2.1.2 Least Squares Fitting

We select the best values of β_{0} and β_{1} by minimizing the error in fit. For two data points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the errors in fit are

$$
\begin{aligned}
& e_{1}=y_{1}-\left(\beta_{0}+\beta_{1} x_{1}\right) \\
& e_{2}=y_{2}-\left(\beta_{0}+\beta_{1} x_{2}\right)
\end{aligned}
$$

respectively. But note that, potentially, $e_{1}>0$ and $e_{2}<0$ so there is a possibility that these fitting errors cancel each other out. Therefore we look at squared errors (as a large negative error is as bad as a large positive error)

$$
\begin{aligned}
& e_{1}^{2}=\left(y_{1}-\left(\beta_{0}+\beta_{1} x_{1}\right)\right)^{2} \\
& e_{2}^{2}=\left(y_{2}-\left(\beta_{0}+\beta_{1} x_{2}\right)\right)^{2}
\end{aligned}
$$

For n data, we obtain n misfit squared errors

$$
e_{1}^{2}, \ldots, e_{n}^{2}
$$

We select β_{0} and β_{1} as the values of the parameters that minimize SSE, where

$$
S S E=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2}
$$

We wish to make the total misfit squared error as small as possible.

SSE - sum of squared errors - is similar to the SSE for ANOVA. We could write

$$
S S E=\operatorname{SSE}\left(\beta_{0}, \beta_{1}\right)
$$

to show the dependence of SSE on the parameters.
Minimization of $\operatorname{SSE}\left(\beta_{0}, \beta_{1}\right)$ is achieved analytically.

Two routes: (i) calculus and (ii) geometric methods. It follows that the best parameters $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ are given by

$$
\widehat{\beta}_{1}=\frac{S S_{x y}}{S S_{x x}} \quad \widehat{\beta}_{0}=\bar{y}-\widehat{\beta}_{1} \bar{x}
$$

where

- Sum of Squares $S S_{x x}$:

$$
S S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- Sum of Squares $S S_{x y}$:

$$
S S_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

$\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ are the least-squares estimates

$$
y=\widehat{\beta}_{0}+\widehat{\beta}_{1} x
$$

is the least-squares line of best fit. The fitted-values are

$$
\hat{y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i} \quad i=1, \ldots, n
$$

and the residuals or residual errors are

$$
\hat{e}_{i}=y_{i}-\hat{y}_{i}=y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i} \quad i=1, \ldots, n
$$

2.1.3 Model Assumptions for Least-Squares

To utilize least-squares for the probabilistic model

$$
Y=\beta_{0}+\beta_{1} x+\epsilon
$$

we make the following assumptions

1. The expected error $E[\epsilon]$ is zero so that

$$
E[Y]=\beta_{0}+\beta_{1} x
$$

2. The variance of the error, $\operatorname{Var}[\epsilon]$, is constant and does not depend on x.
3. The probability distribution of ϵ is a symmetric distribution about zero (a stronger assumption is that ϵ is Normally distributed).
4. The errors for two different measured responses are independent, i.e. the error ϵ_{1} in measuring y_{1} at x_{1} is independent of the error ϵ_{2} in measuring y_{2} at x_{2}.

2.1.4 Parameter Estimation: Estimating σ^{2}

Using the LS procedure, we can construct an estimate of the error or residual error variance

Recall that

$$
\operatorname{Var}[\epsilon]=\sigma^{2}
$$

An estimate of σ^{2} is

$$
\widehat{\sigma}^{2}=\frac{\operatorname{SSE}\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)}{n-2}=s^{2}
$$

say.

Note that the denominator $n-2$ is again a degrees of freedom parameter of the form

TOTAL NUMBER - NUMBER OF PARAMETERS OF DATA
 ESTIMATED

or $n-p$, where in the simple linear regression, $p=2\left(\widehat{\beta}_{0}\right.$ and $\widehat{\beta}_{1}$). Note also that

$$
\operatorname{SSE}\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=S S_{y y}-\widehat{\beta}_{1} S S_{x y}
$$

where

$$
S S_{y y}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

