Comment: The "sum of squares" decompositions

$$
\begin{aligned}
& C R D: S S=[S S T]+S S E \\
& R B D: S S=[S S T+S S B]+S S E
\end{aligned}
$$

are both of the form

$$
\begin{array}{cc}
\text { TOTAL } \\
\text { VARIATION } & =\begin{array}{c}
\text { SYSTEMATIC } \\
\text { VARIATION }
\end{array}
\end{array}+\underset{\text { RANDOM }}{\text { VARIATION }}
$$

"SYSTEMATIC" $\quad \begin{cases}\text { For the CRD: } & S S T \\ \text { For the RBD: } & S S T+S S B\end{cases}$
"RANDOM" For both: SSE

We have studied the

Randomized Complete Block Design

where each block/treatment combination has one experimental unit.

An incomplete design could also be considered, where some block/treatment combinations are omitted. However, this design does not lead to straightforward ANOVA analysis.

1.5 Factorial Experiments

Designs studied so far:

- CRD - one factor
- RBD - one factor, plus one blocking variable, so two factors in total, where one (the blocking variable) is a known source of systematic variation.

However, in the RBD, we must assume that the treatments behave in a similar way across blocks.

Let i index treatments $(1 \leq i \leq k)$ and consider block j, and two treatment (factor levels) i_{1} and i_{2}.

In an RBD, we assume that

$$
E\left[X_{i_{1} j}-X_{i_{2} j}\right]=\mu_{i_{1}}-\mu_{i_{2}}
$$

which does NOT depend on j.
That is, the expected difference in response due to the two treatments does not depend on the block.

But perhaps the difference does depend on block; perhaps we have INTERACTION.

In the current RBD, we do not have enough data to look for this. We now seek to extend the RBD to allow for tests for interaction; we do this by using replication.

RBD with Balanced Replication

Suppose we have r observations per block/treatment combination (termed replicates), so that we have $n-b k r$ experimental units in total.

Balanced designs have equal numbers of replicates in each block/treatment combination.

In this design, all the quantities

$$
\begin{gathered}
S S T, S S B, S S E, S S \\
M S T, M S B, M S E
\end{gathered}
$$

can be defined, and an ANOVA F-test can be carried out - the only difference is that $n=b k r$.

- Sum of Squares for Treatments (SST)

$$
S S T=\sum_{i=1}^{k} \operatorname{br}\left(\bar{x}_{i}-\bar{x}\right)^{2}
$$

- Sum of Squares for Blocks (SSB)

$$
S S B=\sum_{j=1}^{b} k r\left(\overline{x_{j}^{(B)}}-\bar{x}\right)^{2}
$$

- Overall Sum of Squares (SS)

$$
S S=\sum_{i=1}^{k} \sum_{j=1}^{b} \sum_{t=1}^{r}\left(x_{i j t}-\bar{x}\right)^{2}
$$

and $S S E=S S-S S T-S S B$
Third index t indexes the replicates.

The RBD with replication does allow the investigation of interaction. The new test is based on the decomposition

$$
S S=S S T+S S B+S S I+S S E
$$

where $S S I$ is the sum of squares for Interaction.
We have SST, SSB and SS as before, and

$$
S S I=\sum_{i=1}^{k} \sum_{j=1}^{b} r\left(\bar{x}_{i j}-\bar{x}_{i}-\overline{x_{j}^{(B)}}+\bar{x}\right)^{2}
$$

where

$$
\bar{x}_{i j}=\frac{1}{r} \sum_{t=1}^{r} x_{i j t} \quad i=1, \ldots, k, j=1, \ldots, b
$$

is the sample mean for replicates in (i, j) th treatment/block combination.

