Multiple Linear Regression Forward Selection: we start with Model 0 and build up.

Model 1 vs Model 0 F = 412.568

Model 2 vs Model 0 F = 940.846

It seems that Model 2 is the better improvement, so we try the selection path

 $\mathsf{Model}\ 0 \longrightarrow \mathsf{Model}\ 2 \longrightarrow \mathsf{Model}\ 3 \longrightarrow \mathsf{Model}\ 4$

Model	SSE	$SSE_R - SSE_C$
0	28.504	-
2	3.738	24.766
3	1.472	2.266
4	1.318	0.154

ie we work down the table, 28.504 - 3.738 = 24.766 etc.

Multiple Linear Regression

Comparison	k	g	SSE_C	$SSE_R - SSE_C$	F
2 vs 0	1	0	3.738	24.766	940.82
3 vs 2	3	1	1.472	2.266	107.76
4 vs 3	5	3	1.318	0.154	8.06

Recall that n = 144, and

$$F = \frac{(SSE_R - SSE_C)/(k - g)}{SSE_C/(n - k - 1)}$$

Under each H_0 ,

$$F \sim \mathsf{Fisher} - \mathsf{F}(k - g, n - k - 1)$$

Multiple Linear Regression

- F_{0.05}(1, 142) ≏ 3.92 < 940.82 Therefore Model 0 is NOT an adequate simplification of Model 2
- ► F_{0.05}(2, 140) = 3.07 < 107.76 Therefore Model 2 is NOT an adequate simplification of Model 3
- F_{0.05}(2, 138) ≏ 3.07 < 8.06 Therefore Model 3 is NOT an adequate simplification of Model 4

All of the null hypotheses are rejected.

Multiple Linear Regression

Therefore by both forward and backward selection, we select Model 4 $\ensuremath{\mathsf{A}}$

$$X_1 + X_2 + X_1 \cdot X_2$$

as the most appropriate model.

Note: In this sequence of hypothesis tests, the convention is **not** to correct for multiple testing (we don't know how many tests we are going to do), although a correction could be used.

Multiple Linear Regression

Example: Potato Damage Data.

The damage to potato plants caused by cold temperatures is to be studied.

In this experimental study, three binary factor predictors were used: we label them A, B and C rather than X_1, X_2, X_3 to recall the link with Factorial Designs in ANOVA. Each factor takes two levels:

	Factor	Levels					
A	Potato Variety	0- Variety 1, 1- Variety 2					
В	Acclimatization Routine	0- Room Temp, 1- Cold Room					
С	Preparation Treatment	04C, 18C					
Thus we have a $2 \times 2 \times 2$ three-way factorial design.							

Multiple Linear Regression

However, the design is **unbalanced**; we have different numbers of replicates in each of the 8 factor-level combinations.

This means we cannot use conventional 3-way ANOVA; the lack of balance means that the stated *p*-values will be **wrong** if we perform a standard ANOVA.

Thus we are forced to use the General Linear Model F-test approach.

Multiple Linear Regression We begin with the most complex model and do backward selection.

Here the most complex model can be written

A + B + C + A.B + A.C + B.C + A.B.C

that is,

- all main effects (terms 1,2 and 3)
- all two-way interactions (terms 4,5 and 6)
- all three-way interactions (term 7)

We may write this model

$$A * B * C$$

Counting the numbers of parameters

Simple Linear Regression

Multiple Linear Regression

Term	Parameters	
A	(a-1)	1
В	(b-1)	1
С	(c - 1)	1
A.B	(a - 1)(b - 1)	1
A.C	(a - 1)(c - 1)	1
B.C	(b-1)(c-1)	1
A.B.C	(a-1)(b-1)(c-1)	1
Total		7

where a = b = c = 2.

We have 7 parameters in total when all terms are considered, so

$$k = 7$$