Method

Simple Linear Regression

Multiple Linear Regression

- 1. Fit the **COMPLETE MODEL** and obtain the sum of squared errors, *SSE_C*, available from the ANOVA table.
- 2. Fit the **REDUCED MODEL** and obtain the sum of squared errors, *SSE_R*, available from the ANOVA table.
- 3. Form the test statistic

$$F = \frac{(SSE_R - SSE_C)/(k - g)}{SSE_C/(n - k - 1)}$$

If H_0 is **true**, then $F \sim \text{Fisher-F}(k - g, n - k - 1)$

Note: k - g is the number of parameters we set equal to zero when moving from complete to reduced model.

Using this F statistic, we can assess whether there is evidence to support the reduced model over the complete model.

Complete Model ANOVA table:

Multiple Linear Regression

	SOURCE	DF	SS	MS	F	
	COMPLETE MODEL	k	SSRc	MSRc	Fc	
	ERROR _C	n-k-1	SSE_C	MSE _C	·ι	
	TOTAL	n-1	SS			
Reduced Model ANOVA table:						
	SOURCE	DF	55	MS	F	
	REDUCED MODEL	g	SSR _R	MSR _R	F _R	
	REDUCED MODEL ERROR _R	g n-g-1	SSR _R SSE _R	MSR _R MSE _R	F _R	
	REDUCED MODEL ERROR _R	g n-g-1	SSR _R SSE _R	MSR _R MSE _R	F _R	

Multiple Linear Regressior The result holds for comparing any two nested models where the standard model assumptions hold:

- $\blacktriangleright \epsilon$ uncorrelated
- ϵ independent of x_1, \ldots, x_k
- ϵ has constant variance
- $\blacktriangleright \ \epsilon \sim N(0, \sigma^2)$

Note: It does not allow us to compare non-nested models; for example

MODEL 1 : $y = \beta_0 + \beta_1 x_1 + \epsilon$ MODEL 2 : $y = \beta_0 + \beta_2 x_2 + \epsilon$

- NOT NESTED !

Multiple Linear Regression

$$F = \frac{(SSE_R - SSE_C)/(k - g)}{SSE_C/(n - k - 1)} = \frac{(1/2)}{(3/4)}$$

① - $SSE_R - SSE_C$: this is the improvement in fit when the reduced model is extended to the complete model

(2) - k - g: this is the number of extra parameters needed to extend the reduced model to the complete model

(3)/(4) - this is the best guess we have at the true value of σ^2 , that is, the estimate of σ^2 constructed using as much information as possible, once the effects of

$$x_1,\ldots,x_k$$

have been accounted for.

Multiple Linear Regression

Example: Hooker's Data.

We consider the two models:

MODEL 1 :
$$y = \beta_0 + \beta_1 x + \epsilon$$

MODEL 2 : $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$

Here

- MODEL 1: Reduced Model
- MODEL 2: Complete Model

k = 2, g = 1.

IS THE QUADRATIC TERM NEEDED ?

Multiple Linear Regression

Example: Hooker's Data.

 COMPLETE MODEL
 SSR_C
 2286.933

 SSE_C
 4.382

REDUCED MODEL SSR_R 2272.474 SSE_R 18.840

n = 31, k = 2, g = 1

$$\implies k - g = 1, n - k - 1 = 28$$

So

$$F = \frac{(SSE_R - SSE_C)/(k - g)}{SSE_C/(n - k - 1)} = \frac{(18.840 - 4382)/1}{4.382/28} = 92.383$$

Multiple Linear Regression

Example: Hooker's Data.

We compare F with the

Fisher-F
$$(k - g, n - k - 1) \equiv$$
 Fisher-F $(1, 28)$

distribution.

$$F_{0.05}(1,28) = 4.20$$

Thus

$$92.383 = F > F_{0.05}(1, 28) = 4.20$$

and $H_0: E[Y] = \beta_0 + \beta_1 x$ is **REJECTED** in favour of $H_a: E[Y] = \beta_0 + \beta_1 x + \beta_2 x^2$.

i.e. the **quadratic model** fits better than the straight-line model.

Multiple Linear Regression

NOTE: From the original ANOVA tables, we already know that Model 1 and Model 2 both fit better than the null model

$$\begin{aligned} \text{MODEL } 0E[Y] &= \beta_0 \\ y &= \beta_0 + \epsilon \end{aligned}$$

where there is no dependence on x.

We have now confirmed that Model 2 fits better than Model 1.

Multiple Linear Regression

Example: Diabetes Data.

Factor Predictor: group (X_2) Continuous Covariate: loggluf (X_1) Response: logglut (Y)

We have five models to confirm:

MODEL 0	:	1
MODEL 1	:	<i>X</i> ₂
MODEL 2	:	X_1
MODEL 3	:	$X_1 + X_2$
MODEL 4	:	$X_1 + X_2 + X_1 \cdot X_2$

Multiple Linear Regressior

Example: Diabetes Data.

MODEL 4 us the most complex model with 6 parameters

 $\beta_{10},\beta_{11},\beta_{20},\beta_{21},\beta_{30},\beta_{31}$

MODEL 4:

$$E[Y] = \begin{cases} \beta_{10} + \beta_{11}x_1 & \text{GROUP 1} \\ \beta_{20} + \beta_{21}x_1 & \text{GROUP 2} \\ \beta_{30} + \beta_{31}x_1 & \text{GROUP 3} \end{cases}$$

All of the other models are nested inside Model 4; we can obtain them all by setting parameters equal to zero.