Multiple Linear Regression **Subgroup analysis**, with a factor predictor and a continuous covariate, is a form of interaction modelling; the factor predictor *interacts* with the covariate to modify the slope across the subgroups, for example.

We can describe the models using the notation previously introduced for ANOVA; consider the single binary factor predictor and single covariate case;

MODEL 0	Single horizontal straight line	1
MODEL 1	Two parallel horizontal straight lines	<i>X</i> ₂
MODEL 2	Single straight line, non-zero slope	X_1
MODEL 3	Two parallel straight lines, non-zero slope	$X_1 + X_2$
MODEL 4	Two non-parallel straight lines	$X_1 + X_2 + X_1 X_2$

Multiple Linear Regression

Note: Always be on the lookout for *lurking* subgroups (subgroups determined by the levels of an unnoticed factor predictor)

Inferences can change radically when the lurking factor is included in the model

 positive association can be converted into negative association with the continuous covariate. For example, for factor predictor X_2 taking two levels and continuous covariate X_1 . When the pooled data are examined, a **positive association** between Y and X_1 is revealed.

Regression

Multiple Linear Regressior

х

When the pooled data are separated into subgroups, a **negative association** between Y and X_1 in each subgroup is revealed.

Simple Linear Regression

Multiple Linear Regression

 $X_2 = 0$ in blue, $X_2 = 1$ in green.

Multiple Linear Regression i.e. increasing X_1 decreases response in subgroup 1, and decreases response in subgroup 2, but appears to increase response overall.

This is known as **Simpson's Paradox in Regression**. It illustrates that pooling data over subgroups must be carried out with care !

you must fit the factor predictor in the model if you suspect subgroup differences exist.

In the example, the problem arises due to **dependence** between X_1 and X_2 ; all the group with $X_2 = 0$ have **low** values of X_1 , whereas all the group with $X_2 = 1$ have **high** values of X_1

Dependence between covariates and factor predictors makes model fitting and results interpretation complicated.

Multiple Linear Regressior Recap: we can build general models

$$y_i = \beta_0 + \sum_{j=1}^k x_{ij} + \epsilon_i$$

to explain the variation of y in terms of covariates and factor predictors x_1, \ldots, x_k .

- Simple Linear Regression
- Polynomial Regression
- Multiple Regression
- Factor Predictor Regression
- Interaction Models

Multiple Linear Regression

We can fit each of these models easily using least-squares to obtain

• estimates
$$\widehat{\beta} = (\widehat{\beta}_1, \widehat{\beta}_2, \dots, \widehat{\beta}_k)^\mathsf{T}$$

- standard errors
- goodness of fit measures R^2 and Adjusted R^2
- residuals for model checking
- predictions

Multiple Linear Regression $\hat{\beta}_j$ can be interpreted as the amount of increase in response y when x_j increases by one unit when the other predictors

$$x_1, x_2, \ldots, x_{j-1}, x_{j+1}, \ldots, x_k$$

are held fixed.

We can test the hypothesis

$$H_0 : \beta_j = 0$$

$$H_0 : \beta_j \neq 0$$

using the usual hypothesis testing approach.

Multiple Linear Regression

$$t_j = rac{\widehat{eta}_j}{s_{\widehat{eta}_j}} = rac{\mathsf{ESTIMATE}}{\mathsf{STANDARD ERROR}}$$

If H_0 is **true**,

$$t_j \sim Student(n-k-1)$$

as we are estimating k + 1 parameters overall.

Note: In multiple regression, when testing each of

$$\widehat{\beta}_0, \widehat{\beta}_1, \dots, \widehat{\beta}_k$$

we should strictly use a **multiple testing correction** (as in post-hoc tests in ANOVA)