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2.2.2 Model Checking

Using the General Linear Model approach to regression, we can
fit models with different numbers of predictors, and

I assess whether any individual covariate is influential in the
model (look at β̂, s

β̂
and t-statistics

I assess whether there is any explanatory power in the
variables combined (look at ANOVA statistics)

1/ 13



Simple Linear
Regression

Multiple
Linear
Regression

For the multiple regression model, the ANOVA table takes the
form

SOURCE DF SS MS F

REGRESSION k SSR MSR F =
MSR

MSE

ERROR n − k − 1 SSE MSE

TOTAL n − 1 SS

where

MSR =
SSR

k
MSE =

SSE

n − k − 1

the F statistic is

F =
MSR

MSE
and if H0 is true

F ∼ Fisher-F(k, n − k − 1)
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Here

H0 : β1 = β2 = · · · = βk = 0

Ha : At least one βj 6= 0

The model for H0 has one parameter β0.
The model for Ha has k + 1 parameters

β0, β1, β2, . . . , βk

Therefore the number of extra parameters for model Ha is

(k + 1)− 1 = k

i.e. to obtain model H0 from model Ha we constrain k
parameters to be zero.
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parameters equal to zero to obtain model H0, we say that

Model H0 is nested inside Model Ha

The number, k, of constraints β1 = β2 = · · · = βk = 0 explains
why the ANOVA table Regression degrees of freedom is k

- the multiple regression brings in k extra parameters.
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In addition, we can use the R2 or Adjusted R2 statistic to
check overall model adequacy

R2 = 1− SSE

SSyy
=

SSyy − SSE

SSyy
=

SSR

SS

which is equal to

VARIATION EXPLAINED BY THE REGRESSION

TOTAL VARIATION

Also

Adj. R2 = 1− SSE/(n − k − 1)

SS/(n − 1)

R2 > 0.7 implies that the model is a good fit, that is, most of
the variation observed is explained by the regression model.
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General Linear Model; if y is the response, and x1, . . . , xk are
the covariates or factor predictors, we can include combinations
of

I Polynomial Main Effects : xj , x
2
j , x3

j , . . .

I Two-way Interactions: xj1 . xj2

I Three-way Interactions: xj1 . xj2 . xj3

etc.
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In SPSS, we can use the

General Linear Model → Univariate

pulldown menus to build and fit the model.

I To fit factor predictors, we used the Fixed Factor option

I To build models, we use the

Model → Custom

selections on the Univariate dialog

SEE SCREENS ON THE COURSE WEBSITE
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Dummy Variables

Note: We can fit the factor predictor using the Linear
Regression pulldown if we create dummy variables.

For example, if factor predictor X has L levels, we create L
new binary predictors X1, . . . , XL, where, for l = 1, . . . , L

Xl =

{
1 whenever X = l
0 otherwise

We can then include X1, . . . ,XL in the regression model.
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Example: L = 4.

X X1 X2 X3 X4

3 0 0 1 0
1 1 0 0 0
3 0 0 1 0
4 0 0 0 1
2 0 1 0 0
2 0 1 0 0

See McClave and Sincich 10, Section 12.7.
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2.2.3 Stepwise Model Selection

We seek a method that allows us to compare nested models.

Suppose we want to compare

MODEL 1 : y = β0 + β1x + β2x
2

MODEL 2 : y = β0 + β1x + β2x
2 + β3x

3

Model 1 is nested inside Model 2 as if we set β3 = 0 in Model
2, we get Model 1.
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If

MODEL 1 : y = β0 + β1x1 + β2x2

MODEL 2 : y = β0 + β1x1 + β2x2 + β12(x1.x2)

we can set β12 = 0 in Model 2 to obtain Model 1, so again the
models are nested.

We can set up a hypothesis test to assess whether the
simplification of Model 2 to Model 1 (by setting one or more
parameters equal to zero) is justified by the data.
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ANOVA tests for Comparing Nested Models

Terminology

I Complete Model

E [Y ] = β0 + β1x1 + · · ·+ βkxk

I Reduced Model

E [Y ] = β0 + β1x1 + · · ·+ βgxg

where g < k. The reduced model is obtained from the
complete model by setting

βg+1 = βg+2 = · · · = βk = 0
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The reduced model is nested inside the complete model.

We wish to test the hypothesis

H0 : βg+1 = βg+2 = · · · = βk = 0

Ha : At least one of theseβj 6= 0

We can test this hypothesis by fitting both models, and
combining the results; we focus on the sums of squares
quantities.
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