Analysis of Variance Factorial

Factorial Experiments Note: For two factors A and B, the **main effects plus interaction** model can be written

A + B + A.B

whereas the main effects only can be written

A + B

The models

A + A.B B + A.B

do not make sense.

For a two factor design, the only models that should be considered and or reported are

MODEL	FACTOR	INTERACTION
NULL	NONE	NONE
А	А	NONE
В	В	NONE
A+B	A,B	NONE
A+B+A.B	A,B	YES

that is, if the interaction is significant, the only model you should report is

A + B + A.B

Note: ANOVA analysis for the RBD and FD (both with replication) are identical. The only difference lies in the interpretation of the factors

- RBD: one blocking, one treatment factor
- ► FD: two treatment factors

"Blocking" factors are known or strongly believed to have a significant effect on the response.

Analysis of Variance Factorial

Estimating Effect Size

In multifactor designs, parameter estimation can be carried out in different parameterizations

For the CRD (one-way layout):

- Natural parameters: μ_1, \ldots, μ_k
- Contrast parameters: $\beta, \beta_0, \ldots, \beta_{k-1}$ where

$$\beta = \mu_k$$
 $\beta_i = \mu_i - \mu_k$, $i = 1, \dots, k - 1$

that is, differences from baseline.

For the two-factor designs (RBD/FD): In the two-way layout, with cells (i, j), i = 1, ..., a, j = 1, ..., b. The cell means are m_{ij} , where

$$m_{ij} = \mu_{i.} + \mu_{.j} + \mu_{ij}$$

where $\mu_{i.}$ gives the Factor A contribution, $\mu_{.j}$ gives the Factor B contribution, and μ_{ij} gives the interaction.

The parameterization used by SPSS is the contrast parameterization is

$$m_{ij} = \beta_0 \qquad i = a, j = b$$

= $\beta_0 + \beta_i^{(A)} \qquad i = 1, ..., a - 1, j = b$
= $\beta_0 + \beta_j^{(B)} \qquad i = a, j = 1, ..., b - 1$
= $\beta_0 + \beta_i^{(A)} + \beta_j^{(B)} + \gamma_{ij}^{(AB)}$
 $i = 1, ..., a - 1$
 $j = 1, ..., b - 1$

 $egin{aligned} & eta_i^{(A)} \ & eta_j^{(B)} \ & \gamma_{ij}^{(AB)} \end{aligned}$

- $\beta_i^{(A)}$: contrasts for factor A
- $\beta_j^{(B)}$: contrasts for factor B

 $\gamma_{ii}^{(AB)}$: interaction

SPSS takes the *a*th level of factor A and the *b*th level of factor B as the baseline, and looks at differences compared to this baseline.

The *ab* parameters are

 $\begin{array}{ll} \beta_{0} & 1 \\ \beta_{1}^{(A)}, \dots, \beta_{a-1}^{(A)} & (a-1) \\ \beta_{1}^{(B)}, \dots, \beta_{b-1}^{(B)} & (b-1) \\ \gamma_{ij}^{(AB)}, i = 1, \dots, a-1, j = 1, \dots, b-1 \quad (a-1)(b-1) \\ \end{array}$ Total ab

For example: a = 3, b = 4.

Variance Factorial

where

and so on.

stimation is still straightforward:		
	PARAMETER	ESTIMATE
	eta_{0}	\overline{x}_{ab}
	$\beta_i^{(A)}$	$\overline{x}_{i.} - \overline{x}_{ab}$
	$eta_j^{(\mathcal{A})}$	$\overline{x}_{.j} - \overline{x}_{ab}$
	$\gamma^{(AB)}_{ij}$	$\overline{x}_{ij} - \overline{x}_{i.} - \overline{x}_{.j} + \overline{x}_{ab}$

.. Estima . . .

Factorial

for i = 1, ..., a, j = 1, ..., b.

Other parameterizations can be used.

Final Note on ANOVA

We have studied the simplest design scenarios: extension to

- incomplete
- unbalanced
- nested
- ▶ random effect

designs are possible.

Furthermore SPSS has greater functionality: for example, it has the capability to carry out ANOVA-like analyses even for the case of non-equal variances (when Levene's test rejects the hypothesis of equal variances).