
Simple Linear
Regression

Multiple
Linear
Regression

Subgroup analysis, with a factor predictor and a continuous
covariate, is a form of interaction modelling; the factor
predictor interacts with the covariate to modify the slope
across the subgroups, for example.

We can describe the models using the notation previously
introduced for ANOVA; consider the single binary factor
predictor and single covariate case;

MODEL 0 Single horizontal straight line 1
MODEL 1 Two parallel horizontal X2

straight lines
MODEL 2 Single straight line, X1

non-zero slope
MODEL 3 Two parallel straight lines, X1 + X2

non-zero slope
MODEL 4 Two non-parallel straight lines X1 + X2 + X1.X2
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Simple Linear
Regression

Multiple
Linear
Regression Note: Always be on the lookout for lurking subgroups

(subgroups determined by the levels of an unnoticed factor
predictor)

Inferences can change radically when the lurking factor is
included in the model

I positive association can be converted into negative
association with the continuous covariate.
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For example, for factor predictor X2 taking two levels and
continuous covariate X1. When the pooled data are examined,
a positive association between Y and X1 is revealed.
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When the pooled data are separated into subgroups, a
negative association between Y and X1 in each subgroup is
revealed.
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X2 = 0 in blue, X2 = 1 in green.
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i.e. increasing X1 decreases response in subgroup 1, and
decreases response in subgroup 2, but appears to increase
response overall.

This is known as Simpson’s Paradox in Regression. It
illustrates that pooling data over subgroups must be carried
out with care !

I you must fit the factor predictor in the model if you
suspect subgroup differences exist.

In the example, the problem arises due to dependence between
X1 and X2; all the group with X2 = 0 have low values of X1,
whereas all the group with X2 = 1 have high values of X1

Dependence between covariates and factor predictors makes
model fitting and results interpretation complicated.
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Recap: we can build general models

yi = β0 +
k∑

j=1

xij + εi

to explain the variation of y in terms of covariates and factor
predictors x1, . . . , xk .

I Simple Linear Regression

I Polynomial Regression

I Multiple Regression

I Factor Predictor Regression

I Interaction Models
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We can fit each of these models easily using least-squares to
obtain

I estimates β̂
˜

= (β̂1, β̂2, . . . , β̂k)T

I standard errors

I goodness of fit measures R2 and Adjusted R2

I residuals for model checking

I predictions

7/ 9



Simple Linear
Regression

Multiple
Linear
Regression

Interpreting β̂j

β̂j can be interpreted as the amount of increase in response y
when xj increases by one unit when the other predictors

x1, x2, . . . , xj−1, xj+1, . . . , xk

are held fixed.

We can test the hypothesis

H0 : βj = 0

H0 : βj 6= 0

using the usual hypothesis testing approach.
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Test statistic:

tj =
β̂j

s
β̂j

=
ESTIMATE

STANDARD ERROR

If H0 is true,
tj ∼ Student(n − k − 1)

as we are estimating k + 1 parameters overall.

Note: In multiple regression, when testing each of

β̂0, β̂1, . . . , β̂k

we should strictly use a multiple testing correction (as in
post-hoc tests in ANOVA)
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