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2.1.2 Least Squares Fitting

We select the best values of β0 and β1 by minimizing the error
in fit. For two data points (x1, y1) and (x2, y2), the errors in fit
are

e1 = y1 − (β0 + β1x1)

e2 = y2 − (β0 + β1x2)

respectively. But note that, potentially, e1 > 0 and e2 < 0 so
there is a possibility that these fitting errors cancel each other
out. Therefore we look at squared errors (as a large negative
error is as bad as a large positive error)

e2
1 = (y1 − (β0 + β1x1))

2

e2
2 = (y2 − (β0 + β1x2))

2
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For n data, we obtain n misfit squared errors

e2
1 , . . . , e2

n

We select β0 and β1 as the values of the parameters that
minimize SSE , where

SSE =
n∑

i=1

e2
i =

n∑

i=1

(yi − (β0 + β1xi ))
2

We wish to make the total misfit squared error as small as
possible.

SSE - sum of squared errors - is similar to the SSE for ANOVA.
We could write

SSE = SSE (β0, β1)

to show the dependence of SSE on the parameters.

Minimization of SSE (β0, β1) is achieved analytically.
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Two routes: (i) calculus and (ii) geometric methods. It follows
that the best parameters β̂0 and β̂1 are given by

β̂1 =
SSxy

SSxx
β̂0 = y − β̂1x

where

I Sum of Squares SSxx :

SSxx =
n∑

i=1

(xi − x)2

I Sum of Squares SSxy :

SSxy =
n∑

i=1

(xi − x)(yi − y)
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β̂0 and β̂1 are the least-squares estimates

y = β̂0 + β̂1x

is the least-squares line of best fit. The fitted-values are

ŷi = β̂0 + β̂1xi i = 1, . . . , n

and the residuals or residual errors are

êi = yi − ŷi = yi − β̂0 − β̂1xi i = 1, . . . , n
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2.1.3 Model Assumptions for Least-Squares
To utilize least-squares for the probabilistic model

Y = β0 + β1x + ε

we make the following assumptions

1. The expected error E [ε] is zero so that

E [Y ] = β0 + β1x

2. The variance of the error, Var [ε], is constant and does not
depend on x .

3. The probability distribution of ε is a symmetric distribution
about zero (a stronger assumption is that ε is Normally
distributed).

4. The errors for two different measured responses are
independent, i.e. the error ε1 in measuring y1 at x1 is
independent of the error ε2 in measuring y2 at x2.
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2.1.4 Parameter Estimation: Estimating σ2

Using the LS procedure, we can construct an estimate of the
error or residual error variance

Recall that
Var [ε] = σ2

An estimate of σ2 is

σ̂2 =
SSE (β̂0, β̂1)

n − 2
= s2

say.
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Note that the denominator n − 2 is again a degrees of freedom
parameter of the form

TOTAL NUMBER − NUMBER OF PARAMETERS
OF DATA ESTIMATED

or n − p, where in the simple linear regression, p = 2 (β̂0 and
β̂1). Note also that

SSE (β̂0, β̂1) =
n∑

i=1

(yi − ŷi )
2 = SSyy − β̂1SSxy

where

SSyy =
n∑

i=1

(yi − y)2
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