Rather than test the **mean**, we test the **median**, x_{MED} , where $Pr[Observation \leq x_{MED}] = \frac{1}{2}$

i.e. the halfway point of the distribution.

The sample median is the halfway point of the sorted sample.

Let η denote the population median. We wish to test, for example,

 H_0 : $\eta = \eta_0$

SEE HANDOUT

3.3 Comparing Two Populations : Independent Samples

We seek a non-parametric equivalent to the two-sample t-test. Instead of testing population **means**,

$$H_0 : \mu_1 = \mu_2$$

we test population medians

 $H_0 : \eta_1 = \eta_2$

In the one sample case we use the SIGN TEST to test hypotheses about η

In the **two sample** case we use the **WILCOXON RANK SUM TEST** or the **MANN-WHITNEY U TEST**.

SEE HANDOUT

Rather than test the **mean**, we test the **median**, x_{MED} , where $Pr[Observation \leq x_{MED}] = \frac{1}{2}$

i.e. the halfway point of the distribution.

The sample median is the halfway point of the sorted sample.

Let η denote the population median. We wish to test, for example,

 H_0 : $\eta = \eta_0$

SEE HANDOUT

3.3 Comparing Two Populations : Independent Samples

We seek a non-parametric equivalent to the two-sample t-test. Instead of testing population **means**,

$$H_0 : \mu_1 = \mu_2$$

we test population medians

 $H_0 : \eta_1 = \eta_2$

In the one sample case we use the SIGN TEST to test hypotheses about η

In the **two sample** case we use the **WILCOXON RANK SUM TEST** or the **MANN-WHITNEY U TEST**.

SEE HANDOUT

NON-PARAMETRIC STATISTICS: ONE AND TWO SAMPLE TESTS

Non-parametric tests are normally based on **ranks** of the data samples, and test hypotheses relating to **quantiles** of the probability distribution representing the population from which the data are drawn. Specifically, tests concern the **population median**, η , where

$$\Pr[\text{Observation } \leq \eta] = \frac{1}{2}$$

The **sample median**, x_{MED} , is the mid-point of the sorted sample; if the data x_1, \ldots, x_n are sorted into **ascending** order, then

$$x_{\text{MED}} = \begin{cases} x_m & n \text{ odd}, n = 2m + 1\\ \frac{x_m + x_{m+1}}{2} & n \text{ even}, n = 2m \end{cases}$$

1 One Sample Test for Median: The Sign Test

For a single sample of size n, to test the hypothesis $\eta = \eta_0$ for some specified value η_0 we use the **Sign Test.**. The test statistic *S* depends on the alternative hypothesis, H_a .

(a) For **one-sided** tests, to test

 $H_0 : \eta = \eta_0$ $H_a : \eta > \eta_0$

we define S = Number of observations greater than η_0 , whereas to test

 $H_0 : \eta = \eta_0$ $H_a : \eta < \eta_0$

we define S = Number of observations less than η_0 . If H_0 is true, it follows that

$$S \sim \text{Binomial}\left(n, \frac{1}{2}\right)$$

The *p*-value is defined by

$$p = \Pr[X \ge S]$$

where $X \sim \text{Binomial}(n, 1/2)$. The rejection region for significance level α is defined implicitly by the rule

Reject H_0 if $\alpha \ge p$.

The Binomial distribution is tabulated on pp 885-888 of McClave and Sincich.

(b) For a **two-sided** test,

$$H_0 : \eta = \eta_0$$
$$H_a : \eta \neq \eta_0$$

we define the test statistic by

$$S = \max\{S_1, S_2\}$$

where S_1 and S_2 are the counts of the number of observations less than, and greater than, η_0 respectively. The *p*-value is defined by

$$p = 2 \Pr[X \ge S]$$

where $X \sim \text{Binomial}(n, 1/2)$.

Notes :

- 1. The only assumption behind the test is that the data are drawn independently from a continuous distribution.
- 2. If any data are equal to η_0 , we **discard** them before carrying out the test.
- 3. Large sample approximation. If *n* is large (say $n \ge 30$), and $X \sim \text{Binomial}(n, 1/2)$, then it can be shown that

$$X \sim \operatorname{Normal}(np, np(1-p))$$

Thus for the sign test, where p = 1/2, we can use the test statistic

$$Z = \frac{S - \frac{n}{2}}{\sqrt{n \times \frac{1}{2} \times \frac{1}{2}}} = \frac{S - \frac{n}{2}}{\sqrt{n} \times \frac{1}{2}}$$

and note that if H_0 is true,

 $Z \sim \text{Normal}(0, 1).$

so that the test at $\alpha = 0.05$ uses the following critical values

 $H_a: \eta > \eta_0$ then $C_R = 1.645$ $H_a: \eta < \eta_0$ then $C_R = -1.645$ $H_a: \eta \neq \eta_0$ then $C_R = \pm 1.960$

4. For the large sample approximation, it is common to make a **continuity correction**, where we replace *S* by S - 1/2 in the definition of *Z*

$$Z = \frac{\left(S - \frac{1}{2}\right) - \frac{n}{2}}{\sqrt{n} \times \frac{1}{2}}$$

Tables of the standard Normal distribution are given on p 894 of McClave and Sincich.

2 Two Sample Tests for Independent Samples: The Mann-Whitney-Wilcoxon Test

For a two **independent** samples of size n_1 and n_2 , to test the hypothesis of **equal population medians**

 $\eta_1 = \eta_2$

we use the **Wilcoxon Rank Sum Test**, or an equivalent test, the **Mann-Whitney U Test**; we refer to this as the

Mann-Whitney-Wilcoxon (MWW) Test

By convention it is usual to formulate the test statistic in terms of the **smaller** sample size. Without loss of generality, we label the samples such that

 $n_1 > n_2$.

The test is based on the **sum of the ranks** for the data from sample 2.

EXAMPLE : $n_1 = 4, n_2 = 3$ SAMPLE 1 0.31 0.48 1.02 3.11 SAMPLE 2 0.16 0.20 1.97 yields the following ranked data SAMPLE 2 2 1 1 1 2 1 0.16 0.20 0.31 0.48 1.02 1.97 3.11 1 3 5 7 RANK 2 4 6

Thus the rank sum for sample 1 is

$$R_1 = 3 + 4 + 5 + 7 = 19$$

and the rank sum for sample 2 is

$$R_2 = 1 + 2 + 6 = 9.$$

Let η_1 and η_2 denote the medians from the two distributions from which the samples are drawn. We wish to test

$$H_0 : \eta_1 = \eta_2$$

Two related test statistics can be used

- Wilcoxon Rank Sum Statistic $W = R_2$.
- Mann-Whitney U Statistic

$$U = R_2 - \frac{n_2(n_2 + 1)}{2}$$

We again consider three alternative hypotheses:

$$H_a : \eta_1 < \eta_2$$
$$H_a : \eta_1 > \eta_2$$
$$H_a : \eta_1 = \eta_2$$

and define the rejection region separately in each case.

Large Sample Test: If $n_2 \ge 10$, a large sample test based on the *Z* statistic

$$Z = \frac{U - \frac{n_1 n_2}{2}}{\sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}}$$

can be used. Under the hypothesis H_0 : $\eta_1 = \eta_2$,

 $Z \sim \text{Normal}(0, 1)$

so that the test at $\alpha = 0.05$ uses the following critical values

$$H_a : \eta_1 > \eta_2$$
 then $C_R = -1.645$
 $H_a : \eta_1 < \eta_2$ then $C_R = 1.645$
 $H_a : \eta_1 \neq \eta_2$ then $C_R = \pm 1.960$

Small Sample Test: If $n_1 < 10$, an **exact** but more complicated test can be used. The test statistic is R_2 (the sum of the ranks for sample 2). The null distribution under the hypothesis H_0 : $\eta_1 = \eta_2$ can be computed, but it is complicated.

The table on p. 832 of McClave and Sincich gives the critical values (T_L and T_U) that determine the rejection region for different n_1 and n_2 values up to 10.

• One-sided tests:

 $\begin{aligned} H_a &: \eta_1 > \eta_2 & \text{Rejection Region is} & R_2 \leq T_L \\ H_a &: \eta_1 < \eta_2 & \text{Rejection Region is} & R_2 \geq T_U \end{aligned}$

These are tests at the $\alpha = 0.025$ significance level.

• Two-sided tests:

 H_a : $\eta_1 \neq \eta_2$ Rejection Region is $R_2 \leq T_L$ or $R_2 \geq T_U$

This is a test at the $\alpha = 0.05$ significance level.

Notes :

- 1. The only assumption is are needed for the test to be valid is that the samples are independently drawn from two continuous distributions.
- 2. The sum of the ranks across **both** samples is

$$R_1 + R_2 = \frac{(n_1 + n_2)(n_1 + n_2 + 1)}{2}$$

3. If there are **ties** (equal values) in the data, then the rank values are replaced by **average** rank values.

DATA VALUE	0.16	0.20	0.31	0.31	0.48	1.97	3.11
ACTUAL RANK	1	2	3	3	5	6	7
AVERAGE RANK	1	2	3.5	3.5	5	6	7

NON-PARAMETRIC STATISTICS: ONE AND TWO SAMPLE TESTS EXAMPLES

EXAMPLE 1: Sign Test: Water Content Example

The following data are measurements of percentage water content of soil samples collected by two experimenters. We wish to test the hypothesis

$$H_0 : \eta = 9.0$$

for each experiment.

Experimenter 1:	n = 10	5.5	6.0	6.5	7.6	7.6	7.7	8.0	8.2	9.1	15.1	
Experimenter 2:	n = 20	5.6	6.1	6.3	6.3	6.5	6.6	7.0	7.5	7.9	8.0	8.0
-		8.1	8.1	8.2	8.4	8.5	8.7	9.4	14.3	26.0		

To perform the test, we need tables of the Binomial distribution with p = 1/2. The individual probabilities are given by the formula

$$\Pr[X=x] = \binom{n}{x} p^x (1-p)^{n-x} = \binom{n}{x} \frac{1}{2^n} = \frac{n!}{x!(n-x)!} \frac{1}{2^n} \qquad x = 0, 1, \dots, n$$

We test at the $\alpha = 0.05$ level. For the first experiment, with n = 10:

• For a test against the alternative hypothesis

$$H_a$$
 : $\eta > 9.0$

the test statistic is

$$S =$$
 Number of observations greater than 9 \therefore $S = 2$

and the *p*-value is

$$p = \Pr[X \ge 2] = 1 - \Pr[X < 2] = 1 - \Pr[X = 0] - \Pr[X = 1] = 0.9893$$

so we **do not** reject H_0 in favour of this H_a .

• For a test against the alternative hypothesis

$$H_a$$
 : $\eta < 9.0$

the test statistic is

$$S =$$
 Number of observations less than 9 \therefore $S = 8$

and the *p*-value is

$$p = \Pr[X \ge 8] = \Pr[X = 8] + \Pr[X = 9] + \Pr[X = 10] = 0.0547$$

so we **do not** reject H_0 in favour of this H_a .

• For a test against the alternative hypothesis

$$H_a$$
 : $\eta \neq 9.0$

the test statistic is

$$S = \max\{S_1, S_2\} = \max\{2, 8\} = 8$$

and the *p*-value is

$$p = 2\Pr[X \ge 8] = 2(\Pr[X = 8] + \Pr[X = 9] + \Pr[X = 10]) = 0.1094$$

so we **do not** reject H_0 in favour of this H_a .

For the second experiment, with n = 20:

• For a test against the alternative hypothesis H_a : $\eta > 9.0$, the test statistic is S = 3. The *p*-value is therefore

 $p = \Pr[X \ge 3] = 1 - \Pr[X < 3] = 1 - \Pr[X = 0] - \Pr[X = 1] - \Pr[X = 2] = 0.9998.$

so we **do not** reject H_0 in favour of this H_a .

• For a test against the alternative hypothesis H_a : $\eta < 9.0$, the test statistic S = 17. The *p*-value is therefore

$$p = \Pr[X \ge 17] = \Pr[X = 17] + \Pr[X = 18] + \Pr[X = 19] + \Pr[X = 20] = 0.0013.$$

so we **do** reject H_0 in favour of this H_a .

• For a test against the alternative hypothesis H_a : $\eta \neq 9.0$, the test statistic is $S = \max\{S_1, S_2\} = \max\{3, 17\} = 17$. The *p*-value is therefore

$$p = 2\Pr[X \ge 17] = 2(\Pr[X = 17] + \Pr[X = 18] + \Pr[X = 19] + \Pr[X = 20]) = 0.0026.$$

so we **do** reject H_0 in favour of this H_a .

This test can be implemented using SPSS, using the

```
Analyze \rightarrow Nonparametric Tests \rightarrow Binomial
```

pulldown menus. The test can be carried out by

- (a) Selecting the *test variable* from the variables list
- (b) Set the *Cut Point* equal to $\eta_0 = 9$.

A **two-sided** test is carried out at the $\alpha = 0.05$ level. The SPSS output is presented below for the two experiments in turn:

Binomial Test

		Category	N	Observed Prop.	Test Prop.	Exact Sig. (2-tailed)
% Water content	Group 1	<= 9	8	.80	.50	.109
	Group 2	> 9	2	.20		
	Total		10	1.00		

Binomial Test

		Category	N	Observed Prop.	Test Prop.	Exact Sig. (2-tailed)
% Water content	Group 1	<= 9	17	.85	.50	.003
	Group 2	> 9	3	.15		
	Total		20	1.00		

EXAMPLE 2: Mann-Whitney-Wilcoxon Test: Low Birthweight Example The birthweights (in grammes) of babies born to two groups of mothers A and B are displayed below: Thus $n_1 = 9, n_2 = 8$. From this

Group A: n = 9 2164 2600 2184 2080 1820 2496 2184 2080 2184 Group B: n = 8 2576 3224 2704 2912 2444 3120 2912 3848

sample (which has ties, so we need to use average ranks), we find that

$$R_1 = 48$$
 $R_2 = 105$

so that the two statistics are

Wilcoxon $W = R_2 = 105$

Mann-Whitney
$$U = R_2 - \frac{n_2(n_2+1)}{2} = 105 - 36 = 69$$

• For the small sample test, from tables on p832 in McClave and Sincich, we find

 $T_L = 51$ $T_U = 93$

Correction

Thus W > 93, so we

Do not reject H_0 against H_a : $\eta_1 > \eta_2$ as $W = R_2 > T_L$ **Reject** H_0 against H_a : $\eta_1 < \eta_2$ as $W = R_2 > T_U$ **Reject** H_0 against H_a : $\eta_1 \neq \eta_2$ as $W = R_2 > T_U$

Note that the one-sided tests are carried out at $\alpha = 0.025$, the two sided test is carried out at $\alpha = 0.05$.

• For the large sample test, we find

$$Z = \frac{U - \frac{n_1 n_2}{2}}{\sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}} = 3.175$$

Thus we

Do not reject H_0 against H_a : $\eta_1 > \eta_2$ as $Z > C_R = -1.645$ **Reject** H_0 against H_a : $\eta_1 < \eta_2$ as $Z > C_R = 1.645$ **Reject** H_0 against H_a : $\eta_1 \neq \eta_2$ as $Z > C_R = 1.645$

All tests are carried out at $\alpha = 0.05$.

This test can be implemented using SPSS, using the

Analyze \rightarrow Nonparametric Tests \rightarrow Two Independent Samples

pulldown menus. Note, however, that SPSS uses different rules for defining the test statistics, although it yields the same conclusions for a two-sided test.

EXAMPLE 3: Mann-Whitney-Wilcoxon Test: Treadmill Test Example

The treadmill stress test times (in seconds) of two groups of patients (disease group and healthy controls) are displayed below:

> Disease : n = 10 864 636 638 708 786 600 1320 750 594 750 Healthy : n = 8 1014 684 810 990 840 978 1002 1110

Thus $n_1 = 10, n_2 = 8$. From this sample (which has ties, so we need to use average ranks), we find that

$$R_1 = 70$$
 $R_2 = 101$

so that the two statistics are

Wilcoxon $W = R_2 = 101$

Mann-Whitney
$$U = R_2 - \frac{n_2(n_2+1)}{2} = 101 - 36 = 65$$

• For the small sample test, from tables on p832 in McClave and Sincich, we find

$$T_L = 54$$
 $T_U = 98$
The correction $T_U = 98$ Correction T_U

Thus W > 98, so we

Do not reject H_0 against H_a : $\eta_1 > \eta_2$ as $W = R_2 > T_L$ **Reject** H_0 against H_a : $\eta_1 < \eta_2$ as $W = R_2 > T_U$ **Reject** H_0 against H_a : $\eta_1 \neq \eta_2$ as $W = R_2 > T_U$

Again, the one-sided tests are carried out at $\alpha = 0.025$, the two sided test is carried out at $\alpha = 0.05$.

• For the large sample test, we find

$$Z = \frac{U - \frac{n_1 n_2}{2}}{\sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}} = 2.221$$
Correction

Thus we

Do not reject H_0 against H_a : $\eta_1 > \eta_2$ as $Z > C_R = -1.645$ **Reject** H_0 against H_a : $\eta_1 < \eta_2$ as $Z > C_R = 1.645$ **Reject** H_0 against H_a : $\eta_1 \neq \eta_2$ as $Z > C_R = 1.645$

All tests are carried out at $\alpha = 0.05$.