
Simple Linear
Regression

Testing Correlation

We use ρ to denote the true correlation between X and Y .

We can test the hypothesis that ρ = 0 (that is, that X and Y
are uncorrelated using r . For testing

H0 : ρ = 0

Ha : ρ 6= 0

we can use the test statistic

t =
r√

(1− r2)/(n − 2)

If H0 is true, then approximately

t ∼ Student(n − 2)
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Simple Linear
Regression Alternately, we could use

z =
1

2
log

(
1 + r

1− r

)

and then, if H0 is true, as (approximately)

Z ∼ N

(
1

2
log

(
1 + ρ

1− ρ

)
,

1

n − 3

)

when ρ = 0, so that (approximately)

√
n − 3 Z ∼ N(0, 1)
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A related quantity is the

Coefficient of Determination

or R2 Statistic

r2 =
SSyy − SSE

SSyy
= 1− SSE

SSyy

Note that the total variation in y is recorded via

SSyy =
n∑

i=1

(yi − y)2

and the random variation is recorded via

SSE =
n∑

i=1

(yi − ŷi )
2
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Therefore the variation explained by the linear regression is

SSR = SSyy − SSE as SSyy = SSR + SSE

Thus

r2 =
SSR

SSyy
=

Variation explained by Regression

Total Variation

r2 is a measure of model adequacy, that is, if r2 ≈ 1, then the
linear model is a good fit.
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Simple Linear
Regression Example: Blood Viscosity vs PCV.

We have

I n = 32

I r = 0.879

I R2 = r2 = (0.879)2 = 0.772

Test of ρ = 0:

t =
r√

(1− r2)/(n − 2)
= 10.087

We compare with a Student(n − 2) ≡ Student(30) distribution;
the p-value is 3.73× 10−11, so there is strong evidence that
ρ 6= 0.
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2.1.6 Prediction

After the linear model is fitted, it can be used for forecasting
or prediction. That is, given a new x value we can predict the
corresponding y .

As before, we see that at any value of xp, the prediction ŷp is

ŷp = β̂0 + β̂1xp

This is the best predictor of y at this x value.
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We can also compute the standard error of this prediction; if
the value of the random error variance σ2 is known, then

s.e.(ŷp) = σ

√
1

n
+

(xp − x)2

SSxx

If σ is unknown, we estimate σ by σ̂ = s as defined previously

s2 =
SSE (β̂0, β̂1)

n − 2

so that

e.s.e.(ŷp) = s

√
1

n
+

(xp − x)2

SSxx
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Note: This prediction is the expected value of y at x = xp.
That is, we have worked out

Var [Ŷp] = Var [β̂0 + β̂1xp]

to compute the s.e. for Ŷp.

But we can actually predict an error corrupted version of Ŷp,

Ŷ ?
p say, where

Ŷ ?
p = Ŷp + εp

where εp is a new random error.
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But

Var [Ŷ ?
p ] = Var [Ŷp + εp] = Var [Ŷp] + Var [εp] = Var [Ŷp] + σ2

that is, there is an extra piece of variation due to εp.

Thus

e.s.e.(ŷ?
p ) = s

√
1 +

1

n
+

(xp − x)2

SSxx
> e.s.e.(ŷp)
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Prediction Intervals

A 100(1− α)% prediction interval for the mean value at
x = xp is

ŷp ± Stα/2(n − 2)s

√
1

n
+

(xp − x)2

SSxx

whereas for an individual new value (predicted with error) at
x = xp is

ŷp ± Stα/2(n − 2)s

√
1 +

1

n
+

(xp − x)2

SSxx
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Prediction Intervals

35 40 45 50 55 60 65
3.

5
4.

0
4.

5
5.

0
5.

5
6.

0

x

y

Viscosity Data: Prediction for Mean

35 40 45 50 55 60 65

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

x

y

Viscosity Data: Prediction for Individual Value

11/ 11


