Note: For two factors A and B, the main effects plus interaction model can be written

$$
A+B+A \cdot B
$$

whereas the main effects only can be written

$$
A+B
$$

The models

$$
A+A \cdot B \quad B+A \cdot B
$$

do not make sense.

For a two factor design, the only models that should be considered and or reported are

MODEL	FACTOR	INTERACTION
NULL	NONE	NONE
A	A	NONE
B	B	NONE
A+B	A,B	NONE
A+B+A.B	A,B	YES

that is, if the interaction is significant, the only model you should report is

$$
A+B+A \cdot B
$$

Note: ANOVA analysis for the RBD and FD (both with replication) are identical. The only difference lies in the interpretation of the factors

- RBD: one blocking, one treatment factor
- FD: two treatment factors
"Blocking" factors are known or strongly believed to have a significant effect on the response.

Estimating Effect Size

In multifactor designs, parameter estimation can be carried out in different parameterizations

For the CRD (one-way layout):

- Natural parameters: μ_{1}, \ldots, μ_{k}
- Contrast parameters: $\beta, \beta_{0}, \ldots, \beta_{k-1}$ where

$$
\beta=\mu_{k} \quad \beta_{i}=\mu_{i}-\mu_{k}, \quad i=1, \ldots, k-1
$$

that is, differences from baseline.
For the two-factor designs (RBD/FD): In the two-way layout, with cells $(i, j), i=1, \ldots, a, j=1, \ldots, b$. The cell means are $m_{i j}$, where

$$
m_{i j}=\mu_{i .}+\mu_{. j}+\mu_{i j}
$$

where μ_{i}. gives the Factor A contribution, $\mu_{. j}$ gives the Factor B contribution, and $\mu_{i j}$ gives the interaction.

The parameterization used by SPSS is the contrast parameterization is

$$
\begin{aligned}
& m_{i j}=\beta_{0} \\
& =\beta_{0}+\beta_{i}^{(A)} \\
& =\beta_{0}+\beta_{j}^{(B)} \\
& =\beta_{0}+\beta_{i}^{(A)}+\beta_{j}^{(B)}+\gamma_{i j}^{(A B)} \\
& i=1, \ldots, a-1 \\
& j=1, \ldots, b-1
\end{aligned}
$$

where
$\beta_{i}^{(A)}:$ contrasts for factor A
$\beta_{j}^{(B)}$: contrasts for factor B
$\gamma_{i j}^{(A B)}$: interaction

SPSS takes the ath level of factor A and the bth level of factor B as the baseline, and looks at differences compared to this baseline.

The $a b$ parameters are

β_{0}	1
$\beta_{1}^{(A)}, \ldots, \beta_{a-1}^{(A)}$	$(a-1)$
$\beta_{1}^{(B)}, \ldots, \beta_{b-1}^{(B)}$	$(b-1)$
$\gamma_{i j}^{(A B)}, i=1, \ldots, a-1, j=1, \ldots, b-1$	$(a-1)(b-1)$
Total	$a b$

For example: $a=3, b=4$.
Factor B

where

$$
\begin{aligned}
& \text { (1) }=\beta_{0}+\beta_{1}^{(A)}+\beta_{1}^{(B)}+\gamma_{11}^{(A B)} \\
& \left(\text { () }=\beta_{0}+\beta_{2}^{(A)}+\beta_{3}^{(B)}+\gamma_{23}^{(A B)}\right.
\end{aligned}
$$

and so on.

Estimation is still straightforward:
PARAMETER ESTIMATE

$$
\begin{array}{cc}
\beta_{0} & \bar{x}_{a b} \\
\beta_{i}^{(A)} & \bar{x}_{i .}-\bar{x}_{a b} \\
\beta_{j}^{(A)} & \bar{x}_{. j}-\bar{x}_{a b} \\
\gamma_{i j}^{(A B)} & \bar{x}_{i j}-\bar{x}_{i .}-\bar{x}_{. j}+\bar{x}_{a b}
\end{array}
$$

for $i=1, \ldots, a, j=1, \ldots, b$.
Other parameterizations can be used.

Final Note on ANOVA

We have studied the simplest design scenarios: extension to

- incomplete
- unbalanced
- nested
- random effect
designs are possible.
Furthermore SPSS has greater functionality: for example, it has the capability to carry out ANOVA-like analyses even for the case of non-equal variances (when Levene's test rejects the hypothesis of equal variances).

