for the factor SEX, a
CRD draws independent samples of FEMALES and MALES
for the two treatment groups.

� if the treatments are DOSE 0/DOSE 1, a CRD assigns
experimental units independently to the two treatment groups
at random.
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Statistical Objectives

The experimental units assigned to different treatments
(factor-level combinations) form

independent samples

from

different populations

in a CRD.

We wish to compare treatments: specifically, we wish to compare
the treatment means.

A Multiple Group Comparison of Means !
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Suppose that there are k treatments:

TMT 1 Mean μ1

TMT 2 Mean μ2
...

...
TMT k Mean μk

We wish to test the hypotheses

H0 : μ1 = μ2 = · · · = μk

Ha : At least two of the k treatment means are different

How do we do this ?

What is the relevant test statistic ?

41

Comparing k Treatments

Suppose

TMT 1 has n1 experimental units
TMT 2 has n2 experimental units

...
...

TMT k has nk experimental units

Denote by xij the response for unit j in treatment group i , for
j = 1, . . . , ni and i = 1, . . . , k.

42



Let

x i =
1

ni

ni∑
j=1

xij

denote the sample mean for treatment i , and

s2
i =

1

ni − 1

ni∑
j=1

(xij − x i )
2

denote the sample variance for treatment i .

Now we consider pooling, that is, combining all units into a single
group.
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Define

� the total sample

n = n1 + · · · + nk =
k∑

i=1

ni

� the overall sample mean

x =
1

n

k∑
i=1

ni∑
j=1

xij

� the overall sample variance

s2 =
1

n − 1

k∑
i=1

ni∑
j=1

(xij − x)2
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Finally, consider the pooled sample variance

s2
P =

1

n − k

k∑
i=1

(ni − 1)s2
i

- the extension of the pooled estimate of the population variance
in a two-sample t-test.

Using these quantities, we can derive a test statistic for multiple
group comparison.
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We wish to compare how much variation is due to the

A DIFFERENCE BETWEEN TREATMENTS

and how much is due to

B RANDOM VARIATION WITHIN TREATMENTS

We measure A using the statistic

SST =
k∑

i=1

ni (x i − x)2

SST - Sum of Squares for Treatments
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We measure B using the statistic

SSE =
k∑

i=1

ni∑
j=1

(xij − x i )
2

=
k∑

i=1

ni∑
j=1

(xij − x i )
2

= (n − k)s2
P

SSE - Sum of Squares for Error

NOTE: This measure of random or error variability implicitly
assumes that the variability within the treatment groups is the
same for each group. That is, population variances

σ2
1, . . . , σ

2
k

are equal.

In practice this assumption must be checked.
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Finally, we define the test statistic using the mean levels of
variability

� MST - Mean Square for Treatments

MST =
SST

k − 1
=

1

k − 1

k∑
i=1

ni (x i − x)2

� MSE - Mean Square for Error

MSE =
SSE

n − k
=

1

n − k

k∑
i=1

ni∑
j=1

(xij − x i )
2 = s2

P
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Then the test statistic is

F =
MST

MSE
=

Average Variation due to Treatments

Average Variation due to Errors

F large =⇒ Treatments Different !
F small =⇒ Treatments Similar !

The behaviour of F is given by the following Theorem
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Theorem (ANOVA F -test to compare k treatments in a
Completely Randomized Design)

To test the hypothesis of equal treatment means,

H0 : μ1 = μ2 = · · · = μk

Ha : At least two of the k treatment means are different

the test statistic is

F =
MST

MSE

If H0 is TRUE, then

F ∼ Fisher-F(k − 1, n − k)

and the rejection region for a test at significance level α is the
region to the right of the 1 − α probability point of this Fisher-F
distribution, CR .
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NOTE: If

SS =
k∑

i=1

ni∑
j=1

(xij − x)2

is the overall or total sum of squares, then

SS = SST + SSE

so we can decompose the overall variation (SS) into the variation
due to treatments (SST ) and the variation due to the errors (SSE ).
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Assumptions behind the ANOVA F-test

1. The samples are randomly selected in an independent manner
from the k treatment populations.
[Satisfied in a CRD]

2. All k populations have distributions that are approximately
normal.

3. The k population variances are equal.

σ2
1 = σ2

2 = · · ·σ2
k .
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Example (Milk Quality Data)

The impact on milk protein level of three different diets is being
studied.

Data: Measurements of milk protein levels for n = 1337 samples.

� Response: Milk Protein Level (%)

� Factor: DIET

� Factor levels: k = 3

� 1: Barley
� 2: Barley + Lupins
� 3: Lupins
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TMT 1 TMT 2 TMT 3

ni 425 459 453
xi 3.532 3.430 2.312
s2
i 0.102 0.091 0.114

SST = 10.606

SSE = 136.432

SS = 147.038

k − 1 = 2

n − k = 1334
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Therefore

MST =
SST

k − 1
=

10.606

2
= 5.303

MSE =
SSE

n − k
=

136.432

1334
= 0.102

and

F =
MST

MSE
= 51.851

If H0 is true, that is,
μ1 = μ2 = μ3

then F should look like an observation from a

Fisher-F(k − 1, n − k)

distribution.
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Here we are dealing with the

Fisher-F(2, 1334)

distribution. From tables, we discover that if α = 0.05, then

Fα(2, 1334) = 3.002

and thus we

Reject H0

and conclude that there is a significant impact on milk protein
level due to diet.
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Note: Tables in McClave and Sincich only give

F0.05(2, 120) = 3.07

F0.05(2,∞) = 3.00

so we cannot look up F0.05(2, 1334). However, we know that

3.00 < F0.05(2, 1334) < 3.07

and here the test statistic is F = 51.851.
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Are the assumptions met ?

1. Independent samples : Not possible to tell with current
information. In fact, data comprise repeated measurements on
79 cows - potentially not independent, as observations on the
same cow are likely to be more similar.

2. Normal Distributions : Visual inspection of boxplots
indicates that this may be valid.

3. Equal variances :

s2
1 = 0.102 s2

2 = 0.091 s2
3 = 0.114

so assumption appears to be valid
- can we test this formally ?
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barley barley+lupins lupins

2.
5

3.
0

3.
5

4.
0

4.
5

Milk Data: 3 Treatments
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Example (Anxiety Response Treatment)

In a study of Alzheimer’s disease and care of its sufferers, a
medication designed to improve anxiety relief has been developed.

In a lab experiment, n = 20 rats were assigned to one of four
(k = 4) treatment groups corresponding to dose-level of the
medication.

A measure of response to a “flee stimulus” was recorded.

� Response: Pull response to stimulus (units of force)

� Factor: DOSE-LEVEL

� Factor levels: k = 4

� Dose 0 (zero units)
� Dose 1 (one unit)
� Dose 2 (two units)
� Dose 3 (three units)
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0 1 2 2

27.0 22.8 21.9 23.5
26.2 23.1 23.4 19.6
28.8 27.7 20.1 23.7
33.5 27.6 27.8 20.8
28.8 24.0 19.3 23.9

We find that

SST = 140.094 SSE = 116.324 SS = 256.418

MST = 46.698 MSE = 7.270

and
F = 6.423

which we need to compare with the Fisher-F(3, 16) distribution.
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For α = 0.05, from McClave and Sincich tables

F0.05(3, 16) = 3.24

and so we

Reject H0

at α = 0.05 and conclude that there is a significant difference
between treatment groups.

p-value is 0.0046.
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0 1 2 3

20
22

24
26

28
30

32
34

Alzheimer’s Medication: Animal model trial
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Note: Here

DOSE 0 DOSE 1 DOSE 2 DOSE 3
s2
i 8.018 5.873 11.315 3.875

so we might suspect that the treatment variances σ2
1, σ

2
2, σ

2
3, σ

2
4 are

not equal. We may test this formally using

LEVENE’S TEST

- SPSS can report this test result.

Note: Visual inspection can give an idea of whether the equal
variance assumption is valid, or whether the populations are
normal. But the sample sizes may be small, so that visual
inspection or testing may not detect deviations from these
assumptions.

Ideally we would like to be able to relax these assumptions.
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The ANOVA Table

For a completely randomized design, we may report the results of
the ANOVA F-test in a stylized form, the ANOVA Table

SOURCE DF SS MS F

TREATMENTS k − 1 SST MST =
SST

(k − 1)
F =

MST

MSE

ERROR n − k SSE MSE =
SSE

(n − k)

TOTAL n − 1 SS

Note

(i) (k − 1) + (n − k) = (n − 1)

(ii) SST + SSE = SS

i.e. we can fill in missing values if they are not given.
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Sometimes an extra column is added at the right of the table to
give the p-value of the ANOVA F-test.

SOURCE DF SS MS F p

TMT k − 1 SST MST F =
MST

MSE
p-val

ERROR n − k SSE MSE

TOTAL n − 1 SS

where p-val solves

MST

MSE
= Fp-val(k − 1, n − k)

and Fα(ν1, ν2) is the (1−α) probability point of the Fisher-F distribution.
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SPSS Handout: Examples

� DIET: milk-protein level example (p. 1)

� DOSE-LEVEL: pull-strength in Alzheimer’s example (p. 3)

� DIAGNOSIS: (p. 5)

� RESPONSE: gut permeability of drug mannitol in AIDS/HIV
patients

� FACTOR: AIDS/HIV Status
� FACTOR LEVELS: k = 4

� AIDS - Full AIDS
� ARC - AIDS-related conditions
� HIV+ - HIV positive
� HIV- - HIV negative
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SPSS Handout: Examples

� BATCH NUMBER: bacteria level (per mill.) in different
batches of milk (p. 7)

� RESPONSE: Bacteria level count per million
� FACTOR: Batch number
� FACTOR LEVELS: 1,2,3,4,5 (k = 5)

� TREATMENT GROUP: Post-traumatic stress disorder
(PTSD) score in different treatment groups(p. 9)

� RESPONSE: PTSD score
� FACTOR: Therapeutic treatment method
� FACTOR LEVELS: k = 4

� SIT - ”Stress Innoculation Therapy”
� RE - ”Relive Experience”
� SC - ”Standard Counselling”
� WL - ”Waiting List” (Control)
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Levene’s Test

To test

H0 = σ2
1 = σ2

2 = · · · = σ2
k

H1 = At least one pair of σ2 different.

Test statistic

W =
(n − k)

(k − 1)

SSTZ

SSEZ
=

MSTZ

MSEZ

where SSTZ and SSEZ are the usual sums of squares evaluated for
the new data zij where

zij = |xij − x i |.

If H0 is true
W ∼ Fisher-F(k − 1, n − k).
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Example (PTSD Example (see handout))

n = 45, k = 4.

F-statistic F = 3.046

Critical Value F0.05(3, 41) � 2.84

F0.025(3, 41) � 3.46

F0.01(3, 41) � 4.31

Tables give Fα(3, 40).

=⇒ Reject H0 at α = 0.05 (p = 0.039).

BUT Levene’s Test suggests that the assumption of equal
variances is NOT valid.
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Why do we need the three assumptions ?

� independence

� Normality

� equal variances

- so that we can predict (under H0) that

F ∼ Fisher-F(k − 1, n − k)

and complete the test (compute p-values and the rejection region).

But our hypothesis of interest is

H0 : No difference between treatments
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Under this hypothesis, the treatment labels

SHOULD NOT MATTER !

i.e. we should be able to exchange the labels, and not notice any
major difference in the test statistic.

This leads us to consider permutation or randomization tests.

i.e. we compute the test statistic for all possible relabellings
consistent with H0, retaining the group sample sizes, and use these
values to compute the rejection region.
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Randomization/Permutation Tests

Suppose that there are N possible relabellings that give rise to test
statistics

F1,F2, . . . ,FN

Then the rejection region for significance level α is the interval to
the right of

N(1 − α)th largest of the values F1, F2, . . . ,FN

and the p-value is

Number of F1,F2, . . . ,FN ≥ F

N

where

F =
MST

MSE

is the true test statistic.
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If the group sample sizes are n1, n2, . . . , nk then

N =
n!

n1!n2! . . . nk !

where
n! = n(n − 1)(n − 2) . . . 3.2.1

(”n factorial”) - potentially very large.
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Example (PTSD Example)

k = 4, n = 45 (n1 = 14, n2 = 10, n3 = 11, n4 = 10)

There are
45!

14!10!11!10!
= 2.610 × 1024

possible relabellings: a very big number.

We compute F = MST
MSE for each relabelling. For the real data,

F = 3.046.
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Example (PTSD Example (continued))

Using this approach, we compute for α = 0.05

CRITICAL VALUE : CR = 2.844

p-VALUE : p = 0.040

Compare this with the ANOVA F-test values

CRITICAL VALUE : CR = 2.833

p-VALUE : p = 0.039

(using the Fisher-F(3,41) distribution.

Thus we obtain virtually identical results; but the randomization
test does not need the assumptions of normality or equal
variances.
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Permutation Distribution

F statistic
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Fisher−F(3,41) density
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Example (PTSD Example (continued))

Thus the null hypothesis (of equal means) is

REJECTED

under both procedures at the α = 0.05 significance level.

In this case, the computations give similar conclusions. Here the
truth or otherwise of the normality/equal variance assumptions
does not matter.
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Final Note on ANOVA F-test for a CRD

If k = 2, consider F = MST/MSE ;

MST =
1

k − 1

k∑
i=1

ni (x i − x)2 = n1(x1 − x)2 + n2(x2 − x)2

=
n1n2

n1 + n2
(x1 − x2)

2

MSE =
1

n − k

k∑
i=1

ni∑
j=1

(xij − x i )
2 = s2

P

=
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
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Therefore

F =

(
n1n2

n1 + n2

)
(x1 − x2)

2

s2
P

=

⎛⎜⎜⎝ (x1 − x2)

sp

√
1

n1
+

1

n2

⎞⎟⎟⎠
2

Thus F = t2, where t is the two-sample t-test statistic.

Thus if k = 2, the ANOVA F-test and the two sample t-test are
EQUIVALENT

t ∼ Student-t(n − 2)

F ∼ Fisher-F(1, n − 2)

and we must get the same conclusion (to reject H0 or otherwise)
using either statistic.
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Summary

If the assumptions

� independence (holds by design in a CRD)

� Normal populations

� equal variances

hold, use

ANOVA F-test

If the assumptions do not hold

� use Randomization/Permutation test

� use Non-parametric test (see Section 3)
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1.3 Multiple Comparison of Means

If the ANOVA F-test null hypothesis

H0 : μ1 = · · · = μk

is rejected, then it is of interest to discover which of the means
are different. For k groups, there are c = k(k − 1)/2 pairs of
group means that can be compared.

Consider a “family” of hypothesis tests - a collection of tests of
different hypotheses carried out independently on different data
sets. For each test in the family, we consider testing the hypothesis
at significance level α.

82

Notation

Label the tests i = 1, . . . , c , and for each i , label

� the null hypotheses H0i

� the test statistics Ti

� the rejection regions Ri

that are potentially different for each i .

We specify for each i ,

α = P[Ti ∈ Ri |H0i is TRUE]

which implicitly defines Ri . Note that α is the

“Test Type-I Error Rate” or “Comparisonwise Error Rate”

Now consider the results of all tests in the family; what is the
“Familywise” Type-I error rate ?
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Using the laws of probability

P[Ti ∈ Ri |H0i is TRUE] = α

means that
P[Ti /∈ Ri |H0i is TRUE] = 1 − α

giving the probability that the test does not reject H0i , if H0i is in
fact true, is 1 − α.

Now we consider all tests together;

P[Each Ti /∈ Ri |Each H0i is TRUE] = (1 − α)c

This is the probability that each test results in the null hypothesis
not being rejected, that is, the probability that we never commit a
Type-I error.
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Therefore the probability of at least one Type-I error is

αF = 1 − (1 − α)c

αF is the Familywise Error Rate.

α = 0.05 α = 0.01
c αF αF

5 0.226 0.049
10 0.401 0.096
50 0.923 0.395
100 0.994 0.634

Therefore, whenever we carry out a “family” of tests, we should
not use the traditional choices of α = 0.05 or 0.01 on each test.
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The Bonferroni Method

To fix αF = 0.05, say, we need to use α on each test where

αF = 1 − (1 − α)c ⇐⇒ α = 1 − (1 − αF )1/c

For example, if αF = 0.05 and c = 10, use

α = 1 − (1 − 0.05)1/10 = 0.0051

It can be shown that

1 − (1 − α)c ≈ cα

Therefore, if αF is the required familywise error rate, we must
set the comparisonwise error rate to be α = αF/c .

αF/c is known as the Bonferroni Correction.
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Confidence Intervals

For the k = 2 group comparison of means, a 100(1 − α)%
confidence interval for μ1 − μ2 is

(x1 − x2) ± tα/2(n1 + n2 − 2)sP

√
1

n1
+

1

n2

where tα(ν1) is the 1 − α probability point of the Student-t
distribution with ν1 degrees of freedom (under the assumptions of
independence, Normality and equal group variances).

If we move to a family of c tests, to get simultaneous confidence
intervals for the differences in means μi − μj for all pairs of i and j ,
we should adjust α to αF when computing the 100(1 − α)%
confidence interval.
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SPSS gives twelve different methods for correcting the confidence
interval for use in different experimental situations. For example

� planned comparisons μ1 = μ3, μ7 = μ10 etc.

� all comparisons

Three methods are recommended:

� Tukey’s Method

� Bonferroni’s Method

� Scheffé’s Method

Having selected a multiple comparison correction method, we
compute simultaneous confidence intervals for each comparison of
means, and identify

� which means are significantly different

� the ranking of differences μi − μj in terms of magnitude.

88

1.4 Randomized Block Designs

A randomized block design used matched experimental units
organized into sets known as blocks and assigns one member from
the set to each treatment.

For k treatments

1. Compile b blocks of k experimental units, with each block
comprising units that are similar.

2. Assign one unit from each block to each treatment at random.

Then there are a total of n = bk measured responses.
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We wish to compare treatments whilst acknowledging that there
may be differences between the blocks.

That is, the observed variation is due to

TREATMENTS and BLOCKS and ERROR

rather than merely

TREATMENTS and ERROR

as in the CRD.
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Example (SAT Scores)

� Response : Measured SAT Score

� Factor : Sex

� Factor-levels : k = 2 (Female/Male)

� Blocks : b = 5 (Previous GPA, within same school)

i.e. k = 2, b = 5 ∴ n = 10.

Block Female SAT Male SAT
1 A: 2.75 540 530
2 B: 3.00 570 550
3 C: 3.25 590 580
4 D: 3.50 640 620
5 E: 3.75 690 690
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Example (SAT Scores (continued))

This design recognizes that GPA score and school are likely to
explain some variation in SAT Score, but that neither is directly
related to the “treatment” of interest (SEX - Female/Male).

i.e. the blocking variable removes systematic variation in response
that is not of primary interest.

We pick one Female and one Male in each school/GPA category,
and pair them.
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Example (Treatment for Hypertension)

� Response : Blood Pressure (mgHg)

� Factor : Drug Type

� Factor-levels : k = 3 (Drug 1, Drug 2, Drug 3)

� Blocks : b = 4 Age/Sex combinations

� Female/Under 50
� Male/Under 50
� Female/Over 50
� Male/Over 50

i.e. k = 3, b = 4 ∴ n = 12.
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Testing for Equal Treatment Means

An ANOVA F-test can be constructed for a RBD. Let

� i = 1, . . . , k index treatments

� j = 1, . . . , b index blocks

i.e. xij is the response for the ith treatment in the jth block. Let

� x i be the ith treatment mean

� x (B)

j be the jth block mean

� x be the overall mean
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Let

SST =
k∑

i=1

b(x i − x)2

SSB =
b∑

j=1

k(x (B)

j − x)2

SS =
k∑

i=1

b∑
j=1

(xij − x)2

SST: Sum of Squares for Treatments
SSB: Sum of Squares for Blocks
SS: Total Sum of Squares
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Finally

SS = SST + SSB + SSE ∴ SSE = SS − SST − SSB

SSE: Sum of Squares for Errors

Test statistic is

F =
MST

MSE

where

MST =
SST

k − 1
MSE =

SSE

n − b − k + 1
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ANOVA F-test to compare treatment means in a
randomized block design

Theorem (ANOVA F-test for a RBD)

To test

H0 : μ1 = · · · = μk

Ha : At least one pair of treatment means different.

use the test statistic

F =
MST

MSE

If H0 is TRUE

F ∼ Fisher-F(k − 1, n − b − k + 1)

- this defines the rejection region for significance level α, and the
p-value, in the usual way.
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Assumptions:

1. Experimental units (between blocks) are independent, and
treatments are allocated at random (within blocks).

2. Normality

3. bk block/treatment combinations correspond to populations
with equal variances.

ANOVA Table

SOURCE DF SS MS F

TMTS k − 1 SST MST F = MST/MSE
BLOCKS b − 1 SSB MSB
ERROR n − k − b + 1 SSE MSE

TOTAL n − 1 SS
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After the ANOVA test is complete, and the hypothesis

H0 : μ1 = · · · = μk

is rejected, we can proceed with the “post-hoc” tests of
hypotheses μi = μj for i �= j .

Notes:

1. In a RBD, it is not (in general) possible to estimate individual
treatment means, that is, x i does not estimate μi as it is an
average across blocks, which are believed to be different in
terms of response.
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2. Testing the Block Means However, we can test whether the

block means μ
(B)
1 , . . . , μ

(B)
b are significantly different. For

H0 : μ
(B)
1 = · · · = μ

(B)
b

we use the F statistic

F =
MSB

MSE

where

MSB =
SSB

b − 1

If H0 is TRUE

F ∼ Fisher-F(b − 1, n − k − b + 1)

That is, we treat the blocks as levels of another factor, and test to
see whether this factor affects response.
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Example (Soil Analysis (see handout))

Results of two ANOVA F-tests:

Test of F p Conclusion

SOLVENT 0.673 0.585 No Difference
SOIL 10.568 0.001 Difference

Here SOLVENT is the treatment variable, SOIL is the blocking
variable.

3. Remember to check the assumptions (independence,
normality, equal variances in each treatment/block
combination)

Equal variances may be hard to check as we only have one
observation per treatment/block comparison.
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Comment: The “sum of squares” decompositions

CRD : SS = [SST ] + SSE

RBD : SS = [SST + SSB] + SSE

are both of the form

TOTAL = SYSTEMATIC + RANDOM
VARIATION VARIATION VARIATION

“SYSTEMATIC”

{
For the CRD: SST
For the RBD: SST + SSB

“RANDOM” For both: SSE
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We have studied the

Randomized Complete Block Design

where each block/treatment combination has one experimental
unit.

An incomplete design could also be considered, where some
block/treatment combinations are omitted. However, this design
does not lead to straightforward ANOVA analysis.
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1.5 Factorial Experiments

Designs studied so far:

� CRD - one factor

� RBD - one factor, plus one blocking variable, so two factors in
total, where one (the blocking variable) is a known source of
systematic variation.

However, in the RBD, we must assume that the treatments behave
in a similar way across blocks.
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Let i index treatments (1 ≤ i ≤ k) and consider block j , and two
treatment (factor levels) i1 and i2.

In an RBD, we assume that

E [Xi1j − Xi2j ] = μi1 − μi2

which does NOT depend on j .

That is, the expected difference in response due to the two
treatments does not depend on the block.

But perhaps the difference does depend on block; perhaps we have
INTERACTION.

In the current RBD, we do not have enough data to look for this.
We now seek to extend the RBD to allow for tests for interaction;
we do this by using replication.
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RBD with Balanced Replication

Suppose we have r observations per block/treatment combination
(termed replicates), so that we have n = bkr experimental units in
total.

Balanced designs have equal numbers of replicates in each
block/treatment combination.

In this design, all the quantities

SST , SSB, SSE , SS

MST , MSB,MSE

can be defined, and an ANOVA F-test can be carried out - the only
difference is that n = bkr .
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� Sum of Squares for Treatments (SST)

SST =
k∑

i=1

br(x i − x)2

� Sum of Squares for Blocks (SSB)

SSB =
b∑

j=1

kr(x (B)

j − x)2

� Overall Sum of Squares (SS)

SS =
k∑

i=1

b∑
j=1

r∑
t=1

(xijt − x)2

and SSE = SS − SST − SSB

Third index t indexes the replicates.
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The RBD with replication does allow the investigation of
interaction. The new test is based on the decomposition

SS = SST + SSB + SSI + SSE

where SSI is the sum of squares for Interaction.

We have SST , SSB and SS as before, and

SSI =
k∑

i=1

b∑
j=1

r(x ij − x i − x (B)

j + x)2

where

x ij =
1

r

r∑
t=1

xijt i = 1, . . . , k, j = 1, . . . , b

is the sample mean for replicates in (i , j)th treatment/block
combination.
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Testing in the RBD with Replication
The three F statistics

F =
MST

MSE
F =

MSB

MSE
F =

MSI

MSE

can be used to test for significant Treatment, Block and
Interaction effects respectively.

Now

MSE =
SSE

Error d.f.

But what is “Error d.f.” ? It is a constant that dictates how large
SSE should be on average.

The general rule for computing the error d.f. for any model is

Error d.f. = n − p

where n is the total sample size and p is the total number of
parameters fitted.
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How many parameters do we fit ?

� No Interaction

p = 1 + (b − 1) + (k − 1)

that is, the overall mean μ, plus the b − 1 differences from μ
due to the blocks, plus the k − 1 differences from μ due to
the treatments.

� Interaction
p = bk

that is, one parameter in each cell of the two-way table of
blocks by treatments.
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Thus

� No Interaction

p = 1 + (b − 1) + (k − 1) = b + k − 1

parameters, so

Error d.f. = n − p = n − b − k + 1

� Interaction: we fit p = bk parameters, so

Error d.f. = n − p = n − bk
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It transpires that if

MSI =
SSI

(b − 1)(k − 1)

is the Mean Square for Interaction, then

F =
MSI

MSE

yields a test statistic suitable for testing interaction. If there is no
interaction, then

F ∼ Fisher-F((b − 1)(k − 1), n − bk)

where n = bkr .

Why (b − 1)(k − 1) ? This is the number of extra parameters we
fit to include the interaction.
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For the CRD:

Ha H0

FULL MODEL −→ NULL MODEL

k parameters −→ 1 parameter

so there are (k − 1) extra parameters, and SST varies on (k − 1)
degrees of freedom.
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For the RBD: the (i , j)th treatment/block combination has mean

μi + μB
j

so for testing for a TREATMENT effect

Ha H0

FULL MODEL −→ NULL MODEL

k parameters −→ 1 parameter

so there are (k − 1) extra parameters, and SST varies on (k − 1)
degrees of freedom.

μ1, . . . , μk −→ μ
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For testing for a BLOCK effect

Ha H0

FULL MODEL −→ NULL MODEL

b parameters −→ 1 parameter

so there are (b − 1) extra parameters, and SSB varies on (b − 1)
degrees of freedom.

μ
(B)
1 , . . . , μ

(B)
k −→ μ(B)

These models and tests can be fitted and carried out even if we do
not have replication.
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With replication, we can investigate the interaction, that is the
model where the (i , j)th treatment/block combination has mean

μi + μB
j + μij

rather than the model where

μi + μB
j

that is, we wish to test

H0 : μij = 0 for all i and j

Ha : μij �= 0

116

In the full interaction model: we fit bk parameters

In the restricted, no interaction model: we fit

1 + (b − 1) + (k − 1) = b + k − 1

parameters. Therefore the differences is

bk − (b + k − 1) = bk − b − k + 1 = (b − 1)(k − 1)

and SSI varies on (b − 1)(k − 1) degrees of freedom.
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ANOVA Table

SOURCE DF SS MS F

TMTS k − 1 SST MST FT

BLOCKS b − 1 SSB MSB FB

INTERACTION (b − 1)(k − 1) SSI MSI FI

ERROR (n − bk) SSE MSE

TOTAL n − 1 SS

where

MST =
SST

k − 1
MSB =

SSB

b − 1

MSI =
SSI

(b − 1)(k − 1)
MSE =

SSE

n − bk

and

FT =
MST

MSE
FB =

MSB

MSE
FI =

MSI

MSE
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Example: Batteries Data (see handout)

Dependent Variable: Battery Life
Source Sum of Squares df Mean Square F Sig.
Corrected Model 59,154.000 8 7,394.250 11.103 0.000
Intercept 398,792.250 1 398,792.250 598.829 0.000
material 10,633.167 2 5,316.583 7.983 0.002
temp 39,083.167 2 19,541.583 29.344 0.000
material * temp 9,437.667 4 2,359.417 3.543 0.019
Error 17,980.750 27 665.954
Total 475,927.000 36
Corrected Total 77,134.750 35
R Squared = .767 (Adjusted R Squared = .698)

For α = 0.05, there is a significant temp effect (p < 0.001), and a
significant material effect (p = 0.002), and a significant
interaction (p = 0.019)

119

NB: If we do not have replication, we CANNOT fit the interaction.
Recall that

Error d.f. = n − bk

but if r = 1, n = rbk = bk, so the error d.f. is zero.

In fact, SSE = 0 also, so the MSE is not defined.
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We now study multifactor designs, to assess the effects and
interactions of several factors simultaneously.

We consider all possible combinations of

FACTOR A with a levels

FACTOR B with b levels

FACTOR C with c levels
...

to define the treatments in a factorial design.
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Factorial Experiments

A complete factorial experiment is one in which every combination
of a number of factors is utilized.

i.e. the number of treatments is equal to the total number of
factor-level combinations.

We focus on two factor experiments

FACTOR A with a levels

FACTOR B with b levels

so there are ab treatments in total.
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A two-way layout with a = 3 and b = 5.

Factor B
1 2 3 4 5

1
2

F
ac

to
r

A

3

This design is very similar to the RBD, but now the second factor
is not a blocking factor;

� that is, the ab treatment populations are constructed
independently from the same base population, or from
populations not necessarily believed to be systematically
different.

� individuals from the same base population are assigned at
random to one of the ab treatments.
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In this design we can study the effect of Factor A and Factor B
(main effects) as well as the interaction provided we have
(balanced) replication.

We construct ANOVA F-tests based on the decomposition

SS = SSTA + SSTB + SSIAB + SSE

� Sum of Squares for Treatments due to factor A (SSTA)

SSTA =
a∑

i=1

br(x i . − x ..)
2

� Sum of Squares for Treatments due to factor B (SSTB)

SSTB =
b∑

j=1

ar(x .j − x ..)
2

� Sum of Squares for Interaction (SSIAB)

SSIAB =
a∑

i=1

b∑
j=1

r(x ij − x i . − x .j + x ..)
2
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New notation:

� sample mean for Factor A level i

x i . =
1

br

b∑
j=1

r∑
t=1

xijt i = 1, . . . , a

� sample mean for Factor B level j

x .j =
1

ar

a∑
i=1

r∑
t=1

xijt j = 1, . . . , b

� sample mean for replicates in (i , j)th factor combination

x ij =
1

r

r∑
t=1

xijt i = 1, . . . , a, j = 1, . . . , b

� overall sample mean

x .. =
1

n

a∑
i=1

b∑
j=1

r∑
t=1

xijt
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These allow computation of

SSTA, SSTB ,SSIAB , SS , SSE

MSTA, MSTB , MSIAB , MSE

using the degrees of freedom identical to those in the RBD with
replication.

Tests for

� significant effect for Factor A

� significant effect for Factor B

� significant interaction

will be carried out as before using an ANOVA table.
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ANOVA Table

SOURCE DF SS MS F

FACTOR A a − 1 SSTA MSTA FA

FACTOR B b − 1 SSTB MSTB FB

INTERACTION (a − 1)(b − 1) SSIAB MSIAB FAB

ERROR (n − ab) SSE MSE

TOTAL n − 1 SS

If Factor A is not influential (H0 specifying no difference between
responses at different levels of factor A), then

FA ∼ Fisher-F(a − 1, n − ab)

Similarly,

No effect of Factor B : FB ∼ Fisher-F(b − 1, n − ab)

No Interaction : FAB ∼ Fisher-F((a − 1)(b − 1), n − ab)

SEE EXAMPLES HANDOUT
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Note: For two factors A and B, the main effects plus interaction
model can be written

A + B + A.B

whereas the main effects only can be written

A + B

The models
A + A.B B + A.B

do not make sense.
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For a two factor design, the only models that should be considered
and or reported are

MODEL FACTOR INTERACTION
NULL NONE NONE

A A NONE
B B NONE

A+B A,B NONE
A+B+A.B A,B YES

that is, if the interaction is significant, the only model you should
report is

A + B + A.B
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Note: ANOVA analysis for the RBD and FD (both with
replication) are identical. The only difference lies in the
interpretation of the factors

� RBD: one blocking, one treatment factor

� FD: two treatment factors

“Blocking” factors are known or strongly believed to have a
significant effect on the response.
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Estimating Effect Size

In multifactor designs, parameter estimation can be carried out in
different parameterizations

For the CRD (one-way layout):

� Natural parameters: μ1, . . . , μk

� Contrast parameters: β, β0, . . . , βk−1 where

β = μk βi = μi − μk , i = 1, . . . , k − 1

that is, differences from baseline.

For the two-factor designs (RBD/FD): In the two-way layout,
with cells (i , j), i = 1, . . . , a, j = 1, . . . , b. The cell means are mij ,
where

mij = μi . + μ.j + μij

where μi . gives the Factor A contribution, μ.j gives the Factor B
contribution, and μij gives the interaction.
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The parameterization used by SPSS is the contrast
parameterization is

mij = β0 i = a, j = b

= β0 + β
(A)
i i = 1, . . . , a − 1, j = b

= β0 + β
(B)
j i = a, j = 1, . . . , b − 1

= β0 + β
(A)
i + β

(B)
j + γ

(AB)
ij

i = 1, . . . , a − 1
j = 1, . . . , b − 1

where

β
(A)
i : contrasts for factor A

β
(B)
j : contrasts for factor B

γ
(AB)
ij : interaction
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SPSS takes the ath level of factor A and the bth level of factor B
as the baseline, and looks at differences compared to this baseline.

The ab parameters are

β0 1

β
(A)
1 , . . . , β

(A)
a−1 (a − 1)

β
(B)
1 , . . . , β

(B)
b−1 (b − 1)

γ
(AB)
ij , i = 1, . . . , a − 1, j = 1, . . . , b − 1 (a − 1)(b − 1)

Total ab
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For example: a = 3, b = 4.

Factor B
1 2 3 4

1 1© 2© 3© β0 + β
(A)
1

2 4© 5© 6© β0 + β
(A)
2

F
ac

to
r

A

3 β0 + β
(B)
1 β0 + β

(B)
2 β0 + β

(B)
3 β0

where

1© = β0 + β
(A)
1 + β

(B)
1 + γ

(AB)
11

6© = β0 + β
(A)
2 + β

(B)
3 + γ

(AB)
23

and so on.
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Estimation is still straightforward:

PARAMETER ESTIMATE

β0 xab

β
(A)
i x i . − xab

β
(B)
j x .j − xab

γ
(AB)
ij x ij − x i . − x .j + xab

for i = 1, . . . , a, j = 1, . . . , b.

Other parameterizations can be used.
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Final Note on ANOVA

We have studied the simplest design scenarios: extension to

� incomplete

� unbalanced

� nested

� random effect

designs are possible.

Furthermore SPSS has greater functionality: for example, it has
the capability to carry out ANOVA-like analyses even for the case
of non-equal variances (when Levene’s test rejects the hypothesis
of equal variances).
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Part II

Linear Regression Modelling
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2. Linear regression Modelling

In the previous section, we attempted to explain the variation in an
observed response variable by fitting models with one or more
factors.

Factors are discrete variables taking different levels; in this section
we will now utilize continuous variables that can similarly explain
variation in an observed response.
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2.1 Simple Linear Regression

We will investigate models relating two quantities x and y through
equations of the form

y = ax + b

where a and b are constants (that is, a straight-line).

Variables x and y will not be treated exchangeably - we will regard
y as being a function of x .

Such models are deterministic, that is, if we know x (and the
values of the constants), we can compute y exactly without error.

A more useful model allows for the possibility that the system is
not observed perfectly, that is, we do not observe (x , y) pairs that
are always consistent with a simple functional relationship.
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Example (Pharmacokinetic Model)

If a dose of drug is taken at time x = 0, the amount
(concentration) of drug still in the bloodstream at time x is often
well-modelled by a simple equation. Let

� D denote the amount of drug taken at x = 0

� x time

� y� is the amount (concentration per unit volume) in the
bloodstream.

Then

y� =
D

V
exp{−λx}

where

� λ is the elimination rate

� V is the volume of bloodstream.
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Example (Pharmacokinetic Model (continued))

Taking logs of both sides, setting y = log y�, then

y = −λx + log(D/V ) = −λx + (log D − log V )

that is, y = ax + b where

� a = −λ

� b = (log D − log V )

However, in practice, when we measure concentration, we do so
with random error.
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2.1.1 Probabilistic Models

In a probabilistic model, we allow for the possibility that y is
observed with random error, that is,

y = ax + b + ERROR

where ERROR is a random term that is present due to imperfect
observation of the system due to (i) measurement error or (ii)
missing information.

Note that we do not treat x and y exchangeably; x is a fixed
observed variable that is measured without error, whereas y is an
observed variable that is measured with random error.

We model the variation in y as a function of x . We observe pairs
(xi , yi ), i = 1, . . . , n.
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A Basic Probabilistic Model

Terminology:

� y - Dependent variable or response variable

� x - Independent variable, or predictor, or covariate

The model we study takes the form

y = β0 + β1x + ε

where ε is a random error term, a random variable with mean zero
and finite variance (E [ε] = 0, Var [ε] = σ2); it represents the error
present in the measurement of y .

� β0 - Intercept parameter

� β1 - Slope parameter
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� β1 > 0 - increasing y with increasing x

� β1 < 0 - decreasing y with increasing x

� β1 = 0 - no relationship between x and y

Note:
E [Y |x ] = β0 + β1x

where E [Y |x ] is the expected value of Y for fixed value of x .

Recall the notation

� Y - a random variable with a probability distribution

� y - a fixed value that the variable Y can take.

Fundamental Problem: If we believe the straight-line model with
error is correct, how do we find the values of parameters β0 and
β1. We only have the observed data {(xi , yi ), i = 1, . . . , n}.
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2.1.2 Least Squares Fitting

We select the best values of β0 and β1 by minimizing the error in
fit. For two data points (x1, y1) and (x2, y2), the errors in fit are

e1 = y1 − (β0 + β1x1)

e2 = y2 − (β0 + β1x2)

respectively. But note that, potentially, e1 > 0 and e2 < 0 so there
is a possibility that these fitting errors cancel each other out.
Therefore we look at squared errors (as a large negative error is as
bad as a large positive error)

e2
1 = (y1 − (β0 + β1x1))

2

e2
2 = (y2 − (β0 + β1x2))

2
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For n data, we obtain n misfit squared errors

e2
1 , . . . , e2

n

We select β0 and β1 as the values of the parameters that minimize
SSE , where

SSE =
n∑

i=1

e2
i =

n∑
i=1

(yi − (β0 + β1xi ))
2

We wish to make the total misfit squared error as small as possible.

SSE - sum of squared errors - is similar to the SSE for ANOVA.
We could write

SSE = SSE (β0, β1)

to show the dependence of SSE on the parameters.

Minimization of SSE (β0, β1) is achieved analytically.
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Two routes: (i) calculus and (ii) geometric methods. It follows
that the best parameters β̂0 and β̂1 are given by

β̂1 =
SSxy

SSxx
β̂0 = y − β̂1x

where

� Sum of Squares SSxx :

SSxx =
n∑

i=1

(xi − x)2

� Sum of Squares SSxy :

SSxy =
n∑

i=1

(xi − x)(yi − y)
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β̂0 and β̂1 are the least-squares estimates

y = β̂0 + β̂1x

is the least-squares line of best fit. The fitted-values are

ŷi = β̂0 + β̂1xi i = 1, . . . , n

and the residuals or residual errors are

êi = yi − ŷi = yi − β̂0 − β̂1xi i = 1, . . . , n
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2.1.3 Model Assumptions for Least-Squares
To utilize least-squares for the probabilistic model

Y = β0 + β1x + ε

we make the following assumptions

1. The expected error E [ε] is zero so that

E [Y ] = β0 + β1x

2. The variance of the error, Var [ε], is constant and does not
depend on x .

3. The probability distribution of ε is a symmetric distribution
about zero (a stronger assumption is that ε is Normally
distributed).

4. The errors for two different measured responses are
independent, i.e. the error ε1 in measuring y1 at x1 is
independent of the error ε2 in measuring y2 at x2.
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2.1.4 Parameter Estimation: Estimating σ2

Using the LS procedure, we can construct an estimate of the error
or residual error variance

Recall that
Var [ε] = σ2

An estimate of σ2 is

σ̂2 =
SSE (β̂0, β̂1)

n − 2
= s2

say.
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Note that the denominator n − 2 is again a degrees of freedom
parameter of the form

TOTAL NUMBER − NUMBER OF PARAMETERS
OF DATA ESTIMATED

or n − p, where in the simple linear regression, p = 2 (β̂0 and β̂1).
Note also that

SSE (β̂0, β̂1) =
n∑

i=1

(yi − ŷi )
2 = SSyy − β̂1SSxy

where

SSyy =
n∑

i=1

(yi − y)2
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Estimation and Testing for Slope

In the model where
E [Y ] = β0 + β1x

it is of interest to test the hypothesis

H0 : β1 = 0

Ha : β1 �= 0

i.e. H0 implies that there is no systematic contribution of x to the
variation of y .
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To test H0 vs Ha we us the test statistic

t =
β̂1

e.s.e(β̂1)
=

β̂1

s
β̂1

where e.s.e(β̂1) is the Estimated Standard Error of β̂1, computed
as

e.s.e(β̂1) =
s√
SSxx

where s is the estimate of σ defined previously.

If H0 is true, and β1 = 0, then

t =
β̂1

s/
√

SSxx
∼ Student(n − 2)

so we can carry out a significance test at level α in the usual way
(use a p-value, or construct the rejection region).
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Note: we might also consider a one-sided test, where Ha : β1 > 0,
say.

� If Ha : β1 �= 0, we use the two-sided rejection region, with
critical values

CR = ±tn−2(α/2)

� If Ha : β1 > 0, we use the one-sided rejection region, with
critical value

CR = +tn−2(α)

� If Ha : β1 < 0, we use the one-sided rejection region, with
critical value

CR = −tn−2(α)
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Note: To test

H0 : β1 = b

Ha : β1 �= b

for any b, the test statistic is

t =
β̂1 − b

s/
√

SSxx

(for example, b = 1 may be of interest. If H0 is true

t ∼ Student(n − 2)
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Confidence Interval
A 100(1 − α)% confidence interval for β1 is

β̂1 ± tn−2(α/2) × s
β̂1

where

tn−2(α/2) : α/2 prob. point of Student(n − 2) distn.

s
β̂1

: Estimated standard error of β̂1

Note: we could perform a similar analysis for β0, but this is
generally of less interest.

The only quantity that needs attention is the estimated standard
error of β̂0. It can be shown that

e.s.e.(β̂0) = s
β̂0

=

√
1

n

(
1 +

nx2

SSxx

)
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2.1.5 The Coefficient of Correlation
To measure the strength of association between the two variables
x and y we can use the

Pearson Product Moment Coefficient Of Correlation

or correlation coefficient which measures the strength of the linear
relationship between x and y .

The coefficient, r , is defined by

r =
SSxy√

SSxxSSyy

where

SSxx =
n∑

i=1

(xi − x)2 SSyy =
n∑

i=1

(yi − y)2

SSxy =
n∑

i=1

(xi − x)(yi − y)

157

Note: −1 ≤ r ≤ 1.

� If r is close to 1, there is a strong linear relationship between
x and y where y increases with x .

� If r is close to -1, there is a strong linear relationship between
x and y where y decreases with x .

Note: In the model
y = β0 + β1x

β1 = 0 =⇒ r ≈ 0, so tests for β1 = 0 can also be used to deduce a
lack of correlation between the variables.
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Notes

1. A strong linear relationship is not necessarily a causal
relationship, that is, just because r ≈ 1 does not mean that x
causes changes in y (we may have a spurious correlation).

2. Just because r ≈ 0 does not mean that that x and y are
unrelated, merely that they are uncorrelated. That is, it is
possible to construct examples where x and y have a strong
functional relationship, but where r = 0.
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Examples where r ≈ 0.
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Testing Correlation

We use ρ to denote the true correlation between X and Y .

We can test the hypothesis that ρ = 0 (that is, that X and Y are
uncorrelated using r . For testing

H0 : ρ = 0

Ha : ρ �= 0

we can use the test statistic

t =
r√

(1 − r2)/(n − 2)

If H0 is true, then approximately

t ∼ Student(n − 2)
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Alternately, we could use

z =
1

2
log

(
1 + r

1 − r

)
and then, if H0 is true, as (approximately)

Z ∼ N

(
1

2
log

(
1 + ρ

1 − ρ

)
,

1

n − 3

)
when ρ = 0, so that (approximately)

√
n − 3 Z ∼ N(0, 1)
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A related quantity is the

Coefficient of Determination

or R2 Statistic

r2 =
SSyy − SSE

SSyy
= 1 − SSE

SSyy

Note that the total variation in y is recorded via

SSyy =
n∑

i=1

(yi − y)2

and the random variation is recorded via

SSE =
n∑

i=1

(yi − ŷi )
2
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Therefore the variation explained by the linear regression is

SSR = SSyy − SSE as SSyy = SSR + SSE

Thus

r2 =
SSR

SSyy
=

Variation explained by Regression

Total Variation

r2 is a measure of model adequacy, that is, if r2 ≈ 1, then the
linear model is a good fit.
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Example (Blood Viscosity vs PCV)

We have

� n = 32

� r = 0.879

� R2 = r2 = (0.879)2 = 0.772

Test of ρ = 0:

t =
r√

(1 − r2)/(n − 2)
= 10.087

We compare with a Student(n − 2) ≡ Student(30) distribution; the
p-value is 3.73 × 10−11, so there is strong evidence that ρ �= 0.
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2.1.6 Prediction

After the linear model is fitted, it can be used for forecasting or
prediction. That is, given a new x value we can predict the
corresponding y .

As before, we see that at any value of xp, the prediction ŷp is

ŷp = β̂0 + β̂1xp

This is the best predictor of y at this x value.
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We can also compute the standard error of this prediction; if the
value of the random error variance σ2 is known, then

s.e.(ŷp) = σ

√
1

n
+

(xp − x)2

SSxx

If σ is unknown, we estimate σ by σ̂ = s as defined previously

s2 =
SSE (β̂0, β̂1)

n − 2

so that

e.s.e.(ŷp) = s

√
1

n
+

(xp − x)2

SSxx
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Note: This prediction is the expected value of y at x = xp. That
is, we have worked out

Var [Ŷp] = Var [β̂0 + β̂1xp]

to compute the s.e. for Ŷp.

But we can actually predict an error corrupted version of Ŷp, Ŷ �
p

say, where
Ŷ �

p = Ŷp + εp

where εp is a new random error.
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But

Var [Ŷ �
p ] = Var [Ŷp + εp] = Var [Ŷp] + Var [εp] = Var [Ŷp] + σ2

that is, there is an extra piece of variation due to εp.

Thus

e.s.e.(ŷ�
p ) = s

√
1 +

1

n
+

(xp − x)2

SSxx
> e.s.e.(ŷp)
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Prediction Intervals

A 100(1 − α)% prediction interval for the mean value at x = xp is

ŷp ± tn−2(α/2)s

√
1

n
+

(xp − x)2

SSxx

whereas for an individual new value (predicted with error) at
x = xp is

ŷp ± tn−2(α/2)s

√
1 +

1

n
+

(xp − x)2

SSxx
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Prediction Intervals
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ANOVA-F test in Regression

An ANOVA-F test can be constructed to test overall (global) fit of
the linear regression model.

The decomposition of sums of squares for regression takes the form

SS = SSR + SSE

where

� SS = SSyy : overall or total sum of squares

� SSR: sum of squares due to Regression

� SSE : sum of squares due to Error
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SS =
n∑

i=1

(yi − y)2

SSR =
n∑

i=1

(ŷi − y)2

SSE =
n∑

i=1

(yi − ŷi )
2

where
ŷi = β̂0 + β̂1xi i = 1, . . . , n

Degrees of Freedom

� TOTAL: n − 1

� REGRESSION: 1

� ERROR: n − 2

(error d.f. is n − p, here p = 2).
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The ANOVA Table

SOURCE DF SS MS F

REGRESSION 1 SSR MSR =
SSR

1
F =

MSR

MSE

ERROR n − 2 SSE MSE =
SSE

(n − 2)

TOTAL n − 1 SS

The test of the hypothesis

H0 : E [Y ] = β0

Ha : E [Y ] = β0 + β1x

can be completed by using the test statistic

F =
MSR

MSE

If H0 is true
F ∼ Fisher-F(1, n − 2)
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This is just like the ANOVA in the one-way layout (CRD) with n
groups, but where

μi = β0 + β1xi

That is, the group means are structured, that is, we have a
formula relating the μi quantities.

Consider four replicates at x values (x1, x2, x3, x4) in a regression;

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−5
0

5
10

x

y

x1 x2 x3 x4

Then for group i , μi = β0 + β1xi , i = 1, 2, 3, 4.
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Checking the Local Fit

A plot of the residuals
êi = yi − ŷi

can reveal model inadequacies. We should observe that in plots of

� x vs ê

� y vs ê

� ŷ vs ê

there is no discernible pattern
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Checking the Local Fit: Good Fit
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Checking the Local Fit: Poor Fit
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ê

Poor Fit (Quadratic Trend)

178

Checking the Local Fit: Poor Fit
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ê

Poor Fit (Non constant variance)

179

R2 and adjusted R2

SPSS reports both the R2 statistic

R2 = 1 − SSE

SS

and the adjusted R2 statistic

R2 = 1 − SSE/EDF

SS/TDF

where

� EDF = error degrees of freedom = n − 2

� TDF = total degrees of freedom = n − 1
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2.1.7 Polynomial Regression

In many practical situations, the simple straight line

y = β0 + β1x

is not appropriate. Instead, a model including powers of x

x2, x3, . . . , xk

should be considered. For example

y = β0 +
k∑

j=1

βjx
j = β0 + β1x + · · · + βkxk
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The Polynomial Regression Model

Y = β0 + β1x + · · · + βkxk + ε

where ε is a random error term as before can be used to model
data.

Two immediate problems:

1. How to choose k

2. How to carry out inference

� estimation
� testing
� prediction
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We begin by addressing 2. The estimation of parameters can be
again carried out using Least Squares provided that the model
assumptions listed before are valid. Consider k = 2.

We choose β˜ = (β0, β1, β2)
T to minimize the sum of squared

errors

SSE (β˜) =
n∑

i=1

(yi − ŷi )
2 =

n∑
i=1

(yi − β0 − β1xi − β2x
2
i )2

that is the fitted values for parameters β˜ are

ŷi = β0 + β1xi + β2x
2
i

β̂˜ can be found to minimize SSE using calculus techniques

(differentiating with respect to the elements of β˜) to give the

minimum SSE

SSE (β˜) =
n∑

i=1

(yi − β̂0 − β̂1xi − β̂2x
2
i )2
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We can also compute the estimated standard errors

s
β̂0

, s
β̂1

, s
β̂2

which allow tests of parameters to be carried out, and confidence
intervals calculated.

We can also compute prediction intervals.

The best estimate of the residual error variance σ2 is

σ̂2 =
SSE (β̂˜)

n − 3

p is the number of parameters estimated equal to three, so we
divide by n − 3.

184

We can also compute

� Residuals

� can be used to assess the fit of the model.
� the residuals should be patternless if the model fit is good.

� R2, Adjusted R2 statistics

� used to assess the global fit of the model.
� used to compare the quality of fit with other models.
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Example (Hooker Pressure Data)

For the Hooker pressure data, a quadratic polynomial (k = 2)
might be suitable.

Y = β0 + β1x + β2x
2

We need to estimate β0, β1 and β2 for these data to see if the
model fits better than the straight line model we fitted previously.
This can be achieved using SPSS.

It transpires that the quadratic model produces a set of residuals
that are patternless, which the straight line model when fitted does
not.

See Handout for full details.
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Note: It is common to use the Standardized Residuals

ẑi =
êi

σ̂
=

yi − ŷi

σ̂

where σ̂2 is the estimate of σ2 defined previously, as

Var[ẑi ] ≈ 1

if the model fit is good, whereas

Var[êi ] ≈ σ2

which clearly depends on σ. This makes it hard to compare êi

across different models when inspecting residuals.
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Note: Although the model based on

y = β0 + β1x + β2x
2

is not linear in x , it is linear in the parameters. Because of this, we
still term this a linear model. It is this fact that makes the
least-squares solutions easy to find.

This model is no more difficult to fit than the model

y = β0 + β1
x

1 + x
+ β2(1 − e−x)

say - it is still a linear in the parameters model. It is in the general
class of models

y = β0 + β1g1(x) + β2g2(x)

where g1(x) and g2(x) are general functions of x .
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In fact, any model of the form

y =
k∑

j=0

βjgj(x) + ε (1)

can be fitted routinely using least-squares; if we know x , then we
can compute

g0(x), g1(x), . . . , gk(x)

and plug those values into the formula (1).
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Example (Harmonic Regression)

Let

g0(x) = 1

g1(x) =

{
cos(λjx) j odd
sin(λjx) j even

where k is an even number, k = 2p say.

λj , j = 1, 2, . . . , p are constants

λ1 < λ2 < · · · < λp

For fixed x , cos(λjx) and sin(λjx) are also fixed, known values.
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Gene Expression Data Example
Harmonic Regression Fit with p = 2.
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Gene Expression Data Example
Harmonic Regression Fit with p = 2.
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Why are things so straightforward ?

- because the system of equations based on the derivatives

∂

∂βj

{
SSE (β˜)

}
= 0 j = 0, 1, . . . , k

can always be solved routinely, so we can always find β̂˜.

In the general model (1), simple formulae for

� β̂˜
� s.e.(β̂˜)

� σ̂2

can be found using a matrix formulation.

See handout on website - NOT EXAMINABLE !
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Note: One-way ANOVA can be formulated in the form of model
(1). Recall

� k independent groups

� means μ1, . . . , μk

� yij - jth observation in the ith group

Let

β0 = μk

βt = μt − μk t = 1, 2, . . . , k − 1.

Define new data xij(t) where

xij(t) =

{
1 if t = i
0 if t �= i
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Then, using the linear regression formulation

yij = β0 +
k−1∑
t=1

βtxij(t) + εij .

For any i , j , xij(t) is non-zero for only one value of t, when t = i .

We term this a regression on a factor predictor ; it is clear that
β0, β1, . . . , βk−1 can be estimated using least-squares.

This clarifies the link between

ANOVA and Linear Modelling

- they are essentially the SAME MODEL formulation.

This link extends to ALL ANOVA models; recall that we used the
General Linear Model option in SPSS to fit two-way ANOVA.
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2.2 Multiple Linear Regression

Multiple linear regression models model the variation in response y
as a function of more than one independent variable.

Suppose we have variables

X1, X2, . . . ,Xk

recording different features of the experimental units. We wish to
model response Y as a function of X1, X2, . . . ,Xk .
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2.2.1 Multiple Linear Regression Models

Consider the model for datum i

yi = β0 + β1xi1 + β2xi2 + · · · + βkxik + εi

where xij is the measured value of covariate j on experimental unit
i . That is

yi = β0 +
k∑

j=1

βjxij + εi

where the first two terms on the right hand side are the systematic
or deterministic components, and the final term εi is the random
component.
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Example (k = 2)

yi = β0 + β1xi1 + β2xi2 + εi

A three parameter model.

Note: We can also include interaction terms

yi = β0 + β1xi1 + β2xi2 + β12(xi1 . xi2) + εi

where

� The first two terms in xi1 and xi2 are main effects

� The third term in (xi1 . xi2) is an interaction

This is a four parameter model.
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Multiple Linear Regression Examples

SEE HANDOUT

� Multiple regression: Viscosity Example

� Factor Regression:

� Interaction

� Residuals

� SPSS Instructions

199

Subgroup analysis, with a factor predictor and a continuous
covariate, is a form of interaction modelling; the factor predictor
interacts with the covariate to modify the slope across the
subgroups, for example.

We can describe the models using the notation previously
introduced for ANOVA; consider the single binary factor predictor
and single covariate case;

MODEL 0 Single horizontal straight line 1
MODEL 1 Two parallel horizontal X2

straight lines
MODEL 2 Single straight line, X1

non-zero slope
MODEL 3 Two parallel straight lines, X1 + X2

non-zero slope
MODEL 4 Two non-parallel straight lines X1 + X2 + X1.X2
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Note: Always be on the lookout for lurking subgroups (subgroups
determined by the levels of an unnoticed factor predictor)

Inferences can change radically when the lurking factor is included
in the model

� positive association can be converted into negative association
with the continuous covariate.
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For example, for factor predictor X2 taking two levels and
continuous covariate X1. When the pooled data are examined, a
positive association between Y and X1 is revealed.
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When the pooled data are separated into subgroups, a negative
association between Y and X1 in each subgroup is revealed.
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X2 = 1 (•) and X2 = 2 (+).
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i.e. increasing X1 decreases response in subgroup 1, and decreases
response in subgroup 2, but appears to increase response overall.

This is known as Simpson’s Paradox in Regression. It illustrates
that pooling data over subgroups must be carried out with care !

� you must fit the factor predictor in the model if you suspect
subgroup differences exist.

In the example, the problem arises due to dependence between X1

and X2; all the group with X2 = 0 have low values of X1, whereas
all the group with X2 = 1 have high values of X1

Dependence between covariates and factor predictors makes model
fitting and results interpretation complicated.
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Recap: we can build general models

yi = β0 +
k∑

j=1

xij + εi

to explain the variation of y in terms of covariates and factor
predictors x1, . . . , xk .

� Simple Linear Regression

� Polynomial Regression

� Multiple Regression

� Factor Predictor Regression

� Interaction Models
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We can fit each of these models easily using least-squares to obtain

� estimates β̂˜ = (β̂1, β̂2, . . . , β̂k)T

� standard errors

� goodness of fit measures R2 and Adjusted R2

� residuals for model checking

� predictions
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Interpreting β̂j

β̂j can be interpreted as the amount of increase in response y
when xj increases by one unit when the other predictors

x1, x2, . . . , xj−1, xj+1, . . . , xk

are held fixed.

We can test the hypothesis

H0 : βj = 0

H0 : βj �= 0

using the usual hypothesis testing approach.

207

Test statistic:

tj =
β̂j

s
β̂j

=
ESTIMATE

STANDARD ERROR

If H0 is true,
tj ∼ Student(n − k − 1)

as we are estimating k + 1 parameters overall.

Note: In multiple regression, when testing each of

β̂0, β̂1, . . . , β̂k

we should strictly use a multiple testing correction (as in
post-hoc tests in ANOVA)
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2.2.2 Model Checking

Using the General Linear Model approach to regression, we can fit
models with different numbers of predictors, and

� assess whether any individual covariate is influential in the
model (look at β̂, s

β̂
and t-statistics

� assess whether there is any explanatory power in the variables
combined (look at ANOVA statistics)
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For the multiple regression model, the ANOVA table takes the form

SOURCE DF SS MS F

REGRESSION k SSR MSR F =
MSR

MSE

ERROR n − k − 1 SSE MSE

TOTAL n − 1 SS

where

MSR =
SSR

k
MSE =

SSE

n − k − 1

the F statistic is

F =
MSR

MSE

and if H0 is true

F ∼ Fisher-F(k, n − k − 1)
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Here

H0 : β1 = β2 = · · · = βk = 0

Ha : At least one βj �= 0

The model for H0 has one parameter β0.
The model for Ha has k + 1 parameters

β0, β1, β2, . . . , βk

Therefore the number of extra parameters for model Ha is

(k + 1) − 1 = k

i.e. to obtain model H0 from model Ha we constrain k parameters
to be zero.
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Because we can constrain model Ha by setting some parameters
equal to zero to obtain model H0, we say that

Model H0 is nested inside Model Ha

The number, k, of constraints β1 = β2 = · · · = βk = 0 explains
why the ANOVA table Regression degrees of freedom is k

- the multiple regression brings in k extra parameters.
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In addition, we can use the R2 or Adjusted R2 statistic to check
overall model adequacy

R2 = 1 − SSE

SSyy
=

SSyy − SSE

SSyy
=

SSR

SS

which is equal to

VARIATION EXPLAINED BY THE REGRESSION

TOTAL VARIATION

Also

Adj. R2 = 1 − SSE/(n − k − 1)

SS/(n − 1)

R2 > 0.7 implies that the model is a good fit, that is, most of the
variation observed is explained by the regression model.
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We can now fit completely general models in the form of the
General Linear Model; if y is the response, and x1, . . . , xk are the
covariates or factor predictors, we can include combinations of

� Polynomial Main Effects : xj , x
2
j , x3

j , . . .

� Two-way Interactions: xj1 . xj2

� Three-way Interactions: xj1 . xj2 . xj3

etc.
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In SPSS, we can use the

General Linear Model → Univariate

pulldown menus to build and fit the model.

� To fit factor predictors, we used the Fixed Factor option

� To build models, we use the

Model → Custom

selections on the Univariate dialog
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Dummy Variables

Recall that we can fit the factor predictor using the Linear
Regression pulldown if we create dummy variables.

For example, if factor predictor X has L levels, we create L new
binary predictors X1, . . . ,XL, where, for l = 1, . . . , L

Xl =

{
1 whenever X = l
0 otherwise

We can then include X1, . . . ,XL in the regression model.
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Example (L = 4)

X X1 X2 X3 X4

3 0 0 1 0
1 1 0 0 0
3 0 0 1 0
4 0 0 0 1
2 0 1 0 0
2 0 1 0 0

See McClave and Sincich, Section 12.7.
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2.2.3 Stepwise Model Selection

We seek a method that allows us to compare nested models.

Suppose we want to compare

MODEL 1 : y = β0 + β1x + β2x
2

MODEL 2 : y = β0 + β1x + β2x
2 + β3x

3

Model 1 is nested inside Model 2 as if we set β3 = 0 in Model 2,
we get Model 1.
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If

MODEL 1 : y = β0 + β1x1 + β2x2

MODEL 2 : y = β0 + β1x1 + β2x2 + β12(x1.x2)

we can set β12 = 0 in Model 2 to obtain Model 1, so again the
models are nested.

We can set up a hypothesis test to assess whether the
simplification of Model 2 to Model 1 (by setting one or more
parameters equal to zero) is justified by the data.
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ANOVA tests for Comparing Nested Models

Terminology

� Complete Model

E [Y ] = β0 + β1x1 + · · · + βkxk

� Reduced Model

E [Y ] = β0 + β1x1 + · · · + βgxg

where g < k. The reduced model is obtained from the complete
model by setting

βg+1 = βg+2 = · · · = βk = 0
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The reduced model is nested inside the complete model.

We wish to test the hypothesis

H0 : βg+1 = βg+2 = · · · = βk = 0

Ha : At least one of these βj �= 0

We can test this hypothesis by fitting both models, and combining
the results; we focus on the sums of squares quantities.
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Method

1. Fit the complete model and obtain the sum of squared
errors, SSEC , available from the ANOVA table.

2. Fit the reduced model and obtain the sum of squared errors,
SSER , available from the ANOVA table.

3. Form the test statistic

F =
(SSER − SSEC )/(k − g)

SSEC/(n − k − 1)

If H0 is true, then F ∼ Fisher-F(k − g , n − k − 1)

Note: k − g is the number of parameters we set equal to zero
when moving from complete to reduced model.

Using this F statistic, we can assess whether there is evidence to
support the reduced model over the complete model.
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Complete Model ANOVA table:

SOURCE DF SS MS F

COMPLETE MODEL k SSRC MSRC FC

ERRORC n − k − 1 SSEC MSEC

TOTAL n − 1 SS

Reduced Model ANOVA table:

SOURCE DF SS MS F

REDUCED MODEL g SSRR MSRR FR

ERRORR n − g − 1 SSER MSER

TOTAL n − 1 SS
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The result holds for comparing any two nested models where the
standard model assumptions hold:

� ε uncorrelated

� ε independent of x1, . . . , xk

� ε has constant variance

� ε ∼ N(0, σ2)

Note: It does not allow us to compare non-nested models; for
example

MODEL 1 : y = β0 + β1x1 + ε

MODEL 2 : y = β0 + β2x2 + ε

- NOT NESTED !
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F =
(SSER − SSEC )/(k − g)

SSEC/(n − k − 1)
=

1©/ 2©
3©/ 4©

1© - SSER − SSEC : this is the improvement in fit when the
reduced model is extended to the complete model

2© - k − g : this is the number of extra parameters needed to
extend the reduced model to the complete model

3© - SSEC

4© - n − k − 1

3©/ 4© - this is the best guess we have at the true value of σ2, that
is, the estimate of σ2 constructed using as much information as
possible, once the effects of

x1, . . . , xk

have been accounted for.
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Example (Hooker’s Data)

We consider the two models:

MODEL 1 : y = β0 + β1x + ε

MODEL 2 : y = β0 + β1x + β2x
2 + ε

Here

� MODEL 1: Reduced Model

� MODEL 2: Complete Model

k = 2, g = 1.

IS THE QUADRATIC TERM NEEDED ?
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Example (Hooker’s Data)

COMPLETE MODEL SSRC 2286.933
SSEC 4.382

REDUCED MODEL SSRR 2272.474
SSER 18.840

with n = 31, k = 2, g = 1

=⇒ k − g = 1, n − k − 1 = 28

So

F =
(SSER − SSEC )/(k − g)

SSEC/(n − k − 1)
=

(18.840 − 4.382)/1

4.382/28
= 92.383
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Example (Hooker’s Data)

We compare F with the

Fisher-F(k − g , n − k − 1) ≡ Fisher-F(1, 28)

distribution.
F0.05(1, 28) = 4.20

Thus
92.383 = F > F0.05(1, 28) = 4.20

and H0 : E [Y ] = β0 + β1x is REJECTED in favour of
Ha : E [Y ] = β0 + β1x + β2x

2.

i.e. the quadratic model fits better than the straight-line model.
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NOTE: From the original ANOVA tables, we already know that
Model 1 and Model 2 both fit better than the null model

MODEL 0 E [Y ] = β0

y = β0 + ε

where there is no dependence on x .

We have now confirmed that Model 2 fits better than Model 1.
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Example (Diabetes Data)

Factor Predictor: group (X2)
Continuous Covariate: loggluf (X1)
Response: logglut (Y )

We have five models to confirm:

MODEL 0 : 1

MODEL 1 : X2

MODEL 2 : X1

MODEL 3 : X1 + X2

MODEL 4 : X1 + X2 + X1.X2
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Example (Diabetes Data)

MODEL 4 us the most complex model with 6 parameters

β10, β11, β20, β21, β30, β31

MODEL 4:

E [Y ] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β10 + β11x1 GROUP 1

β20 + β21x1 GROUP 2

β30 + β31x1 GROUP 3

All of the other models are nested inside Model 4; we can obtain
them all by setting parameters equal to zero.
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Example (Diabetes Data)

In the SPSS parameterization:

β30, β31 Group 3 Intercept and Slope

β10 = β30 + δ10 Changes in the Intercepts in
β20 = β30 + δ20 Groups 1 and 2 are δ10 and δ20

β11 = β31 + δ11 Changes in the Slopes in
β21 = β31 + δ21 Groups 1 and 2 are δ11 and δ21

Thus the six new parameters are

β30, β31, δ10, δ20, δ11, δ21
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MODEL 0 β31 = 0
δ10 = δ20 = δ11 = δ21 = 0

MODEL 1 β31 = δ11 = δ21 = 0

MODEL 2 δ10 = δ20 = δ11 = δ21 = 0

MODEL 3 δ11 = δ21 = 0

Note: β31 = 0 =⇒ δ11 = δ21 = 0, as X1 is not included in the
model.
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Counting Parameters

� Whenever we remove a continuous covariate, from a model,
we set one parameter to zero.

� Whenever we remove a factor predictor with L levels from a
model, we set L − 1 parameters to zero.

� Whenever we remove a two-way interaction between these
variables from a model, we set 1.(L − 1) = L − 1 parameters
to zero.
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Models 0,1,2,3 are nested inside Model 4.

Two approaches to finding the best model are used:

1. Start with Model 0 and try to add terms that improve the
model fit (Forward Selection)

2. Start with Model 4 and try to remove terms that improve the
model fit (Backward Selection)

Note:

� Models 0,1 and 2 are nested inside Model 3.

� Model 0 is nested inside Models 1 and 2.

Therefore we can begin with Model 4, or Model 3 or Model 1 or 2,
and simplify to a nested model.
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Example (Diabetes Data)

Here n = 144. From SPSS output handouts:

Model Description SSE p

0 1 28.504 1
1 X2 4.160 3
2 X1 3.738 2
3 X1 + X2 1.472 4
4 X1 + X2 + X1.X2 1.318 6

p is the number of non-zero parameters; k or g is always p − 1 in
the following analysis.
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Backward Selection:

Complete Model : Model 4
Reduced Model : Model 3

Here k = 5, g = 3 so k − g = 2, and

n − k − 1 = 144 − 5 − 1 = 138.

We have

F =
(SSER − SSEC )/(k − g)

SSEC/(n − k − 1)
=

(1.472 − 1.318)/2

1.318/138
= 8.062

We compare this with the

Fisher-F(k − g , n − k − 1) = Fisher-F(2, 138)

distribution; we have Fα(2, 138) = 3.061, so we

Reject H0 at α = 0.05
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i.e. Model 4
X1 + X2 + X1.X2

fits significantly better than Model 3

X1 + X2.

- we cannot simplify the complete model to the reduced model
without the loss of significant explanatory power.

The Interaction is Necessary in the Model

Backward selection stops here; we cannot simplify further from the
complete model.
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Forward Selection: we start with Model 0 and build up.

Model 1 vs Model 0 F = 412.568

Model 2 vs Model 0 F = 940.846

It seems that Model 2 is the better improvement, so we try the
selection path

Model 0 −→ Model 2 −→ Model 3 −→ Model 4

Model SSE SSER − SSEC

0 28.504 -
2 3.738 24.766
3 1.472 2.266
4 1.318 0.154

ie we work down the table, 28.504 − 3.738 = 24.766 etc.
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Comparison k g SSEC SSER − SSEC F

2 vs 0 1 0 3.738 24.766 940.82
3 vs 2 3 1 1.472 2.266 107.76
4 vs 3 5 3 1.318 0.154 8.06

Recall that n = 144, and

F =
(SSER − SSEC )/(k − g)

SSEC/(n − k − 1)

Under each H0,

F ∼ Fisher-F(k − g , n − k − 1)
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� F0.05(1, 142) � 3.92 < 940.82
Therefore Model 0 is NOT an adequate simplification of
Model 2

� F0.05(2, 140) � 3.07 < 107.76
Therefore Model 2 is NOT an adequate simplification of
Model 3

� F0.05(2, 138) � 3.07 < 8.06
Therefore Model 3 is NOT an adequate simplification of
Model 4

All of the null hypotheses are rejected.
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Therefore by both forward and backward selection, we select Model
4

X1 + X2 + X1.X2

as the most appropriate model.

Note: In this sequence of hypothesis tests, the convention is not
to correct for multiple testing (we don’t know how many tests we
are going to do), although a correction could be used.
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F-tests for Unbalanced Designs

Example (Potato Damage Data)

The damage to potato plants caused by cold temperatures is to be
studied.

In this experimental study, three binary factor predictors were used:
we label them A, B and C rather than X1, X2, X3 to recall the link
with Factorial Designs in ANOVA. Each factor takes two levels:

Factor Levels

A Potato Variety 0- Variety 1, 1- Variety 2

B Acclimatization Routine 0- Room Temp, 1- Cold Room

C Preparation Treatment 0- -4C, 1- -8C

Thus we have a 2 × 2 × 2 three-way factorial design.
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F-tests for Unbalanced Designs

However, the design is unbalanced; we have different numbers of
replicates in each of the 8 factor-level combinations.

This means we cannot use conventional 3-way ANOVA; the lack of
balance means that the stated p-values may be misleading if we
perform a standard ANOVA.

Thus we are forced to use the General Linear Model F-test
approach.

244

We begin with the most complex model and do backward selection.

Here the most complex model can be written

A + B + C + A.B + A.C + B.C + A.B.C

that is,

� all main effects (terms 1,2 and 3)

� all two-way interactions (terms 4,5 and 6)

� all three-way interactions (term 7)

We may write this model

A ∗ B ∗ C

which is termed the full factorial model.
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Counting the numbers of parameters

Term Parameters

A (a − 1) 1
B (b − 1) 1
C (c − 1) 1
A.B (a − 1)(b − 1) 1
A.C (a − 1)(c − 1) 1
B.C (b − 1)(c − 1) 1
A.B.C (a − 1)(b − 1)(c − 1) 1

Total 7

where a = b = c = 2.

We have 7 parameters in total (excluding the baseline mean) when
all terms are considered, so

k = 7
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In the following tables columns are:

Complete Model
Reduced Model
SSEC

SSER

k
g
F (test statistic)
F0.05(k − g , n − k − 1)

We denote the critical value by Fα and check whether F > Fα.
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Potato Damage Data: ANOVA-F Tests

We compare four models: MR1 , MR2 and MR3 are nested within the
complete model MC .

MC : A + B + C + A.B + A.C + B.C + A.B.C
MR1 : A + B + C + A.B
MR2 : A + B + C
MR3 : A + B + A.B

COMP. RED. SSEC SSER k g F Fα

MC MR1 4968.876 5093.746 7 4 0.561 2.76

MR1 MR2 5093.746 7183.674 4 3 28.721 3.92

MR1 MR3 5093.746 6319.640 4 3 16.846 3.92

Note: The quoted Fα values are approximate as the textbook does
not tabulate all Fisher-F distributions. We take α = 0.05
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Conclusions

Taking the comparisons in order:

1. MC vs MR1 : F < Fα. Therefore the result is not significant:
Model MR1 is an adequate simplification of Model MC , and
we choose MR1 over MC .

The model MR1 now becomes the complete model.

2. MR1 vs MR2 : F > Fα. Therefore the result is significant:
Model MR2 is not an adequate simplification of Model MR1

3. MR1 vs MR3 : F > Fα. Therefore the result is significant:
Model MR3 is not an adequate simplification of Model MR1

249

Thus the final model is

A + B + C + A.B

i.e. all main effects, plus the interaction between potato variety
and acclimatization routine.

We cannot simplify this model further without significant loss in
terms of goodness of fit.

Note: R2 = 0.631 and Adjusted R2 = 0.610, so we have a
reasonable fit.
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Task Distraction Data

Example (Task Distraction Data)

In an experimental study, the number of errors made in performing
a specified task was recorded. The experiment investigated the
influence of various predictors on the numbers of errors made.

There are two factor predictors (A,B) and one continuous
covariate (X ).

We have a balanced design with 15 people (replicates) in each
factor-level subgroup.
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Example (Task Distraction Data)

A Group 1 : Non-smoker
2 : Delayed smoker
3 : Active smoker

B Task 1 : Pattern Recognition
2 : Cognitive Task
3 : Driving Simulation

X Distraction Level
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We compare four models with the complete model

Complete Model : A ∗ B ∗ X

A + B + X + A.B + A.X + B.X + A.B.X

Number of parameters

Term Parameters Tot.

A (a − 1) = 3 − 1 2
B (b − 1) = 3 − 1 2
X (1) 1
A.B (a − 1)(b − 1) = 2 × 2 4
A.X (a − 1)(1) = 2 × 1 2
B.X (b − 1)(1) = 2 × 1 2
A.B.X (a − 1)(b − 1)(c − 1) = 2 × 2 × 1 4

Total 17
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For illustration we consider the following sequence of models:

� Reduced Model 1: MR1

A + B + X + A.X + B.X

� Reduced Model 2: MR2

A + B + X + B.X

� Reduced Model 3: MR3

B + X + B.X

� Reduced Model 4: MR4

B + X

254

Task Distraction Data: ANOVA-F Tests

MC : A + B + X + A.B + A.X + B.X + A.B.X
MR1 : A + B + X + A.X + B.X
MR2 : A + B + X + B.X
MR3 : B + X + B.X
MR4 : B + X

COMP. RED. SSEC SSER k g F Fα

MC MR1 5660.010 7627.479 17 9 5.084 2.02

MR1 MR2 7627.479 7971.274 9 7 2.817 3.07

MR2 MR3 7971.274 8404.654 7 5 3.452 3.07

MR3 MR4 8404.654 11154.715 5 3 21.105 3.07
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Conclusions

Taking the comparisons in order:

1. MC vs MR1 : F > Fα. Therefore the result is significant:
Model MR1 is not an adequate simplification of Model MC

2. MR1 vs MR2 : F < Fα. Therefore the result is not significant:
Model MR2 is an adequate simplification of Model MR1

3. MR2 vs MR3 : F > Fα. Therefore the result is significant:
Model MR3 is not an adequate simplification of Model MR2

4. MR3 vs MR4 : F > Fα. Therefore the result is significant:
Model MR4 is not an adequate simplification of Model MR3
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Follow-up Analysis

In a follow up analysis (see Handout), it transpires that the model

A + B + X + A.B + A.X + B.X

ie selected.

Note: R2 = 0.863 and Adjusted R2 = 0.831, so we have a good
fit.

Note: we must take great care with the sequence of models.
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Stepwise Selection in SPSS: Options

It is possible to carry out stepwise selection in SPSS using the
Linear Regression pulldown menu, and the Method pulldown list.

� Enter : All variables in a block are entered in a single step.

� Stepwise : At each step, the independent variable not in the
equation that has the smallest p-value in the F -test is
entered, if that probability is sufficiently small. Variables
already in the regression equation are removed if their
p-value becomes sufficiently large. The method terminates
when no more variables are eligible for inclusion or removal.

� Remove : All variables in a block are removed in a single
step.
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Stepwise Selection in SPSS: Options

� Backward : Variables are entered into the equation and then
sequentially removed. The variable with the smallest partial
correlation with the dependent variable is considered first for
removal. After the first variable is considered, the variable
remaining in the equation with the smallest partial correlation
is considered next. The procedure stops when there are no
variables in the equation that satisfy the removal criteria.

� Forward : Variables are sequentially entered into the model
starting from the null model. The first variable considered for
entry into the equation is the one with the largest positive or
negative correlation with the dependent variable. This variable
is entered into the equation only if it satisfies the criterion for
entry. If the first variable is entered, the independent variable
not in the equation that has the largest partial correlation is
considered next. The procedure stops when there are no
variables that meet the entry criterion.

259

2.2.5 Pitfalls of Regression Modelling

Five issues to bear in mind in ANOVA, Regression and General
Linear Modelling.

1. Model assumptions

2. Data transformations

3. Model selection

4. Multicollinearity

5. Predicting beyond the range of the covariates

See Handout.
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Part III

Non-Parametric Statistics

261

Non-Parametric Statistics

All of the previous statistical analysis methods studied (t-tests,
ANOVA, Regression, General Linear Modelling) have depended
heavily on distributional assumptions.

i.e. we assume that the data are Normally distributed.

We now seek statistical procedures that do not rely on this strong
assumption. We term these methods

NON-PARAMETRIC

or

DISTRIBUTION-FREE

They substitute large sample approximations for the
distributional assumptions.
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3.1 Distribution-free tests for Categorical Data

Categorical data are data in which experimental units are allocated
to one of a number of categories according to their characteristics.
The categories are defined by one or more factors

Examples:

� Female/Male - two categories

� Smoker/Former Smoker/Non Smoker - three categories.
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Doll and Hill Data
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Juvenile Delinquency and Spectacle-Wearing
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The data are counts of experimental units that fall into each
category. Suppose

1. There are n experimental units in the study

2. There are k categories

3. The probabilities of the k outcomes are p1, . . . , pk , where

p1 + · · · + pk = 1

4. The experimental units are independent

5. The counts in the k categories are n1, . . . , nk , where

n1 + · · · + nk = n
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The experimental design is termed a Multinomial Experiment

Note: The categories can arise as combinations of factor levels; we
can have

� one-way classification (categories of a single factor, A)

� two-way classification (categories defined by combinations of
levels of two factors, A and B)

and so on. The counts table is often called a contingency table
and the entries in the table are called cells.

The idea can be extended to larger numbers of factors
(A, B, C , . . .) to produce a multi-way table. We will focus on at
most two-way tables, with r rows and c columns, yielding an r × c
table.
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What kinds of tests can be carried out for such data ?

1. Tests about p1, . . . , pk

� H0 : p1 = · · · = pk = 1/k
� H0 : p1, . . . , pk determined by some parametric distribution

(Normal, Poisson etc.)

2. Tests about the factors A and B

� are A and B dependent ?
� i.e. does classification by A influence classification by B.
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Chi-Squared Test

For one-way tables: suppose that a null hypothesis completely
specifies p1, . . . , pk , that is, we have H0 of the form

H0 : p1 = p
(0)
1 , . . . , pk = p

(0)
k

where p
(0)
1 , . . . , p

(0)
k are fixed probabilities. For example, for k = 3,

H0 : p1 = p2 = p3 = 1/3

or
H0 : p1 = 1/2, p2 = p3 = 1/4

269

To test this hypothesis against the general alternative hypothesis

Ha : H0 not true.

we use the test statistic

X 2 =
k∑

i=1

(
ni − np

(0)
i

)2

np
(0)
i

If H0 is true,
X 2 ∼: Chi-squared(k − 1).

that is, X 2 is approximately distributed as Chi-squared(k − 1).
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In this formula

� ni is the observed count in cell i

� np
(0)
i is the expected count in cell i if H0 is true.

Sometimes the formula is written

X 2 =
k∑

i=1

(Oi − Ei )
2

Ei

where Oi is the observed count, and Ei is the expected count.

If
X 2 > Chisqα(k − 1)

then we reject H0 at the α significance level, where Chisqα(k − 1)
is the 1 − α (right-hand) tail critical value of the Chi-squared
distribution with k − 1 degrees of freedom.
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This method can be extended in the one-way case to test
distribution assumptions, that is, for example

H0 : Data Normally distributed

or
H0 : Data Poisson distributed

Unfortunately this facility is not available in SPSS; direct
calculation is possible but involved.
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For the two-way table, we can test the hypothesis

H0 : Factor A and Factor B levels are assigned independently

that is, classification by factor A is independent of classification by
factor B. We use the same test statistic that can be rewritten

X 2 =
r∑

i=1

c∑
j=1

(nij − n̂ij)
2

n̂ij

where

n̂ij =
ni .n.j

n
ni . =

c∑
j=1

nij n.j =
r∑

i=1

nij .

The terms ni . and n.j are the row and column totals for row i and
column j respectively.
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If H0 is true

X 2 ∼: Chi-squared((r − 1)(c − 1))

i.e. the degrees of freedom quantity is (r − 1)(c − 1). Otherwise
the test proceeds as before: we check whether

X 2 > Chisqα((r − 1)(c − 1))

and if so, we reject H0.
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Example (DNA Sequence Data)

Counts of Nucleotides A,C,G,T in a genomic segment related to
the breast cancer gene BRCA2.

Example (Eye and Hair Colour Data)

The assignment of hair and eye colour in a sample of humans

See handout.
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Note: For the Chi-squared test to be valid, we need the expected
cell counts

np
(0)
i i = 1, . . . , k

or
n̂ij i = 1, . . . , r , j = 1, . . . , c

to be sufficiently large. The convention is to require the expected
value to be greater than five.
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Note: If r = c = 2 we have a 2 × 2 table, and another exact test
can be used which does not rely on the large sample approximation

Fisher’s Exact Test

� another test for independence of assignment of the row and
column factor levels

� test statistic and null distribution are complicated (based on
the hypergeometric distribution)

� SPSS computes test statistic and p-value.
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Example (Juvenile Delinquency and Spectacle Wearing)

Is there any association between the two factors ?

A : Spectacle Wearing (Yes/No)

B : Juvenile Delinquent (Yes/No)

Delinquent
Yes No ni .

Spectacles
Yes 1 5 6
No 8 2 10
n.j 9 7 16
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Example (Juvenile Delinquency and Spectacle Wearing)

Chi-squared Test:
X 2 = 6.112

Compare with Chi-squared((r − 1)(c − 1)) = Chi-squared(1); we
have

Chi-squared0.05(1) = 3.841

and a p-value of 0.013. Therefore we reject H0.

Fisher’s Exact Test: p-value is 0.035 (1-sided) or 0.024 (2-sided).

Thus we reject H0 and we have evidence of association between
the factors.
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Case-Control Studies

A case-control study is an observational study where participants
are selected for the study with regard to their disease status.

� a sample of cases (disease sufferers)

� a sample of controls (healthy patients)

We investigate the possible association between disease status and
a factor that takes two levels. A 2× 2 table of counts is formed for
all combinations of disease status/factor level.

280

Example (BCG Vaccination and Leprosy)

Disease Status : Leprosy Sufferer (Yes/No)

Factor : Vaccination Scar (Yes/No)

Disease Status
Case Control
Yes No ni .

Scar
Yes 101 554 655
No 159 446 605
n.j 260 1000 1260

Is there an association ? Does vaccination induce leprosy ?
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The Chi-squared test is potentially not valid here because of the
design. An alternative test statistic is based on the odds ratio

O.R. =
n11n22

n12n21
= ψ̂

say. The test statistic is

Z =
log ψ̂

s.e.(log ψ̂)

where

s.e.(log ψ̂) =

√
1

n11
+

1

n12
+

1

n21
+

1

n22
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That is,

Z =
log n11 + log n22 − log n12 − log n21√

1

n11
+

1

n12
+

1

n21
+

1

n22

Under

H0 : No association between factor and disease status

it follows that
Z ∼: N(0, 1)

Here log means ln or natural log.
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Example (BCG Vaccination and Leprosy)

n11 = 101, n12 = 554, n21 = 159, n22 = 446

Therefore

ψ̂ =
n11n22

n12n21
= 0.511 log ψ̂ = −0.671

and

s.e.(log ψ̂) =

√
1

n11
+

1

n12
+

1

n21
+

1

n22
= 0.142

so

Z =
−0.671

0.142
= −4.717

For a text at α = 0.05, the two-sided critical value is ±1.96, so we

Reject H0.
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Example (Smoking and Lung Cancer)

n11 = 647, n12 = 622, n21 = 2, n22 = 27

Therefore

log ψ̂ = log
647 × 27

2 × 622
= 2.642

and

s.e.(log ψ̂) =

√
1

647
+

1

2
+

1

622
+

1

27
= 0.735

so

Z =
2.642

0.735
= 3.590

For a text at α = 0.05, the two-sided critical value is ±1.96, so we

Reject H0

and report evidence for association.
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3.2 Single Population Tests

We seek non-parametric or distribution-free tests for hypotheses
relating to single samples, the equivalents of one-sample Z - or
T -tests, which rely on the normality of the samples.

Normally these tests are formulated in terms of ranks of the data
to give

Rank Tests
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For example, if the data are

0.24 3.16 1.97 2.10 0.92

we sort them into ascending order, and assign ranks in order

0.24 0.92 1.97 2.10 3.16
Rank 1 2 3 4 5

The tests depend on the behaviour of statistics computed in terms
of the ranks, and rely on a large sample justification.
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Rather than test the mean, we test the median, xMED, where

Pr[Observation ≤ xMED] =
1

2

i.e. the halfway point of the distribution.

The sample median is the halfway point of the sorted sample.

Let η denote the population median. We wish to test, for example,

H0 : η = η0

See Handout
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3.3 Comparing Two Populations : Independent Samples

We seek a non-parametric equivalent to the two-sample t-test.

Instead of testing population means,

H0 : μ1 = μ2

we test population medians

H0 : η1 = η2
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One- and Two- sample tests

� In the one sample case we use the

SIGN TEST

to test hypotheses about η

� In the two sample case we use the

WILCOXON RANK SUM or MANN-WHITNEY U test.

See Handout
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Note: For the MWW test

� Textbook convention : Label the samples so that n1 > n2

(i.e. sample 1 is the one with the larger sample size)

� SPSS convention : Label the samples such that

xMED1 < xMED2

(i.e. sample 1 is the one with the smaller median) and only
test

H0 : η1 = η2
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Other two sample tests are available:

� Kolmogorov-Smirnov Test

� Moses Extreme Reactions Test

� Wald-Wolfowitz Runs Test

None make distributional assumptions, all perform best when the
sample size is large.
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3.4 Comparing Two Dependent Samples

Suppose we have repeat measurements on the same experimental
units.

In this case, the within-subject data are dependent; we have
pairing of observations.

We can use the

Wilcoxon Signed Rank Test

See Handout
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3.4 Comparing Three or More Populations

We now seek non-parametric equivalents to ANOVA useful for
different designs. We study tests for

(a) the Completely Randomized Design (CRD)

(b) the Randomized Block Design (RBD)

For (a) we use the

Kruskal-Wallis Test

and for (b) we use the

Friedman Test.

See Handout
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Summary of the Non-Parametric Tests

� Chi-Squared Test : Goodness of Fit/independence in
contingency tables

� Sign Test : One Sample (equivalent of one sample t-test)

� Mann-Whitney-Wilcoxon : Two Sample (equivalent of two
sample t-test)

� Wilcoxon Signed Rank : Paired Data

� Kruskal-Wallis : one-way layout, multigroup comparison -
equivalent of ANOVA for CRD.

� Friedman : two-way blocked layout, equivalent of two-way
ANOVA for RBD.
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Pros:

� No distributional assumptions

� Applicable for most sorts of data

� Large sample approximations make them easy to implement

Cons:

� Low power compared to parametric tests (i.e. often do not
reject H0 when they should - prone to Type II Error)

� Small sample null distributions difficult to compute.
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3.6 Rank Correlation

To measure the association between two variables, we previously
used the correlation coefficient, r ; for data x1, . . . , xn and
y1, . . . , yn,

r =
SSxy√

SSxxSSyy

where

SSxy =
n∑

i=1

(xi−x)(yi−y) SSxx =
n∑

i=1

(xi−x)2 SSyy =
n∑

i=1

(yi−y)2

r is a measure of the linear association between X and Y

Pearson Product Moment Coefficient of Correlation
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A more general measure of association is the

Spearman Rank Correlation Coefficient

We compute this as follows:

1. For each sample separately, compute the ranks of the data,
denote the ranks for the data x1, . . . , xn and y1, . . . , yn by
u1, . . . , un and v1, . . . , vn respectively.

2. Compute

rS =
SSuv√

SSuuSSvv

ie the Pearson correlation between the ranks.

rS is the Spearman Correlation.
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Notes:

1. If there are no ties in the data

rS = 1 −
6

n∑
i=1

d2
i

n(n2 − 1)

where di = ui − vi .

2. rS is potentially a measure of the non-linear association
between X and Y .

The calculation can be applied directly to rank data i.e.
u1, . . . , un and v1, . . . , vn can be preference ranks given by two
observers.
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Tests for rS

To test
H0 : ρ = 0

vs

(1) Ha : ρ > 0

(2) Ha : ρ < 0

(3) Ha : ρ �= 0

We may use rS as a test statistic. The distribution of rS under H0

is tabulated in McClave and Sincich.

300



If Spearmanα is the α tail quantile of the null distribution, we have
the following rejection regions:

(1) : Reject H0 if rS > Spearmanα

(2) : Reject H0 if rS < −Spearmanα

(3) : Reject H0 if |rS | > Spearmanα/2
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The Role of Randomization and Permutation Tests

Randomization or Permutation procedures are useful for
computing exact null distributions for non-parametric test
statistics when sample sizes are small.

We focus first on two sample comparisons; suppose that two data
samples x1 . . . , xn1 and y1 . . . , yn2 (where n1 ≥ n2) have been
obtained, and we wish to carry out a comparison of the two
populations from which the samples are drawn. The Wilcoxon test
statistic, W , is the sum of the ranks for the second sample. The
permutation test proceeds as follows:
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1. Let n = n1 + n2. Assuming that there are no ties, the pooled
and ranked samples will have ranks

1 2 3 . . . n

2. The test statistic is W = R2, the rank sum for sample two
items. For the observed data, W will be the sum of n2 of the
ranks given in the list above.

3. If the null hypothesis

H0 : No difference between population 1 and population 2

were true, then we would expect no pattern in the
arrangements of the group labels when sorted into ascending
order. That is, the sorted data would give rise a random
assortment of group 1 and group 2 labels.
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4. To obtain the exact distribution of W under H0 (which is
what we require for the assessment of statistical significance),
we could compute W for all possible permutations of the
group labels, and then form the probability distribution of the
values of W . We call this the permutation null distribution.

5. But W is a rank sum, so we can compute the permutation
null distribution simply by tabulating all possible subsets of
size n2 of the set of ranks {1, 2, 3, . . . , n}.
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6. There are (
n

n2

)
=

n!

n1! n2!
= N

say possible subsets of size n2. For example, for n = 6 and
n2 = 2, the number of subsets of size n2 is(

8

2

)
=

8!

6! 2!
= 28

However, the number of subsets increases dramatically as n
increases; for n1 = n2 = 10, so that n = 20, the number of
subsets of size n2 is(

20

10

)
=

20!

10! 10!
= 184756
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7. The exact rejection region and p-value are computed from the
permutation null distribution. Let Wi , i = 1, . . . ,N denote the
value of the Wilcoxon statistic for the N possible subsets of
the ranks of size n2. The probability that the test statistic,
W , is less than or equal to w is

Pr[W ≤ w ] =
Number of Wi ≤ w

N

We seek the values of w that give the appropriate rejection
region, R, so that

Pr[W ∈ R] =
Number of Wi ∈ R

N
= α

It may not be possible to find critical values, and define R, so
that this probability is exactly α as the distribution of W is
discrete.
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Simple Example
Suppose n1 = 7 and n2 = 3. There are(

10

3

)
=

10!

7! 3!
= 120

subsets of the ranks {1, 2, 3, . . . , 10} of size 3. The subsets are
listed below, together with the rank sums.
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Ranks W Ranks W Ranks W Ranks W
1 2 3 6 1 7 8 16 2 7 10 19 4 6 7 17
1 2 4 7 1 7 9 17 2 8 9 19 4 6 8 18
1 2 5 8 1 7 10 18 2 8 10 20 4 6 9 19
1 2 6 9 1 8 9 18 2 9 10 21 4 6 10 20
1 2 7 10 1 8 10 19 3 4 5 12 4 7 8 19
1 2 8 11 1 9 10 20 3 4 6 13 4 7 9 20
1 2 9 12 2 3 4 9 3 4 7 14 4 7 10 21
1 2 10 13 2 3 5 10 3 4 8 15 4 8 9 21
1 3 4 8 2 3 6 11 3 4 9 16 4 8 10 22
1 3 5 9 2 3 7 12 3 4 10 17 4 9 10 23
1 3 6 10 2 3 8 13 3 5 6 14 5 6 7 18
1 3 7 11 2 3 9 14 3 5 7 15 5 6 8 19
1 3 8 12 2 3 10 15 3 5 8 16 5 6 9 20
1 3 9 13 2 4 5 11 3 5 9 17 5 6 10 21
1 3 10 14 2 4 6 12 3 5 10 18 5 7 8 20
1 4 5 10 2 4 7 13 3 6 7 16 5 7 9 21
1 4 6 11 2 4 8 14 3 6 8 17 5 7 10 22
1 4 7 12 2 4 9 15 3 6 9 18 5 8 9 22
1 4 8 13 2 4 10 16 3 6 10 19 5 8 10 23
1 4 9 14 2 5 6 13 3 7 8 18 5 9 10 24
1 4 10 15 2 5 7 14 3 7 9 19 6 7 8 21
1 5 6 12 2 5 8 15 3 7 10 20 6 7 9 22
1 5 7 13 2 5 9 16 3 8 9 20 6 7 10 23
1 5 8 14 2 5 10 17 3 8 10 21 6 8 9 23
1 5 9 15 2 6 7 15 3 9 10 22 6 8 10 24
1 5 10 16 2 6 8 16 4 5 6 15 6 9 10 25
1 6 7 14 2 6 9 17 4 5 7 16 7 8 9 24
1 6 8 15 2 6 10 18 4 5 8 17 7 8 10 25
1 6 9 16 2 7 8 17 4 5 9 18 7 9 10 26
1 6 10 17 2 7 9 18 4 5 10 19 8 9 10 27
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There are 22 possible rank sums, {6, 7, 8, . . . , 25, 26, 27}; the
number of times each is observed is displayed in the table below,
with the corresponding probabilities and cumulative probabilities.

W 6 7 8 9 10 11 12 13 14 15 16
Frequency 1 1 2 3 4 5 7 8 9 10 10
Prob. 0.008 0.008 0.017 0.025 0.033 0.042 0.058 0.067 0.075 0.083 0.083
Cumulative Prob. 0.008 0.017 0.033 0.058 0.092 0.133 0.192 0.258 0.333 0.417 0.500

W 17 18 19 20 21 22 23 24 25 26 27
Frequency 10 10 9 8 7 5 4 3 2 1 1
Prob. 0.083 0.083 0.075 0.067 0.058 0.042 0.033 0.025 0.017 0.008 0.008
Cumulative Prob. 0.583 0.667 0.742 0.808 0.867 0.908 0.942 0.967 0.983 0.992 1.000
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Thus, for example, the probability that W = 19 is 0.075, with a
frequency of 9 out of 120. From this table, we deduce that

Pr[8 ≤ W ≤ 25] = 0.983 − 0.033 = 0.950

implying that the two-sided rejection region for α = 0.05 is the set
R = {6, 7, 26, 27}.
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Placenta Permeability Data

Example (Placenta Permeability Data)

Measurements of placenta permeability are made on two groups of
subjects.

The data and their ranks for are displayed below:

Group 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2

Obs. 0.73 0.80 0.83 1.04 1.38 1.45 1.46 1.64 1.89 1.91 0.74 0.88 0.9 1.15 1.21

Rank 1 3 4 7 10 11 12 13 14 15 2 5 6 8 9
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Placenta Permeability Data

Example

Thus the Wilcoxon statistic is

W = R2 = 2 + 5 + 6 + 8 + 9 = 30

Now, here n1 = 10 and n2 = 5. There are(
15

5

)
=

15!

10! 5!
= 3003

subsets of the ranks {1, 2, 3, . . . , 15} of size 5.

In the permutation null distribution, the possible values of W are
{15, 16, . . . , 64, 65}; the probabilities are given below.

312



Placenta Permeability Data

Example

W 15 16 17 18 19 20 21 22 23 24 25 26 27
Frequency 1 1 2 3 5 7 10 13 18 23 30 36 45
Prob. 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.004 0.006 0.008 0.010 0.012 0.015
Cumulative Prob. 0.000 0.001 0.001 0.002 0.004 0.006 0.010 0.014 0.020 0.028 0.038 0.050 0.065

W 28 29 30 31 32 33 34 35 36 37 38 39 40
Frequency 53 63 72 83 92 103 111 121 127 134 137 141 141
Prob. 0.018 0.021 0.024 0.028 0.031 0.034 0.037 0.040 0.042 0.045 0.046 0.047 0.047
Cumulative Prob. 0.082 0.103 0.127 0.155 0.185 0.220 0.257 0.297 0.339 0.384 0.430 0.477 0.523

W 41 42 43 44 45 46 47 48 49 50 51 52 53
Frequency 141 137 134 127 121 111 103 92 83 72 63 53 45
Prob. 0.047 0.046 0.045 0.042 0.040 0.037 0.034 0.031 0.028 0.024 0.021 0.018 0.015
Cumulative Prob. 0.570 0.616 0.661 0.703 0.743 0.780 0.815 0.845 0.873 0.897 0.918 0.935 0.950

W 54 55 56 57 58 59 60 61 62 63 64 65
Frequency 36 30 23 18 13 10 7 5 3 2 1 1
Prob. 0.012 0.010 0.008 0.006 0.004 0.003 0.002 0.002 0.001 0.001 0.000 0.000
Cumulative Prob. 0.962 0.972 0.980 0.986 0.990 0.994 0.996 0.998 0.999 0.999 1.000 1.000
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Placenta Permeability Data

Example

By inspection of the table, we see that

Pr[25 ≤ W ≤ 55] = 0.972 − 0.038 = 0.934

and
Pr[24 ≤ W ≤ 56] = 0.980 − 0.028 = 0.952
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Placenta Permeability Data

Example

Thus for a symmetric two-sided interval which contains at most
probability 0.95, we take the interval

{25, 26, . . . , 54, 55}

and hence define the rejection region

R = {16, 17, . . . , 23, 24, 56, 57, . . . , 64, 65}

Note that this choice of rejection region ensures that there is at
least probability 0.025 in each tail.

Thus in this example we do not reject the hypothesis of equal
medians.
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Normal Approximation
The permutation null distribution of W is displayed below.
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Permutation Null Distribution
Normal Approx.

Permutation Null Distribution with Normal Approximation

The normal approximation is given by

W ∼: Normal

(
n2(n1 + n2 + 1)

2
,
n1n2(n1 + n2 + 1)

12

)
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