Subgroup analysis, with a factor predictor and a continuous covariate, is a form of interaction modelling; the factor predictor interacts with the covariate to modify the slope across the subgroups, for example.

We can describe the models using the notation previously introduced for ANOVA; consider the single binary factor predictor and single covariate case;

MODEL 0 Single horizontal straight line
MODEL 1 Two parallel horizontal X_{2} straight lines
MODEL 2 Single straight line, non-zero slope
MODEL 3 Two parallel straight lines, $\quad X_{1}+X_{2}$ non-zero slope
MODEL 4 Two non-parallel straight lines $X_{1}+X_{2}+X_{1} \cdot X_{2}$

Note: Always be on the lookout for lurking subgroups (subgroups determined by the levels of an unnoticed factor predictor)

Inferences can change radically when the lurking factor is included in the model

- positive association can be converted into negative association with the continuous covariate.

For example, for factor predictor X_{2} taking two levels and continuous covariate X_{1}. When the pooled data are examined, a positive association between Y and X_{1} is revealed.

When the pooled data are separated into subgroups, a negative association between Y and X_{1} in each subgroup is revealed.

$X_{2}=0$ in blue, $X_{2}=1$ in green.
i.e. increasing X_{1} decreases response in subgroup 1, and decreases response in subgroup 2, but appears to increase response overall.

This is known as Simpson's Paradox in Regression. It illustrates that pooling data over subgroups must be carried out with care!

- you must fit the factor predictor in the model if you suspect subgroup differences exist.

In the example, the problem arises due to dependence between X_{1} and X_{2}; all the group with $X_{2}=0$ have low values of X_{1}, whereas all the group with $X_{2}=1$ have high values of X_{1}

Dependence between covariates and factor predictors makes model fitting and results interpretation complicated.

Recap: we can build general models

$$
y_{i}=\beta_{0}+\sum_{j=1}^{k} x_{i j}+\epsilon_{i}
$$

to explain the variation of y in terms of covariates and factor predictors x_{1}, \ldots, x_{k}.

- Simple Linear Regression
- Polynomial Regression
- Multiple Regression
- Factor Predictor Regression
- Interaction Models

We can fit each of these models easily using least-squares to obtain

- estimates $\underset{\sim}{\widehat{\beta}}=\left(\widehat{\beta}_{1}, \widehat{\beta}_{2}, \ldots, \widehat{\beta}_{k}\right)^{\top}$
- standard errors
- goodness of fit measures R^{2} and Adjusted R^{2}
- residuals for model checking
- predictions

Interpreting $\widehat{\beta}_{j}$

$\widehat{\beta}_{j}$ can be interpreted as the amount of increase in response y when x_{j} increases by one unit when the other predictors

$$
x_{1}, x_{2}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{k}
$$

are held fixed.
We can test the hypothesis

$$
\begin{array}{ll}
H_{0} & : \quad \beta_{j}=0 \\
H_{0} & : \quad \beta_{j} \neq 0
\end{array}
$$

using the usual hypothesis testing approach.

Test statistic:

$$
t_{j}=\frac{\widehat{\beta}_{j}}{s_{\widehat{\beta}_{j}}}=\frac{\text { ESTIMATE }}{\text { STANDARD ERROR }}
$$

If H_{0} is true,

$$
t_{j} \sim \operatorname{Student}(n-k-1)
$$

as we are estimating $k+1$ parameters overall.
Note: In multiple regression, when testing each of

$$
\widehat{\beta}_{0}, \widehat{\beta}_{1}, \ldots, \widehat{\beta}_{k}
$$

we should strictly use a multiple testing correction (as in post-hoc tests in ANOVA)

