
MULTIPLE LINEAR REGRESSION

EXAMPLE: BLOOD VISCOSITY AND PACKED CELL VOLUME

The following blood viscosity data studied earlier are a good example of where multiple regression
could be used. Recall that the data blood viscosity in samples taken from 32 hospital patients. We wish
to model viscosity (y) as a function three covariates

• Packed Cell Volume (PCV), x1.
• Plasma Fibrinogen, x2.
• Plasma Protein, x3.

Unit Viscosity PCV Plasma Fib. Plasma Pro.
y x1 x2 x3

1 3.71 40.00 344 6.27
2 3.78 40.00 330 4.86
3 3.85 42.50 280 5.09
4 3.88 42.00 418 6.79
5 3.98 45.00 774 6.40
6 4.03 42.00 388 5.48
7 4.05 42.50 336 6.27
8 4.14 47.00 431 6.89
9 4.14 46.75 276 5.18

10 4.20 48.00 422 5.73
11 4.20 46.00 280 5.89
12 4.27 47.00 460 6.58
13 4.27 43.25 412 5.67
14 4.37 45.00 320 6.23
15 4.41 50.00 502 4.99
16 4.64 45.00 550 6.37
17 4.68 51.25 414 6.40
18 4.73 50.25 304 6.00
19 4.87 49.00 472 5.94
20 4.94 50.00 728 5.16
21 4.95 50.00 716 6.29
22 4.96 49.00 400 5.96
23 5.02 50.50 576 5.90
24 5.02 51.25 354 5.81
25 5.12 49.50 392 5.49
26 5.15 56.00 352 5.41
27 5.17 50.00 572 6.24
28 5.18 47.00 634 6.50
29 5.38 53.25 458 6.60
30 5.77 57.00 1070 4.82
31 5.90 54.00 488 5.70
32 5.90 54.00 488 5.70

We consider four analyses:

Multiple regression : y = β0 + β1x1 + β2x2 + β3x3 + ε

Regression on x1 : y = β0 + β1x1 + ε

Regression on x2 : y = β0 + β2x2 + ε

Regression on x3 : y = β0 + β3x3 + ε
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Multiple Regression

Model Summaryb

.885a .784 .761 .30370
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Plasma Protein (g/100ml),
Plasma Fibrinogen (mg/100ml), Packed Cell Volume
(%)

a. 

Dependent Variable: Blood Viscosity (cP)b. 
ANOVAb

9.368 3 3.123 33.856 .000a

2.582 28 .092
11.950 31

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), Plasma Protein (g/100ml), Plasma Fibrinogen (mg/100ml),
Packed Cell Volume (%)

a. 

Dependent Variable: Blood Viscosity (cP)b. 
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Multiple Regression: Parameter Estimates

Coefficientsa

-1.378 .897 -1.537 .136 -3.215 .458
.117 .014 .839 8.584 .000 .089 .145

.000 .000 .111 1.147 .261 .000 .001

.040 .097 .037 .412 .683 -.159 .239

(Constant)
Packed Cell Volume (%)
Plasma Fibrinogen
(mg/100ml)
Plasma Protein (g/100ml)

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Dependent Variable: Blood Viscosity (cP)a. 
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ANOVAb

9.230 1 9.230 101.764 .000a

2.721 30 .091
11.950 31

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), Packed Cell Volume (%)a. 

Dependent Variable: Blood Viscosity (cP)b. 

Model Summary

.879a .772 .765 .30116
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Packed Cell Volume (%)a. 

Coefficientsa

-1.223 .584 -2.094 .045 -2.416 -.030
.122 .012 .879 10.088 .000 .098 .147

(Constant)
Packed Cell Volume (%)

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Dependent Variable: Blood Viscosity (cP)a. 

Regression on Packed Cell Volume only
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Regression on Plasma Protein only

Model Summary

.457a .209 .183 .56129
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Plasma Fibrinogen (mg/100ml)a. 

ANOVAb

2.499 1 2.499 7.932 .009a

9.451 30 .315
11.950 31

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), Plasma Fibrinogen (mg/100ml)a. 

Dependent Variable: Blood Viscosity (cP)b. 

Coefficientsa

3.871 .292 13.236 .000 3.274 4.468

.002 .001 .457 2.816 .009 .000 .003

(Constant)
Plasma Fibrinogen
(mg/100ml)

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Dependent Variable: Blood Viscosity (cP)a. 
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Regression on Plasma Fibrinogen only

Model Summary

.101a .010 -.023 .62791
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Plasma Protein (g/100ml)a. 

ANOVAb

.122 1 .122 .310 .582a

11.828 30 .394
11.950 31

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), Plasma Protein (g/100ml)a. 

Dependent Variable: Blood Viscosity (cP)b. 

Coefficientsa

5.296 1.174 4.510 .000 2.898 7.694
-.110 .198 -.101 -.556 .582 -.515 .295

(Constant)
Plasma Protein (g/100ml)

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Dependent Variable: Blood Viscosity (cP)a. 
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1Blood Viscosity Data Set
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2Use the Analyze, Regression, Linear pulldown selections
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3Select  the Dependent variable (viscosity) and the three independent variables 
(pcv, plasfib and plaspro)
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4Click the Statistics button: on the Statistics dialog, select Estimates, Confidence
Intervals and Model fit.  Click Continue.
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5Click the Plots button
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6Select *ZRESID for the Y variable and *ZPRED for the X variable.

Then click Next.

12



7Select *ZRESID for the Y variable and *ZPRED for the X variable.

Then click Produce all partial Plots.  Then Continue.
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8Click the Save button, to compute and store the residuals etc.
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9Select the quantities to store as new variables in the data set.

Click Continue.
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10Click OK and the output is generated.
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11New variables have been computed.
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12Full information on the new variables is available.
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13Results:  Model Summary

Model Summaryb

.885a .784 .761 .30370
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Plasma Protein (g/100ml),
Plasma Fibrinogen (mg/100ml), Packed Cell Volume
(%)

a. 

Dependent Variable: Blood Viscosity (cP)b. 
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14Results:  ANOVA

ANOVAb

9.368 3 3.123 33.856 .000a

2.582 28 .092
11.950 31

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), Plasma Protein (g/100ml), Plasma Fibrinogen (mg/100ml),
Packed Cell Volume (%)

a. 

Dependent Variable: Blood Viscosity (cP)b. 
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The ANOVA for the multiple regression has a highly significant F value, with a p-value < 0.001.  Here

H0 : E[Y] = beta.0
H1 : E[Y] = beta.0 + beta.1 x1 + beta.2 x2 + beta.3 x3

This result implies that the multiple regression (Ha) fits significantly better than the model with no dependence on any of the predictors (H0).



15Results:  Parameter Estimates

Coefficientsa

-1.378 .897 -1.537 .136 -3.215 .458
.117 .014 .839 8.584 .000 .089 .145

.000 .000 .111 1.147 .261 .000 .001

.040 .097 .037 .412 .683 -.159 .239

(Constant)
Packed Cell Volume (%)
Plasma Fibrinogen
(mg/100ml)
Plasma Protein (g/100ml)

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Dependent Variable: Blood Viscosity (cP)a. 
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16Results:  Scatterplot of Standardized Residual vs Predicted Value
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17Obtaining: Plots of Residuals vs Covariates
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18Use the Matrix Scatter option, and click Define
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19Select the standardized residuals, and the three covariates for the 

Matrix Variables.  Click OK.
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20Results:  Scatterplot Matrix
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Factor Predictor Regression

We need to take some care when combining factor predictors and
covariates in the regression model. Suppose that we have only two
predictors

• A covariate, x1

• A factor predictor, x2, now taking L levels, with the levels being
indexed by l = 1, 2, . . . , L.

We want to build a model that takes into account both x1 and x2.
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Example : Binary Factor L = 2

Suppose that factor predictor x2 takes two levels, labelled 0 and 1, that
identify two data subgroups. Five models can be considered, that
correspond to different straight-line models

• MODEL 0 : Same intercept, slope zero, in the two subgroups

• MODEL 1 : Different intercept, slope zero, in the two
subgroups

• MODEL 2 : Same intercept, same non-zero slope, in the two
subgroups

• MODEL 3 : Different intercept, same non-zero slope, in the
two subgroups

• MODEL 4 : Different intercept, different non-zero slopes, in
the two subgroups
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We can write out the models in terms of the usual slope and intercept
parameters. The general model can be written

y =





β00 + β01x1 + ε GROUP 0 (l = 0)

β10 + β11x1 + ε GROUP 1 (l = 1)

• MODEL 0 : β00 = β10 = β0, β01 = β11 = 0
• MODEL 1 : β00 6= β10, β01 = β11 = 0
• MODEL 2 : β00 = β10 = β0, β01 = β11 = β1 6= 0
• MODEL 3 : β00 6= β10, β01 = β11 = β1 6= 0
• MODEL 4 : β00 6= β10, β01 6= β11
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The numbers of parameters, p, in each model are as follows:

MODEL 0 : p = 1 β0

MODEL 1 : p = 2 β00, β10

MODEL 2 : p = 2 β0, β1

MODEL 3 : p = 3 β00, β10, β1

MODEL 4 : p = 4 β00, β10, β10, β11
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SPSS Parameterization: The default parameterization used by SPSS
is different from the one described above. SPSS takes a baseline group,
and looks for differences in the parameters compared to the baseline
group. The baseline group is taken to be the last listed subgroup for the
factor predictor; in the binary example above, the baseline group would
be Group 1.

The interaction model is therefore written

y = [β0 + (1− x2)δ00] + [(β1 + (1− x2)δ01)x1] + ε

• δ00 is the change in intercept from Group 1 to Group 0

• δ01 is the change in slope from Group 1 to Group 0
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Example: Diabetes Data Set

The data in the data set DIABETES.SAV contain information on 68
diabetes patients falling into two clinically different categories (overt and
chemical diabetics) and 76 normal controls. Measurements of plasma
glucose in blood samples when fasting and in a dietary test are recorded.

The objective is to predict the the test glucose levels from the fasting
glucose levels in the three subgroups, and to find out if there is any
significant difference between the subgroups.
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In this analysis, there is a single response variable, one covariate and one
factor predictor:

• y : glutest, the test glucose level

• x1 : covariate glufast, the fasting glucose level

• x2 : factor predictor group, the diabetes group
– GROUP 1: Overt Diabetic
– GROUP 2: Chemical Diabetic
– GROUP 3: Normal Patients
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Tests of Between-Subjects Effects

Dependent Variable: Log(GluTest)

27.187a 5 5.437 569.463 .000

.973 1 .973 101.906 .000

.104 2 .052 5.447 .005

.675 1 .675 70.702 .000

.155 2 .077 8.099 .000

1.318 138 .010

5509.040 144

28.504 143

Source
Corrected Model

Intercept

group

loggluf

group * loggluf

Error

Total

Corrected Total

Type III Sum

of Squares df Mean Square F Sig.

R Squared = .954 (Adjusted R Squared = .952)a. 
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Parameter Estimates

Dependent Variable: Log(GluTest)

4.504 .559 8.060 .000 3.399 5.608

-2.037 .619 -3.289 .001 -3.262 -.813

-1.436 .958 -1.499 .136 -3.330 .458

0a . . . . .

.299 .124 2.414 .017 .054 .544

.535 .134 4.001 .000 .270 .799

.382 .210 1.820 .071 -.033 .797

0a . . . . .

Parameter

Intercept

[group=1]

[group=2]

[group=3]

loggluf

[group=1] * loggluf

[group=2] * loggluf

[group=3] * loggluf

B Std. Error t Sig. Lower Bound Upper Bound

95% Confidence Interval

This parameter is set to zero because it is redundant.a. 
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The first ANOVA table demonstrates that there is a significant
interaction between the covariate and the factor predictor (F = 8.099,
p-value < 0.001). This means that there is a significantly different
slope in at least two of the three subgroups.

The second table gives the slope and intercept parameters in the three
groups. The SPSS parameterization is not directly in terms of the slopes
and intercepts, but looks at differences from baseline subgroup, Group
3. For example, the Group 1 intercept and slope are, respectively,

INTERCEPT : 4.504+(−2.037) = 2.467 SLOPE : 0.299+0.535 = 0.834.
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1Diabetes Data Set
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2Create two new variables loggluf and logglut for the logged variables
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3Use the Compute pulldown menu to compute the log transform
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4In Target Variable insert loggluf, and in Numeric Expression type

Ln(glufast), and click OK
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5Click OK when the confirmation screen appears
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6The log transformed variable loggluf is computed.
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7The same procedure computes the log transformed variable logglut; we log 
transform the glutest variable using the Compute pulldown
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8We now perform the linear regression using the General Linear Model pulldown.
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9Select the Dependent Variable (logglut), the Fixed Factor (group) and the 
Covariate (loggluf).
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10To specify the model, click the Model button to get the Model Dialog.  

We wish to specify a Custom main effects plus interaction model.
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11We select the factor and covariate as main effects.
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12Select Interaction from the Build Terms pulldown.

62



13Highlight the two variables, and click the Build Terms arrow.
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14The Custom model has been built.  Click Continue.
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15The model is now built.  On the General Linear Model dialog, click Options.

Select Parameter Estimates and Residual plot
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16The output is generated.
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17The ANOVA table describes the results.  It can be read in the same way as an 
ordinary ANOVA table. We note significant main effects and interaction.

Tests of Between-Subjects Effects

Dependent Variable: Log(GluTest)

27.187a 5 5.437 569.463 .000
.973 1 .973 101.906 .000
.104 2 .052 5.447 .005
.675 1 .675 70.702 .000
.155 2 .077 8.099 .000

1.318 138 .010
5509.040 144

28.504 143

Source
Corrected Model
Intercept
group
loggluf
group * loggluf
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .954 (Adjusted R Squared = .952)a. 
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18The parameter estimates/standard errors are also computed.

The SPSS parameterization of the model is used.

Parameter Estimates

Dependent Variable: Log(GluTest)

4.504 .559 8.060 .000 3.399 5.608
-2.037 .619 -3.289 .001 -3.262 -.813
-1.436 .958 -1.499 .136 -3.330 .458

0a . . . . .
.299 .124 2.414 .017 .054 .544
.535 .134 4.001 .000 .270 .799
.382 .210 1.820 .071 -.033 .797

0a . . . . .

Parameter
Intercept
[group=1]
[group=2]
[group=3]
loggluf
[group=1] * loggluf
[group=2] * loggluf
[group=3] * loggluf

B Std. Error t Sig. Lower Bound Upper Bound
95% Confidence Interval

This parameter is set to zero because it is redundant.a. 
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19The residual plots demonstrate no significant pattern.
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No real pattern in the residuals indicates a reasonable fit.

However, there is mild evidence that the residual variance is not constant.




