Note: Although the model based on

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

is not linear in x, it is linear in the parameters. Because of this, we still term this a linear model. It is this fact that makes the least-squares solutions easy to find.

This model is no more difficult to fit than the model

$$
y=\beta_{0}+\beta_{1} \frac{x}{1+x}+\beta_{2}\left(1-e^{-x}\right)
$$

say - it is still a linear in the parameters model. It is in the general class of models

$$
y=\beta_{0}+\beta_{1} g_{1}(x)+\beta_{2} g_{2}(x)
$$

where $g_{1}(x)$ and $g_{2}(x)$ are general functions of x.

In fact, any model of the form

$$
\begin{equation*}
y=\sum_{j=0}^{k} \beta_{j} g_{j}(x)+\epsilon \tag{1}
\end{equation*}
$$

can be fitted routinely using least-squares; if we know x, then we can compute

$$
g_{0}(x), g_{1}(x), \ldots, g_{k}(x)
$$

and plug those values into the formula (1).

Example: Harmonic Regression.

Let

$$
\begin{aligned}
& g_{0}(x)=1 \\
& g_{1}(x)= \begin{cases}\cos \left(\lambda_{j} x\right) & j \text { odd } \\
\sin \left(\lambda_{j} x\right) & j \text { even }\end{cases}
\end{aligned}
$$

where k is an even number, $k=2 p$ say.
$\lambda_{j}, j=1,2, \ldots, p$ are constants

$$
\lambda_{1}<\lambda_{2}<\cdots<\lambda_{p}
$$

For fixed $x, \cos \left(\lambda_{j} x\right)$ and $\sin \left(\lambda_{j} x\right)$ are also fixed, known values.

Gene Expression Data Example

Harmonic Regression Fit with $p=2$.

Gene Expression Profiles for 43 genes

Fit of Linear Model with 5 Terms

Why are things so straightforward ?

- because the system of equations based on the derivatives

$$
\frac{\partial}{\partial \beta_{j}}\{\operatorname{SSE}(\underset{\sim}{\beta})\}=0 \quad j=0,1, \ldots, k
$$

can always be solved routinely, so we can always find $\underset{\sim}{\widehat{\beta}}$.
In the general model (1), simple formulae for

- $\underset{\sim}{\widehat{\beta}}$
- s.e. $(\underset{\sim}{\widehat{\beta}})$
- $\hat{\sigma}^{2}$
can be found using a matrix formulation.

SEE HANDOUT - NOT EXAMINABLE!

Note: One-way ANOVA can be formulated in the form of model (1). Recall

- k independent groups
- means μ_{1}, \ldots, μ_{k}
- $y_{i j}-j$ th observation in the i th group

Let

$$
\begin{aligned}
& \beta_{0}=\mu_{k} \\
& \beta_{t}=\mu_{t}-\mu_{k} \quad t=1,2, \ldots, k-1 .
\end{aligned}
$$

Define new data $x_{i j}(t)$ where

$$
x_{i j}(t)= \begin{cases}1 & \text { if } t=i \\ 0 & \text { if } t \neq i\end{cases}
$$

Then, using the linear regression formulation

$$
y_{i j}=\beta_{0}+\sum_{t=1}^{k-1} \beta_{t} x_{i j}(t)+\epsilon_{i j}
$$

For any $i, j, x_{i j}(t)$ is non-zero for only one value of t, when $t=i$.

We term this a regression on a factor predictor; it is clear that $\beta_{0}, \beta_{1}, \ldots, \beta_{k-1}$ can be estimated using least-squares.

This defines the link between

ANOVA

and

Linear Modelling

- they are essentially the SAME MODEL formulation.

This link extends to ALL ANOVA models; recall that we used the General Linear Model option in SPSS to fit two-way ANOVA.

2.2 Multiple Linear Regression

Multiple linear regression models model the variation in response y as a function of more than one independent variable.

Suppose we have variables

$$
X_{1}, X_{2}, \ldots, X_{k}
$$

recording different features of the experimental units. We wish to model response Y as a function of $X_{1}, X_{2}, \ldots, X_{k}$.

2.2.1 Multiple Linear Regression Models

Consider the model for datum i

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{k} x_{i k}+\epsilon_{i}
$$

where $x_{i j}$ is the measured value of covariate j on experimental unit i. That is

$$
y_{i}=\beta_{0}+\sum_{j=1}^{k} \beta_{j} x_{i j}+\epsilon_{i}
$$

where the first two terms on the right hand side are the systematic or deterministic components, and the final term ϵ_{i} is the random component.

Example: $k=2$.

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\epsilon_{i}
$$

A three parameter model.
Note: We can also include interaction terms

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{12}\left(x_{i 1} \cdot x_{i 2}\right)+\epsilon_{i}
$$

where

- The first two terms in $x_{i 1}$ and $x_{i 2}$ are main effects
- The third term in $\left(x_{i 1} \cdot x_{i 2}\right)$ is an interaction

This is a four parameter model.

