Forward Selection: we start with Model 0 and build up.
Model 1 vs Model $0 \quad F=412.568$
Model 2 vs Model $0 \quad F=940.846$
It seems that Model 2 is the better improvement, so we try the selection path

Model $0 \longrightarrow$ Model $2 \longrightarrow$ Model $3 \longrightarrow$ Model 4

Model	SSE	$S S E_{R}-S S E_{C}$
0	28.504	-
2	3.738	24.766
3	1.472	2.266
4	1.318	0.154

ie we work down the table, $28.504-3.738=24.766$ etc.

Comparison	k	g	$S S E_{C}$	$S S E_{R}-S S E_{C}$	F
2 vs 0	1	0	3.738	24.766	940.82
3 vs 2	3	1	1.472	2.266	107.76
4 vs 3	5	3	1.318	0.154	8.06

Recall that $n=144$, and

$$
F=\frac{\left(S S E_{R}-S S E_{C}\right) /(k-g)}{S S E_{C} /(n-k-1)}
$$

Under each H_{0},

$$
F \sim \text { Fisher-F }(k-g, n-k-1)
$$

- $F_{0.05}(1,142) \bumpeq 3.92<940.82$

Therefore Model 0 is NOT an adequate simplification of Model 2

- $F_{0.05}(2,140) \bumpeq 3.07<107.76$

Therefore Model 2 is NOT an adequate simplification of Model 3

- $F_{0.05}(2,138) \bumpeq 3.07<8.06$

Therefore Model 3 is NOT an adequate simplification of Model 4

All of the null hypotheses are rejected.

Therefore by both forward and backward selection, we select Model 4

$$
X_{1}+X_{2}+X_{1} \cdot X_{2}
$$

as the most appropriate model.
Note: In this sequence of hypothesis tests, the convention is not to correct for multiple testing (we don't know how many tests we are going to do), although a correction could be used.

Example: Potato Damage Data.

The damage to potato plants caused by cold temperatures is to be studied.

In this experimental study, three binary factor predictors were used: we label them A, B and C rather than X_{1}, X_{2}, X_{3} to recall the link with Factorial Designs in ANOVA. Each factor takes two levels:

	Factor	Levels
A	Potato Variety	0 - Variety 1, 1- Variety 2

B Acclimatization Routine 0- Room Temp, 1- Cold Room
C Preparation Treatment $0--4 C, 1--8 C$
Thus we have a $2 \times 2 \times 2$ three-way factorial design.

However, the design is unbalanced; we have different numbers of replicates in each of the 8 factor-level combinations.

This means we cannot use conventional 3-way ANOVA; the lack of balance means that the stated p-values will be wrong if we perform a standard ANOVA.

Thus we are forced to use the General Linear Model F-test approach.

We begin with the most complex model and do backward selection.

Here the most complex model can be written

$$
A+B+C+A \cdot B+A \cdot C+B \cdot C+A \cdot B \cdot C
$$

that is,

- all main effects (terms 1,2 and 3)
- all two-way interactions (terms 4,5 and 6)
- all three-way interactions (term 7)

We may write this model

$$
A * B * C
$$

Counting the numbers of parameters

Term	Parameters	
A	$(a-1)$	1
B	$(b-1)$	1
C	$(c-1)$	1
A.B	$(a-1)(b-1)$	1
A.C	$(a-1)(c-1)$	1
B.C	$(b-1)(c-1)$	1
A.B.C	$(a-1)(b-1)(c-1)$	1
Total		7

where $a=b=c=2$.
We have 7 parameters in total when all terms are considered, so

$$
k=7
$$

