The Wilcoxon Signed Rank Test (and why we drop the zeros)

Without Pairing: No rejection of the null.

Two-sample t-test

With Pairing: Rejection of the null.

One-sample t-test on paired differences

The Wilcoxon Signed Rank Procedure

For paired pre-treatment (y_{11}, \ldots, y_{n1}) and post-treatment: (y_{21}, \ldots, y_{n2}) data, the procedure is as follows:

- 1. Form $x_i = y_{i1} y_{i2}$, for i = 1, ..., n.
- 2. Form $s_i = |x_i|$, for i = 1, ..., n.
- 3. Drop every $x_i = 0$, leaving a sample size of m.
- 4. Assign ranks r_1, \ldots, r_m to s_1, \ldots, s_m after sorting into ascending order.
- 5. Form

$$T_{+} = \sum_{i=1}^{m} r_{i} z_{i}$$
 $T_{-} = \sum_{i=1}^{m} r_{i} (1 - z_{i})$

where

$$z_i = \begin{cases} 1 & x_i > 0 \\ 0 & x_i < 0 \end{cases}$$

Computing the Null Distribution

The behaviour of T_+ and T_- can be predicted under the null hypothesis under the assumption that the original data are generated from **continuous distributions** with the same **median**.

- Under this assumption, we will **never** get $x_i = 0$.
- ► Under this assumption, if K is the random variable recording the **number** of positive x_i values, then

 $K \sim Binomial(n, 1/2)$

as in the sign test.

► Under this assumption, given that K = k, T₊ is the sum of k numbers (ranks) chosen at random with replacement from the set {1, 2, ..., n}. Similarly, T₋ is the sum of the remaining n - k ranks.

By enumerating all the possible selections, we can compute the probability distribution (conditional on K = k) of T_+ ; denote it

p(t|k).

Then, using the **Theorem of Total Probability** and the binomial distribution formula, we can obtain the null distribution as

$$P[T_{+} = t] = \sum_{k=0}^{n} P[T_{+} = t | K = k] P[K = k]$$
$$= \sum_{k=0}^{n} p(t|k) {n \choose k} \left(\frac{1}{2}\right)^{n}$$

An equivalent calculation holds for T_- ; in fact, under H_0 , the distributions of T_+ and T_- are identical.

Example: n = 5

We have to enumerate all possible sums of k numbers chosen from $\{1, \ldots, n\}$, for each $k = 0, \ldots, n$.

- k Possible values of T_+
- 0 0
- 1 1,2,...,5
- 2 1+2=3, 1+3=4, 1+4=5, 2+3=5, 1+5=6, 2+4=6, 2+5=7, 3+4=7, 3+5=8, 4+5=9
- 4 1+2+3+4=10, 1+2+3+5=11, 1+2+4+5=12, 1+3+4+5=13, 2+3+4+5=14
- 5 1+2+3+4+5=15

Example: n = 5

Therefore the probability distribution of T_+ given k is given by

	Possible values of T_+															
k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	0	0	0	0	0	0	0	0	0	0
2	0	0	0	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{2}{10}$	$\frac{2}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	0	0	0	0	0	0
3	0	0	0	0	0	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{2}{10}$	$\frac{2}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Example: n = 5

Hence, using the previous formula, we can compute $P[T_+ = t]$:

	Possible values of T_+											
t	0	1	2	3	4	5	6	7				
$P[T_+=t]$	0.031	0.031	0.031	0.062	0.062	0.094	0.094	0.094				
$P[T_+ \leq t]$	0.031	0.062	0.094	0.156	0.219	0.312	0.406	0.500				
t	8	9	10	11	12	13	14	15				
$P[T_+ = t]$	0.094	0.094	0.094	0.062	0.062	0.031	0.031	0.031				
$P[T_+ \leq t]$	0.594	0.688	0.781	0.844	0.906	0.938	0.969	1.000				

Note: The same calculation WITH zeros

If the $x_i = 0$ data are left in the sample, then the calculation becomes more complicated

- ► The selection of the test statistic is not straightforward; T₊ and T₋ are still the obvious choices that will distinguish H_a from H₀.
- ► In the presence of zeros the distribution of K is no longer Binomial.
- ► We need to propose a model for the **number** of zeros.
- We would need a **different** table of critical values for each different number of zeros.

Overall, it is more straightforward to **omit** the zeros; it can be shown that this does not compromise the effectiveness of the test.