2.2.2 Model Checking

Using the General Linear Model approach to regression, we can fit models with different numbers of predictors, and

- assess whether any individual covariate is influential in the model (look at $\widehat{\beta}, s_{\widehat{\beta}}$ and t-statistics
- assess whether there is any explanatory power in the variables combined (look at ANOVA statistics)

For the multiple regression model, the ANOVA table takes the form

SOURCE	DF	SS	MS	F

REGRESSION $k \quad$ SSR $\quad M S R \quad F=\frac{M S R}{M S E}$
ERROR

$$
n-k-1 \quad \text { SSE MSE }
$$

TOTAL $n-1 \quad S S$
where

$$
M S R=\frac{S S R}{k} \quad M S E=\frac{S S E}{n-k-1}
$$

the F statistic is

$$
F=\frac{M S R}{M S E}
$$

and if H_{0} is true

$$
F \sim \text { Fisher-F }(k, n-k-1)
$$

Here

$$
\begin{aligned}
& H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{k}=0 \\
& H_{a}: \text { At least one } \beta_{j} \neq 0
\end{aligned}
$$

The model for H_{0} has one parameter β_{0}. The model for H_{a} has $k+1$ parameters

$$
\beta_{0}, \beta_{1}, \beta_{2}, \ldots, \beta_{k}
$$

Therefore the number of extra parameters for model H_{a} is

$$
(k+1)-1=k
$$

i.e. to obtain model H_{0} from model H_{a} we constrain k parameters to be zero.

Because we can constrain model H_{a} by setting some parameters equal to zero to obtain model H_{0}, we say that

Model H_{0} is nested inside Model H_{a}
The number, k, of constraints $\beta_{1}=\beta_{2}=\cdots=\beta_{k}=0$ explains why the ANOVA table Regression degrees of freedom is k

- the multiple regression brings in k extra parameters.

In addition, we can use the R^{2} or Adjusted R^{2} statistic to check overall model adequacy

$$
R^{2}=1-\frac{S S E}{S S_{y y}}=\frac{S S_{y y}-S S E}{S S_{y y}}=\frac{S S R}{S S}
$$

which is equal to

VARIATION EXPLAINED BY THE REGRESSION TOTAL VARIATION

Also

$$
\text { Adj. } R^{2}=1-\frac{S S E /(n-k-1)}{S S /(n-1)}
$$

$R^{2}>0.7$ implies that the model is a good fit, that is, most of the variation observed is explained by the regression model.

We can now fit completely general models in the form of the General Linear Model; if y is the response, and x_{1}, \ldots, x_{k} are the covariates or factor predictors, we can include combinations of

- Polynomial Main Effects : $x_{j}, x_{j}^{2}, x_{j}^{3}, \ldots$
- Two-way Interactions: $x_{j_{1}} \cdot x_{j_{2}}$
- Three-way Interactions: $x_{j_{1}} \cdot x_{j_{2}} \cdot x_{j_{3}}$
etc.

In SPSS, we can use the

$$
\text { General Linear Model } \quad \rightarrow \quad \text { Univariate }
$$

pulldown menus to build and fit the model.

- To fit factor predictors, we used the Fixed Factor option
- To build models, we use the

$$
\text { Model } \quad \rightarrow \quad \text { Custom }
$$

selections on the Univariate dialog
SEE SCREENS ON THE COURSE WEBSITE

Dummy Variables

Note: We can fit the factor predictor using the Linear Regression pulldown if we create dummy variables.

For example, if factor predictor X has L levels, we create L new binary predictors X_{1}, \ldots, X_{L}, where, for $I=1, \ldots, L$

$$
X_{I}= \begin{cases}1 & \text { whenever } X=I \\ 0 & \text { otherwise }\end{cases}
$$

We can then include X_{1}, \ldots, X_{L} in the regression model.

Example: $L=4$.

X	X_{1}	X_{2}	X_{3}	X_{4}
3	0	0	1	0
1	1	0	0	0
3	0	0	1	0
4	0	0	0	1
2	0	1	0	0
2	0	1	0	0

See McClave and Sincich 10, Section 12.7.

2.2.3 Stepwise Model Selection

We seek a method that allows us to compare nested models.
Suppose we want to compare

$$
\begin{array}{ll}
\text { MODEL } 1 & : \quad y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2} \\
\text { MODEL } 2 & : \quad y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}
\end{array}
$$

Model 1 is nested inside Model 2 as if we set $\beta_{3}=0$ in Model 2, we get Model 1.

$$
\begin{array}{ll}
\text { MODEL } 1 & : y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2} \\
\text { MODEL } 2 & : y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12}\left(x_{1} \cdot x_{2}\right)
\end{array}
$$

we can set $\beta_{12}=0$ in Model 2 to obtain Model 1, so again the models are nested.

We can set up a hypothesis test to assess whether the simplification of Model 2 to Model 1 (by setting one or more parameters equal to zero) is justified by the data.

ANOVA tests for Comparing Nested Models

Terminology

- Complete Model

$$
E[Y]=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}
$$

- Reduced Model

$$
E[Y]=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{g} x_{g}
$$

where $g<k$. The reduced model is obtained from the complete model by setting

$$
\beta_{g+1}=\beta_{g+2}=\cdots=\beta_{k}=0
$$

The reduced model is nested inside the complete model.
We wish to test the hypothesis

$$
\begin{aligned}
& H_{0}: \beta_{g+1}=\beta_{g+2}=\cdots=\beta_{k}=0 \\
& H_{a}: \text { At least one of these } \beta_{j} \neq 0
\end{aligned}
$$

We can test this hypothesis by fitting both models, and combining the results; we focus on the sums of squares quantities.

