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ABSTRACT 

A number of methods have been proposed for dealing with extra-Poisson variation when 
doing regression analysis of count data. This paper studies negative-binomial regression 
models and examines efficiency and robustness properties of inference procedures based on 
them. The methods are compared with quasilikelihood methods. 

RESUME 

Plusieurs mkthodes ont ktk propokes en vue de traiter le probltme de la variation extra- 
poissonnienne dans une analyse de regression pour donnkes de dknombrement. Cet article a 
pour objet l’etude de modtles de rkgression binomiale nkgative et se penche sur les propriktks 
d’efficacite et de robustesse des mtthodes infirentielles dkcoulant des mod&les. Ces dernitres 
sont comparkes aux mkthodes de quasi-vraisemblancce. 

1. INTRODUCTION 

Poisson models are widely used in the regression analysis of count data 
(e.g. Frome, Kutner, and Beauchamp 1973; Frome 1983; Haberman 1974; Holford 
1983). At the same time it is recognized that counts often display substantial extra- 
Poisson variation, or overdispersion, relative to a Poisson model. Consequently 
there have been both studies of the effect of overdispersion on inferences made under 
a Poisson model (e.g. Paul and Plackett 1978; Cox 1983), and models proposed for 
accommodating overdispersion in statistical analysis. In the latter vein, certain types 
of negative-binomial regression models are perhaps the most convenient to deal 
with, and have been used by various authors ( e g  Engel 1984; Lawless 1987; Manton, 
Woodbury, and Stallard 1981). Other parametric models have also been suggested 
(e.g. Hinde 1982), and in addition, analysis based on weighted least squares or 
quasilikelihood has been advocated (e.g. Breslow 1984, McCullagh and Nelder 
1983). 

Although negative-binomial regression methods have been employed in analyzing 
data, their properties have not been investigated in any detail. The purpose of this 
paper is to study negative-binomial regression models, to examine their properties, 
and to fill in some gaps in existing methodology. Section 2 introduces the model and 
reviews maximum-likelihood and moment estimation procedures. In Section 3 the 
asymptotic covariance matrix for weighted least-squares-moment estimators is 
obtained, and efficiency and robustness properties of them and of maximum- 

209 



21 0 LAWLESS Vol. 15, No. 3 

likelihood estimators are studied. Section 4 presents some evidence on the adequacy 
of large-sample approximations. Section 5 discusses significance tests for Poisson 
assumptions, and Section 6 looks at some illustrative data sets. Section 7 concludes 
the paper with some additional remarks on the regression analysis of count data. 

2. ESTIMATION FOR A NEGATIVE-BINOMIAL MODEL 

Let Y be the response variable, which is a count, and x a p x 1 vector of 
explanatory variables. A Poisson model would stipulate that the distribution of Y 
given x is Poisson with mean equal to p(x) = Tg(x; p), where g(x; p) is a positive- 
valued function of x and a vector p of regression parameters, and T is a measure of 
exposure. We abbreviate this as Y - Poisson(&)). The log-linear specification 
g(x; p) = exp(x’p) is widely used. Our objective is to study analogous models which 
can handle extra-Poisson variation. For count data with no covariates, the negative- 
binomial distribution is popular for this purpose, and its relationship to the Poisson 
is well known (e.g. Anscombe 1950). The corresponding negative-binomial regres- 
sion model considered here is 

where a 2 0 is often referred to as the index or dispersion parameter. (We remark 
that a more common parametrization uses k = a-I, and k is also referred to as an 
index parameter.) The mean and variance of Y are 

8 ( Y  Ix) = p(x) and % ( Y  Ix) = p(x) + ap(x)’.  (2.2) 

I will write Y - NB(~(x),cz) for this model. In the limit as a goes to 0, (2.1) yields the 
model Poisson(p(x)), and a = 0 denotes the Poisson case. 

The variance-mean relationship embodied in (2.2) often describes data well. More 
formally, (2.2) arises from a mixed, or random-effects, Poisson model: if v is a 
positive-valued random variable with mean 1 and variance a, and if the distribution 
of Y, given v and x, is Poisson(vp(x)), then the marginal mean and variance of Y 
given x are as in (2.2). Furthermore, when the distribution of v is gamma, the 
marginal distribution of Y is NB( p(x), a). 

Maximum likelihood for (2.1) is implicit in the work of some earlier authors, but I 
have not found a full discussion of it. Because of this and the desire to compare 
maximum likelihood and moment estimates below, I review it briefly here. For 
simplicity and because of its importance I will work with the log-linear model where 
Y, - NB(p,,a), i = I ,  . . . , n, are independent, with p, = exp(xl’P). Results for 
other regression specifications are qualitatively similar. The likelihood function is 
proportional to 

and noting that for any c > 0, r ( y  + c)/T(c) = c(c + 1). . . (c + y - 1) if y is an integer 
2 1, we can write log L(P, a)  as 
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Y: 

j=O 
where y ;  = yI  - 1 and is zero when y’; < 0. The first and second derivatives of 1 are 

, r = l ,  . . . ,  p ,  = xir(Yi - pi)  
apr i- l  1 + api (2.3) 

( 2 . 5 ~ )  

(2.5b) 

Expectations of minus the second derivatives yield the Fisher information matrix 
Z(p, a), with entries 

( 2 . 7 ~ )  

Zp+lg+l(B, a )  = a4 %‘I (a-’ +j) -2  - +} i=l j=O pi + a- = i(p, a). (2.8) 

The expression for Ip+lg+l(j3, a)  is most easily obtained by rewriting 1 in terms of p 
and k = a-’, calculating d21/akz and then noting that %‘(-dZl/da2) = a4$(-d21/ak2). 
The ith term of the expectation in Zp+lg+l(B, a)  is equal to 

by which it is easily calculated. 
The simplest way to obtain (fi, d )  is to maximize l(p, a )  with respect to p, for 

selected values of a. This gives estimates @(a) and the profile likelihood @(a), a), 
from which it is easy to determine d ;  it is of course possible to have â  = 0. 
Maximization of l(p, a)  with respect to fl is easy via Newton-Raphson iteration or the 
scoring algorithm. Alternatively, generalized linear model software such as GLIM, or 
least-squares software, can be exploited (see McCullagh and Nelder 1983, p. 170, and 
Stirling 1984, respectively). 

Assuming a > 0 and mild conditions on the xi’s to ensure that n-’Z(p, a) 
approaches a positive definite limit as n - 00, we can for large n obtain tests or 
confidence intervals by treating &(B - fl, d - a)  as normally distributed with mean 
o and covariance matrix 

(2.9) 
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where I ,@,  a )  and i(p,  a )  are given by (2.7) and (2.8). Observed information-matrix 
entries given by (2.5) and (2.6) evaluated at (1, Ci) can also be used instead of I ,  and i 
in (2.9). A preferable alternative when n is not really large is to use likelihood-ratio 
statistics, assumed to be distributed as chi-squareds. It is a substantial convenience 
that 1 and 2 are asymptotically independent; some ramifications of this appear 
below. Asymptotic approximations for estimates' distributions improve as both the 
pi's and n increase. Section 4 discusses the adequacy of these approximations. 

To test that a = 0 (i.e. that a Poisson model is adequate), slight modifications of 
standard large-sample theory apply: this is discussed in Section 5. 

MOMENT ESTIMATION OF A 

When a is known, the NB ( p i ,  a )  distribution is a generalized linear model, and 
furthermore, the maximum-likelihood equations all@, = 0 (Y = 1, . . . , p )  are both 
quasilikelihood and weighted least-squares equations (McCullagh and Nelder 1983, 
Breslow 1984, Stirling 1984). Quasilikelihood or weighted least squares is indeed 
often suggested for dealing with extra-Poisson variation, but to do so properly one 
should have a way of estimating the variance or dispersion parameter a.  The most 
common approach is to use moment estimation: Breslow (1984) suggests that, given 
estimates pi, we estimate a by solving the equation 

(2.10) 

[There is either one or no solutions a > 0 to (2.10); if there is none, take a" = 0.1 
Breslow recommends first fitting the Poisson model (a  = 0) to obtain initial pi's, 
then solving (2.10), for a". If a" > 0, this value is used to obtain a new p from d l / d p r  = 0 
with a = a" ( r  = 1, . . . , p ) ;  see (2.3). This process can be iterated, until convergence if 
desired. Use of a deviance statistic instead of the Pearson statistic on the left-hand 
side of (2.10) yields a similar procedure (McCullagh and Nelder 1983). 

This is a sensible procedure whose applicability is broader than just negative 
binomial regression. Earlier, practice was to ignore sampling variability in a", but 
Moore (1986) and Section 3 below provide distributional results which overcome 
this, and also enable us to examine the asymptotic efficiency of weighted-least- 
squares-moment estimation under the negative-binomial and other models. We 
turn to this now. 

3. EFFICIENCY AND ROBUSTNESS QUESTIONS 

Moment estimation for a is likely to be somewhat more robust than maximum 
likelihood, but is less efficient when the negative-binomial model is correct; we now 
examine this. I first determine the asymptotic distribution for the estimator (p, a") 
obtained by solving the equations 

These are the estimates obtained by using the approach of Breslow (1984) and others, 
wherein quasilikelihood or weighted least-squares is used to estimate fl for given a, 
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and moment estimation is used for a. The results concerning the distribution of a" 
have also recently been obtained by Moore (1986), in a more general setting where pi 
is not necessarily of log-linear form; those for B are already known in connection 
with quasilikelihood (e.g. McCullagh 1983; McCullagh and Nelder 1983, Appendix 
C) or weighted least-squares estimation. I give both results, since to get results for a" 
it's necessary to consider B simultaneously. 

Using results of Inagaki (1973), it can be shown that under the same conditions as 
for the maximum-likelihood asymptotics, 6 and a" are asymptotically independent 
and normally distributed, with 

m - ( G ( B  - B)) = zxp, a)-' 

adG(6 - a)> = b;:'(cp+' - b'I;(p, a)-%), 

(3.3) 

(3.4) 
where I:@, a )  = lim (l/n)Il(P, a )  [see (2.9)] and b = (b l ,  . . . , bp), with 

n-m 

b, = lim - 1 ( + 2 y x i . ,  r = 1, . . . , p ,  
n-m n i= l  1 + 

1 "  1 
n-m n i=l  p;(l + ~1;) '  

CP+' = 2 + 6a + lim - 1 

The derivation of these results is outlined in Appendix A. In the case where there are 
no explanatory variables (i.e. p = 1, xil = 1) the expression for @-{&(a" - a)) is 
2( 1 + a)( 1 + ~p)~ /p ' ,  which was given by Anscombe (1950). 

The results above indicate that if we proceed as described by Breslow (1984), then 
the estimator obtained is asymptotically equivalent to the maximum-likelihood 
estimator @, and its asymptotic covariance matrix is consistently estimated by 
I , @ ,  a")-'. There is, however, some loss of efficiency in the estimation of a by a", 
compared to maximum likelihood. The asymptotic relative efficiency of a" to Ci is 
given by 

(3.5j 

where i*(f!, a )  = lim (l/n)i(B, a )  [see (2.8)]. 

Anscombe (1950) studied the efficiency of a" relative to Ci in the case where there 
are no covariates, that is, when pi = p(i = 1, . . . , n). He found that for any p, RE of 
(3.5) approaches 1 as a - 0, and that in most realistic situations, RE is over 0.90. For 
cases involving covariates this is no longer true: RE does not approach one as a - 0, 
and lower efficiencies than 0.90 are encountered in many situations. In general, the 
efficiency tends to be lower in cases where the pi's are not too large and where they 
vary a good deal (i.e. there is a strong regression effect). Figures 1 and 2 show curves 
of RE vs. a for several situations, as follows: Figure 1 shows results for three cases: 
(a) p = 1, p = 10, (b) p = 1, p = 40, (c) p = 2, pi = exp(Po + PlXi), with exp(Po) 
= 10, PI = 1 and 0.20 of the xi's each of -1, -0.5,0,0.5, 1. Figure 2 shows results 

for p = 2, p i  = exp(Po + Plxi) and one third of the xi's each of -1 ,O,  1: (a) exp(Po) 
= 10, P, = 1, (b) exp(Po) = 10, PI = 0.5, (c) exp(Po) = 50, P I  = 0.5. 

n-m 
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FIGURE 1: Relative efficiency of Ci(l). 
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FIGURE 2: Relative efficiency of Z(11). 

I turn now to the question of robustness: how do the negative-binomial maxi- 
mum-likelihood or weighted least-squares and moment methods stand up when the 
negative binomial model is wrong? To study this I consider situations where the 
regression specification p, = ‘iR( r, 1 x,) = T, exp(xTp) is still correct, but the distribu- 
tion of r, given x, is not negative-binomial. 

I x,) = o;, which may ofcourse depend on x,. Then, using results of 
Cox (1961), Inagaki (1973), and White (1982), we find (see Appendix B) under mild 
conditions on the distributions of the Y,’s that as n - co, 

Suppose %( 

(1) B and are both consistent estimators of b; 
(2) Ci 3 a: and a“ 3 a;, where a; and a; are nonnegative constants; 
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(3) we have 

21 5 

(3.6) 
where 

(4) we have 

a-(&(jj - p), = ZI1B21I1, (3.7) 
where Z2 and B 2  differ from ZI and B I only in that a; replaces a;. 

If we use the negative-binomial model for estimation, we thus will get consistent 
estimates of b, but will have the covariance matrix wrong in general. (The estimates 
are of course also less efficient than maximum-likelihood estimates based on the 
correct model, but that is not our present concern.) The asymptotic covariance 
matrix we use for &(p - p) is I;(@, $)-I,  which converges in probability to Zl(p, a;)-'. 
The correct asymptotic covariance matrix for &(p - p) is Z:'BIZT', as given by (3.6). 
Since a; and a; are complicated functions of the negative-binomial estimating 
equations and the true distribution for Y, it is not obvious how far wrong the 
variance estimates for 1 or 6 will be, but this can be evaluated numerically in any 
given situation. I provide an illustration below. I note also that if the form of the 
variance function is correct, so that 

w x  I&) = Pl + 4 (3.8) 
for some a > 0, then it can be shown that a; = a, i.e., that moment estimation gives 
consistent estimation of a and hence of o;, In this case ZI = Z2 = B2 in (3.7) and so 
aw{&(@ - p)) = ZI(p, a)-'. Thus, weighted least-squares-moment estimation 
yields an asymptotically correct covariance matrix for b. This appears to be an 
advantage of the moment estimator over the maximum-likelihood estimator for a; 
however, numerical calculations like those below suggest that the asymptotic covari- 
ance matrix obtained via ri is usually only slightly off. Moore (1985) also suggests 
through some simulation work that the moment procedure is relatively robust to 
misspecification of the variance function, as far as estimation of jl in finite samples is 
concerned. 

To study the bias in estimation of a-C&(c - f!)} when the NB model is not 
correct, but (3.8) is, we note, following Cox (1961) or White (1982) that a; of (3.6) is 
the solution to 

(3.9) 

where the expectation is with respect to the true distribution of Y. Furthermore, as 
indicated above, the correct a- C&(b - p)) is VC = Z I ( ~ ,  af)-lB~(p, u7)Zl(p, a?)-', 
whereas the one actually used converges in probability to VNB = Z1(p, a?)-'. It is 
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TABLE 1: Comparison of VNB and I+ in a 
case with no covariates. 

5 .5 ,432 0.903 
5 . I  ,098 0.994 

20 .1 .096 0.974 
20 .o I .o 100 1.000 
50 . I  .095 1 0.959 
50 .o I .0100 0.999 

TABLE 2: Comparison of VNB and Vc in a case with one covariate. 

e b  a 

1 .5 
1 . I  
1 .o 1 

10 .5 
10 . I  
10 .01 
20 .5 
20 . I  
20 .o 1 

.454 
,0989 
.0100 
.4 13 
.0964 
.0100 
.404 
.0957 
,0100 

0.974 
0.999 
1.000 
0.862 
0.984 
1 .ooo 
0.83 1 
0.974 
1 .ooo 

vNd2,2)/vC(2,2) 

0.970 
0.999 
1 .ooo 
0.863 
0.983 
1 .ooo 
0.833 
0.974 
1.000 

possible to obtain a? of (3.9) numerically in any given situation and thence to 
compare VNB with Vc. I do this below for some situations where the distribution of Y 
is a Poisson-inverse Gaussian mixture (e.g. Sichel 1982); this distribution has a 
longer tail than the negative binomial. 

Table 1 shows values of a; and ratios VNB/ Vc for some situations with no covariates 
(i.e. p = 1, all p, = p). Table 2 shows results for situations with p = 2, 
p, = exp( Po + P,x,), where PI = 1 and one-third of the x,’s are each of -1,O, 1. It is 
seen from the two tables that the NB maximum-likelihood procedure underesti- 
mates the variance of &(fi - p) slightly in large samples. In practical situations quite 
small values of a tend to occur with larger p,’s, so that in fact the underestimation of 
asymptotic variances is for practical purposes rather inconsequential. 

When %( YJ = of is of a quite different form than (3.8), the asymptotic covari- 
ance matrix used under the NB model can be substantially off. In practice, however, 
diagnostic checks are used to assess o f relative to p,, and evidence of gross departures 
from (3.8) would steer us away from the NB model. The results of this section 
indicate that, when (3.8) is reasonable, either the full NB maximum-likelihood 
approach of Section 2 or the combined quasilikelihood-method-of-moments 
approach can be trusted for inferences about p. In fact, the covariance-matrix 
estimates based on (3.7) are valid more generally, and apply to quasilikelihood 
weighted least-squares estimates for any model for which the p, specification and 
(3.8) are correct. 

4. ADEQUACY OF LARGE-SAMPLE APPROXIMATIONS 

For tests and confidence intervals based on standard large-sample methods, it is of 
interest to know about the adequacy in finite samples of the various distributional 
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approximations used. In thesis work currently in progress, C. Dean has examined by 
simulation the accuracy of asymptotic normal approximations to the distributions 
of (s, 2) and (c, a"), as given by (2.9), (3.3), and (3.4), and chi-squared approxima- 
tions for likelihood-ratio statistics. A very brief indication of results, and some rough 
guidelines, are given here. 

Regarding inferences about fl, it appears that likelihood-ratio statistics, with their 
distributions approximated by x 2  distributions in the usual way, are satisfactory 
except possibly in very small samples. If the asymptotic standard normal distribu- 
tions of &(s - fl) or &@ - fl) are instead used, then it appears that the normal 
approximation for p is somewhat better in smaller samples than that for p, and is 
generally quite good for samples as small as 25 or 30. Even for sample sizes as big as 
80 or 90, the distribution of &I@, a):@ - fl) appears to give slightly too many small 
negative values, relative to a standard normal distribution. For inferences about the 
regression coefficients, therefore, the use of likelihood-ratio statistics is preferable for 
smaller samples, with the use of normal approximations for &(I - fl) also being 
reasonable. None of the methods, however, are so inaccurate as to affect conclusions 
in a major way except possibly in very small samples. 

For obtaining tests or confidence intervals for a ,  the likelihood ratio statistic is 
preferable. When a is close to zero, even it may not be well approximated by its 
asymptotic xtl, distribution unless n or the values of apt are fairly large. When a is 
quite close to zero, the normal approximations to the distributions of &(a - a)  and 
&(a" - a)  are also poor unless the apt's or n is large. The actual distributions of these 
quantities have shorter left tails, and longer right tails, than the approximating 
normal distributions. For testing the hypothesis that a = 0, the limiting distributions 
of &ri, &a" or the likelihood-ratio statistic have a probability mass of 0.5 at zero: see 
Section 5 .  In this case, unless n or the p,s are quite large, any of the three statistics 
used with their asymptotic distributions will give significance levels that are too big. 
This is in large part due to the fact that the proportion of samples in which ri or a" 
equals zero appears to be well over 0.5 unless n or the p,'s are fairly large. 

Table 3 presents a few simulation results for one of the scenarios represented in 
Table 2: that with one covariate, for which p = 2, eb = 10, and one-third of the pl's 
are equal to each of 3.7, 10, and 27. The table shows, for selected values of a and n,  
the proportion of times in 500 simulations that 

Z(P,) = &@, - P,)/=(P,)i and Z@,), j = 0, 1, 
fell outside the 0.05 and 0.01 standard normal limits k1.96 and k2.58, respectively. 
Similar figures are shown for 

Z ( d )  = &(d - a)/=(ri); and Z(a"). 

Asymptotic variances were based on (2.9) and on (3.3), (3.4) with c, a" used 
to estimate fl, a.  Results are also shown for the likelihood-ratio statistic 
A(;) = 2@, Ci) - 2I(b(a), a), the figure given being the proportion of times that it 
exceeded the upper 0.05 and 0.01 percentage points of xtl,. For the cases with a = 0, 
the modified (half-normal and half-x&) limiting distributions discussed in Section 5 
provided the nominal percentage points. The table displays the general qualitative 
features mentioned above, and provides some feel for the adequacy of the various 
approximations. I remark that it is rather uncommon to see an U-value as large as 0.5 
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a n %Pt 

0.5 30 .05 
.o 1 

90 .05 
.o 1 

0. I 30 .05 
.o 1 

90 .05 
.o 1 

0.01 30 .05 
.o 1 

90 .05 
.o 1 

0 30 .05 
.o 1 

90 .05 
.o 1 

LAWLESS 

Z ( 8 3  Z(Bd Z(Pd Z(Bd Z ( 4  N4 
.096 .088 .094 .084 ,126 ,094 ,068 
,028 .024 ,030 ,028 ,016 ,046 ,014 
.064 .056 ,068 ,062 .076 ,050 ,052 
.016 .o 18 .024 ,020 .022 ,012 ,008 
,112 .064 .084 ,046 ,172 ,102 .062 
,046 .o 18 .024 ,010 ,118 .058 .010 
.068 .054 .096 .058 .122 ,096 ,076 
.024 .012 ,022 .006 ,054 ,034 ,010 

.088 .050 .096 .044 ,000 .002 .008 

.026 .008 .022 .004 ,000 .ooo .002 

.120 .054 .lo8 .052 ,000 ,006 ,024 
,036 .o 18 .044 ,014 ,000 .ooo ,000 

,058 .054 .048 .040 ,042 ,006 .020 
,014 .014 .006 ,006 .012 ,000 ,000 
,040 .038 .046 ,042 ,028 ,020 ,018 
.006 .006 .008 .008 .008 ,002 ,008 

Vol. 15, No. 3 

when the pi’s are in the range represented here, and that with proportions in the table 
based on 500 samples, standard errors associated with them are about 0.0044 and 
0.01 for YoPt. = 0.05 and 0.01, respectively. 

The large-sample approximations are reasonably satisfactory; in most situations 
inferences about t3 will be of main interest, whereas interval estimates for a will not 
be as major a concern. Approximate confidence intervals for a which are based on 
the asymptotic xfl, distribution of A(2) should, however, be reliable except when a is 
close to zero. As a practical guideline, if the confidence interval includes the value 
a = 0, then we should expect that the right-hand end of the confidence interval is 
larger than it should be. Finally, tests of the Poisson hypothesis a = 0 will often be of 
interest; we discuss this in the next section. 

5. TESTING A POISSON ASSUMPTION 

Poisson regression models are very useful, and it is desirable to have a test of the 
Poisson assumption. One way to do this is to test that a = 0 within the negative- 
binomial model. Using results of Moran (1971) which apply to situations where the 
parameter is on the boundary of the parameter space, we have that when a = 0, the 
distribution of 2 = &hi@, 0);  [see (2.9)] asymptotically has a (half) normal distri- 
bution for Z > 0 and a probability mass off  at 0. Here, 6 is the m.1.e. of fi obtained 
under a = 0 (i.e. the Poisson model). Alternatively, one can use analogous results of 
Chernoff (1954), which show that the likelihood-ratio statistic for testing a = 0 is, 
under the null hypothesis, asymptotically like a random variable which has a 
probability mass of 4 at 0 and a : x $  distribution above 0. 

Investigations described in Section 4 indicate that unless n or the p,’s are very 
large, the limiting asymptotic distributions just mentioned substantially overesti- 
mate the significance levels associated with these tests. Another way to test the 
Poisson model is via a partial-score [- C(a) or Lagrange-multiplier] test of a = 0. For 
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the situation with no covariates it is well known that this procedure leads to the 
Fisher dispersion test, based on the statistic 

Collings and Margolin (1985) extend this to the case of a one-way layout, and to the 
general case of a single regressor variable. Furthermore, as Collings and Margolin 
and other authors note, this test arises more generally as a partial-score test for the 
Poisson model against rather arbitrary mixed Poisson alternatives, of which 
the negative-binomial is a special case. Dean and Lawless (1987) show that for 
general regression situations of the type discussed in this paper, where 
8( I x i )  = pi = pi(xi, fl), the partial score leads to a test based on the standardized 
dispersion statistic 

In addition, under the hypothesis that the Y,’s are independent Poisson ( pi) random 
variables, S is asymptotically standard normal. Large positive values of S indicate 
overdispersion relative to a Poisson distribution; as noted in Section 7, large negative 
values indicate underdispersion. 

On a note of caution, S appears to approach normality rather slowly, and the 
normal approximation is not recommended unless n is at least 50 or so; work is 
under way on better approximations. We remark also that S is designed to test for 
extra-Poisson variation, whereas the familiar Pearson statistic Z ( Y ,  - fii)’/fii or 
deviance statistic 2E Y,  log (Y , / f i i )  (cf. McCullagh and Nelder 1983, pp. 130- 131) are 
designed to test for inadequacy of the regression specification pi = pi (x i ,  fl) within 
the Poisson framework. It is clear, however, that these and the statistic S are to some 
extent interchangeable, and a study of their respective abilities to recognize different 
types of departures from a Poisson regression model is under way. As always, the 
examination of residuals and influence statistics (e.g. Frome 1983) should supple- 
ment formal tests. 

6. EXAMPLES 

Two sets of data will be examined briefly, to illustrate some of the points discussed 
earlier. 

EXAMPLE 1 (Ship damage incidents). The responses Y,  are the numbers of damage 
incidents for 35 individual ships over various five year periods, and the exposures 

(i = 1, . . . ,35) are the total months in service for each ship. The yi’s ranged in size 
from 0 to 58. There are three qualitative factors: ship type (A, B, C, D, or E), year of 
construction (1960-64, 1965-69, 1970-74, or 1975-79), and period of operation 
(1960-74 or 1975-79). For the results reported below, binary indicator covariates 
were used to represent main effects (four for ship type, three for year of construction, 
one for period of operation, and one for an intercept), and a log-linear specification 
8( Y,  I x i )  = pi = T,exp(x$) was employed. 

These data were analyzed in some detail by McCullagh and Nelder, so I report 
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only on a few points of interest. They fitted a log-linear model with the same p, as 
above by using quasilikelihood with a variance function %(Y,  Ix,) = 02p, .  Al- 
though this is different than the NB-model variance function, both approaches fit 
the data well; they give the same estimates of regression coefficients, give similar 
results for inferences about regression effects, and give similar standardized residu- 
als, using the definitions r ,  = ( Y ,  - fi,)/(fi, + dfif); for the NB model and 
I, =(y, - fi1)/(6'fi,): for the McCullagh-Nelder (MN) model. Briefly, both approaches 
indicate that main effects are significant, and there is some inconclusive evidence for 
an interaction of ship type by year of operation. 

One point of note concerns the estimates of the variance or dispersion parameters. 
With the main-effects model, which has p = 9 covariates, the NB maximum likeli- 
hood gives 6 = 0; on the other hand, the method-of-moments estimate is a" = 0.149, 
with standard error 0.113. Table 4 shows under (i) and (ii), estimates ofthe regression 
coefficients and their standard errors, obtained under the two approaches. The 
estimates and standard errors obtained by McCullagh and Nelder are shown under 
(iii). 

We remark first that although there is not strong evidence of extra-Poisson 
variation under either the NB or the MN model (i.e. that a > 0 or o2 > 1, respec- 
tively), which approach one uses has a fairly strong effect on the standard errors of 
the estimated regression coefficients. This is clearly seen in Table 4; the two 
estimates d = 0, a" = 0.149 yield quite different standard errors, and the MN standard 
errors are somewhere in between. In fact, effects under (ii) for ship type or service 
period do not show up as especially significant, whereas they do under (i) and to a 
little lesser extent, under the MN analysis, (iii). When n - p is not large (here it is 26), 
the dispersion parameter may not be estimated very precisely, and different methods 
can lead to rather different estimates of the standard error. 

We remark that there is one fairly large residual, which naturally shows up as more 
extreme (with a value over 3.5) under analysis (i) than under (ii) or (iii) [e.g., under 

TABLE 4: Estimates in the ship-damage example. 

Estimates (standard errors) 

(i) (ii) (iii) 
Parameter ci=O(ML) a" = 0.149 (moments) c2 = 1.69 (MN) 

Intercept 
Ship type: 

A 
B 
C 
D 
E 

Year of 
construction: 

60-64 
65-69 
70-74 
75-79 

60-74 
75-79 

Service period: 

-6.4 1 

0 
-.54(. 18) 
-.69(.33) 
-.08( .29) 

.33(.24) 

0 
.70(.15) 
.82(. 17) 
.45( .23) 

0 
.38(. 12) 

-6.45 

0 
-.49(. 30) 
-.56(.42) 
-.11(.40) 

.46(. 36) 

0 
.72(.35) 
.91(.34) 
.46(.41) 

0 
.34(.24) 

-6.4 1 

0 
-.54(.23) 
-.69(.43) 
-.08(.38) 

.33(.31) 

0 
.70(.19) 
.82(.22) 
.45(.30) 

0 
.38(. 15) 
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TABLE 5:  Number of revertant colonies of salmonella ( YJ. 

Y ,  

Obs. x, = 0“ 10 33 100 333 I000 

1 15 16 16 27 33 20 
2 21 18 26 41 38 21 
3 29 21 33 60 41 42 

“Dose of quinoline (&plate). 

(iii) it is 2.91. This residual is decreased a good deal if an interaction of ship type by 
year of construction is included, in which case the results of the three analyses also 
come a little more into line. 

EXAMPLE 2 (Ames salmonella assay). Margolin et al. (1981) present data, shown in 
Table 5, from an Ames salmonella reverse mutagenicity assay; the data were also 
analyzed by Breslow (1984). The response variable Y is the number of revertant 
colonies observed on a plate, and covariates are based on x, the dose level of 
quinoline on the plate. In the assay in question, three observations were taken at 
each of six dose levels. 

I will work with an approximation to Margolin et al.3 “single hit” model which is 
considered by Breslow; this has 

‘iR( Y,  Ixi) = pi = exp& + pIxi + pz log(xi + 10)). 

Tests of H : p2 = 0 are of special interest, with p2 > 0 representing a mutagenic effect. 
Fitting the model - NB( pi,a) by maximum likelihood and by weighted least- 
squares-method of moments, respectively, yields the estimates (standard errors) 

Ci = 0.0488 (0.0275), = 2.198 (0.321), = -0.000980 (0.000381), 8 2  = 0.313 (0.0868); 

a“ = 0.0718 (0.0303), Pi, = 2.203 (0.359), D l  = -0.000974 (0.000430), D 2  = 0.311 (0.0974). 

The latter results agree with Breslow (1984). To test H : a = 0 we use the likelihood- 
ratio statistic R = 248, 6) - 21(8(0), 0), which asymptotically under H has a proba- 
bility mass of i at 0 and a ixfl, distribution for R > 0. From Section 4 we note that 
although this asymptotic approximation may not be highly accurate for the situation 
at hand, the tendency is for the significance level to be overestimated. The observed 
value of R here is 10.4, which provides strong evidence against the Poisson model. 
The actual estimates of PO, PI,  p2 do not change drastically if the Poisson model 
(a = 0) is used, but their standard errors do. For example, the value of pz/se(pz) 
changes from 0.313/0.0868 = 3.6 under the NB model with B = 0.0488 to 
0.320/0.057 = 5.6 under the Poisson model. Consequently, the Poisson model 
overstates the significance of the mutagenic effect. 

7. CONCLUDING REMARKS 

It is important to have methods of dealing with extra-Poisson variation in 
regression situations. Mixed Poisson models for which the mean-variance relation- 
ship is of the form (2.2) provide one way of doing this, and the negative-binomial 
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model discussed in this paper is particularly convenient. It allows the use of standard 
maximum-likelihood methods, and has good properties. The alternative use of 
quasilikelihood or weighted least-squares, along with moment estimation of the 
dispersion parameter a, is also recommended, although it does not allow the easy use 
of likelihood-ratio statistics that maximum likelihood does. Several authors have 
investigated maximum likelihood for other mixed Poisson models, for example log- 
normal (Hinde 1982) and log-student-t (Gaver and O’Muircheartaigh 1987) mix- 
tures. These are considerably more difficult to handle than the negative-binomial 
model. 

Sometimes the variance-mean relationship 0‘ = %( Y,  Ix) = pi + up! implied by 
a mixed Poisson model may clearly be inadequate. Indeed, many authors in fitting 
count data have noted that relationships such as 0’ = up! (e.g., Armitage 1957; 
Finney 1976) and 0’ = upi  (e.g., McCullagh and Nelder 1983) often appear plausible. 
The evidence for such relationships is usually empirical, and in many cases a number 
of them will provide similar fits to the data. Usually when another variance function 
than (3.8) is employed, a semiparametric approach to estimation is used, which does 
not involve the specification of the full distribution for Y given x. Well-known 
approaches of this kind are quasilikelihood estimation (cf. McCullagh and Nelder 
1983, Ch. 8) or weighted least squares, based on solving equations of the form 

where the %L’s are weights, preferably equal to consistent estimates of 0 7 ~ .  Some of 
these approaches do not naturally allow for the estimation of nuisance parameters in 
o?, but approaches such as extended quasilikelihood (Nelder and Pregibon 1987), 
pseudo-Gaussian estimation (Whittle 1961; Crowder 1985, the double-exponential 
family models of Efron (1986), and quadratic estimating functions (Crowder 1987; 
Godambe and Thompson 1987) can handle this. Some such methods have robust- 
ness advantages over maximum likelihood based on a fully specified model, but can 
be less efficient, and may be harder to adapt to specific tasks, such as prediction or 
assessing departures from a base model. Burridge (1986) and Firth (1987) examine 
some aspects of the gap between semiparametric and fully parametric estimation. 
Sometimes models with components of dispersion are required. Quasilikelihood or 
weighted least-squares methods can be adapted to this (e.g., McCullagh and Nelder 
1983, p. 225; Crowder 1985), but fully parametric approaches based on NB or other 
models are also attractive. 

Finally, a referee raised a question concerning the models (2.1) when a < 0. It is 
well known (e.g. Olkin et al. 1981) that by allowing a < 0 one obtains binomial or 
generalized binomial models, which are underdispersed relative to a Poisson distri- 
bution. Although the focus of this paper was overdispersion, or extra Poisson 
variation, I note that some of the discussion in this paper can be extended to the case 
a < 0. For example, the statistic (5.2) can detect underdispersion, large negative 
values of S indicating this. 

APPENDIX A. THE ASYMPTOTIC DISTRIBUTION OF (b, a) UNDER THE NB 
MODEL 

We suppose that Y,  - NB(pl, a) with pi = T, exp(x$), and consider the estimating 
equations 
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which when p is fixed are asymptotically equivalent to (2.3), (2.10) as n -, co. Write 
8 = (p, a). Then, from results of Inagaki (1973), the estimator 6 = (p, a") obtained by 
solving the equations above is, under conditions similar to those for which standard 
maximum-likelihood asymptotics hold, consistent and asymptotically normal with 
covariance matrix 

{hi(& - 8)) = A (e)-IB(e)u (e)-IlT, (A31 

where A(8)  and B(8) are (p + 1) x (p + 1) matrices with respective entries 

Noting that when X - N B  (pi,a) we have 8 (K -pi> =0 ,  8 ((Y, - pi)') 

(1 + 3pi + 6api + 3ap: + 6a2p?), it follows after some algebra that A ( 8 )  and B(8) are 
the limits, respectively, of 

= pi(l + api),  ((X - pi)3) = Pi(1 + api)(l + 2api), 8 ((Y, - pi)4> = pi(l + api) 

where II(B, a)  is as in (2.7) and where b = ( bl ,  . . . , bJT and e = ( cI, . . . , c,)', with 

b, = c,  = lim - C fl  ( 1 + 2 a p ~ ) x l r  

bp+l = lim I 5 (A) 
cp+l = 2 + 6a + lirn - 

r = l ,  . . . , p ,  
n-m n ,=I 1 + U P ,  

n-m n r=l  1 + U P ,  ' 

1 "  1 
n-m n ,= I  pl(l + apI)' 

InvertingA(8) and using (A3), we get 

where I7 (p, a) = lim (lln) II (fi, a). 
n-m 

APPENDIX B. EFFECTS OF MODEL MlSSPEClFlCATlON 

We consider maximum-likelihood estimation under the model Y; - NB( p,, a), 
when in fact the true distribution of is something else with, however 
8( Y;) = pi = TedP correct. Denote % ( Y ; )  = of, 8 = (B, a), and let I(@) = /(p, a )  be 
the negative-binomial log likelihood. Define (p+l)x(p+l) matrices A (O), B(8) 
with entries 
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where 1, is the contribution to l(0) from the ith observation (x; x i )  and where 
expectations here and below are taken with respect to the true distribution ofthe x's. 

The results of Cox (1961), Inagaki (1973), and White (1982) can be used to show 
that under mild conditions the NB maximum likelihood equations d l / d 0 ,  = 0 ( r  = 1, 
. . . , p + 1) have solutions 6 = (b, 2) which converge in probability as n - co to a 
vector 8' = (p*, a?), and that & (6 - €J*) is asymptotically normal with covariance 
matrix 

t&(e - e*)> = A(w-iB(e*pqe*)-i. (B2) 
Furthermore, it can be shown that p* = j3, that is, that b is consistent for p. 

Straightforward calculations similar to those in Appendix A then yield 

a 4 M B  - PN = I d B ,  a7>-1Bi(p, a?YI(p, (B3) 
where 

For the case of moment estimation of a ,  the estimating equations (Al), (A2) are 
used. In this case results are similar to those for the maximum-likelihood equations 
above, except that the estimating equation dl/d0,+, = d l / d a  is replaced by (A2). Thus 
f, a" converge in probability to €J* = (p;, a;) ,  and urn C&(f - p;, a" - a;)} is given by 
(B2). Furthermore, p; = p, so that f is consistent for p, and urn {&(f - p)} is given 
by (B3), with a; replacing a:. Finally, if o? = pi + a$ for some a > 0, then (A2) is an 
unbiased estimating equation and a; = a. Thus moment estimation yields consistent 
estimation of 0' in this case, ZI(p, a )  = Bl(p, a), and so the NB variance estimate 
zI(f, a")-' for f is asymptotically correct. 
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