We now study multifactor designs, to assess the effects and interactions of several factors simultaneously.

We consider all possible combinations of

$$
\begin{array}{lll}
\text { FACTOR A } & \text { with } & a \text { levels } \\
\text { FACTOR B } & \text { with } & b \text { levels } \\
\text { FACTOR C } & \text { with } & c \text { levels }
\end{array}
$$

to define the treatments in a factorial design.

Factorial Experiments

A complete factorial experiment is one in which every combination of a number of factors is utilized.
i.e. the number of treatments is equal to the total number of factor-level combinations.

We focus on two factor experiments
FACTOR A with a levels
FACTOR B with b levels
so there are $a b$ treatments in total.

A two-way layout with $a=3$ and $b=5$.

	Factor B					
$\begin{aligned} & \mathbb{1} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{U}{0} \\ & \dot{\sim} \end{aligned}$		1	2	3	4	5
	1					
	2					
	3					

This design is very similar to the RBD, but now the second factor is not a blocking factor;

- that is, the $a b$ treatment populations are constructed independently from the same base population, or from populations not necessarily believed to be systematically different.
- individuals from the same base population are assigned at random to one of the $a b$ treatments.

In this design we can study the effect of Factor A and Factor B (main effects) as well as the interaction provided we have (balanced) replication.

We construct ANOVA F-tests based on the decomposition

$$
S S=S S T_{A}+S S T_{B}+S S I_{A B}+S S E
$$

- Sum of Squares for Treatments due to factor $\mathrm{A}\left(\mathrm{SST}_{\mathrm{A}}\right)$

$$
S S T_{A}=\sum_{i=1}^{a} \operatorname{br}\left(\bar{x}_{i .}-\bar{x}_{. .}\right)^{2}
$$

- Sum of Squares for Treatments due to factor $\mathrm{B}\left(\mathrm{SST}_{\mathrm{B}}\right)$

$$
S S T_{B}=\sum_{j=1}^{b} \operatorname{ar}\left(\bar{x}_{. j}-\bar{x}_{. .}\right)^{2}
$$

- Sum of Squares for Interaction ($\mathrm{SSI}_{\mathrm{AB}}$)

$$
S S I_{A B}=\sum_{i=1}^{a} \sum_{j=1}^{b} r\left(\bar{x}_{i j}-\bar{x}_{i .}-\bar{x}_{. j}+\bar{x}_{. .}\right)^{2}
$$

New notation:

- sample mean for Factor A level i

$$
\bar{x}_{i .}=\frac{1}{b r} \sum_{j=1}^{b} \sum_{t=1}^{r} x_{i j t} \quad i=1, \ldots, a
$$

- sample mean for Factor B level j

$$
\bar{x}_{. j}=\frac{1}{a r} \sum_{i=1}^{a} \sum_{t=1}^{r} x_{i j t} \quad j=1, \ldots, b
$$

- sample mean for replicates in (i, j) th factor combination

$$
\bar{x}_{i j}=\frac{1}{r} \sum_{t=1}^{r} x_{i j t} \quad i=1, \ldots, a, j=1, \ldots, b
$$

- overall sample mean

$$
\bar{x}_{. .}=\frac{1}{n} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{t=1}^{r} x_{i j t}
$$

These allow computation of

$$
\begin{aligned}
& S S T_{A}, S S T_{B}, S S I_{A B}, S S, S S E \\
& M S T_{A}, M S T_{B}, M S I_{A B}, M S E
\end{aligned}
$$

using the degrees of freedom identical to those in the RBD with replication.

Tests for

- significant effect for Factor A
- significant effect for Factor B
- significant interaction
will be carried out as before using an ANOVA table.

ANOVA Table

SOURCE	DF	SS	MS	F
FACTOR A	$a-1$	$S S T_{A}$	$M S T_{A}$	F_{A}
FACTOR B	$b-1$	$S S T_{B}$	$M S T_{B}$	F_{B}
INTERACTION	$(a-1)(b-1)$	$S S I_{A B}$	$M S I_{A B}$	$F_{A B}$
ERROR	$(n-a b)$	$S S E$	$M S E$	
TOTAL	$n-1$	$S S$		

If Factor A is not influential (H_{0} specifying no difference between responses at different levels of factor A), then

$$
F_{A} \sim \text { Fisher-F }(a-1, n-a b)
$$

Similarly,
No effect of Factor B : $F_{B} \sim$ Fisher-F $(b-1, n-a b)$
No Interaction : $F_{A B} \sim$ Fisher- $F((a-1)(b-1), n-a b)$

