Method

1. Fit the COMPLETE MODEL and obtain the sum of squared errors, $S S E_{C}$, available from the ANOVA table.
2. Fit the REDUCED MODEL and obtain the sum of squared errors, $S S E_{R}$, available from the ANOVA table.
3. Form the test statistic

$$
F=\frac{\left(S S E_{R}-S S E_{C}\right) /(k-g)}{S S E_{C} /(n-k-1)}
$$

If H_{0} is true, then $F \sim$ Fisher- $F(k-g, n-k-1)$
Note: $k-g$ is the number of parameters we set equal to zero when moving from complete to reduced model.

Using this F statistic, we can assess whether there is evidence to support the reduced model over the complete model.

Complete Model ANOVA table:

SOURCE	DF	SS	MS	F
COMPLETE MODEL	k	$S S R_{C}$	$M S R_{C}$	F_{C}
ERROR $_{C}$	$n-k-1$	$S S E_{C}$	$M S E_{C}$	
TOTAL	$n-1$	$S S$		

Reduced Model ANOVA table:

SOURCE	DF	SS	MS	F
REDUCED MODEL	g	$S S R_{R}$	$M S R_{R}$	F_{R}
ERROR $_{R}$	$n-g-1$	$S S E_{R}$	$M S E_{R}$	
TOTAL	$n-1$	$S S$		

The result holds for comparing any two nested models where the standard model assumptions hold:

- ϵ uncorrelated
- ϵ independent of x_{1}, \ldots, x_{k}
- ϵ has constant variance
- $\epsilon \sim N\left(0, \sigma^{2}\right)$

Note: It does not allow us to compare non-nested models; for example

$$
\begin{array}{ll}
\text { MODEL } 1 & : y=\beta_{0}+\beta_{1} x_{1}+\epsilon \\
\text { MODEL } 2 & : \quad y=\beta_{0}+\beta_{2} x_{2}+\epsilon
\end{array}
$$

- NOT NESTED!

$$
F=\frac{\left(S S E_{R}-S S E_{C}\right) /(k-g)}{S S E_{C} /(n-k-1)}=\frac{(1) /(2)}{(3) / 4)}
$$

(1) $-S S E_{R}-S S E_{C}$: this is the improvement in fit when the reduced model is extended to the complete model
(2) $-k-g$: this is the number of extra parameters needed to extend the reduced model to the complete model
(3) $-S S E_{C}$
(4) $-n-k-1$
(3)/(4) - this is the best guess we have at the true value of σ^{2}, that is, the estimate of σ^{2} constructed using as much information as possible, once the effects of

$$
x_{1}, \ldots, x_{k}
$$

have been accounted for.

Example: Hooker's Data.

We consider the two models:

$$
\begin{aligned}
& \operatorname{MODEL} 1: y=\beta_{0}+\beta_{1} x+\epsilon \\
& \operatorname{MODEL} 2: y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\epsilon
\end{aligned}
$$

Here

- MODEL 1: Reduced Model
- MODEL 2: Complete Model
$k=2, g=1$.

IS THE QUADRATIC TERM NEEDED ?

Example: Hooker's Data.

COMPLETE MODEL SSRC 2286.933 SSE ${ }_{C} \quad 4.382$

REDUCED MODEL $\quad S S R_{R} \quad 2272.474$ SSE 18.840

$$
\begin{aligned}
n=31, k=2, g & =1 \\
& \Longrightarrow k-g=1, n-k-1=28
\end{aligned}
$$

So

$$
F=\frac{\left(S S E_{R}-S S E_{C}\right) /(k-g)}{S S E_{C} /(n-k-1)}=\frac{(18.840-4382) / 1}{4.382 / 28}=92.383
$$

Example: Hooker's Data.

We compare F with the

$$
\text { Fisher- } F(k-g, n-k-1) \equiv \text { Fisher- } F(1,28)
$$

distribution.

$$
F_{0.05}(1,28)=4.20
$$

Thus

$$
92.383=F>F_{0.05}(1,28)=4.20
$$

and $H_{0}: E[Y]=\beta_{0}+\beta_{1} x$ is REJECTED in favour of $H_{a}: E[Y]=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$.
i.e. the quadratic model fits better than the straight-line model.

NOTE: From the original ANOVA tables, we already know that Model 1 and Model 2 both fit better than the null model

$$
\begin{aligned}
\text { MODEL OE[Y] } & =\beta_{0} \\
y & =\beta_{0}+\epsilon
\end{aligned}
$$

where there is no dependence on x.
We have now confirmed that Model 2 fits better than Model 1.

Example: Diabetes Data.

Factor Predictor: group (X_{2})
Continuous Covariate: loggluf $\left(X_{1}\right)$
Response: logglut (Y)
We have five models to confirm:
MODEL 0 : 1
MODEL 1 : X_{2}
MODEL $2: \quad X_{1}$
MODEL 3 : $X_{1}+X_{2}$
MODEL $4: X_{1}+X_{2}+X_{1} \cdot X_{2}$

Example: Diabetes Data.

MODEL 4 us the most complex model with 6 parameters

$$
\beta_{10}, \beta_{11}, \beta_{20}, \beta_{21}, \beta_{30}, \beta_{31}
$$

MODEL 4:

$$
E[Y]= \begin{cases}\beta_{10}+\beta_{11} x_{1} & \text { GROUP 1 } \\ \beta_{20}+\beta_{21} x_{1} & \text { GROUP 2 } \\ \beta_{30}+\beta_{31} x_{1} & \text { GROUP 3 }\end{cases}
$$

All of the other models are nested inside Model 4; we can obtain them all by setting parameters equal to zero.

