
Simple Linear
Regression

Multiple Linear
Regression

Note: Although the model based on

y = β0 + β1x + β2x
2

is not linear in x , it is linear in the parameters. Because of
this, we still term this a linear model. It is this fact that makes
the least-squares solutions easy to find.

This model is no more difficult to fit than the model

y = β0 + β1
x

1 + x
+ β2(1− e−x)

say - it is still a linear in the parameters model. It is in the
general class of models

y = β0 + β1g1(x) + β2g2(x)

where g1(x) and g2(x) are general functions of x .
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Regression

Multiple Linear
Regression In fact, any model of the form

y =
k∑

j=0

βjgj(x) + ε (1)

can be fitted routinely using least-squares; if we know x , then
we can compute

g0(x), g1(x), . . . , gk(x)

and plug those values into the formula (1).
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Example: Harmonic Regression.

Let

g0(x) = 1

g1(x) =

{
cos(λjx) j odd
sin(λjx) j even

where k is an even number, k = 2p say.

λj , j = 1, 2, . . . , p are constants

λ1 < λ2 < · · · < λp

For fixed x , cos(λjx) and sin(λjx) are also fixed, known values.
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Gene Expression Data Example

Harmonic Regression Fit with p = 2.
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Gene Expression Profiles for 43 genes
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Fit of Linear Model with 5 Terms
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Why are things so straightforward ?

- because the system of equations based on the derivatives

∂

∂βj

{
SSE (β

˜
)
}

= 0 j = 0, 1, . . . , k

can always be solved routinely, so we can always find β̂
˜
.

In the general model (1), simple formulae for

I β̂
˜

I s.e.(β̂
˜
)

I σ̂2

can be found using a matrix formulation.

SEE HANDOUT - NOT EXAMINABLE !
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Note: One-way ANOVA can be formulated in the form of
model (1). Recall

I k independent groups

I means µ1, . . . , µk

I yij - jth observation in the ith group

Let

β0 = µk

βt = µt − µk t = 1, 2, . . . , k − 1.

Define new data xij(t) where

xij(t) =

{
1 if t = i
0 if t 6= i
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Then, using the linear regression formulation

yij = β0 +
k−1∑

t=1

βtxij(t) + εij .

For any i , j , xij(t) is non-zero for only one value of t, when
t = i .

We term this a regression on a factor predictor ; it is clear that
β0, β1, . . . , βk−1 can be estimated using least-squares.
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Regression This defines the link between

ANOVA

and

Linear Modelling

- they are essentially the SAME MODEL formulation.

This link extends to ALL ANOVA models; recall that we used
the General Linear Model option in SPSS to fit two-way
ANOVA.
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2.2 Multiple Linear Regression

Multiple linear regression models model the variation in
response y as a function of more than one independent
variable.

Suppose we have variables

X1, X2, . . . , Xk

recording different features of the experimental units. We wish
to model response Y as a function of X1, X2, . . . , Xk .
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2.2.1 Multiple Linear Regression Models

Consider the model for datum i

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi

where xij is the measured value of covariate j on experimental
unit i . That is

yi = β0 +
k∑

j=1

βjxij + εi

where the first two terms on the right hand side are the
systematic or deterministic components, and the final term εi
is the random component.
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Example: k = 2.

yi = β0 + β1xi1 + β2xi2 + εi

A three parameter model.

Note: We can also include interaction terms

yi = β0 + β1xi1 + β2xi2 + β12(xi1 . xi2) + εi

where

I The first two terms in xi1 and xi2 are main effects

I The third term in (xi1 . xi2) is an interaction

This is a four parameter model.
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