MATH 204 - SOLUTIONS 3

1. (a) The derivative can be obtained using the chain rule; the derivative of the term

$$(y_i - \beta_0 - \beta_1 x_i)^2$$

with respect to β_0 is

$$2 \times (y_i - \beta_0 - \beta_1 x_i) \times (-1) = -2(y_i - \beta_0 - \beta_1 x_i)$$

whereas the derivative with respect to β_1 is

$$2 \times (y_i - \beta_0 - \beta_1 x_i) \times (-x_i) = -2(y_i - \beta_0 - \beta_1 x_i) x_i$$

so summing over $i = 1, \dots, n$ and equating to zero yields

For
$$\beta_0$$
: $\sum_{i=1}^n -(y_i - \beta_0 - \beta_1 x_i) = 0$

For
$$\beta_1$$
: $\sum_{i=1}^n -(y_i - \beta_0 - \beta_1 x_i)x_i = 0$

after dividing both sides of the equation by 2. Note that we can also remove the negative sign, yielding the simultaneous equations

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0 (1)$$

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) x_i = 0$$
 (2)

These are two simultaneous equations in two variables, so they can be solved using standard methods. From (1), by summing terms, we obtain

$$S_y - n\widehat{\beta}_0 - \widehat{\beta}_1 S_x = 0 \tag{3}$$

where

$$S_x = \sum_{i=1}^n x_i \qquad S_y = \sum_{i=1}^n y_i$$

and from (2),

$$S_{xy} - \widehat{\beta}_0 S_x - \widehat{\beta}_1 S_{xx} = 0 \tag{4}$$

where

$$S_{xy} = \sum_{i=1}^{n} x_i y_i$$
 $S_{xx} = \sum_{i=1}^{n} x_i^2$.

From (3), we obtain

$$\widehat{\beta}_0 = \frac{1}{n} \left(S_y - \widehat{\beta}_1 S_x \right) = (\overline{y} - \widehat{\beta}_1 \overline{x}) \tag{5}$$

and thus from (4), substituting in this expression for $\widehat{\beta}_0$, we obtain

$$S_{xy} - (\overline{y} - \widehat{\beta}_1 \overline{x}) S_x - \widehat{\beta}_1 S_{xx} = 0 \qquad \therefore \qquad S_{xy} - \overline{y} S_x + \widehat{\beta}_1 (\overline{x} S_x - S_{xx}) = 0$$

and hence

$$\widehat{\beta}_1 = \frac{S_{xy} - \overline{y}S_x}{S_{xx} - \overline{x}S_x}$$

But

$$S_{xy} - \overline{y}S_x = \sum_{i=1}^{n} x_i y_i - n\overline{x}\,\overline{y}.$$

Now

$$\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} y_i \overline{x} - \sum_{i=1}^{n} x_i \overline{y} + \sum_{i=1}^{n} \overline{x} \overline{y}$$

$$= \sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y} - n \overline{x} \overline{y} + n \overline{x} \overline{y}$$

$$= \sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y}$$

Therefore

$$S_{xy} - \overline{y}S_x = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = SS_{xy}.$$

Similarly

$$S_{xx} - \overline{x}S_x = \sum_{i=1}^{n} (x_i - \overline{x})^2 = SS_{xx}$$

Thus

$$\widehat{\beta}_1 = \frac{SS_{xy}}{SS_{xx}}$$

and by back substitution into (5) we obtain the final expression for $\widehat{\beta}_0$.

(b) From (1), we have by construction that

$$\sum_{i=1}^{n} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i) = 0.$$

But by definition

$$\hat{e}_i = y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i$$

and thus

$$\sum_{i=1}^{n} \hat{e}_i = 0.$$

2. For the Longley data, here is the SPSS analysis:

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.991ª	.982	.981	13.703405

a. Predictors: (Constant), Population (millions)

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients			95% Confidence	e Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	-1275.210	59.826		-21.315	.000	-1403.523	-1146.897
	Population (millions)	14.162	.509	.991	27.842	.000	13.071	15.253

a. Dependent Variable: GNP (billions of dollars)

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	145561.3	1	145561.339	775.156	.000 ^a
	Residual	2628.966	14	187.783		
	Total	148190.3	15			

a. Predictors: (Constant), Population (millions)

Thus

• the estimates (standard errors) for $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are

$$-1275.210(59.826)$$
 14.161(0.509)

respectively.

- the 95 % confidence intervals for both parameters exclude zero, so both parameters are significantly different from zero (at the $\alpha=0.05$ significance level)
- the correlation between x and y is 0.991.
- the R^2 statistic is 0.982
- the ANOVA-F test yields an *F* statistic equal to 775.156, and a *p*-value of less than 0.001.

Thus there is a significant linear relationship between the \boldsymbol{x} and \boldsymbol{y} variables.

b. Dependent Variable: GNP (billions of dollars)