Estimation and Testing for Slope

In the model where

$$
E[Y]=\beta_{0}+\beta_{1} X
$$

it is of interest to test the hypothesis

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{a}:
\end{aligned} \beta_{1} \neq 0
$$

i.e. H_{0} implies that there is no systematic contribution of x to the variation of y.

To test H_{0} vs H_{a} we us the test statistic

$$
t=\frac{\widehat{\beta}_{1}}{\text { e.s.e }\left(\widehat{\beta}_{1}\right)}=\frac{\widehat{\beta}_{1}}{s_{\widehat{\beta}_{1}}}
$$

where e.s.e $\left(\widehat{\beta}_{1}\right)$ is the Estimated Standard Error of $\widehat{\beta}_{1}$, computed as

$$
\text { e.s.e }\left(\widehat{\beta}_{1}\right)=\frac{s}{\sqrt{S S_{x x}}}
$$

where s is the estimate of σ defined previously.
If H_{0} is true, and $\beta_{1}=0$, then

$$
t=\frac{\widehat{\beta}_{1}}{s / \sqrt{S S_{x x}}} \sim \operatorname{Student}(n-2)
$$

so we can carry out a significance test at level α in the usual way (use a p-value, or construct the rejection region).

Note: we might also consider a one-sided test, where $H_{a}: \beta_{1}>0$, say.

- If $H_{a}: \beta_{1} \neq 0$, we use the two-sided rejection region, with critical values

$$
C_{R}= \pm S t_{\alpha / 2}(n-2)
$$

- If $H_{a}: \beta_{1}>0$, we use the one-sided rejection region, with critical value

$$
C_{R}=+S t_{\alpha}(n-2)
$$

- If $H_{a}: \beta_{1}<0$, we use the one-sided rejection region, with critical value

$$
C_{R}=-S t_{\alpha}(n-2)
$$

Note: To test

$$
\begin{aligned}
& H_{0}: \beta_{1}=b \\
& H_{a}: \\
& \beta_{1} \neq b
\end{aligned}
$$

for any b, the test statistic is

$$
t=\frac{\widehat{\beta}_{1}-b}{s / \sqrt{S S_{x x}}}
$$

(for example, $b=1$ may be of interest. If H_{0} is true

$$
t \sim \text { Student }(n-2)
$$

Confidence Interval

A $100(1-\alpha) \%$ confidence interval for β_{1} is

$$
\widehat{\beta}_{1} \pm S t_{\alpha / 2}(n-2) \times s_{\widehat{\beta}_{1}}
$$

where

$$
\begin{aligned}
S t_{\alpha / 2}(n-2) & : \alpha / 2 \text { prob. point of Student }(n-2) \text { distn. } \\
s_{\widehat{\beta}_{1}} & : \text { Estimated standard error of } \widehat{\beta}_{1}
\end{aligned}
$$

Note: we could perform a similar analysis for β_{0}, but this is generally of less interest.

The only quantity that needs attention is the estimated standard error of $\widehat{\beta}_{0}$. It can be shown that

$$
\text { e.s.e. }\left(\widehat{\beta}_{0}\right)=s_{\widehat{\beta}_{0}}=\sqrt{\frac{1}{n}\left(1+\frac{n \bar{x}^{2}}{S S_{x x}}\right)}
$$

2.1.5 The Coefficient of Correlation

To measure the strength of association between the two variables x and y we can use the

Pearson Product Moment Coefficient Of Correlation

or correlation coefficient which measures the strength of the linear relationship between x and y.
The coefficient, r, is defined by

$$
r=\frac{S S_{x y}}{\sqrt{S S_{x x} S S_{y y}}}
$$

where

$$
\begin{gathered}
S S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \quad S S_{y y}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \\
S S_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
\end{gathered}
$$

Note: $-1 \leq r \leq 1$.

- If r is close to 1 , there is a strong linear relationship between x and y where y increases with x.
- If r is close to -1 , there is a strong linear relationship between x and y where y decreases with x.

Note: In the model

$$
y=\beta_{0}+\beta_{1} x
$$

$\beta_{1}=0 \Longrightarrow r \approx 0$, so tests for $\beta_{1}=0$ can also be used to deduce a lack of correlation between the variables.

Notes

1. A strong linear relationship is not necessarily a causal relationship, that is, just because $r \approx 1$ does not mean that x causes changes in y (we may have a spurious correlation).
2. Just because $r \approx 0$ does not mean that that x and y are unrelated, merely that they are uncorrelated. That is, it is possible to construct examples where x and y have a strong functional relationship, but where $r=0$.

Examples where $r \approx 0$.

