Multiple Linear Regression

Example: Blood Viscosity and Packed Cell Volume

The following blood viscosity data studied earlier are a good example of where multiple regression could be used. Recall that the data blood viscosity in samples taken from 32 hospital patients. We wish to model viscosity (y) as a function three covariates

- Packed Cell Volume (PCV), x_{1}.
- Plasma Fibrinogen, x_{2}.
- Plasma Protein, x_{3}.

Unit	Viscosity y	PCV x_{1}	Plasma Fib. x_{2}	Plasma Pro. x_{3}
1	3.71	40.00	344	6.27
2	3.78	40.00	330	4.86
3	3.85	42.50	280	5.09
4	3.88	42.00	418	6.79
5	3.98	45.00	774	6.40
6	4.03	42.00	388	5.48
7	4.05	42.50	336	6.27
8	4.14	47.00	431	6.89
9	4.14	46.75	276	5.18
10	4.20	48.00	422	5.73
11	4.20	46.00	280	5.89
12	4.27	47.00	460	6.58
13	4.27	43.25	412	5.67
14	4.37	45.00	320	6.23
15	4.41	50.00	502	4.99
16	4.64	45.00	550	6.37
17	4.68	51.25	414	6.40
18	4.73	50.25	304	6.00
19	4.87	49.00	472	5.94
20	4.94	50.00	728	5.16
21	4.95	50.00	716	6.29
22	4.96	49.00	400	5.96
23	5.02	50.50	576	5.90
24	5.02	51.25	354	5.81
25	5.12	49.50	392	5.49
26	5.15	56.00	352	5.41
27	5.17	50.00	572	6.24
28	5.18	47.00	634	6.50
29	5.38	53.25	458	6.60
30	5.77	57.00	1070	4.82
31	5.90	54.00	488	5.70
32	5.90	54.00	488	5.70

We consider four analyses:

```
Multiple regression : \(y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\epsilon\)
    Regression on \(\boldsymbol{x}_{\mathbf{1}}: \quad y=\beta_{0}+\beta_{1} x_{1}+\epsilon\)
    Regression on \(\boldsymbol{x}_{\mathbf{2}}: \quad y=\beta_{0}+\beta_{2} x_{2}+\epsilon\)
    Regression on \(\boldsymbol{x}_{3}: \quad y=\beta_{0}+\beta_{3} x_{3}+\epsilon\)
```


Multiple Regression

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.885^{\mathrm{a}}$.784	.761	.30370

a. Predictors: (Constant), Plasma Protein (g/100ml), Plasma Fibrinogen ($\mathrm{mg} / 100 \mathrm{ml}$), Packed Cell Volume (\%)

ANOVA ${ }^{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	9.368	3	3.123	33.856	$.000^{\mathrm{a}}$
	Residual	2.582	28	.092		
	Total	11.950	31			

a. Predictors: (Constant), Plasma Protein (g/100ml), Plasma Fibrinogen (mg/100ml), Packed Cell Volume (\%)
b. Dependent Variable: Blood Viscosity (cP)

Multiple Regression: Parameter Estimates

Regression on Packed Cell Volume only

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.879^{\mathrm{a}}$.772	.765	.30116

a. Predictors: (Constant), Packed Cell Volume (\%)

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	9.230	1	9.230	101.764	$.000^{\mathrm{a}}$
	Residual	2.721	30	.091		
	Total	11.950	31			

a. Predictors: (Constant), Packed Cell Volume (\%)
b. Dependent Variable: Blood Viscosity (cP)

Coefficients ${ }^{a}$

Model	Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	95\% Confidence Interval for B	
	B	Std. Error				Lower Bound	Upper Bound
1 (Constant)	-1.223	. 584		-2.094	. 045	-2.416	-. 030
Packed Cell Volume (\%)	. 122	. 012	. 879	10.088	. 000	. 098	. 147
a. Dependent Variable: Blood Viscosity (cP)							
						PCV is a significant term in the model (p < 0.001)	

Regression on Plasma Protein only

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.457^{\mathrm{a}}$.209	.183	.56129

a. Predictors: (Constant), Plasma Fibrinogen (mg/100ml)

ANOVA ${ }^{b}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2.499	1	2.499	7.932	$.009^{\text {a }}$
	Residual	9.451	30	.315		
	Total	11.950	31			

a. Predictors: (Constant), Plasma Fibrinogen (mg/100ml)
b. Dependent Variable: Blood Viscosity (cP)

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.	95\% Confidence Interval for B	
		B	Std. Error	Beta			Lower Bound	Upper Bound
1	(Constant)	3.871	. 292		13.236	. 000	3.274	4.468
	Plasma Fibrinogen ($\mathrm{mg} / 100 \mathrm{ml}$)	. 002	. 001	. 457	2.816	. 009	. 000	. 003

a. Dependent Variable: Blood Viscosity (cP)

Regression on Plasma Fibrinogen only

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.101^{\mathrm{a}}$.010	-.023	.62791

a. Predictors: (Constant), Plasma Protein (g/100ml)

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.122	1	.122	.310	$.582^{\mathrm{a}}$
	Residual	11.828	30	.394		
	Total	11.950	31			

a. Predictors: (Constant), Plasma Protein (g/100ml)
b. Dependent Variable: Blood Viscosity (cP)

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	95\% Confidence Interval for B	
		B	Std. Error				Lower Bound	Upper Bound
1	(Constant)	5.296	1.174		4.510	. 000	2.898	7.694
	Plasma Protein (g/100ml)	-. 110	. 198	-. 101	-. 556	. 582	-. 515	. 295

a. Dependent Variable: Blood Viscosity (cP)

Use the Analyze, Regression, Linear pulldown selections

Select the Dependent variable (viscosity) and the three independent variables ${ }^{3}$ (pcv, plasfib and plaspro)

Click the Statistics button: on the Statistics dialog, select Estimates, Confidence ${ }^{4}$ Intervals and Model fit. Click Continue.

Click the Plots button

Select *ZRESID for the Y variable and *ZPRED for the X variable.
Then click Next.

Select *ZRESID for the Y variable and *ZPRED for the X variable.
Then click Produce all partial Plots. Then Continue.

Click the Save button, to compute and store the residuals etc.

Select the quantities to store as new variables in the data set.
Click Continue.

Click OK and the output is generated.

New variables have been computed.

Full information on the new variables is available.

Results: Model Summary

a. Predictors: (Constant), Plasma Protein (g/100ml), Plasma Fibrinogen ($\mathrm{mg} / 100 \mathrm{ml}$), Packed Cell Volume (\%)
b. Dependent Variable: Blood Viscosity (cP)

Results: ANOVA

ANOVA ${ }^{\text {b }}$						
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	9.368	3	3.123	33.856	. $000{ }^{\text {a }}$
	Residual	2.582	28	. 092		
	Total	11.950	31			

a. Predictors: (Constant), Plasma Protein (g/100ml), Plasma Fibrinogen (mg/100ml), Packed Cell Volume (\%)
b. Dependent Variable: Blood Viscosity (cP)

```
The ANOVA for the multiple regression has a highly significant F value, with a p-value < 0.001. Here
H0: E[Y] = beta.0
H1 : E[Y] = beta. 0 + beta. 1 x1 + beta. 2 x2 + beta. }3\times
This result implies that the multiple regression(Ha) fits significantly better than the model with no dependence on any of the
predictors (H0).
```

Results: Parameter Estimates

Coefficients ${ }^{\text {a }}$

Results: Scatterplot of Standardized Residual vs Predicted Value

Scatterplot

Dependent Variable: Blood Viscosity (cP)

Obtaining: Plots of Residuals vs Covariates

Use the Matrix Scatter option, and click Define

Select the standardized residuals, and the three covariates for the

Matrix Variables. Click OK.

Results: Scatterplot Matrix

Null Model

Main Effect Model: Significant Factor Effect
(different intercept in both groups, slope=0)

Main Effect Model: Significant Covariate Effect

(intercept, slope same in both groups)

Main Effect Model: Significant Covariate and Factor Effect

 (intercept different, slope same in the two groups)

Interaction Model: Covariate, Factor and Interaction Effect (different intercept and slope in the two groups)

Original Data

Log-scale Data

Log-scale Data

Subgroups

Group 1

Group 2

Fits to the three subgroups

Projection back to the axis

Factor Predictor Regression

We need to take some care when combining factor predictors and covariates in the regression model. Suppose that we have only two predictors

- A covariate, x_{1}
- A factor predictor, x_{2}, now taking L levels, with the levels being indexed by $l=1,2, \ldots, L$.

We want to build a model that takes into account both x_{1} and x_{2}.

Example : Binary Factor $L=2$
Suppose that factor predictor x_{2} takes two levels, labelled 0 and 1 , that identify two data subgroups. Five models can be considered, that correspond to different straight-line models

- MODEL 0 : Same intercept, slope zero, in the two subgroups
- MODEL 1 : Different intercept, slope zero, in the two subgroups
- MODEL 2: Same intercept, same non-zero slope, in the two subgroups
- MODEL 3 : Different intercept, same non-zero slope, in the two subgroups
- MODEL 4 : Different intercept, different non-zero slopes, in the two subgroups

We can write out the models in terms of the usual slope and intercept parameters. The general model can be written

$$
y=\left\{\begin{array}{lll}
\beta_{00}+\beta_{01} x_{1}+\epsilon & \text { GROUP } 0 & (l=0) \\
\beta_{10}+\beta_{11} x_{1}+\epsilon & \text { GROUP } 1 & (l=1)
\end{array}\right.
$$

- MODEL 0 :

$$
\beta_{00}=\beta_{10}=\beta_{0}, \beta_{01}=\beta_{11}=0
$$

- MODEL $1: \quad \beta_{00} \neq \beta_{10}, \beta_{01}=\beta_{11}=0$
- MODEL 2: $\quad \beta_{00}=\beta_{10}=\beta_{0}, \beta_{01}=\beta_{11}=\beta_{1} \neq 0$
- MODEL $3: \quad \beta_{00} \neq \beta_{10}, \beta_{01}=\beta_{11}=\beta_{1} \neq 0$
- MODEL 4: $\quad \beta_{00} \neq \beta_{10}, \beta_{01} \neq \beta_{11}$

The numbers of parameters, p, in each model are as follows:
MODEL $0 \quad: \quad p=1 \quad \beta_{0}$
MODEL $1: p=2 \quad \beta_{00}, \beta_{10}$
MODEL $2: p=2 \quad \beta_{0}, \beta_{1}$
MODEL $3: p=3 \quad \beta_{00}, \beta_{10}, \beta_{1}$
MODEL $4: \quad p=4 \quad \beta_{00}, \beta_{10}, \beta_{10}, \beta_{11}$

SPSS Parameterization: The default parameterization used by SPSS is different from the one described above. SPSS takes a baseline group, and looks for differences in the parameters compared to the baseline group. The baseline group is taken to be the last listed subgroup for the factor predictor; in the binary example above, the baseline group would be Group 1.

The interaction model is therefore written

$$
y=\left[\beta_{0}+\left(1-x_{2}\right) \delta_{00}\right]+\left[\left(\beta_{1}+\left(1-x_{2}\right) \delta_{01}\right) x_{1}\right]+\epsilon
$$

- δ_{00} is the change in intercept from Group 1 to Group 0
- δ_{01} is the change in slope from Group 1 to Group 0

Example: Diabetes Data Set

The data in the data set DIABETES.SAV contain information on 68 diabetes patients falling into two clinically different categories (overt and chemical diabetics) and 76 normal controls. Measurements of plasma glucose in blood samples when fasting and in a dietary test are recorded.

The objective is to predict the the test glucose levels from the fasting glucose levels in the three subgroups, and to find out if there is any significant difference between the subgroups.

In this analysis, there is a single response variable, one covariate and one factor predictor:

- y : glutest, the test glucose level
- x_{1} : covariate glufast, the fasting glucose level
- x_{2} : factor predictor group, the diabetes group
- GROUP 1: Overt Diabetic
- GROUP 2: Chemical Diabetic
- GROUP 3: Normal Patients

Tests of Between-Subjects Effects
Dependent Variable: Log(GluTest)

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Gorreeted Model	27.187^{1}	5	5.407	569.463	. 000
Intereept	. 973	1	. 073	101.006	. 000
group	. 104	2	. 052	5.447	. 005
loggluf	. 675	1	. 675	70.702	. 000
group * loggluf	. 155	2	. 077	8.099	. 000
Error	1.318	138	. 010		
Fotal	5500.040	144			
Corrected Total	28.504	143			

a. R Squared $=.954$ (Adjusted R Squared $=.952$)

Parameter Estimates

Dependent Variable: Log(GluTest)

Parameter	B	Std. Error	t	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
Intercept	4.504	. 559	8.060	. 000	3.399	5.608
[group=1]	-2.037	. 619	-3.289	. 001	-3.262	-. 813
[group=2]	-1.436	. 958	-1.499	. 136	-3.330	. 458
[group=3]	$0^{\text {a }}$					
loggluf	. 299	. 124	2.414	. 017	. 054	. 544
[group=1] * loggluf	. 535	. 134	4.001	. 000	. 270	. 799
[group=2] * loggluf	. 382	. 210	1.820	. 071	-. 033	. 797
[group=3] * loggluf	$0^{\text {a }}$					

a. This parameter is set to zero because it is redundant.

The first ANOVA table demonstrates that there is a significant interaction between the covariate and the factor predictor $(F=8.099$, p-value <0.001). This means that there is a significantly different slope in at least two of the three subgroups.

The second table gives the slope and intercept parameters in the three groups. The SPSS parameterization is not directly in terms of the slopes and intercepts, but looks at differences from baseline subgroup, Group 3. For example, the Group 1 intercept and slope are, respectively, INTERCEPT $: 4.504+(-2.037)=2.467 \quad$ SLOPE $: 0.299+0.535=0.834$.

Diabetes Data Set

Create two new variables loggluf and logglut for the logged variables

\％${ }^{\text {P Dia }}$	betes．s．	［Da	$1]$	SS Data	ditor					
File Edit	Sit vew	Pata Transto	Analke	Graph	Uutites Window Hep					
\square	通 区	not ${ }^{\text {mim }}$		回违	．					
	Name	Type	Wisth	Decimals	Label	Values	Mising	Colums	Align	Measure
1	id	Numeric			Patient I0	None	None			
2	remm	Numeric	11	2	Relative Weight	None	None			
3	gluast	Numenic	11	0	Fasting Plasma Glucose		None	8	Right	Scale
4	gluest	Numenic	11	0	Test Plasma Gluose	None	None	8	Right	Scale
			11		sma Insulin duing T					
					sma					
						Onet Dias				
			${ }_{8}$		（sluast					
		Numenic	8		（iulest）	None	None			
\bigcirc										
7										
${ }^{18}$										
${ }_{21}^{21}$										
2										
${ }^{24}$										
${ }_{-}^{25}$										
$\stackrel{27}{27}$										
－30										
32										
－${ }^{33} \times 14$										
\bigcirc										
－${ }^{37}$										
－${ }_{-}{ }^{39}$										
\bigcirc										
41 										
-4 -45										
\square										
－ 48										
\bigcirc										

Use the Compute pulldown menu to compute the log transform

In Target Variable insert loggluf, and in Numeric Expression type
Ln(glufast), and click OK

Click OK when the confirmation screen appears

The log transformed variable loggluf is computed.

The same procedure computes the log transformed variable logglut; we log transform the glutest variable using the Compute pulldown

We now perform the linear regression using the General Linear Model pulldown. ${ }^{8}$

Select the Dependent Variable (logglut), the Fixed Factor (group) and the Covariate (loggluf).

To specify the model, click the Model button to get the Model Dialog.
We wish to specify a Custom main effects plus interaction model.

We select the factor and covariate as main effects.

Select Interaction from the Build Terms pulldown.
困Diabetes.sav [DataSet1] - SPSS Data Editor

Highlight the two variables，and click the Build Terms arrow．

The Custom model has been built. Click Continue.

The model is now built. On the General Linear Model dialog, click Options.
Select Parameter Estimates and Residual plot
畇Diabetes.sav [DataSeti] - SPSS Data Editor

The output is generated.

The ANOVA table describes the results. It can be read in the same way as an ${ }^{17}$ ordinary ANOVA table. We note significant main effects and interaction.

Tests of Between-Subjects Effects
Dependent Variable: Log(GluTest)

	Type III Sum of Squares	df	Mean Square	F	Sig.
Source	27.1077^{2}	5	5.437	509.403	.000
Corrected M4odel	.973	1	.973	101.906	.000
notereept	.104	2	.052	5.447	.005
group	.675	1	.675	70.702	.000
loggluf	.155	2	.077	8.099	.000
group * loggluf	1.318	138	.010		
Error	5509.040	144			
fotal	28.504	143			
Corrected Total					

a. R Squared $=.954$ (Adjusted R Squared $=.952$)

The high R squared value means that the model fit is quite
good overall.

The parameter estimates/standard errors are also computed.
The SPSS parameterization of the model is used.

Parameter Estimates
Dependent Variable: Log(GluTest)

Parameter	B	Std. Error	t	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
Intercept	4.504	. 559	8.060	. 000	3.399	5.608
[group=1]	-2.037	. 619	-3.289	. 001	-3.262	-. 813
[group=2]	-1.436	. 958	-1.499	. 136	-3.330	. 458
[group=3]	$0^{\text {a }}$					
loggluf	. 299	. 124	2.414	. 017	. 054	. 544
[group=1] * loggluf	. 535	. 134	4.001	. 000	. 270	. 799
[group=2] * loggluf	. 382	. 210	1.820	. 071	-. 033	. 797
[group=3] * loggluf	$0^{\text {a }}$					

a. This parameter is set to zero because it is redundant.

In the main effects plus interaction model, there are six parameters; we are fitting three separate straight lines to the three subgroups, and there are two parameters in each straight line.

The residual plots demonstrate no significant pattern.

Dependent Variable: Log(GluTest)

