Analysis of Variance

Randomized Block Designs

Testing for Equal Treatment Means

An ANOVA F-test can be constructed for a RBD. Let

- $i = 1, \ldots, k$ index treatments
- $j = 1, \ldots, b$ index **blocks**

i.e. x_{ij} is the response for the *i*th treatment in the *j*th block. Let

- \overline{x}_i be the *i*th **treatment** mean
- $\overline{x_i^{(B)}}$ be the *j*th **block** mean
- \overline{x} be the **overall** mean

nalysis of ariance l et

Randomized Block Design

SST: Sum of Squares for **Treatments** SSB: Sum of Squares for **Blocks** SS: **Total** Sum of Squares

Analysis of Variance Randomized

Finally

SS = SST + SSB + SSE \therefore SSE = SS - SST - SSBSSE: Sum of Squares for **Errors** Test statistic is $F = \frac{MST}{MSF}$

where

$$MST = rac{SST}{k-1}$$
 $MSE = rac{SSE}{n-b-k+1}$

ANOVA F-test to compare treatment means in a randomized block design

Theorem: ANOVA F-test for a RBD. *To test*

 H_0 : $\mu_1 = \cdots = \mu_k$ H_a : At least one pair of treatment means different.

use the test statistic

$$F = \frac{MST}{MSE}$$

If H₀ is **TRUE**

$$\mathsf{F}\sim \mathit{Fisher}{-}\mathsf{F}(k-1,n-b-k+1)$$

- this defines the rejection region for significance level α , and the p-value, in the usual way.

Analysis of /ariance

Randomized Block Designs

Assumptions:

Randomized Block Designs

- 1. Experimental units (between blocks) are independent, and treatments are allocated at random (within blocks).
- 2. Normality
- 3. *bk* block/treatment combinations correspond to populations with equal variances.

ANOVA Table

SOURCE	DF	SS	MS	F
TMTS	k-1	SST	MST	F = MSE/MSB
BLOCKS	b-1	SSB	MSB	
ERROR	n-k-b+1	SSE	MSE	
TOTAL	n-1	SS		

Analysis of Variance Randomized

After the ANOVA test is complete, and the hypothesis

$$H_0: \mu_1 = \cdots = \mu_k$$

is **rejected**, we can proceed with the "post-hoc" tests of hypotheses $\mu_i = \mu_j$ for $i \neq j$.

Notes:

1. In a RBD, it is not (in general) possible to estimate individual treatment means, that is, \bar{x}_i does not estimate μ_i as it is an average across blocks, which are believed to be different in terms of response.

2. Testing the Block Means However, we can test whether the block means $\mu_1^{(B)}, \ldots, \mu_b^{(B)}$ are significantly different. For

$$H_0: \mu_1^{(B)} = \cdots = \mu_b^{(B)}$$

we use the F statistic

$$F = \frac{MSB}{MSE}$$

where

$$MSB = \frac{MSB}{b-1}$$

If H_0 is **TRUE**

 $F \sim \text{Fisher-F}(b-1, n-k-b+1)$

That is, we treat the blocks as levels of another factor, and test to see whether this factor affects response.

Analysis of Variance Randomized

Example: Soil Analysis (see handout).

Results of two ANOVA F-tests:

Test of	F	р	Conclusion
SOLVENT	0.673	0.585	No Difference
SOIL	10.568	0.001	Difference

Here SOLVENT is the **blocking** variable, SOIL is the **treatment** variable.

3. Remember to check the assumptions (independence, normality, equal variances in each treatment/block combination)

Equal variances may be hard to check as we only have one observation per treatment/block comparison.