ANOVA-F test in Regression

Simple Linear Regression

An ANOVA-F test can be constructed to test overall (*global*) fit of the linear regression model.

The decomposition of sums of squares for regression takes the form

$$SS = SSR + SSE$$

where

► SS: overall or total sum of squares

▶ SSR: sum of squares due to Regression

▶ SSE: sum of squares due to Error

Simple Linea Regression

$$SS = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

where

$$\hat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i \qquad i = 1, \dots, n$$

Degrees of Freedom

▶ TOTAL: *n* − 1

► REGRESSION: 1

▶ ERROR: *n* − 2

(error d.f. is n - p, here p = 2).

The ANOVA Table

Simple Linear Regression

SOURCE	DF	SS	MS	F
REGRESSION	1	SSR	$MSR = \frac{SSR}{1}$	$F = \frac{MSR}{MSE}$
ERROR	<i>n</i> – 2	SSE	$MSE = \frac{SSE}{(n-2)}$	
TOTAL	n – 1	SS		

The test of the hypothesis

$$H_0$$
 : $E[Y] = \beta_0$
 H_a : $E[Y] = \beta_0 + \beta_1 x$

can be completed by using the test statistic

$$F = \frac{MSR}{MSF}$$

If H_0 is true

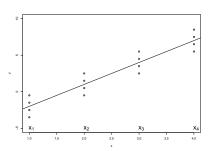
$$F \sim \text{Fisher-F}(1, n-2)$$

Simple Linear Regression This is just like the ANOVA in the one-way layout (CRD) with $\it n$ groups, but where

$$\mu_i = \beta_0 + \beta_1 x_i$$

That is, the group means are **structured**, that is, we have a formula relating the μ_i quantities.

Consider four replicates at x values (x_1, x_2, x_3, x_4) in a regression;



Then for group i, $\mu_i = \beta_0 + \beta_1 x_i$, i = 1, 2, 3, 4.

Checking the Local Fit

Simple Linear Regression

A plot of the residuals

$$\hat{e}_i = y_i - \hat{y}_i$$

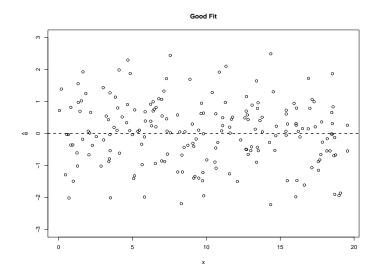
can reveal model inadequacies. We should observe that in plots of

- ► x vs ê
- ▶ y vs ê
- ▶ ŷ vs ê

there is no discernible pattern

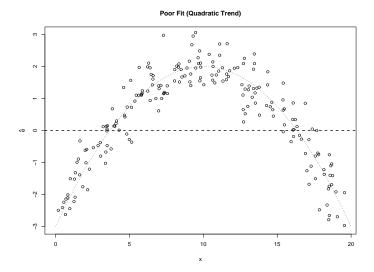
Checking the Local Fit: Good Fit

Simple Linear Regression



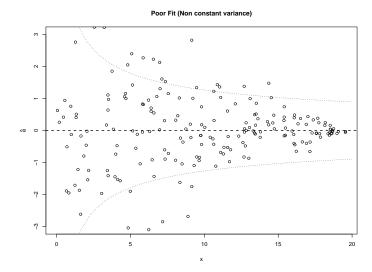
Checking the Local Fit: Poor Fit

Simple Linear Regression



Checking the Local Fit: Poor Fit

Simple Linear Regression



R^2 and adjusted R^2

Simple Linear Regression

SPSS reports both the R^2 statistic

$$R^2 = 1 - \frac{SSE}{SS}$$

and the **adjusted** R^2 statistic

$$R^2 = 1 - \frac{SSE/EDF}{SS/TDF}$$

where

- ▶ EDF = error degrees of freedom = n 2
- ▶ TDF = total degrees of freedom = n 1