Example: Diabetes Data.

In the SPSS parameterization:

$$
\begin{array}{ll}
\beta_{30}, \beta_{31} & \text { Group 3 Intercept and Slope } \\
\beta_{10}=\beta_{30}+\delta_{10} & \text { Changes in the Intercepts in } \\
\beta_{20}=\beta_{30}+\delta_{20} & \text { Groups 1 and 2 are } \delta_{10} \text { and } \delta_{20} \\
\beta_{11}=\beta_{31}+\delta_{11} & \text { Changes in the Slopes in } \\
\beta_{21}=\beta_{31}+\delta_{21} & \text { Groups 1 and 2 are } \delta_{11} \text { and } \delta_{21}
\end{array}
$$

Thus the six new parameters are

$$
\beta_{30}, \beta_{31}, \delta_{10}, \delta_{20}, \delta_{11}, \delta_{21}
$$

MODEL $0 \quad \beta_{31}=0$

$$
\delta_{10}=\delta_{20}=\delta_{11}=\delta_{21}=0
$$

MODEL $1 \quad \beta_{31}=\delta_{11}=\delta_{21}=0$
MODEL $2 \quad \delta_{10}=\delta_{20}=\delta_{11}=\delta_{21}=0$

MODEL $3 \quad \delta_{11}=\delta_{21}=0$
Note: $\beta_{31}=0 \Longrightarrow \delta_{11}=\delta_{21}=0$, as X_{1} is not included in the model.

Counting Parameters

- Whenever we remove a continuous covariate, from a model, we set one parameter to zero.
- Whenever we remove a factor predictor with L levels from a model, we set $L-1$ parameters to zero.
- Whenever we remove a two-way interaction between these variables from a model, we set $1 .(L-1)=L-1$ parameters to zero.

Models 0,1,2,3 are nested inside Model 4.
Two approaches to finding the best model are used:

1. Start with Model 0 and try to add terms that improve the model fit (Forward Selection)
2. Start with Model 4 and try to remove terms that improve the model fit (Backward Selection)

Note: Models 0,1 and 2 are nested inside Model 3 . Model 0 is nested inside Models 1 and 2. Therefore we can begin with Model 4, or Model 3 or Model 1 or 2, and simplify to a nested model.

Example: Diabetes Data.

Here $n=144$. From SPSS output handouts:

Model	Description	SSE	p
0	1	28.504	1
1	X_{2}	4.160	3
2	X_{1}	3.738	2
3	$X_{1}+X_{2}$	1.472	4
4	$X_{1}+X_{2}+X_{1} \cdot X_{2}$	1.318	6

p is the number of non-zero parameters; k or g is always $p-1$ in the following analysis.

Backward Selection:

Complete Model : Model 4
Reduced Model : Model 3
Here $k=5, g=3$ so $k-g=2$, and
$n-k-1=144-5-1=138$.

$$
F=\frac{\left(S S E_{R}-S S E_{C}\right) /(k-g)}{S S E_{C} /(n-k-1)}=\frac{(1.472-1.318) / 2}{1.318 / 138}=8.062
$$

We compare this with the

$$
\text { Fisher-F }(k-g, n-k-1)=\text { Fisher- } F(2,138)
$$

distribution; we have $F_{\alpha}(2,138)=3.061$, so we

$$
\text { Reject } H_{0} \text { at } \alpha=0.05
$$

i.e. Model $4\left(X_{1}+X_{2}+X_{1} . X_{2}\right)$ fits significantly better than Model $3\left(X_{1}+X_{2}\right)$.

- we cannot simplify the complete model to the reduced model without the loss of significant explanatory power.

The Interaction is Necessary in the Model

Backward selection stops here; we cannot simplify further from the complete model.

