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Abstract

In 1973, Serre observed that the Hecke eigenvalues of
Eisenstein series can be p-adically interpolated. In other
words, Eisenstein series can be viewed as specializations of a
p-adic family parametrized by the weight. The notion of p-
adic variations of modular forms was later generalized by
Hida to include families of ordinary cuspforms. In 1998,
Coleman and Mazur defined the eigencurve, a rigid analytic
space classifying much more general p-adic families of Hecke
eigenforms parametrized by the weight. The local nature of
the eigencurve is well understood at points corresponding to
cuspforms of weight k ≥ 2, while the weight one case is far
more intricate.

In this thesis, we study the geometry of the eigencurve
at weight one Eisenstein points. The eigencurve is etale over
the weight space if those points are regular. We show that
irregular Eisenstein weight one points lie on the intersection
of two Eisenstein components and a cuspidal one. The lat-
ter is etale over the weight space and meets the other two
transversally. Our techniques are Galois theoretic, and build
on the existence of an isomorphism between the completed lo-
cal ring of the cuspidal eigencurve and a certain deformation
ring of Galois representations. We determine the structure
of the completed local ring of the eigencurve and show that
it is Cohen-Macaulay but not Gorenstein.

The failure of etaleness of the eigencurve over the weight
space implies the existence of certain weight one non-classical
overconvergent generalized eigenforms. Expressing their co-
efficients in terms of p-adic logarithms of p-units of a number
field, we obtain a new proof of Gross’s formula for the deriva-
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tive of the p-adic L-function.

En 1973, Serre a remarqué que les valeurs propres de
l’algèbre de Hecke des séries d’Eisenstein peuvent être inter-
polées p-adiquement. Autrement dit, les séries d’Eisenstein
peuvent être interprétées comme des spécialisations d’une
famille p-adique paramétrée par leur poids. La notion de
variation p-adique de formes modulaires a par la suite été
généralisée par Hida, pour s’appliquer aux familles de formes
paraboliques ordinaires. En 1998, Coleman et Mazur ont
défini la courbe de Hecke, un espace analytique rigide classifi-
ant des familles p-adiques beaucoup plus générales de formes
propres de Hecke paramétrées par leur poids. La nature lo-
cale de la courbe de Hecke est bien comprise aux points cor-
respondant aux formes paraboliques de poids k ≥ 2, alors
que le cas des formes de poids un est beaucoup plus délicat.

Dans cette thèse, nous étudions la géométrie de la courbe
de Hecke aux points d’Eisenstein de poids un. La courbe
de Hecke est étale sur l’espace des poids si ces points sont
réguliers. Nous démontrons que les points d’Eisenstein de
poids un irréguliers se situent sur l’intersection de deux com-
posantes d’Eisenstein et d’une composante parabolique. Cette
dernière est étale sur l’espace de poids et rencontre les deux
autres transversalement. Nos méthodes proviennent de la
théorie de Galois et se basent sur l’existence d’un isomor-
phisme entre l’anneau local de la courbe de Hecke parabolique
et un anneau de déformation. Nous déterminons la structure
de l’anneau local de la courbe de Hecke et nous montrons
qu’il possède la propriété de Cohen-Macauley mais pas celle
de Gorenstein.

Le fait que la courbe de Hecke ne soit pas étale sur l’espace
de poids implique l’existence de formes propres généralisées
de poids un qui sont surconvergentes, mais pas classiques.
Nous obtenons une nouvelle preuve de la formule de Gross
pour la dérivée de la fonction L p-adique en exprimant les
coefficients de ces formes en terme des logarithmes p-adiques
de p-unités d’un corps de nombre.
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Contributions

Genesis of the project

The content of this thesis is essentially based on a joint work with Adel Betina and
Mladen Dimitrov devoted to understanding the geometry of the eigencurve at Eisenstein
weight one points, which resulted in the article [BDP].

This topic was suggested to me by Henri Darmon. Under his and Payman Kassaei’s
supervision, I approached this question with Galois theoretic techniques, highly influ-
enced by the work of Belläıche and Dimitrov [BD16]. My strategy consisted in defining a
deformation ring Rcusp classifying deformations of certain reducible representations corre-
sponding to cuspidal modular forms. I aimed to show an isomorphism between the latter
and the local ring of the cuspidal eigencurve; through this method I could establish the
etaleness of the cuspidal eigencurve over the weight space.

While pursuing this goal, I became aware that Adel Betina and Mladen Dimitrov
had also made significant progress on a closely related question. Their approach was
analyzing the local nature of the eigencurve using congruences between cuspidal and
Eisenstein families due to Lafferty [Laf]. Combining this information with the study of
the ordinary deformation ring Rord

ρ , they proved that the cuspidal eigencurve is smooth.
Unlike mine, their original strategy tied the question of understanding the geometry of
the eigencurve with the derivative of the Kubota-Leopoldt p-adic L-function and in par-
ticular to the theorem of Ferrero and Greenberg [FG78] and the Gross-Stark Conjecture
proved in [DDP11]. It was their intuition that combining our works would yield new
proofs of these results. This lead to a collaboration that culminated in [BDP], a project
that greatly surpassed my original goals. Our strategies well-complemented each other,
since they were both rooted in the study of deformation functors attached to certain non-
trivial extensions of finite order characters and the computation of their tangent spaces.
In particular, as my coauthors observed, the ring Rcusp is a quotient of their ring Rord

ρ ,
thus singling out the subspace in the tangent space of Rord

ρ classifying cuspidal lifts.

Individual Contribution

This thesis contains a comprehensive exposition of the material in [BDP], that goes
beyond my individual contribution. I will explain my role in the results of loc.cit. My
main input in this work was the construction of the cuspidal deformation ring Rcusp and
the computation of its tangent space. The latter, in particular, helped tie the geometry
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of the eigencurve with the L-invariants of certain Dirichlet characters. This lead to the
proof of Theorem A(i) and Theorem B(i) of loc.cit ; the exposition of the result in this
thesis is consistent with the article and diverges from my original one in some ways,
thanks to my coauthors’ suggestions. In particular, I appreciated the input simplifying
my argument of representability of the deformation functor Dcusp and the suggestion of
using a method due to Mazur and Wiles [MW84] to relate the cuspidal deformation ring
to the local ring of the cuspidal eigencurve. The deformation rings Rord

ρ , Rn.ord
ρ , Reis

ρ were
introduced by my collaborators and their method of computing the tangent spaces using
a filtration is different, though similar in spirit, from the strategy I originally adopted.

The idea of proving a second and stronger modularity result (Theorem B(ii) of loc.cit.)
for the ordinary deformation rings Rord

ρ using Iwasawa cohomology is due to my coauthors;
my only contributions towards this result were some Galois cohomology computations.
The results concerning the structure of the local ring of the eigencurve, namely Theorem
A(ii-iii), of loc.cit. were conceived and proved by my coauthors and so was Corollary
5.3. Their intuition was behind the relation between the structure of the local ring of the
eigencurve and the p-adic L-function that lead to a new proof of the theorem of [FG78],
which I contributed to by working out the constant term of the q-expansion of certain
Eisenstein families at all cusps.

Finally, I contributed to the proof of Theorem C of loc.cit. by exploiting the com-
putations of the tangent space of the deformation ring Rcusp to obtain the q-expansion
of certain overconvergent generalized eigenforms; I thank my coauthors for their input
in the latter, and particularly for suggesting a closed formula for the general coefficients.
We recently came to the realization that, as a corollary of these computations, one easily
obtains a new proof of the Gross-Stark conjecture over Q, that I included in my thesis
and will appear in an updated version of [BDP].



Introduction

Modular forms are a central object of study in number theory. They are holomorphic

functions of the complex upper half plane satisfying certain symmetries with respect to the

action of congruence subgroups of SL2(Z). In particular, each admits a Fourier expansion

f =
∑∞

n=0 an(f)q
n where q = e2πiz; the Fourier coefficients are algebraic numbers of great

arithmetic significance. Of particular interest is the relation between modular forms and

representations of the absolute Galois group of Q. This connection and more general

versions of these statements are at the core of many conjectures and results, falling under

the broad Langlands program, including the celebrated proof of Fermat’s Last Theorem.

Given a newform f of weight k ∈ Z≥1 and level N , one can attach to it a p-adic Galois

representation, whose trace encodes the coefficient an(f) for (n,Np) = 1. The original

construction due to Shimura for weight two consists in extracting this representation

from the Tate module of an abelian subvariety Af of the Jacobian of the modular curve

of level Γ1(N). This approach was later generalized by Deligne, who realized these rep-

resentations as appropriate quotients of the etale cohomology of certain locally constant

sheaves on the modular curve for every weight k ∈ Z≥2. However, the construction of the

Galois representation attached to a weight one form is different in nature and much less

geometric. In the work of Serre and Deligne, given a weight one newform f , exploiting

a congruence between f and an eigenform of higher weight, one constructs a compatible

system of `-adic Galois representation attached to f for every prime ` - N . Then one can
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show that the image of the associated residual representations is bounded independently

of the prime `. Thus, they all arise from a unique Artin representation, i.e. a finite

image representation ρf : GQ → GL2(C). The non-geometric nature of this construction

makes the treatment of questions related to weight one forms rather different from higher

weights. In recent years, a number of mathematicians (including Buzzard, Dickinson,

Shepherd-Barron and Taylor for the icosahedral case) contributed to showing the modu-

larity of certain Artin representations using p-adic analytic methods, making substantial

towards the proof of the Artin Conjecture for two-dimensional representations.

p-adic families of modular forms and Eisenstein series

The Artin Conjecture is only one example of how p-adic methods have proved crucial

in approaching questions about classical modular forms, particularly in the weight one

scenario. The notion of p-adic modular forms was introduced by Serre in 1973 as a p-adic

limit of q-expansions of classical modular forms [Ser73]. Together with giving a geometric

characterization of p-adic modular forms, Katz singled out a subspace of the huge space

of p-adic modular forms, the space of overconvergent forms [Kat73]. The Hecke operator

Up acts compactly on this subspace; this observation is pivotal to studying the spectral

theory of overconvergent forms for the action of the Hecke algebra.

Serre had already observed that the coefficients of the q-expansion of Eisenstein series

could be p-adically interpolated. More precisely, classical Eisenstein series can be viewed

as specializations of an Eisenstein family parametrized by the weight. This constitutes the

first example of what would later be called a Hida family, i.e. a formal q-expansion F(q)

with coefficients in an Iwasawa algebra, which specializes to classical forms for almost

all weights k ∈ Z≥2. In 1998, Coleman and Mazur [CM96] constructed the eigencurve,

a rigid analytic space that encompasses the previous example of p-adic families of Hecke

eigenforms to include not only ordinary, but also finite slope eigenforms. Let N be a



positive integer prime to p. The weight space is a rigid analytic space W whose Cp-

valued points are in bijection with continuous characters of

(Z/NZ)× × Z×
p → C×

p .

Under this bijection, the classical weights k ∈ Z≥0 can be identified with characters

x 7→ xk. The eigencurve of tame level N constructed by Coleman and Mazur is a

rigid analytic space C whose Cp-valued points are systems of Hecke eigenvalues (with

respect to the Hecke algebra generated by the operators T` for primes ` - Np and Up)

of p-adic overconvergent eigenforms of tame level N and finite slope, i.e. non-zero Up-

eigenvalue. By construction, the eigencurve comes equipped with a locally finite flat

morphism w : C → W sending an overconvergent modular form to its weight (or rather

weight-character). From this point of view, the Eisenstein family yields a section W→ C.

The construction of eigenvarieties has since been axiomatized by Buzzard [Buz07]

and extended to several types of automorphic forms. However, many geometric questions

remain unanswered even for the eigencurve, both at the local and global level. Among

global properties, the most basic question seems still out of reach: whether the eigencurve

has a finite or infinite number of components. Other properties are better understood.

For instance, the eigencurve is known to be proper (or rather, satisfies the rigid analytic

version of the valuative criterion for properness) [DL16]. Moreover, there is some insight

on the behaviour of the eigencurve around the boundary of the weight space, suggest-

ing that the geometry at the eigencurve at the boundary should be relatively simple.

In their recent works, Andreatta, Iovita, Pilloni tackle the boundary of the eigencurve

in the language of adic geometry [AIPar]. Their approach provides an integral rather

than rigid analytic construction of the eigencurve, and seems promising towards a better

understanding of the boundary.



Our grasp of the local geometry of the eigencurve is perhaps more satisfactory, at least

for points corresponding to classical modular forms. Coleman showed that overconvergent

eigenforms of weight k and slope smaller than k−1 are always classical. In particular, this

is the case for all ordinary eigenforms of weight k ≥ 2, a result known as Hida’s Control

Theorem. Coleman’s beautiful result about classicality implies that the eigencurve is

etale over the weight space at all points corresponding to overconvergent forms of weight

k ≥ 2, slope less than k − 1 and regular at p.

However, this does not apply to the points corresponding to classical modular forms

of weight one. In this case, the geometry of the eigencurve becomes richer. In their paper

[BD16], Belläıche and Dimitrov consider points of the eigencurve attached to classical

weight one cuspforms. These points always lie in the ordinary locus Cord of C; they are

called irregular if they correspond to the unique p-stabilization of a newform whose Hecke

polynomial at p has a double root, and regular otherwise. The main theorem in loc.cit.

describes the geometry of C at all regular cuspidal points, showing that C is smooth at

such points and determining under what condition the map w is etale. The failure of

etaleness has interesting arithmetic bearings in its own right. It is related to the existence

of generalized eigenforms for the corresponding system of Hecke eigenvalue. As shown in

[DLR15a], the q-expansion of these forms can be expressed in terms of p-adic logarithms

of units over a number field. When removing the regularity assumption, one expects the

geometry of the eigencurve to become more involved. Indeed, the morphism w is never

etale at irregular cuspidal points and not even smooth in general.

This thesis is an exposition of the results of the joint project [BDP], in collaboration

with Adel Betina and Mladen Dimitrov. The object of this work is the study of the

geometry of C in the (deceptively simple) case of classical weight one Eisenstein points.

Fix an odd Dirichlet character φ of conductor N coprime to p and consider the Eisenstein



series

E1(1, φ)(z) =
L(φ, 0)

2
+
∑

n>1

qn
∑

d|n

φ(d), where q = e2iπz, (1)

which is a newform of level N admitting the p-stabilizations

E1(1, φ)(q)− φ(p)E1(1, φ)(q
p) and E1(1, φ)(q)− E1(1, φ)(q

p),

of Up-eigenvalues 1 and φ(p). The p-stabilizations above are the weight one-specializations

of two Eisenstein families parametrized by the weight space, denoted by E1,φ and Eφ,1

respectively. In particular, these two families intersect at weight one if and only if φ(p) =

1, i.e. when E1(1, φ) is irregular. When φ(p) 6= 1, the constant term of each one of these

p-stabilizations is non-zero at some cusps in the multiplicative part of the ordinary locus

of the modular curveX(Γ0(p)∩Γ1(N)); hence these forms are not cuspidal-overconvergent

and belong to a unique Eisenstein component.

A more interesting phenomenon arises when φ(p) = 1. Denote by f the unique p-

stabilization of E1(1, φ) and let wf be the image of the point of C corresponding to f

under the map w. In addition to belonging to the Eisenstein components defined by E1,φ

and Eφ,1, the point f also belongs to the cuspidal locus Ccusp of C, since the constant

coefficient of the q-expansion of f vanishes at all cusps of the multiplicative part of the

ordinary locus of the modular curve of level Γ1(N)∩Γ0(p). Thus, while f is not cuspidal

as a classical form, it is cuspidal-overconvergent in the sense of [CM96]. We focus on

studying the irreducible components of Ccusp passing through f .

Modularity Theorems for a p-adic family of Galois representations

We approach the study of the cuspidal components passing through f from a Galois-

theoretic point of view. The underlying philosophy is reducing the question to a modu-

larity statement, a very fruitful approach that yielded the proof of a number of ground-



breaking results, the most famous of which is Fermat’s Last Theorem. Let us recall here

some steps of that proof, in order to carry an analogy to our setting. Fermat’s Last The-

orem is famously implied by the Shimura-Tanyama Conjecture, stating the modularity of

the representation associated to an elliptic curve over Q. The p-adic representations given

by the Tate module of an elliptic curve form a compatible system. A clever argument,

known as the ”3-5 switch”, allows one to reduce the problem to showing the modularity

of a certain p-adic representation ρ for an appropriate prime p such that the residual mod

p-representation ρ̄ is residually modular. This can be formulated in a sleek way in the

language of deformation rings, introduced by Mazur [Maz89]. Roughly speaking, a defor-

mation ring is a commutative ring R classifying liftings of a given residual representation

ρ̄ satisfying certain conditions. The modularity statement above can thus be phrased as

an R = T isomorphism, where T is a Hecke algebra.

Analogously, our approach consists in relating the Hecke algebra corresponding to

the completed local ring of the eigencurve (resp. cuspidal eigencurve ) at f , denoted

by T (resp. Tcusp) to certain deformation rings. An important difference is that, in our

setting, instead of considering lifts of a mod p representation to characteristic zero, we

investigate lifts of the representation associated to f to a formal neighbourhood of wf

over the weight space. In particular, the deformation rings we construct are endowed

with the structure of Λ-modules, where Λ is the completed local ring of the weight space

W at wf , isomorphic to the ring of power series Q̄p⟦X⟧.

More precisely, our method is borrowed from Belläıche and Dimitrov [BD16] and

consists in studying the ordinary deformation ring of a representation attached to f .

Nevertheless, adapting their strategy to our setting presents several technical difficulties.

Indeed, the Artin representation attached to a weight one cuspform is irreducible, and,

as such, unique up to change of basis. However, since f is a weight one Eisenstein series,

the representation attached to f is reducible and only defined up to semisimplification,



given by the Artin representation 1⊕φ. Since the latter is decomposable, its deformation

functor is not representable in the sense of Mazur. Moreover, the representation 1 ⊕ φ

is only ordinary in a degenerate sense, given that every line is fixed under the action of

GQp . In order to circumvent these difficulties we introduce two reducible indecomposable

representations of GQ with values in GL2(Q̄p).

ρ =



φ η

0 1


 and ρ′ =



1 φη′

0 φ




where [η] and [η′] are bases of the lines H1(Q, φ) ' Ext1Q(1, φ) and H1(Q, φ−1) ' Ext1Q(φ,1).

The representations ρ and ρ′ are essentially canonical, because the extensions of φ by 1

(resp. 1 by φ) are classified by one-dimensional Q̄p-vector spaces. The ordinary deforma-

tion functors for ρ and ρ′ are representable by universal ordinary deformation rings Rord
ρ

and Rord
ρ′ ; their representability is related to the fact that the only endomorphisms of ρ

and ρ′ are scalar, unlike those of 1⊕ φ.

After constructing Rord
ρ and Rord

ρ′ , we construct a third deformation ring, denoted by

Rcusp, classifying pairs of ordinary deformations of (ρ, ρ′) sharing the same traces and

Frobenius action on the unramified GQp-quotient. The notation Rcusp is suggestive of

the fact that we expect this ring to parametrize deformations of (ρ, ρ′) whose traces en-

code the Hecke eigenvalues of cuspidal families specializing to f . The heuristic behind

this definition can be explained as follows. Given a Λ-adic family of cuspidal eigenforms

specializing to f , it should correspond to a representation GQ → GL2(Λ) which is gener-

ically irreducible (because the family is cuspidal), but residually reducible (because it

specializes to the Eisenstein series f). A lemma of Ribet implies that, in this setting,

changing the lattice in the corresponding representation over the fraction field of Λ, we

obtain a second representation whose associated residual representation is a non-trivial

extension of φ by 1. Hence, choosing the basis appropriately, the representation is a lift of



ρ. Similarly, because of the symmetry of the construction with respect to the characters

1 and φ, another choice of lattice yields a second representation lifting ρ′. The two rep-

resentations share the same trace and the same Frobenius eigenvalue on the unramified

quotient for the action of GQp , thus giving a morphism Rcusp → Λ. The first modularity

result proved in this work can be summarized as follows (Sec. 2.3.1, compare with [BDP,

Thm. A(i)-B(i)]).

Theorem. (i) There is a Λ-algebra isomorphisms Rcusp → Tcusp.

(ii) The structural morphism Λ → Tcusp is an isomorphism. In particular, the cuspidal

eigencurve Ccusp is etale at f .

Let us explain some key ingredients of the proof. Much like in Belläıche and Dim-

itrov’s work, the fundamental step consists in the computation of the dimension of the

tangent space and the relative tangent space of the deformation functor represented by

Rcusp. A well-known observation is that these tangent spaces can be described in terms

of Galois cohomology groups for the adjoint representations of ρ and ρ′. While these rep-

resentations do not have finite image, their semisimplifications do; this allows us to relate

the cohomology groups above to units of the splitting field of the character φ, denoted

by H, via class field theory. A central role, in particular, is played by the L-invariants of

the characters φ and φ−1, a linear combination of p-adic logarithms of p-units of H. An

application of the Baker-Brumer Theorem shows the Q̄-linear independence of L(φ) and

L(φ−1) (when φ is not quadratic), which allows us to show the vanishing of the relative

tangent space.

It remains to relate the deformation ring Rcusp to the completed local ring of the

eigencurve. The aim is constructing a surjective map Rcusp → Tcusp, a step that is far

more subtle in this setting than in [BD16], due to the fact that the representations in-

volved are residually reducible. Standard arguments in deformation theory guarantee the



existence of a representation with coefficients in the total fraction field of Tcusp whose

trace encodes the desired Hecke eigenvalues. Applying a method of Mazur and Wiles, we

construct two GQ-stable Tcusp-lattices with residual representation ρ and ρ′ respectively.

This shows the existence of the desired surjective map. We would like to remark that

both galois-theoretic and automorphic inputs are involved in the proof of the theorem.

On the one hand, the computation on the tangent space of Rcusp shows the uniqueness of

the cuspidal component of the eigencurve and its etaleness over the weight space. On the

other hand, the existence of a surjective morphism from Rcusp to Tcusp shows that Rcusp

has Krull dimension greater than or equal (and, in fact, equal) to one, which is a priori

not clear solely from the point of view of representation theory.

As shown in Proposition 1.4.5, the ring Rcusp can be simultaneously realized as a quo-

tient of Rord
ρ and Rord

ρ′ . However, both ordinary deformation rings admit another natural

quotient, denoted by Reis
ρ for Rord

ρ and Reis
ρ′ for Rord

ρ′ , classifying reducible ordinary defor-

mations of ρ and ρ′ respectively. Since reducible representations capture the eigenvalues

of Eisenstein series, this suggests that the modularity theorem above can be refined to

include Eisenstein families as well. Denote by Tord
ρ (resp. Tord

ρ′ ) the completed local ring of

the Zariski closed subspace of C given by the union of Ccusp and the Eisenstein component

corresponding to E1,φ (resp. Eφ,1). Section 2.4 is dedicated to proving the following result

[BDP, Thm.B(ii)].

Theorem. There are isomorphisms of Λ-algebras of relative complete intersection

Rord
ρ → Tord

ρ and Rord
ρ′ → Tord

ρ′

with respect to the augmentation maps Tord
ρ → Λ and Tord

ρ′ → Λ corresponding to the

systems of Hecke eigenvalues of E1,φ and Eφ,1 respectively.



The proof of this result relies on Wiles’ Numerical Criterion, a powerful tool in com-

mutative algebra devised to show an analogous modularity statement towards the proof

of Fermat’s Last Theorem. The fact that the rings are of relative complete intersection

follows directly from the criterion, although one could easily prove it directly determining

the structure of Tord
ρ (resp. Tord

ρ′ ).

The Eisenstein Ideal and the Kubota-Leopoldt p-adic L-function

Serre’s study of Eisenstein series as specializations of a p-adic family lead to a first striking

application. For each classical weight k > 2, the constant coefficient of the weight k Eisen-

stein series is a (p-deprived) special value of the Riemann zeta function. From the simple

observation that the Hecke eigenvalues of Eisenstein series are analytic functions of the

weight, Serre managed to deduce the analyticity of the constant coefficient as well. The

constant coefficient of the Eisenstein family is (a scalar multiple of) the Kubota-Leopoldt

p-adic L-function Lp(ω
i
p, s), where ωp is the Teichmuller character and 0 ≤ i ≤ p − 1,

which interpolates the special values of the Riemann zeta function. For i 6= 0, this p-adic

L-function can be interpreted as an element of the Iwasawa algebra Zp⟦Zp⟧ ' Zp⟦X⟧;

elements of this ring also correspond to p-adic measures over Zp. Through this interpo-

lation property, Serre recovers Kummer’s congruences between Bernoulli numbers and

obtains many more.

Dirichlet L-functions and their p-adic analogues encode information about congru-

ences between Eisenstein and cuspidal forms; the study of these congruences has yielded

a number of remarkable applications, both in the classical and the p-adic setting. This

theme was introduced in Mazur’s influential paper [Maz77], devoted to the study of the

torsion part of the Mordell-Weil group of the jacobian of the modular curve X0(N). Here

the notion of Eisenstein ideal makes its first appearance. Geometrically, it is the ideal



defining the scheme-theoretic intersection between the cuspidal locus and the line given

by the system of Hecke eigenvalues of an Eisenstein series in the spectrum of the Hecke

algebra. The relation between the Eisenstein ideal and the Kubota-Leopoldt p-adic L-

function is at the core of the original proof of Iwasawa Main Conjecture due to Mazur

and Wiles [MW84] building on an idea of Ribet. Let Q(µpn) for n ∈ Z>0 be the pn-th

cyclotomic field, and denote Q(µp∞) = ∪n∈Z>0Q(µpn). Let Xn be the p-Sylow of the class

groups of Q(µpn). By class field theory, Xn classifies unramified pro p-abelian extension

of Q(µpn). The inverse limit X∞ = lim←−Xn comes equipped with a continuous action

of Gal(Q(µp∞),Q(µp)) ' Zp, hence is a module over the Iwasawa algebra Zp⟦X⟧. The

Iwasawa Main Conjecture links the Zp⟦X⟧-module X∞ to the Kubota Leopoldt p-adic

L-function Lp(ω
i, s) through an arithmetic invariant, the characteristic ideal.

In loc.cit, congruences between cuspidal and Eisenstein series bridge the gap between

the analytic and the algebraic side. One can construct a Galois representation over the

fraction field of Hida’s ordinary Hecke algebra. For an appropriate choice of lattice,

this yields an irreducible representation which is residually reducible modulo the Eisen-

stein ideal. From this representation one can extract a non-trivial cocycle, giving a pro

p-unramified extension of Q(µp∞). The characteristic ideal associated to the Kubota-

Leopoldt p-adic L-function is isomorphic to the quotient of the Hecke algebra by the

Eisenstein ideal. This construction thus provides a large enough quotient of X∞ to show

the desired relation between the characteristic ideals.

In this work, we exploit the relation between the Eisenstein ideal and the p-adic

L-function to calculate the order of vanishing of the latter at s = 0. Analogously to

the Eisenstein family constructed by Serre for tame level 1, the constant term of the q-

expansion at the cusp∞ of the family E1,φ is also a p-adic L-function, namely Lp(φωp, s),

interpolating the classical p-deprived special values. This p-adic L-function defines an



element of the Iwasawa algebra OF ⟦X⟧, where F is a finite extension of Qp containing

the values of φ; thus, it can be viewed as a rigid analytic function over the component of

the weight space containing wf . Denote by ζφ the image of the p-adic L-function in the

completed local ring Λ ' Q̄p⟦X⟧ of W at wf . As we observed, the constant term of E1,φ

vanishes at wf , hence Lp(φωp, s) has a zero at s = 0.

Let peis
1,φ be the kernel of the morphism πeis

1,φ : T → Λ corresponding to the system of

eigenvalues of the Eisenstein family E1,φ; denote by Ieis
1,φ the Eisenstein ideal attached to

peis
1,φ, i.e. the image of peis

1,φ in Tcusp. We can rephrase the results of Section 3.1 as follows.

The morphism πeis
1,φ induces an isomorphism of Λ-modules

Tcusp/Ieis
1,φ ' Λ/(ζφ). (2)

The existence of this isomorphism follows from the general theory of congruence modules

of Ohta [Oht03] (more specifically, from the version of Lafferty [Laf], where the regularity

assumptions on the characters are lifted). Here we give a simpler yet similar in spirit

proof of the statement, in the more modest Λ-adic setting. Our argument requires a

careful determination of the constant coefficient of q-expansion of E1,φ at all cusps. The

computation of the tangent space of the deformation ring Rord
ρ , together with the iso-

morphism Rord
ρ ' Tord

ρ , shows that the tangent directions of the cuspidal family and the

Eisenstein family E1,φ are distinct, thus proving that the quotient Tcusp/Ieis
1,φ is isomorphic

to Q̄p. This provides an independent proof of the famous result of Ferrero and Greenberg

[FG78],[BDP, Prop.4.7].

Theorem (Ferrero-Greenberg). The p-adic L-function Lp(φωp, s) has a simple zero at

s = 0.

It is worth noting that an analogous statement to (2) can be proved by replacing the

Eisenstein family E1,φ with Eφ,1. Despite the fact that the constant coefficient of the



q-expansion of Eφ,1 vanishes at the cusp ∞, the constant term at the cusp 0 is, up to

a non-zero scalar, the Kubota-Leopoldt L-function Lp(φ
−1ωp, s). The appearance of the

L-function attached to the inverse of φ is, in fact, unsurprising. It reflects the fact that,

twisting the family Eφ,1 by φ−1, one obtains the Eisenstein family E1,φ−1 whose constant

coefficient at ∞ is precisely 1
2
Lp(φ

−1ωp, 0).

The Gross-Stark Conjecture and p-adic logarithms of units of a number field

Our method of proving the theorem of Ferrero and Greenberg is essentially Galois-

theoretic; it is natural to wonder if this technique can be pushed further to provide

an explicit formula for the derivative of the Kubota-Leopoldt p-adic L-function at s = 0.

In 1988, Gross conjectured a formula for this derivative, which can be thought of as a

p-adic analogue of the conjectures of Stark predicting the leading term of the Artin L-

function at s = 0. Gross’s formula relates the derivative of the p-adic L-function to the

L-invariant L(φ), the p-adic logarithm of a p-unit of the splitting field of the character φ

[Gro82, Conj. 3.13]. The conjecture was proved by Gross himself over Q. Some instances

of the conjecture over totally real fields were proved by Darmon, Dasgupta and Pollack

in [DDP11]; finally, a complete proof of the conjecture was given by Dasgupta, Kakde

and Ventullo [Ven15], [DKV18]. The techniques of [DDP11] are closely related to those

of the present work.

The strategy of loc.cit. consists in constructing a cuspidal Hida family specializing

to f as follows. Using the fact that the Kubota-Leopoldt p-adic L-function has a simple

pole at s = 1 and taking a suitable product of Eisenstein series, one obtains a Λ-adic

family, with constant leading coefficient given by the classical Dirichlet L-function L(φ, 0).

Applying Hida’s ordinary idempotent to an appropriate linear combination of this family

and certain Eisenstein series provides a Hida family. Then one constructs a Hecke operator

extracting the cuspidal part of this linear combination. This cuspidal Hida family is not



an eigenform. However, its striking property is that it yields an ”eigenform in a first

order infinitesimal neighbourhood of weight one” (loc.cit). This infinitesimal cuspform

plays a pivotal role in proving the Gross-Stark Conjecture.

Theorem (Gross-Stark Conjecture over Q). The p-adic L-function Lp(φωp, s) satisfies

L′
p(φωp, 0) = −L(φ)L(φ, 0).

From the etaleness of the cuspidal eigencurve at f , there is a unique Λ-adic cuspi-

dal family of eigenforms specializing to f ; thus, the first order deformation defined by

Darmon, Dasgupta and Pollack is a fortiori encoded in the tangent space of Tcusp. The

authors of loc.cit. use this ”eigenform of weight 1 + ε” to construct a non trivial cocycle

associated to the corresponding Galois representation.

In the present work, we obtain a new proof of the Gross-Stark Conjecture; unlike in

loc. cit, the cohomological datum is the starting point of our investigation. Indeed, the

explicit calculation of the tangent space of the cuspidal deformation ring Rcusp, together

with the isomorphism Rcusp → Tcusp allows us to compute the derivatives of the coefficients

of the unique cuspidal eigenform F specializing to f at weight one. This information,

combined with the explicit knowledge of the coefficients for the Eisenstein families E1,φ

and Eφ,1, is sufficient to determine the structure of T, the completed local ring of the

eigencurve at f . This calculation has an immediate application. Denote Twf = T/mΛT

the relative local ring of the eigencurve over the weight space at f . This ring is the Q̄p-

dual of the generalized eigenspace of f in the space of ordinary overconvergent weight one

modular forms. The q-expansion of these generalized eigenforms can thus be computed

explicitly in terms of p-units of the splitting field of φ. This observation was originally

made by Darmon, Rotger and Lauder in [DLR15a]. Inspired by the work of Belläıche

and Dimitrov, the authors produced an overconvergent generalized eigenform attached to



certain weight one theta series for a real quadratic field K, defining points at which the

eigencurve is not etale over the weight space. The q-expansion of this form was expressed

in terms of p-adic logarithms of units of a ring class field of K, perhaps suggesting an

alternative approach to the explicit class field theoy of real quadratic fields to Stark’s

conjectures and Gross’s p-adic analogues. This type of results have since been treated

more systematically in [DLRar], where the authors study the generalized eigenspaces of

weight one newforms.

In our setting we can easily described the generalized eigenspace attached to f . The

supplement of f has a basis given by

∂
∂X

∣∣
X=0

(E1,φ − F) and ∂
∂X

∣∣
X=0

(Eφ,1 − F)

where X is a uniformizer for Λ. The coefficients of the q-expansion of these overcon-

vergent forms are logarithms of units of H; even more explicitly, they can be expressed

as combinations of the logarithms of rational units and the L-invariants of the charac-

ters φ and φ−1 ([BDP, Thm.C], Thm.3.3.2). The Gross-Stark conjecture can thus be

proved by observing that, due to the irregularity of the character φ, the classical weight

one eigenform E1(1, φ) lies in the generalized eigenspace of f . Hence, one can express

E1(1, φ) as a linear combination of the overconvergent forms giving a basis of the gen-

eralized eigenspace, simply by comparing their Hecke eigenvalues to those of E1(1, φ).

This yields a non-trivial relation between the leading term of E1(1, φ), i.e. the
1
2
L(0, φ),

and the derivative of the Kubota-Leopoldt p-adic L-function at s = 0. Once again, this

argument is an application of the general philosophy that congruences between cuspforms

and Eisenstein series are a powerful tool to relate p-adic L-functions and the arithmetic

of number fields.



Chapter 1

Deformation Theory

The theory of deformations of Galois representations was introduced by Mazur in [Maz89]

and has since been extensively used to prove a variety of results related to automorphic

forms. In this chapter, we will focus our attention on deformations of the Galois represen-

tation attached to an Eisenstein series of weight one and irregular at p. The irregularity

of the representation creates some difficulties in the formulation of an (otherwise well-

understood) ordinary deformation functor. We circumvent these issues through some ad

hoc definitions and obtain an ordinary deformation ring; we then single out a quotient of

the latter classifying deformations corresponding to cuspforms.

A major ingredient in describing the deformation rings involved is computing their Zariski

tangent spaces, which can be interpreted in terms of Galois cohomology groups of certain

adjoint representations. The representation attached to weight one Eisenstein series has

finite image; let H be its splitting field. The Galois cohomology groups above are tied to

p-units of H via class field theory. In particular, a special role is played by L-invariants of

odd Dirichlet characters, and their linear independence over Q̄. The connection with L-

invariants is natural in view of their relation with the derivative of the Kubota-Leopoldt

p-adic L-function proved by Gross [Gro82].

1



1.1 Galois cohomology preliminaries

The Galois representation attached to an Eisenstein series of weight one is the direct

sum of two finite order characters; in particular, it is reducible. The deformation functor

attached to a reducible representation is not, in general, representable; it is, however for

a non-split extension of two characters. The aim of this section is constructing such an

extension and showing that it is still indecomposable as a representation of the decom-

position group at p. This allows us to define an ordinary deformation functor attached

to this representation.

Via class field theory, we relate certain values of Galois cocycles corresponding to the

extensions above to L-invariants. The Q̄-independence of L-invariant will be essential to

compute the dimension of the tangent space of the cuspidal deformation ring Rcusp.

1.1.1 Construction of a non-split Galois extension of finite order

characters

Let p be a prime. Fix embeddings ιp : Q̄ ↪→ Q̄p and ι∞ : Q̄ ↪→ C. The choice of an

embedding of Q̄ into Q̄p determines a prime of Q̄ above p, and an isomorphism of its

decomposition group withGQp . The inclusion ι∞ provides a choice of complex conjugation

τ ∈ GQ. Let φ : (Z/NZ)× → C× be a primitive character of conductor N for (N, p) = 1

and such that φ(−1) = −1. We will assume throughout this chapter that

φ(p) = 1 (irregularity condition). (1.1)

Via the isomorphism Gal(Q(µN)/Q) ' (Z/NZ)×, we view φ as an odd Dirichlet character

of conductor N . The choice of embeddings ιp, ι∞ allows us to view φ as a Galois character

valued in Q̄p.

Let H be the splitting field of the character φ. It is a cyclic extension of Q̄. Since



φ is an odd character, H is totally imaginary, so that [H : Q] = 2r for some r ∈ Z>0.

Moreover, the condition φ(p) = 1 implies that p splits completely in H. Denote by

σ a generator of G = Gal(H/Q) and v0 the place of H determined by the embedding

ιp : Q̄ → Q̄p. Since p splits completely in H, the Galois group acts simply transitively

on the set of places of Q above p. Thus, we can denote such places as vi = v0 ◦ σ
−i for

0 ≤ i < 2r. Let Hv be the completion of H at the place v and let O and Ov be the ring

of integers of H and Hv respectively.

Denote Hom(−, Q̄p) the functor of continuous group homomorphisms.

Lemma 1.1.1. The Q̄p[G]-module Hom(GH , Q̄p) is isomorphic to

(i) ker
(⊕2r−1

i=0 Hom(O×
vi
, Q̄p)→ Hom(O×, Q̄p)

)

(ii) ker
(⊕2r−1

i=0 Hom(H×
vi
, Q̄p)→ Hom(O[1/p]×, Q̄p)

)
.

Proof. By global class theory, the global Artin homomorphism θH : A×
H/H

× → Gab
H is

surjective with kernel given by the connected component of the identity, isomorphic to

the product
∏

w|∞H×
w , because H is totally complex. Let S be a finite set of finite places

in H and let US be the subgroup of A×
H given by US =

∏
v/∈S O

×
v ×

∏
v∈S H

×
v (with the

convention that Ow = Hw for every place above infinity). The cokernel of the map

ψS : US → A×
H/H

×

is finite. Since for S ′ ⊂ S, we have US′ ⊂ US, it suffices to see it for S ′ = ∅, in which

case A×
H/H

×US is isomorphic to the class group of O, which is finite. Let O×
H,S = H× ∩

ψS(US). Thus, Hom(A×
H/H

×, Q̄p) is equal the kernel of Hom(US, Q̄p)→ Hom(O×
H,S, Q̄p).

By continuity

Hom(US, Q̄p) =
⊕

v∈S

Hom(H×
v , Q̄p)⊕

⊕

v/∈S,v|p

Hom(O×
v , Q̄p).



In particular, the places above at infinity give no contribution. It follows that Hom(GH , Q̄p)

is isomorphic to the kernel of


⊕

v∈S

Hom(H×
v , Q̄p)⊕

⊕

v/∈S,v|p

Hom(O×
v , Q̄p)


→ Hom(O×

H,S, Q̄p).

Taking S = ∅ and S = {v | p}, we obtain the desired results.

It follows that there is an exact sequence of Q̄p[G]-modules

0→ Hom(GH , Q̄p)→
2r−1⊕

i=0

Hom(O×
vi
, Q̄p)→ Hom(O×, Q̄p)→ 0. (1.2)

The exactness of the sequence at the last stage is equivalent to the Leopoldt Conjecture

for H, which is known in our case because H is abelian over Q. Hence Hom(GH , Q̄p) is

a Q̄p-vector space of dimension

2r−1∑

i=0

dimQ̄p Hom(O×
vi
, Q̄p)− dimQ̄p Hom(O×, Q̄p) = 2r − (r − 1) = r + 1,

because p is totally split in H and H is totally imaginary. We now describe the structure

of Hom(GH , Q̄p) as a Q̄p[G]-module.

Proposition 1.1.2. There is an isomorphism of Q̄p[G]-modules

Hom(GH , Q̄p) '
⊕

ψ=1 or ψ odd

Q̄pψ.

In particular, H1(Q, ψ) = 0 for every even character ψ 6= 1 of G and

dimQ̄p H
1(Q, ψ) = 1

if ψ is odd or trivial.



Proof. The Q̄p[G]-module
⊕2r−1

i=0 Hom(O×
vi
, Q̄p) =

⊕2r
i=0 Q̄p(logp ◦vi) is isomorphic to Q̄p[G]

as a left Q̄p[G]-module via the morphism
∑2r−1

i=0 aiσ
i 7→

∑2r−1
i=0 logp ◦vi. As a representa-

tion of G, Q̄p[G] '
⊕

ψ Q̄pψ where the sum runs over all the characters of G, since G is

cyclic. As a Q̄p[G]-module, Hom(O×, Q̄p) decomposes as
⊕

ψ 6=1 even Q̄pψ (compare with

[BD16, Sec. 3.2]), hence the result follows from the exact sequence (1.2).

The inflation-restriction exact sequence for GH ⊂ GQ gives

0→ H1(G, Q̄p)→ H1(Q, ψ)→ H1(H, Q̄p)
G → H2(G, Q̄p).

SinceG is finite and Q̄p is a field of characteristic 0, the cohomology groups Hk(G, Q̄p) van-

ish for k > 0. Thus, H1(Q, ψ) can be identified with the ψ−1-eigenspace of H1(H, Q̄p) =

Hom(GH , Q̄p); the claim follows.

Remark 1.1.3. The analogous statement to Lemma 1.1.1 does, in fact, hold when re-

placing the functor Hom(−, Q̄p) with Hom(−,Qp). The choice of using coefficients in Q̄p

is motivated by the previous proposition.

Relation with the L-invariant

Recall that the embedding ιp : Q̄ ↪→ Q̄p determines a place v0 of H and embeddings

GQp = GHv0
⊂ GH and IQp = IHv0 ⊂ GH yielding canonical restriction maps

resp : H
1(H, Q̄p)→ H1(Qp, Q̄p) and resIQp : H

1(H, Q̄p)→ Hom(IQp , Q̄p). (1.3)

Proposition 1.1.4. Let ψ be a character of G, either odd or trivial. Then the image

of the map resIQp : H
1(Q, ψ) = H1(H, Q̄p)

ψ−1 → Hom(IQp , Q̄p) is a one-dimensional Q̄p-

vector space, independent of the choice of the character ψ.

Proof. By local class field theory, the image of Hom(GHv0
, Q̄p) = Hom(GQp , Q̄p) →

Hom(IHv0 , Q̄p) = Hom(IQp , Q̄p) is isomorphic to Hom(O×
v0
, Q̄p). In particular, it is one-



dimensional over Q̄p. Thus, it suffices to show that the restriction of resIQp to the ψ−1-

eigenspace of Hom(GH , Q̄p) is injective. By compatibility between local and global class

field theory, and the exact sequence (1.2), there is a commutative diagram

Hom(GH , Q̄p)
ψ−1 θ∧H //

resIQp
��

(⊕2r−1
i=0 Hom(O×

vi
, Q̄p)

)ψ−1

π0

��

Hom(IQp , Q̄p) Hom(O×
v0
, Q̄p)oo

where the top horizontal map is induced by the Artin reciprocity map θH by duality and

π0 is the projection on the v0-component. The horizontal maps are injective.

Let η be an element in the ψ−1-component of Hom(GH , Q̄p) such that resIQp (η) = 0.

Since G acts transitively over the places vi for i = 0, . . . 2r − 1, it follows that θ∧H(η) =

0; in other words, π0 is injective on the ψ−1-eigenspace. Thus, resIQp is injective on

H1(Q, ψ).

For any odd or trivial character ψ of G, we can choose a cocycle ηψ whose class

generates H1(Q, ψ). In particular, we can fix the homomorphism η1 = logp ◦χ, where

χ is the p-adic cyclotomic character as generator of H1(Q, Q̄p) = Hom(GQ, Q̄p) and

logp is the standard choice of p-adic logarithm satisfying logp(p) = 0; with such choice

η1(Frob`) = logp(`) for every prime ` 6= p. By the previous proposition, we can normalize

the cocycles ηψ in such a way that

ηψ|IQp = (logp ◦χ)|IQp . (1.4)

for every ψ. Note that the cocycles ηψ are unramified for all primes ` - Np, since ηψ

defines a Zp-extension of H which can only be ramified at primes above p by class field

theory. The kernel of resIQp is spanned by (η1 − ηψ) for ψ odd.



Denote

LQ̄ :=
⊕

ψ odd or ψ=1

Q̄ηψ

the Q̄-linear subspace of LQ̄ ⊗Q̄ Q̄p = H1(H, Q̄p).

Denoting ordp : Q
×
p → Z the valuation, we consider the Q̄p-linear maps

logv0 : OH [
1
p
]× ⊗ Q̄p −→ Q̄p ordv0 : OH [

1
p
]× ⊗ Q̄p −→ Q̄p

u⊗ x 7→ logp(ιp(u))x u⊗ x 7→ ordp(ιp(u))x

Given any odd character ψ ofG, the ψ−1-eigenspace of OH [
1
p
]×⊗Q̄p is one-dimensional;

let uψ be its basis. Note that ordv0(uψ) 6= 0 since otherwise, by ψ−1-equivariance, one

would have ordvi(uψ) = ordv0(σ
−i(uψ)) = 0 for all 0 6 i 6 2r − 1, which is impossible

since the ψ−1-eigenspace of O×
H ⊗ Q̄p is zero.

Following [DDP11, (7)] we recall the definition of the L-invariants and relate them to

cohomology classes in H1(H, Q̄p) [BDP, Prop. 2.5].

Definition 1.1.5. The L-invariant of ψ is

L(ψ) := −
logv0(uψ)

ordv0(uψ)
∈ Q̄p. (1.5)

Proposition 1.1.6. (ηψ − η1)(Frobp) = L(ψ−1).

Proof. Recall that, by Lemma 1.1.1, there is an exact sequence of Q̄p[G]-modules

0→ Hom(GH , Q̄p)→
2r−1⊕

i=0

Hom(H×
vi
, Q̄p)→ Hom(OH [

1
p
]×, Q̄p). (1.6)

where ξ : GH → Q̄p is sent to the collection of maps ξi : H
×
vi
→ Q̄p, 0 6 i < 2r, defined by

taking the restriction to H×
vi
⊂ Ĥ×

vi
' Gab

Hvi
. Then (ηψ − η1)(Frobp) = (ηψ,0 − η1,0)($0),

where $0 denotes a uniformizer of Hv0 . Denoting by e the exponent of the Hilbert class



group of H, there exists x0 ∈ OH [
1
p
]× whose valuation at v0 is e and 0 at any other place

of H. We can write x0 = $e
0y with y ∈ O×

v0
; we have

(ηψ,0 − η1,0)(x0) = (ηψ,0 − η1,0)($
e
0y) = e · (ηψ,0 − η1,0)($0) = e · (ηψ − η1)(Frobp) (1.7)

Since x0 ∈ OH [
1
p
]× and ηψ − η1 ∈ Hom(GH , Q̄p) the sequence (1.6) implies that

(ηψ,0 − η1,0)(x0) = −
2r−1∑

i=1

(ηψ,i − η1,i)(x0). (1.8)

Since by definition ηψ belongs to the ψ−1-eigenspace for the G-action, it is entirely de-

termined by ηψ,0. More precisely we have that ηψ,i = ψ(σ)i(ηψ,0 ◦ σ
−i) for all 0 6 i < 2r.

Combining this with (1.8) and observing that σi(x0) ∈ O×
v0

for every 1 6 i < 2r, we

obtain

e · (ηψ − η1)(Frobv0) = (ηψ,0 − η1,0)(x0) = −
2r−1∑

i=1

(ηψ,i − η1,i)(x0) =

= −
2r−1∑

i=1

(ψ(σ)iηψ,0(σ
−i(x0))− η1,0(σ

−i(x0))) = −
2r−1∑

i=0

(ψ(σ)i − 1) logp(ιp(σ
−i(x0)))

= −
2r−1∑

i=0

ψ(σ)i logp(ιp(σ
−i(x0))) +

2r−1∑

i=0

logp(ιp(σ
−i(x0)))

(1.9)

because the restrictions of ηψ and η1 to IHv0 are given by logp. Observe first that

2r−1∑

i=0

logp(ιp(σ
i(x0)) = logp(ιp(NH/Q(x0)) ∈ logp(ιp(±p

Z)) = {0}.



Finally note that
∑2r−1

i=0 ψ(σ)i logp(ιp(σ
−i(x0))) = logv0(uψ−1), where

uψ−1 =
2r−1∑

i=0

σ−i(x0)⊗ ψ(σ)
i

clearly belongs to the ψ-eigenspace of OH [
1
p
]×⊗ Q̄p, and ordv0(uψ−1) = ordv0(x0⊗ 1) = e,

hence logv0(uψ−1) = −e ·L(ψ−1) by definition (1.5). Combining this with (1.9) yields the

claim.

An application of the Baker-Brumer Theorem

Recall the statement of the Baker-Brumer Theorem [Bru67].

Theorem 1.1.7 (Baker-Brumer). Fix an embedding ιp : Q̄ ↪→ Q̄p. Let x1, x2, . . . xn be

algebraic numbers. If the logarithms

logp(ιp(xi))

for i = 1, . . . , n are linearly independent over Q, then they are also linearly independent

over Q̄.

We apply the previous theorem to obtain the following result [BDP, Prop.2.6].

Proposition 1.1.8. (i) The L(ψ) are linearly independent over Q̄, when ψ runs over

all odd characters of G.

(ii) The restriction to LQ̄ of the map resp defined in (1.3) is injective.

Proof. (i) Suppose that
∑

ψ oddmψL(ψ) = 0 for some mψ ∈ Q̄. As in the proof of

Proposition 1.1.6, we denote by e the exponent of the Hilbert class group of H, and fix

an element x0 ∈ OH [
1
p
]× with valuation e at v0 and 0 at any other place of H. It follows



that
∑

ψ odd

mψ

(
2r−1∑

i=0

(ψ(σ)i − 1) logp(ιp(σ
−i(x0)))

)
= 0 (1.10)

Note that the i = 0 summand vanishes. Letting m1 = −
∑

ψ oddmψ the formula can be

written as
2r−1∑

i=1

( ∑

ψ odd or ψ=1

mψψ(σ)
i

)
logp(ιp(σ

−i(x0))) = 0 (1.11)

The values {logp(ιp(σ
−i(x0)))}16i62r−1 are linearly independent over Q. To see this sup-

pose logp(ιp(x)) = 0 for some element x =
∏

16i62r−1 σ
−i(x0)

ni with ni ∈ Z. Since

ιp(x) ∈ Z̄×
p this implies that x is a root of unity in H leading to ni = ordvi(x) = 0 for

all 1 6 i 6 2r − 1. By Theorem 1.1.7, the elements {logp(ιp(σ
i(x0)))}16i62r−1 are also

linearly independent over Q̄, leading to

∑

ψ odd or ψ=1

ψ(σ)imψ = 0 (1.12)

for any 1 6 i 6 2r−1. Moreover, since m1 = −
∑

ψ oddmψ, (1.12) holds for i = 0 as well.

Let ψ1, ψ2, . . . ψr be a numbering of the odd characters of G. The condition (1.12)

can be written as (m1,mψ1 , . . . ,mψr) ·M = (0, 0, . . . , 0), where

M =




1 1 1 . . . 1

1 ψ1(σ) ψ1(σ)
2 . . . ψ1(σ)

2r−1

. . . . . . . . . . . . . . .

1 ψr(σ) ψr(σ)
2 . . . ψr(σ)

2r−1




Since 2r > r + 1 for every r ≥ 1, M contains as a sub-matrix the Vandermonde matrix

of (1, ψ1(σ), . . . , ψr(σ)) which as well-known is invertible, implying that mψ = 0 for every

ψ.

(ii) It suffices to notice that the kernel of the restriction map LQ̄p → H1(IQp , Q̄p) is



spanned by {(η1 − ηψ)}ψ odd. Combining Proposition 1.1.6 with (i) yields the desired

result.

1.2 Deformations and pseudodeformations

In this section we define deformation functors for certain Galois representations and

show their representability. We follow the strategy of [Maz89], with the difference that

we fix residual representations with coefficients in Q̄p instead of a finite field. The rep-

resentations attached to Eisenstein series are reducible, which implies that they are only

determined by their trace up to semisimplification. To account for this issue, we recall

the notion of pseudorepresentations, and relate the deformation rings of representations

and pseudorepresentations.

1.2.1 Universal deformation ring

Let CQ̄p be the category of complete local noetherian Q̄p-algebras with residue field Q̄p.

Denote by Cart
Q̄p

the full subcategory of local artinian Q̄p-algebras with residue field Q̄p.

For every A in CQ̄p with maximal ideal mA, there is a canonical Q̄p-algebra isomorphism

A/mA → Q̄p. Moreover, every object A of CQ̄p is isomorphic to the inverse limit of

artinian rings in Cart
Q̄p
, since A = lim←−nA/m

n
A. An object A of Cart

Q̄p
is a finite Q̄p-vector

space, endowed with p-adic topology. An arbitrary object A of CQ̄p is endowed with the

inverse limit topology of its artinian quotients.

Universal cyclotomic character

Let ψ : GQ → Q̄×
p be a continuous character. Consider the functor Dψ : CQ̄p → Sets

sending an object A of CQ̄p to the set of continuous characters ψA : GQ → A× such that



ψA mod mA = ψ, where mA is the maximal ideal of A. Denote Λ = Q̄p⟦X⟧.

Lemma 1.2.1. The functor Dψ is representable by Λ.

Proof. Let A be an object in CQ̄p and let ψA : GQ → A× be a lift of ψ. Since A is Q̄p-

algebra, we can view ψ as a character ψ : GQ → A×. Then ψAψ
−1 is a lift of the trivial

character to A. Thus, without loss of generality, we can assume that ψ is trivial, so ψA is

a continuous homomorphism of GQ to ker(A× → Q̄×
p ) = 1+mA. In particular, ψA factors

through the abelianization Gab
Q ' Ẑ×. Moreover, since 1 + mA is torsion-free and ψA is

continuous, the homomorphism factors through the maximal torsion-free pro-p quotient

of Ẑ×, i.e. 1 + qZp, where q = p if p 6= 2 and p = 4 otherwise, which is isomorphic

to Zp. Since the continuous homomorphisms of 1 + qZp to 1 + mA are determined by

sending a topological generator 1+q to any element of 1+mA, they are in bijection with

HomCQ̄p
(Λ,A), it follows that Dψ is representable by Λ.

We now describe the universal character. Denote by χ : GQ � Gal(Q(µp∞)/Q)→ Z×
p

the p-adic cyclotomic character. There is an exact sequence of abelian groups

0→ 1 + qZp → Z×
p → (Z/qZ)× → 0 (1.13)

The Teichmuller character ωp : (Z/qZ)
× → Z×

p provides a section for the projection

Z×
p → (Z/qZ)×. Following the notation of [CM96], we denote ⟪x⟫ = xω−1p (x̄). Let κΛ

the character obtained by composition

GQ
χ
−→ Z×

p

⟪·⟫
−→ 1 + qZp → Λ× (1.14)

where the last map is the continuous group homomorphism determined by sending 1+q

to 1+X. The reduction of κΛ modulo (X) is the trivial character. From the proof of 1.2.1,

κΛ is the universal character lifting the trivial character. For any character ψ : GQ → Q̄×
p ,



the universal object for the functor Dψ is ψκΛ.

Recall that we fixed a generator η1 of H1(Q, Q̄p) satisfying η1 = logp ◦χ.

Lemma 1.2.2. The character κΛ satisfies κΛ = 1 + X
logp(1+q)

η1 mod (X2).

Proof. The character κΛ is given by

κΛ(σ) = (1 +X)
logp⟪χ(σ)⟫

logp(1+q) = (1 +X)
η1(σ)

logp(1+q) ,

hence the formula follows by taking the first derivative.

Universal local character

Let ψ : GQp → Q̄×
p be a continuous character. Denote D

loc,p
ψ the functor classifying, for

every object A in CQ̄p , the set of lifts of the character ψ to A.

Proposition 1.2.3. The functor Dloc,p
ψ is representable by the ring of formal power series

in two variables over Q̄p, denoted by R
loc,p
ψ .

Proof. Up to twisting by a character, we can assume that the residual character ψ is

trivial. Any lift of the trivial character factors through the maximal pro-p torsion-free

quotient of the abelianization of Gab
Qp
; by local class field theory, the latter is isomorphic

to the profinite completion of Q×
p . Thus, the maximal pro-p torsion-free quotient is

isomorphic to Z2
p. A lift ψA : GQ → A× of the trivial character is thus determined by the

image of a basis of Z2
p in 1+mA. Hence, it corresponds to a homomorphism R

loc,p
ψ → A.

Indecomposable reducible representations and representability of deformation

functors

Consider the representation φ⊕1 : GQ → GL2(Q̄p), under the assumptions of Section 1.1.

It is a reducible semisimple Artin representation with splitting field H. The continuous



extensions of 1 by φ are classified by

Ext1Q̄p[GQ]
(1, φ) = H1(Q, φ) ' H1(H, Q̄p)

φ−1

.

where the notation Hi(−, Q̄p) simply denotes the Galois cohomology with respect to the

trivial action of the Galois group. It is a one-dimensional Q̄p-vector space by Proposition

1.1.2. Similarly, the extensions of φ by 1 are classified by the one-dimensional space

Ext1Q̄p[GQ]
(φ,1) = H1(Q, φ−1) ' H1(H, Q̄p)

φ.

We fix cocycles η = ηφ ∈ Z1(Q, φ) and η′ = ηφ−1 ∈ Z1(Q, φ−1) such that their restriction

to the inertia IQp is logp ◦χ as in (1.4). Since φ(τ) and φ−1(τ) are not trivial up to

modifying η, η′ by a coboundary, we can further assume that η(τ) = η′(τ) = 0.

Let V = V ′ = Q̄2
p. Denote ρ : GQ → GL(V ) and ρ′ : GQ → GL(V ′) the representations

ρ =



φ η

0 1


 , and ρ′ =



1 φη′

0 φ




in the standard bases e1, e2 of M and e′1, e
′
2 of M ′.

Definition 1.2.4. Given an object A in CQ̄p , with maximal ideal mA, a lift of ρ (resp. ρ′)

to A is a continuous representation ρA : GQ → GL2(A) (resp. ρ
′
A) such that ρA mod mA =

ρ (resp. ρ′A mod mA = ρ′). Two lifts of ρ (resp. ρ′) to A are equivalent if they are

conjugate by an element in the kernel of GL2(A)→ GL2(Q̄p).

A deformation of ρ (resp. ρ′) to A is an equivalence class of lifts of ρ (resp. ρ′) to A.

Definition 1.2.5. Let Dρ (resp. Dρ′) be the functor

CQ̄p → Sets



sending A ∈ Ob(CQ̄p) to the set of deformations of ρ (resp. ρ′) to A. Let D0
ρ (resp. D

0
ρ′)

be the subfunctor of Dρ (resp. Dρ′) sending A ∈ Ob(CQ̄p) to the set of equivalence classes

of lifts in Dρ (resp. Dρ′) of determinant φ.

Let Q̄p[ε] be the ring of dual numbers over Q̄p. Denote

tρ = Dρ(Q̄p[ε]), t0ρ = D0
ρ(Q̄p[ε]), tρ′ = Dρ′(Q̄p[ε]), t0ρ′ = D0

ρ′(Q̄p[ε])

the Zariski tangent spaces of the corresponding functors. This terminology refers to

the fact that, if a functor D : CQ̄p → Sets is representable by a ring R, D(Q̄p[ε]) is

indeed isomorphic to the Zariski tangent space of R at its maximal ideal. Note that for

the deformation functors defined above the tangent space is always endowed with the

structure of Q̄p-vector space and is finite if the functor is representable.

It is a standard technique in deformation theory to interpret these tangent spaces

in terms of Galois cohomology. Let ad(ρ) be the adjoint representation of ρ and let

ad0(ρ) be the subrepresentation of ad(ρ) on the endomorphisms of trace zero. There are

isomorphisms of Q̄p-vector spaces

H1(Q, ad(ρ))→ tρ, H1(Q, ad0(ρ))→ t0ρ (1.15)

given by Θ 7→ (1 + εΘ)ρ. The analogous statement holds for ρ′.

Proposition 1.2.6. The functors Dρ and D0
ρ (resp. Dρ′ and D0

ρ′) are representable.

Proof. The proof is an application of Schlessinger’s criterion for representability; the ar-

gument is essentially the same as [Maz89]. What remains to verify is the fact that the

Zariski tangent space tρ is finite and that the representation ρ has only scalar auto-

morphisms. For the finiteness of the tangent space, by (1.15), it suffices to show that

H1(Q, ad(ρ)) is finite dimensional over Q̄p. The representation ρ is a non-split extension



of 1 by φ; in particular, its semisimplification ρss = 1 ⊕ φ is an Artin representation.

Thus, the semisimplification of the adjoint representation ad(ρ) is ad(ρ)ss = 1
2⊕φ⊕φ−1.

Writing a filtration of ad(ρ) with quotients given by finite image characters, we get an

upper bound of the dimension of tρ

dimQ̄p tρ = dimQ̄p H
1(Q, ad(ρ)) ≤ dimQ̄p(H

1(Q, Q̄p)
2 ⊕ H1(Q, φ)⊕ H1(Q, φ−1)) = 4

by Proposition 1.1.2.

Since ρ is a non-split extension of distinct characters, the only matrices in M2(Q̄p)

commuting with the image of ρ are scalars; thus the condition EndQ̄p
(ρ) = Q̄p is satisfied.

This suffices to prove that the functorDρ is representable. The analogous argument shows

that D0
ρ, Dρ′ , D

0
ρ′ are also representable.

Remark 1.2.7. In [Maz89], Mazur shows the representability of deformation functors

for absolutely irreducible representation of a profinite group Π in characteristic p. In

order to ensure this, he imposes what he denotes as Φp condition, i.e. the finiteness

of Hom(Π0,Fp), for every Π0 open subgroup of Π. In our context, we can waive this

condition and show that the tangent spaces tρ and tρ′ are finite in a more direct manner.

In particular, we do not need to replace the absolute Galois group GQ with the Galois

group GQ,S of the maximal extension of Q unramified outside a finite set of primes S.

Denote by Rρ, R
0
ρ, Rρ′ , R

0
ρ′ the objects in CQ̄p that represent the functors Dρ, D

0
ρ,

Dρ′ , D
0
ρ′ respectively; we refer to them as universal deformation rings. The determinant

of the universal representation for ρ and ρ′ is a lift of φ to R×
ρ and R×

ρ′ respectively. By

universal property of Λ, we obtain unique homomorphism

Λ→ Rρ and Λ→ Rρ′ ,

inducing the determinant maps by composition with φκΛ. Thus, R0
ρ ' Rρ/mΛRρ and



R0
ρ′ ' Rρ′/mΛRρ′

Remark 1.2.8. Note that ρ′ ⊗ φ−1 =
[
φ−1 η′

0 1

]
, which is the representation obtained

by replacing φ with its inverse. As explained in [Maz89, Section 1.3], the representa-

tions ρ′ and
[
φ−1 η′

0 1

]
are twist-equivalent, which implies that their deformation rings are

canonically isomorphic. Thus, all arguments that apply to Rρ naturally transfer to Rρ′ .

1.2.2 Reducible deformation ring

Let VRρ (resp. VRρ′ ) the universal object of Dρ (resp. Dρ′). It is a free rank 2 Rρ-module

(resp. Rρ′-module) with a continuous action of GQ. Since the complex conjugation τ has

order 2, which is invertible in Rρ, we have a decomposition of VRρ as

VRρ = V +
Rρ
⊕ V −

Rρ
.

where V ±
Rρ

= {m ∈ VRρ | τm = ±m}. In particular, V ±
Rρ

is a projective, finitely generated

Rρ-module, hence is free. If mRρ is the maximal ideal of Rρ, we have V ±
Rρ
/mRρV

±
Rρ
⊂

(VRρ/mRρVRρ)
± because V ±

Rρ
is a direct summand of VRρ . The latter is one dimensional,

so the rank of V ±
Rρ

is at most one. Since VRρ is the direct sum of V +
Rρ

and V −
Rρ

, this implies

that each must be free of rank one.

Let e± be the generator of V ±
Rρ

such that

e− ⊗ 1Q̄p = e1 and e+ ⊗ 1Q̄p = e2.

We denote

ρRρ,τ : GQ → GL2(Rρ), ρRρ,τ =
[
aτ bτ
cτ dτ

]
(1.16)

the representation corresponding to VRρ in the basis (e−, e+). We call the (e−, e+) a τ -



adapted basis for VRρ . This basis is unique up to conjugation by a matrix of the form
[
λ 0
0 µ

]
∈ ker(GL2(Rρ)→ GL2(Q̄p)).

In particular, the continuous functions

aτ , dτ : GQ → Rρ Xτ : GQ ×GQ → Rρ, Xτ (σ, σ
′) = bτ (σ)cτ (σ

′)

are independent of the choice of (e+, e−).

Following [CM96, Sec.5], we denote by Iredρ the ideal generated by Xτ (σ, σ
′) for σ, σ′ ∈

GQ; we refer to Iredρ as the reducibility ideal of Rρ. Similarly, VRρ′ also decomposes as a

direct sum of two rank 1 Rρ′-eigenspaces for the action of τ , denoted by V ±
Rρ′

. Given a

choice of generators e′± of VRρ′ , we have a representation

ρ′Rρ′ ,τ : GQ → GL2(Rρ′), ρRρ,τ =
[
a′τ b′τ
c′τ d′τ

]
(1.17)

in the basis (e′−, e
′
+). Again, the reducibility ideal Iredρ′ is generated by the products

b′τ (σ)c
′
τ (σ

′) for σ, σ′ ∈ GQ. Denote by Cρ the ideal of Rρ (resp. Rρ′) generated by cτ (σ)

(resp. c′τ (σ)) for σ ∈ GQ). We have the following result (see also [BDP, Lemma 1.4]).

Lemma 1.2.9. Cρ = Iredρ and Cρ′ = Iredρ′ .

Proof. From the definition is clear that Iredρ ⊂ Cρ, so it suffices to show the opposite

inclusion. The representation ρ is a non-split extension of φ by the trivial character. In

particular, there exists an element σ0 such that η(σ0) ∈ Q̄×
p . Thus bτ (σ0) ∈ R×

ρ ; since

b(σ0)c(σ) ∈ Iredρ for every σ ∈ GQ, it follows that c(σ) ∈ Iredρ . Therefore Cρ ⊂ Iredρ .

Similarly, Iredρ′ = Cρ′ .

Definition 1.2.10. Let Dred
ρ (resp. Dred

ρ′ ) be the subfunctor of Dρ (resp. Dρ′) sending

A ∈ Ob(CQ̄p) to the set of equivalence classes of reducible lifts of ρ (resp. ρ′) to A.

Proposition 1.2.11. The functors Dred
ρ and Dred

ρ′ are representable by rings Rred
ρ and



Rred
ρ′ .

Proof. Let A be an object of CQ̄p and let ρA be a representative of an equivalence class

in Dred
ρ (A). By the universal property of Rρ, there is a morphism ϕA : Rρ → A such that

ϕA ◦ ρRρ,τ is equivalent to ρA. Since ϕA ◦ ρRρ,τ = [ −1 0
0 1 ] , the only possible GQ-stable

subspaces for ϕA ◦ ρRρ,τ are 〈e± ⊗ 1A〉. Therefore, ρA is reducible if and only if Iredρ is

in the kernel of ϕA. Thus, Dred
ρ is representable by Rred

ρ = Rρ/I
red
ρ . Similarly, Dord

ρ is

representable by Rred
ρ′ = Rρ′/I

red
ρ′ .

1.2.3 Universal pseudodeformation ring

We recall the definition of pseudorepresentation. Originally defined by Wiles for odd

two-dimensional representations [Wil88] and then by Taylor for general groups [Tay91],

pseudorepresentations are, roughly speaking, functions satisfying the same relations as

traces of representations. The theory of pseudorepresentations offers advantages over

that of representations from the point of view of representability of deformation functors,

particularly when dealing with residually reducible representations.

Definition 1.2.12. Let G be a group, let d be a positive integer and R be a ring such

that d! is invertible in R. A pseudorepresentation of dimension d is a map T : G → R

satisfying

• T(1G) = d;

• T(g1g2) = T(g2g1) for all g1, g2 in G;

• d-dimensional pseudorepresentation identity : let σ ∈ Sd+1 a permutation with cycle

decomposition σ = c1c2 · · · cr. If ci is the cycle ci = (j1, j2, . . . , js), let T
ci : Gd+1 →



R be the function

Tc1(g1, g2, . . . , gd+1) = T(gj1gj2 · · · gjs).

Define Tσ = Tc1Tc2 · · ·Tcr . Then, for every g1, g2, . . . , gd+1 ∈ G,

∑

σ∈Sd+1

ε(σ)Tσ(g1, g2, . . . , gd+1) = 0,

where ε(σ) is the sign of σ.

If ρ : G→ GLd(R) is a representation, then Tr(ρ) is a pseudorepresentation.

Definition 1.2.13. Let Dps
φ+1 be the functor

CQ̄p → Sets

sending A ∈ Ob(CQ̄p) to the set of continuous two-dimensional pseudorepresentations

TA : GQ → A such that TA mod mA = φ+ 1, where mA is the maximal ideal of A.

Proposition 1.2.14. The functor D
ps
φ+1 is representable by a ring R

ps
φ+1.

Proof. All conditions of Schlessinger’s representability criterion are trivially satisfied,

except for the fact that the Zariski tangent space tpsφ+1 = D
ps
φ+1(Q̄p[ε]) is finite-dimensional.

Since the pseudorepresentation φ + 1 is the sum of two finite order characters, and φ is

odd, a (finite) upper bound of the dimension can be proven as in [SW99, Lemma 2.10].

We refer to R
ps
φ+1 as the universal pseudodeformation ring.

Remark 1.2.15. A more general notion of pseudorepresentation was introduced by

Chenevier in [Che14b], overcoming the issue that the pseudodeformation functor is ill-

behaved in characteristic 2. However, in the characteristic zero setting, the two notions

are equivalent. Hence, for our purposes Definition 1.2.13 will suffice.



The traces of the universal deformations ρRρ,τ and ρ′Rρ′ ,τ are pseudodeformations of

φ+ 1. By universal property of Rps
φ+1, this induces morphism

R
ps
φ+1 → Rρ and R

ps
φ+1 → Rρ′ (1.18)

The fact that ExtQ̄p[GQ](1, φ) and ExtQ̄p[GQ]
(φ,1) are one-dimensional implies the fol-

lowing result [Kis09, Lemma 1.4.3].

Proposition 1.2.16. The morphism R
ps
φ+1 → Rρ (resp. Rps

φ+1 → Rρ′) is surjective.

1.3 Ordinary deformation ring

We now introduce the functors parametrizing ordinary deformations of ρ. Since ordinary

representations have a stable line for the action of the decomposition group of p, we

introduce a functor classifying the pairs of representation with a filtration. The unique

GQp-stable line of ρ is L = 〈e1〉; thus any ordinary lift of ρ would be stable for a line

lifting L. This prompts the following definition.

Let A be an object of CQ̄p . Let ρA be a lift of ρ to A and let LA ⊂ A2 be a free

direct summand such that LA ⊗ Q̄p = L. We say that two pairs (ρA, LA) and (ρ̃A, L̃
′
A)

are equivalent if there exists g ∈ ker(GL2(A)→ GL2(Q̄p)) such that

ρ̃A = gρAg
−1 and L̃A = gLA.

Similarly, we denote L′ = 〈e′1〉 the unique GQp-stable line for ρ′ and consider the pairs

(ρ′A, L
′
A) where ρA is a lift of ρ′ and L′

A is a free direct summand of A2 such that L′
A⊗Q̄p =

L′. We say that two such pairs are equivalent if they are equal up to conjugation as above.

We denote by [ρA, LA] the equivalence class of the pair (ρA, LA).

Definition 1.3.1. Let Dfil
ρ : CQ̄p → Sets (resp. Dfil

ρ′) be the functor sending an object A



in CQ̄p to the set of equivalence classes of pairs (ρA, LA), where ρA is a lift of ρ (resp. ρ′)

to A and LA is a free direct summand of A2 such that LA⊗ Q̄p = L (resp. LA⊗ Q̄p = L′).

Lemma 1.3.2. The functors Dfil
ρ and Dfil

ρ′ are representable by Rρ⟦Y ⟧ and R′
ρ⟦Y ⟧.

Proof. For every A ∈ CQ̄p , there is a map FA : HomCQ̄p
(Rρ⟦Y ⟧, A) → Dfil

ρ (A) defined

as follows. Denote by ι the inclusion ι : Rρ → Rρ⟦Y ⟧ and fix ρRρ a representative of the

equivalence class of the universal deformation of ρ. A morphism ϕA : Rρ⟦Y ⟧→ A, defines

a representation ρA = ϕA ◦ ι ◦ ρRρ : GQ → GL2(A). Denote LA = 〈e1 + ϕA(Y )e2〉. Since

ϕA(Y ) ∈ mA, the line LA satisfies LA⊗ Q̄p = L; we let FA(ϕA) be the equivalence class of

(ρA, LA). The surjectivity of F is clear. Indeed, given a pair of (ρA, LA) of representation

with filtration as above, by the universal property of Rρ, we can conjugate it by an

element in the kernel of GL2(A)→ GL2(Q̄p) and see that the pair is in the image of FA.

It remains to verify the injectivity of FA. Suppose FA(ϕA) = FA(ϕ̃A) for two mor-

phisms ϕA, ϕ̃A ∈ HomCQ̄p
(Rρ⟦Y ⟧, A). By the universal property of Rρ, this implies that

ϕA ◦ ι = ϕ̃A ◦ ι. If g ∈ ker(GL2(A)→ GL2(Q̄p))) commutes with the image of ϕA ◦ ι◦ρRρ ,

then g is a scalar matrix, so any line is stable under g. Thus, ϕA(Y ) = ϕ̃A(Y ), which

implies φA = φ̃A.

Let ρA : GQ → GL2(A) be a lift of ρ for some object A in CQ̄p . Denote VA = A2 the

free A-module with the action of GQ given by ρA. We say that VA is ordinary if there is

an exact sequence of A[GQp ]-modules

0→ V sub
A → VA → V quo

A → 0 (1.19)

such that V sub
A , V quo

A are free A-modules of rank one and V quo
A is unramified. There is

a map V sub
A ⊗ Q̄p → V sub

Rρ
= 〈e1〉; it is injective because V sub

A is a direct summand, and

surjective because both modules are one-dimensional over Q̄p.



Definition 1.3.3. Let Dn.ord
ρ : CQ̄p → Sets (resp. Dn.ord

ρ′ ) be the functor sending an

object A of CQ̄p to the equivalence class of pairs [ρA, LA] ∈ Dfil
ρ (A) (resp. Dfil

ρ′(A)) such

that LA is a GQp-stable subspace.

Given a pair (ρA, LA) whose equivalence class is in Dn.ord
ρ (A), we denote by

ϑA : GQp → A×

the character acting on the quotient A2/LA. Clearly ϑA mod mA = 1. Hence

(ρA, LA) 7→ ϑA

defines a natural transformation Dn.ord
ρ → D

loc,p
1

.

Definition 1.3.4. Let Dord
ρ : CQ̄p → Sets (resp. Dord

ρ′ ) be the functor sending an object

A of CQ̄p to the set of equivalence classes [ρA, LA] ∈ Dn.ord
ρ (A) (resp. Dn.ord

ρ′ (A)) such that

GQp-character ϑA is unramified.

The following proposition shows the representability of the functors above, as well

as the relation between their universal deformation rings and Rρ and Rρ′ [BDP, Lemma

1.2].

Proposition 1.3.5. (i) The functors Dn.ord
ρ , Dord

ρ (resp. Dn.ord
ρ′ , Dord

ρ′ ) are representable

by rings Rn.ord
ρ , Rord

ρ (resp. Rn.ord
ρ′ , Rord

ρ′ );

(ii) The map Rρ → Rord
ρ (resp. Rρ′ → Rord

ρ′ ) is surjective.

Proof. (i) By definition Dn.ord
ρ (A) ⊂ Dfil

ρ (A). By Lemma 1.3.2, the functor Dfil
ρ is rep-

resentable by Rρ⟦Y ⟧. Let ρRρ = [ a bc d ] be any representative of the equivalence class

of the universal deformation of ρ. Fix a morphism ϕA : Rρ⟦Y ⟧ → A. This morphism



yields a pair (ϕA ◦ ι ◦ ρRρ , e1 + φ(A)e2), which belongs to Dn.ord
ρ (A) if and only if the line

〈e1 + ϕA(Y )e2〉 is GQp-stable. Since conjugating by the matrix [ 1 0
−Y 1 ] yields




1 0

−Y 1






a b

c d






1 0

Y 1


 =




a+ bY b

c+ (d− a)Y − bY 2 d− bY


 , (1.20)

we see that the line 〈e1 + ϕA(Y )e2〉 is GQp-stable if and only if ϕ factors through the

quotient of Rρ⟦Y ⟧ modulo the ideal

In.ordρ = 〈c(σ) + (d(σ)− a(σ))Y − b(σ)Y 2, ∀σ ∈ GQp〉.

Similarly, the equivalence class of the pair (ϕA ◦ ι ◦ ρRρ , e1 + φ(A)e2) belongs to Dord
ρ (A)

if and only if ϕA factors through the quotient modulo

Iordρ = 〈c(σ) + (d(σ)− a(σ))Y − b(σ)Y 2 ∀σ ∈ GQp , 1− d(σ
′) + b(σ′)Y ∀σ′ ∈ Ip〉.

(ii) Fix an element σ0 of IQp such that η(σ0) 6= 0. We have

d(σ0)− b(σ0)Y = 1. (1.21)

But b(σ0) mod mRρ = η(σ0) ∈ Q̄×
p , so b(σ0) is invertible, hence Y = (1 − d(σ0))b(σ0)

−1

belongs to the image of Rρ → Rρ⟦Y ⟧/I
ord.

Remark 1.3.6. The previous proposition implies that given an ordinary lift of ρ of the

form ρA = [ a bc d ] with a filtration as in (1.19), the ordinary subspace can be read off the

representation, or even the trace of a representation by Proposition 1.2.16. Given an

element σ0 ∈ IQp with η(σ0) 6= 0, and a Frobenius element Frobp, the GQp-unramified



character ϑA acting on the quotient is characterized by

ϑA(Frobp) = d(Frobp)− b(Frobp)(d(σ0)− 1))b(σ0)
−1.

Instead, in Proposition 1.5.1, we will show that for a nearly ordinary representation lifting

ρ, the GQp-stable line is not unique in general.

Remark 1.3.7. An ordinary lift of ρ (resp. ρ′) to A admits two distinct filtrations

of A2: one is given by the GQp-stable subspace in (1.19) and the other is induced by

the eigenspace for the complex conjugation τ . Since the representation ρ (resp. ρ′) is

reducible, we have V sub
Rρ

= V −
Rρ

= 〈e1〉. However, the two filtrations will be different in

general.

1.4 Cuspidal and Eisenstein deformation rings

In this section, we define two functors represented by quotients of the ordinary deforma-

tion rings Rord
ρ and Rord

ρ′ .

The functors Deis
ρ and Deis

ρ′ classify certain reducible ordinary deformations of ρ and

ρ′ with a given unramified quotient (see also [BDP, Sec. 1.3]).

The functor Dcusp parametrizes pairs of deformations of ρ and ρ′ satisfying certain

conditions (see also [BDP, Sec. 1.4]). The definition exploits the symmetry between

the deformation functors Dord
ρ and Dord

ρ′ due to the interchangeability of the characters

1 and φ. Although the link between the functor Dcusp and cuspidal deformations of ρ is

not a priori clear, we will later show that the universal ring representing this functor is

isomorphic to the completed local ring of the eigencurve, thus justifying the notation.

Definition 1.4.1. Let Deis
ρ : CQ̄p → Sets (resp. Deis

ρ′ ) be the functor sending an object A

in CQ̄p to the set of equivalence classes of pairs (ρA, LA) in Dord
ρ (A) (resp. Dord

ρ′ (A)) such



that the line LA is GQ-stable.

Proposition 1.4.2. The functors Deis
ρ (resp. Deis

ρ′ ) is representable by Reis
ρ (resp. Reis

ρ′ ).

The morphism Rρ → Reis
ρ (resp. Rρ′ → Reis

ρ′ ) is surjective.

Proof. Choose a representative of the equivalence class of the universal representation

ρRρ = [ a bc d ]. The same argument as in the proof of Proposition 1.3.5 shows that Deis
ρ is

representable by the quotient of Rρ⟦Y ⟧ modulo the ideal

Ieisρ = 〈c(σ) + (d(σ)− a(σ))Y − b(σ)Y 2 ∀σ ∈ GQ, 1− d(σ
′) + b(σ′)Y ∀σ′ ∈ Ip〉.

Analogously for Deis
ρ′ .

Remark 1.4.3 (Eisenstein deformations and reducible ordinary deformations). The def-

inition of the Eisenstein deformation ring is designed to encode representations for which

the trace evaluated at Frob` gives the `-th coefficient of an Eisenstein series for every

prime ` such that (`,Np) = 1. It is natural to compare Eisenstein deformations with

reducible ordinary deformations of ρ, represented by Rord,red
ρ = Rred

ρ ⊗̂RρR
ord
ρ . From the

proofs of Proposition 1.3.5 and Lemma 1.2.9, we see that

Rred
ρ ⊗Rρ R

ord
ρ ' Rρ⟦Y ⟧/(Cρ, I

ord
ρ ). (1.22)

By the universal property of Reis
ρ , there is a natural surjective map

Rord,red
ρ → Reis

ρ . (1.23)

However, we will see that it is not an isomorphism (Remark 1.5.10).

Definition 1.4.4. Let Dcusp : CQ̄p → Sets be the functor sending an object A ∈ CQ̄p to

the set of pairs of equivalence classes of representations with filtration ([ρA, LA], [ρ
′
A, L

′
A]) ∈



Dord
ρ (A)×Dord

ρ′ (A) such that

Tr(ρA) = Trρ′A and ϑA = ϑ′
A.

We show that the functor Dcusp is representable and relate its universal ring to the

rings Rord
ρ and Rord

ρ′ [BDP, Lemma 1.8].

Proposition 1.4.5. (i) The functor Dcusp is representable by a ring Rcusp.

(ii) The morphisms Rord
ρ → Rcusp and Rord

ρ′ → Rcusp are surjective.

Proof. (i) The functor Dcusp can be described as Dord
ρ ×D

ps
ψ+1×D

loc,p
1

Dord
ρ′ . Hence it is rep-

resentable by Rord
ρ ⊗̂R

ps
ψ+1⊗̂R

loc,p
1

Rord
ρ′ . More explicitly, Rcusp can be realized as the quotient

of Rord
ρ ⊗Q̄p R

ord
ρ′ modulo the ideal generated by

TrρRord
ρ
(σ)⊗̂1− 1⊗̂Trρ′

Rord
ρ′
(σ), ∀σ ∈ GQ.

ϑRord
ρ
(σ)⊗̂1− 1⊗̂ϑ′

Rord
ρ′
(σ) ∀σ ∈ GQp .

(ii) It suffices to verify this on tangent spaces, i.e. show that the morphism of Q̄p-vector

spaces Dcusp(Q̄p[ε]) → Dord
ρ (Q̄p[ε]) is injective. Let (ρε, ρ

′
ε) be an element in the kernel

of this morphism. This implies that ρε = ρ. Since, by definition of Dcusp, we have

Tr(ρε) = Tr(ρε), it follows that Tr(ρ′ε) = 1 + φ = Tr(ρ′). Then Proposition 1.2.16, this

implies that ρ′ε = ρ′.

Note that Rcusp has a well-defined Λ-algebra structure induced by ([ρA, LA], [ρ
′
A, L

′
A]) 7→

det ρA = det ρ′A. The equality of the determinants follows from the fact that

det ρA(σ) =
1

2
(TrρA(σ)

2 − TrρA(σ
2))



and the equality TrρA = Trρ′A.

Let us summarize the relations between the deformation rings defined so far. We have

a commutative diagram of Λ-algebra morphisms

Reis
ρ

Rρ
// Rord

ρ

<<

""
R

ps
φ+1

==

!!

Rcusp

Rρ′
// Rord

ρ′

<<

""

Reis
ρ′

where all the maps are surjective. This can be interpreted geometrically as follows. The

space of deformations of the pseudorepresentation 1+ φ contains the deformation spaces

of ρ and ρ′ as closed subspaces. In each of them, one can cut out an ordinary locus. The

ordinary locus then contains a subspace parametrizing certain reducible deformations of

ρ that one expect to classify representations attached to Eisenstein families. The space

of cuspidal deformations lies in the intersection of the ordinary deformation spaces of ρ

and ρ′.

Note that the projection Rord
ρ → Reis

ρ factors through Rord,red
ρ ; the relation between

the latter and Rcusp is not a priori clear.



1.5 The tangent space of the universal deformation

rings

We are now going to give an explicit description of the Zariski tangent spaces of the

universal deformation rings defined in the previous sections (we follow the treatment in

[BDP, Sec.2]). Recall that the adjoint representation of ρ, denoted by ad(ρ), is given

by the vector space EndQ̄p
(V), where V is the underlying space of ρ, endowed with the

action of g ∈ GQ given by

(g ∗Θ)(v) = g(Θ(g−1v)) ∀v ∈ V, ∀Θ ∈ EndQ̄p
(V).

The choice of the basis e1, e2 of V lets us identify EndQ̄p
(V) with M2(Q̄p) and the action

of g ∈ GQ with the conjugation by ρ(g). Let Ei,j for 1 ≤ i, j ≤ 2 be the standard basis

of M2(Q̄p), so that 

α β

γ δ


 = αE1,1 + βE1,2 + γE2,1 + δE2,2.

We denote by ad0(ρ) the subspace of ad(ρ) corresponding to matrices of trace 0. There

is an isomorphism of Q̄p[GQ]-modules

ad(ρ)→ ad0(ρ)⊕ Q̄p, Θ 7→ (Θ− Tr(Θ)/2,Tr(Θ)/2).

Since ad(ρ) is canonically isomorphic to V ⊗ V ∗ as a GQ-representation, and V and

V ∗ are reducible representation, ad(ρ) is reducible as well. More precisely, in the basis

E1,2, E1,1, E2,2, E2,1 of M2(Q̄p), the adjoint representation ad(ρ) : GQ → GL4(Q̄p) is given



by the matrix

ad(ρ) =




φ −η η −η2

0 1 0 φ−1η

0 0 1 −φ−1η

0 0 0 φ−1



. (1.24)

The cocycle conditions for an element Θ =
[
α β
γ δ

]
∈ Z1(Q, ad(ρ)) can be summarized as

(d1α)(σ, σ
′) = φ(σ)−1η(σ)γ(σ′) (1.25)

(dφβ)(σ, σ
′) = φ(σ)(δ(σ′)− α(σ′))− φ(σ)−1η(σ)γ(σ′)(η(σ) + φ(σ)η(σ′)) (1.26)

(d
φ−1γ)(σ, σ

′) = 0 (1.27)

(d1δ)(σ, σ
′) = φ(σ)γ(σ)η(σ′), (1.28)

where we denoted

(dψξ)(σ, τ) = ξ(στ)− ξ(σ)− ψ(σ)ξ(τ)

for any function ξ : GQ → Q̄p and character ψ of GQ. The subspace of coboundaries

B1(Q, ad(ρ)) is spanned by

Θλ,µ,ν =



−λφ−1η λφη2 + µ(1− φ) + νη

λ(1− φ−1) λφ−1η


 (1.29)

for λ, µ, ν ∈ Q̄p. There is a filtration of ad(ρ) given by W0 = ad(ρ) and

W1 = ker
(
W0 → φ−1,

[
α β
γ δ

]
7→ γ

)
(1.30)

W2 = ker
(
W1 → Q2

p,
[
α β
0 δ

]
7→ (α, δ)

)
(1.31)

W3 = 0 (1.32)



with graded pieces

W0/W1 ' φ−1, W1/W2 ' Q̄2
p, W2/W3 ' φ.

For every 0 ≤ i ≤ 3 denote W 0
i = Wi ∩ ad0(ρ).

1.5.1 The tangent space of the ordinary deformation ring

Exploiting the filtration defined above, we compute the dimensions of the Zariski tangent

spaces for the functors Dord
ρ and Dn.ord

ρ as in [BDP, Prop. 2.1]. Denote by tn.ordρ (resp.

tn.ord,0ρ , tordρ , tord,0ρ ) the Zariski tangent space of the functor Dn.ord
ρ (resp. Dn.ord

ρ ∩D0
ρ, D

ord
ρ ,

Dord
ρ ∩D0

ρ). Denote by (e1,ε, e2,ε) the standard basis of Q̄p[ε]
2.

Proposition 1.5.1. (i) There are isomorphisms

H1(Q,W1)⊕ Q̄p → tn.ordρ and H1(Q,W 0
1 )⊕ Q̄p → tn.ord,0ρ

given by (Θ, ν) 7→ [(1 + εΘ)ρ, e1,ε + ενe2,ε].

(ii) The forgetful functor Dn.ord
ρ → Dρ induces isomorphisms

tordρ ' Im(tn.ordρ → tρ) and tord,0ρ ' Im(tn.ord,0ρ → t0ρ).

Proof. (i) As in the proof of Proposition 1.3.5, the nearly ordinary deformation ring Rn.ord
ρ

is representable by the quotient of Rρ⟦Y ⟧ by the ideal In.ordρ , once we fix a representative

of the equivalence class of the universal representation ρRρ : GQ → GL2(Rρ). Thus,

an element of the tangent space tn.ordρ is the equivalence class of a pair (ρε, Lε), where

ρε : GQ → GL2(Q̄p[ε]) is a lift of ρ and Lε = 〈e1,ε+ευe2,ε〉 in the basis (e1,ε, e2,ε) of Q̄p[ε]
2.

The representation ρε can be written as ρε = (1 + εΘ)ρ where Θ ∈ Z1(Q, ad(ρ)). If we



write Θ =
[
α β
γ δ

]
, we obtain

ρε =



1 + εα εβ

εγ 1 + εδ






φ η

0 1


 =



φ(1 + εα) η + ε(ηα + β)

εφγ 1 + ε(ηγ + δ)


 .

The pair (ρε, Lε) is nearly ordinary if and only if the corresponding morphism Rρ⟦Y ⟧→

Q̄p[ε] factors through I
n.ord
ρ , i.e.

0 = εφγ + [1 + ε(ηγ + δ)− φ(1 + εα)]ευ − [η + ε(ηα + β)](ευ)2 (1.33)

= ε(φγ + (1− φ)υ) (1.34)

when restricted to GQp . Since φ(σ) = 1 for all σ ∈ GQp , this yields γ(σ) = 0 for all

σ ∈ GQp and the condition is independent of υ. From (1.30), the map ad(ρ) → φ−1

sending
[
α β
γ δ

]
7→ γ is GQ-equivariant. Thus,

γ ∈ ker(Z1(Q, φ−1)→ Z1(Qp, Q̄p)) = B1(Q, φ−1).

which is equivalent to saying that the class of γ vanishes in H1(Q, φ−1). The exact

sequence of Q̄p[GQ]-modules 0 → W1 → ad(ρ) → φ−1 → 0 induces an exact sequence in

cohomology

H0(Q, φ−1)→ H1(Q,W1)→ H1(Q, ad(ρ))→ H1(Q, φ−1).

Since φ−1 is not trivial, the first term is zero, so H1(Q, φ−1) is the kernel of H1(Q, ad(ρ))→

H1(Q, φ−1). For any Θ ∈ H1(Q,W1) the condition (1.33) is automatically satisfied for

every υ, which yields tn.ordρ ' H1(Q,W1)⊕ Q̄p.

(ii) By Proposition 1.3.5, the morphism Rρ → Rord
ρ is surjective; thus, the map tordρ → tρ



is injective and its image is contained in the image of the morphism tn.ordρ → tρ by

construction. Therefore, it suffices to show that for every nearly ordinary representation

ρε : GQ → GL2(Q̄p[ε]) there is a unique GQp-stable line with respect to which the quotient

is unramified. From the description of the nearly ordinary tangent space, we can write

ρε = (1 + εΘ)ρ as above with Θ =
[
α β
γ δ

]
∈ Z1(Q,W1) where γ is a coboundary for

φ−1. Up to modifying Θ by a coboundary Θλ,0,0 as in (1.29) (which amounts to changing

the basis for ρε), we can suppose γ = 0. Thus, assume, without loss of generality, that

γ = 0 in the basis (e1,ε, e2,ε) of Q̄p[ε]
2. Then, the pair (ρε, Lε) with Lε = 〈e1,ε + ευe2,ε〉 is

ordinary if and only if

0 = (1 + εδ(σ))− 1− [η(σ) + εα(σ)η(σ) + εβ(σ)]ευ (1.35)

= ε(δ(σ)− η(σ)ν) (1.36)

for all σ in IQp by (1.21). From (1.31), δ ∈ Z1(Q,Qp); since η ∈ Z1(Q, φ) and

Im(Z1(Q, Q̄p)→ Z1(IQp , Q̄p)) = Im(Z1(Q, φ)→ Z1(IQp , Q̄p))

is a one-dimensional Q̄p-vector space and η|IQp 6= 0, this gives a non-trivial linear condition

on υ. The claim follows.

Lemma 1.5.2. H2(Q, φ) = H2(Q, φ−1) = H2(Q, Q̄p) = 0.

Proof. By the global Euler characteristic formula we have

dimQ̄p H
2(Q, φ) = dimQ̄p H

1(Q, φ)− dimQ̄p H
0(Q, φ) + dimQ̄p H

0(R, φ)− dimQ̄p(φ)

= 1− 0 + 0− 1 = 0,



and the same applies replacing φ by φ−1. Similarly,

dimQ̄p H
2(Q, Q̄p) = dimQ̄p H

1(Q, Q̄p)− dimQ̄p H
0(Q, Q̄p) + dimQ̄p H

0(R, Q̄p)− dimQ̄p(Q̄p)

= 1− 1 + 1− 1 = 0.

Lemma 1.5.3. The Q̄p[GQ]-linear maps

W1 → Q̄2
p,

[
α β
0 δ

]
7→ (α, δ) and W 0

1 → Q̄p,
[
α β
0 −α

]
7→ α

induce isomorphisms H1(Q,W1)→ H1(Q, Q̄2
p) and H1(Q,W 0

1 )→ H1(Q, Q̄p).

Proof. Consider the exact sequence of Q̄p[GQ]-modules 0→ W2 → W1 → Q̄2
p → 0 defined

in (1.31). This yields a long exact sequence in cohomology

0→ H0(Q,W1)→ H0(Q, Q̄2
p)→ H1(Q,W2)→ H1(Q,W1)→ H1(Q, Q̄2

p)→ 0,

because W2 is isomorphic to φ and, by Lemma 1.5.2, H2(Q, φ) is trivial. In order to

show that H1(Q,W1) → H1(Q, Q̄2
p) is an isomorphism, it suffices to check that the

map H0(Q, Q̄2
p) → H1(Q,W2) is surjective. Recall that W1 is the subspace of M2(Q̄p)

spanned by E1,2, E1,1, E2,2. Comparing with the adjoint representation matrix (1.24), we

see that the GQ-invariant subspace of W1 is spanned by the line 〈E1,1 + E2,2〉, in par-

ticular H0(Q,W1) ' Q̄p. Since H0(Q, Q̄2
p) and H1(Q,W2) are two and one-dimensional

respectively, it follows that the map H0(Q, Q̄2
p)→ H1(Q,W2) is surjective.

Similarly, W 0
1 fits in an exact sequence 0 → W2 → W 0

1 → Q̄p → 0 where the map

W 0
1 → Q̄p is given by

[
α β
0 −α

]
7→ α. The long exact sequence in cohomology yields

0→ H0(Q,W 0
1 )→ H0(Q, Q̄p)→ H1(Q,W2)→ H1(Q,W 0

1 )→ H1(Q, Q̄p)→ 0,



and H0(Q,W 0
1 ) = 0. Since H0(Q, Q̄p) and H1(Q,W2) are both one-dimensional, the map

H0(Q, Q̄p) → H1(Q,W2) is surjective. This implies that H1(Q,W 0
1 ) → H1(Q, Q̄p) is an

isomorphism.

Proposition 1.5.4. (i) There is a set of representatives of tordρ of the form (ρε, Lε) where

ρε =



φ(1 + ελη1) η + εξ

0 1 + εµη1


 , Lε = 〈e1,ε + εµe2,ε〉 (1.37)

for (λ, µ) ∈ Q̄2
p; the equivalence class [ρε, Lε] is independent of ξ.

(ii) The Zariski tangent spaces of the functors Dord
ρ , Dord,0

ρ , Dn.ord
ρ and Dn.ord,0

ρ satisfy

dimQ̄p t
ord
ρ = 2, dimQ̄p t

ord,0
ρ = 1, (1.38)

dimQ̄p t
n.ord
ρ = 3, dimQ̄p t

n.ord,0
ρ = 2. (1.39)

Proof. (i) By Proposition 1.5.1, an element of tordρ is the equivalence class of a pairs

(ρε, Lε) where ρε =
(
1 + ε

[
α β
0 δ

])
ρ for some

[
α β
0 δ

]
∈ Z1(Q,W1) and the equivalence class

of such pair is uniquely determined by the image of
[
α β
0 δ

]
in H1(Q,W1). Recall that η1 is

the generator of Z1(Q, Q̄p) such that η1 = logp ◦χ. Then α, δ ∈ Z1(Q, Q̄p) can be written

as α = λη1 and δ = µη1. By Lemma 1.5.3, the class of
[
α β
0 δ

]
in H1(Q,W1) is independent

of β. The line Lε is the unique GQp-stable line yielding an unramified quotient; a direct

calculation shows Lε = 〈e1,ε + µe2,ε〉 since η|IQp = η1|IQp .

(ii) The claim about the dimensions of tordρ and tord,0ρ follows from (i). The dimensions of

tn.ordρ and tn.ord,0ρ are obtained by combining (i) with Proposition 1.5.1.

Remark 1.5.5. Denote tord,redρ the tangent space of the reducible ordinary deformation



ring Rord,red
ρ . It follows from Proposition 1.5.4 that the natural inclusion

tord,redρ ↪→ tordρ

is, in fact, an isomorphism.

1.5.2 The tangent space of the universal deformation ring

Lemma 1.5.6. We have H2(Q,Wi) = H2(Q,W 0
i ) = 0 for every 0 ≤ i ≤ 3. In particular,

the representation ρ is unobstructed.

Proof. The claim is trivially true for i = 3 since W3 = 0. For every 0 ≤ i ≤ 2 we

have an exact sequence of Q̄p[GQ]-modules 0 → Wi+1 → Wi → Wi/Wi+1 such that

H2(Q,Wi+1/Wi) = 0 by Lemma 1.5.2. Thus, H2(Q,Wi) = 0 by induction. Similarly,

H2(Q,W 0
i ) = 0 for every 0 ≤ i ≤ 3.

Proposition 1.5.7. We have dimQ̄p tρ = 3 and dimQ̄p t
0
ρ = 2.

Proof. We have tρ = H1(Q,W0) and t
0
ρ = H1(Q,W 0

0 ). We have exact sequences

0→ W1 → W0 → φ−1 → 0, 0→ W1 → W0 → φ−1 → 0.

Since H0(Q, φ−1) = 0 and H2(Q,W1) = H2(Q,W 0
1 ) = 0 by the previous lemma, we obtain

the exact sequences in cohomology 0→ H1(Q,W1)→ H1(Q,W0)→ H1(Q, φ−1)→ 0 and

0 → H1(Q,W 0
1 ) → H1(Q,W 0

0 ) → H1(Q, φ−1) → 0. Since H1(Q, φ−1) is one-dimensional,

the claim follows from Lemma 1.5.3.

Corollary 1.5.8. The universal deformation ring Rρ is isomorphic to the ring of power

series in three variables over Q̄p.

Proof. This is follows from [Maz89, Proposition 2], given that ρ is unobstructed by Lemma

1.5.6 and that the tangent space tρ is three-dimensional by Proposition 1.5.7.



1.5.3 The tangent space of the Eisenstein and cuspidal defor-

mation rings

Denote by teisρ , t
eis,0
ρ , tcusp, tcusp,0 the Zariski tangent spaces of the functors Deis

ρ ,D
eis
ρ ∩D

0
ρ,

Dcusp, and Dcusp ∩D0
ρ respectively.

Proposition 1.5.9. There is a set of representatives of teisρ of the form (ρε, Lε) where

ρε =



φ(1 + ελη1) η + εξ

0 1


 , Lε = 〈e1,ε〉 (1.40)

for λ ∈ Q̄p; the equivalence class is independent of ξ. In particular, dimQ̄p t
eis
ρ = 1 and

dimQ̄p t
eis,0
ρ = 0.

Proof. Let (ρε, Lε) be a lift of ρ to Q̄p[ε] whose equivalence class is in t
eis
ρ . By Proposition

1.5.4, it can be written in the form (1.37). The unique GQ-stable line for ρε is 〈e1,ε〉; hence

the equivalence class of (ρε, Lε) is in tordρ if and only if the ordinary filtration coincides

with the GQ-stable subspace, i.e. µ = 0. The description of teisρ follows. For teis,0ρ , it

suffices to add the condition det ρε = φ, which implies that λ = 0.

Remark 1.5.10. Comparing Proposition 1.5.9 with Remark 1.5.5, we see that the

inclusion teisρ ↪→ tord,redρ is not surjective. In particular, the kernel of the projection

Rord,red
ρ → Reis is not trivial.

We compute the dimension of the cuspidal tangent space as in [BDP, Prop. 2.7].

Proposition 1.5.11. (i) The tangent space tcusp is the space of pairs ([ρε, Lε], [ρ
′
ε, L

′
ε])

in tordρ × t
ord
ρ′ where a set of representatives of the equivalence classes [ρε, Lε] and [ρ′ε, L

′
ε]



can be chosen as

ρε =



φ(1 + ελη1) + εµη (1 + ελη1)η + εβ

−εµ(1− φ−1) 1 + εµ(η1 − η)


 , Lε = 〈e1,ε〉 (1.41)

ρ′ε =



(1 + εµη1) + ελη′ φ((1 + εµη1)η

′ + εβ′)

ελ(1− φ) φ(1 + ελ(η1 − η
′))


 , L′

ε = 〈e1,ε〉 (1.42)

with λL(φ)−µL(φ−1) = 0; the equivalence classes are independent of β and β′ respectively.

(ii) We have dimQ̄p t
cusp = 1 and dimQ̄p t

cusp,0 = 0.

Proof. (i) By definition of the functor Dcusp, we can describe the tangent space as the

set of pairs of equivalence classes ([ρε, Lε], [ρ
′
ε, L

′
ε]) ∈ t

ord
ρ × t

ord
ρ′ satisfying the conditions

Tr(ρε) = Tr(ρ′ε) and ϑε(Frobp) = ϑ′
ε(Frobp).

By Proposition 1.5.4, a representative of the equivalence class of tordρ can be chosen of the

form (1.37) in the basis (e1,ε, e2,ε) of Q̄p[ε]
2. The matrix of ρε in the basis (e1,ε+µe2,ε, e2,ε)

is 

φ(1 + ελη1) + εµη (1 + ελη1)η + εβ

−εµ(1− φ−1) 1 + εµ(η1 − η)


 ,

hence

Tr(ρε) = 1 + φ+ ε(µ+ φλ)η1 (1.43)

and ϑε : GQp → Q̄p[ε]
× is the unramified character satisfying

ϑε(Frobp) = 1 + εµ(η1 − η)(Frobp) = 1− εµL(φ−1) (1.44)

by Proposition 1.1.6. Similarly, since ρ′ =
[
1 φη′

0 φ

]
=
[
φ−1 η′

0 1

]
⊗ φ, one can describe



tordρ′ ' tord
ρ′⊗φ−1

by simply replacing φ by φ−1 and η by η′ in the above description of tordρ .

Thus, in an appropriate basis of Q̄p[ε]
2, the representation ρ′ε is



(1 + ελ′η1) + εµ′η′ φ((1 + ελ′η1)η

′ + εβ′)

εµ′(1− φ) φ(1 + εµ′(η1 − η
′))


 .

for some λ′, µ′ ∈ Q̄p. Thus, we have

Tr(ρ′ε) = 1 + φ+ ε(λ′ + µ′φ)η1, (1.45)

ϑ′
ε(Frobp) = 1 + εµ′(η1 − η

′)(Frobp) = 1− µ′L(φ)ε. (1.46)

From (1.43), (1.44), (1.45) and (1.46) one sees that

(ρε, ρ
′
ε) ∈ t

cusp ⇐⇒ λ = µ′, µ = λ′ and µL(φ−1) = λL(φ). (1.47)

(ii) By Proposition 1.1.8, L(φ) and L(φ−1) are non-zero, hence the dimension of tcusp is

one. To compute the relative tangent space tcusp,0 it suffices to add to (1.47) the condition

det ρε = φ, which is equivalent to λ+ µ = 0. This equation is linearly independent from

(1.47) provided that L(φ) + L(φ−1) 6= 0. By Proposition 1.1.8, L(φ) and L(φ−1) are

linearly independent over Q̄ if φ is not quadratic; instead, when φ is quadratic one has

L(φ) = L(φ−1) 6= 0. In either case, dimQ̄p t
cusp,0 = 0.

Corollary 1.5.12. We have tordρ = tcusp ⊕ teisρ .

Proof. Let λ, µ be the coordinates of tordρ given in Proposition 1.5.4. On the one hand,

by Proposition 1.5.11, the equation defining tcusp is µL(φ−1) = λL(φ), with L(φ) 6= 0.

On the other hand, by Proposition 1.5.9 the equation defining teisρ is µ = 0.



The Eisenstein deformation ring

Let S be the set containing the places of Q dividing Np and and the place ∞. Denote

by GQ,S the Galois group of the maximal extension of Q unramified outside S.

We show the existence of a non-torsion cohomology class in the Iwasawa cohomology

group H1(GQ,S, κΛφ
±). For n ∈ Z≥1, let κn = κΛ mod Xn; in particular, κ1 = 1. We

have the following [BDP, Prop. 2.9].

Proposition 1.5.13. (i) For every n ∈ Z≥1, we have

H1(GQ,S, κnφ
±) = Λ/(Xn) and H2(GQ,S, κnφ

±) = 0;

(ii) For every n ∈ Z≥1 and 1 ≤ i ≤ 2 we have

Hi(GQ,S, κΛφ
±)⊗Λ Λ/(X

n)
∼
−→ Hi(GQ,S, κnφ

±).

In particular, H1(GQ,S, κΛφ
±) = Λ and H2(GQ,S, κΛφ

±) = 0.

Proof. (i) There is a short exact sequence of Λ[GQ,S]-modules

0→ κn−1φ
± ·X
−→ κnφ

± → φ± → 0 (1.48)

which yields the exact sequence in cohomology for i = 1, 2

Hi−1(GQ,S, φ)→ Hi(GQ,S, κn−1φ
±)

·X
−→ Hi(GQ,S, κnφ

±)→ Hi(GQ,S, φ
±). (1.49)

by [Nek06, Prop.3.5.1.3]. For i = 2 an induction on n shows that Hi(GQ,S, κnφ
±) = 0

for every n, since H2(GQ,S, φ) = 0 by Lemma 1.5.2. For i = 1, it follows that there is an



exact sequence of Λ-modules

0→ H1(GQ,S, κn−1φ
±)

·X
−→ H1(GQ,S, κnφ

±)→ H1(GQ,S, φ
±)→ 0.

Assume by induction that H1(GQ,S, κn−1φ
±) ' Λ/(Xn−1). Since the map H1(GQ,S, κn−1φ

±)→

H1(GQ,S, κnφ
±) is given by multiplication by X, it follows that H1(GQ,S, κnφ

±)⊗Λ/(X) '

H1(GQ,S, φ
±) ' Λ/(X). In particular, by Nakayama’s lemma, H1(GQ,S, κnφ

±) is gener-

ated by one element, and therefore, isomorphic to Λ/(Xn).

(ii) There is an exact sequence of Λ[GQ,S]-modules

0→ κΛφ
± ·Xn

−−→ κΛφ
± → κnφ

± → 0.

Using the result (i), we obtain an exact sequence in cohomology

0→ H1(GQ,S, κΛφ
±)

·Xn

−−→ H1(GQ,S, κΛφ
±)→ H1(GQ,S, κnφ

±)

→ H2(GQ,S, κΛφ
±)

·Xn

−−→ H2(GQ,S, κΛφ
±)→ 0.

Applying Nakayama’s Lemma in the case n = 1, we deduce that H2(GQ,S, κΛφ
±) = 0

and H1(GQ,S, κΛφ
±) = 0 is generated by one element. Since H1(GQ,S, κΛφ

±)⊗Λ/(Xn) '

H1(GQ,S, κnφ
±) ' Λ/(Xn) for every n, it follows that H1(GQ,S, κΛφ

±) = 0 is isomorphic

to Λ.

The existence of this cohomology class determines the structure of the deformation

ring Reis
ρ [BDP, Lemma 3.5].

Corollary 1.5.14. The morphism Λ→ Reis
ρ and Λ→ Reis

ρ′ are isomorphisms.

Proof. By Proposition 1.5.13, there exists a cocycle ηΛ ∈ Z1(GQ,S, κΛφ) such that [ηΛ ⊗



1Q̄p ] = [η] ∈ H1(Q, φ). Up to modify ηΛ by a coboundary, we can assume ηΛ ⊗ 1Q̄p = η.

Then ρΛ =
[
κΛφ ηΛ
0 1

]
in the basis e1,Λ, e2.Λ of Λ2 is a lift of ρ to Λ. The pair (ρΛ, 〈e1,Λ〉)

induces a morphism Reis
ρ → Λ. Since det ρΛ = κΛφ, the morphism Reis

ρ → Λ is Λ-linear.

In particular, the structural morphism Λ → Reis
ρ is injective. To conclude that it is

surjective, it suffices to notice that by Proposition 1.5.9 the induced morphism on the

tangent spaces is injective.

Remark 1.5.15. The proof that Reis
ρ is isomorphic to Λ via the structural morphism is

purely Galois theoretic. We will see that the same is true for the cuspidal deformation

ring Rcusp. However, in order to show this, we will use some modular input. Indeed, our

computation on the tangent space implies that the Krull dimension of Rcusp is at most

one, but it is not a priori clear that Rcusp is not an artinian ring. This is because any

infinitesimal pair of lifts of Λ to the tangent space does not a priori lift to Λ. A Λ-adic

lift of the pair (ρ, ρ′) will arise from the representation attached to a Λ-adic family of

cuspforms.



Chapter 2

The Modularity Theorems

The aim of this chapter is proving a modularity theorem for a family of Galois represen-

tations arising from the deformation ring Rcusp. More precisely, we prove the existence of

an isomorphism between Rcusp and the Hecke algebra given by the completed local ring

of the eigencurve at the point corresponding to an irregular weight one Eisenstein series,

denoted by Tcusp. This type of result is an example of an R = T theorem, an isomor-

phism between a deformation ring R and a Hecke algebra T. Results of this type have

been key steps towards the proof of many groundbreaking theorems, including Fermat’s

Last Theorem.

In this chapter, we follow the approach of [BD16]. A significant difference is that

in our case the existence of a map Rcusp → Tcusp is unclear due to the reducibility

of the representation attached to the Eisenstein series. To construct a map, we use a

method developed by Mazur and Wiles [MW84] to construct two representations GQ →

GL2(Tcusp) with residual representations ρ and ρ′. Via the isomorphism between Rcusp

and Tcusp we show that the cuspidal eigencurve is etale over the weight space.

We then proceed to study the local ring of the eigencurve. In addition to belonging to a

cuspidal Hida family, irregular weight one Eisenstein points are the weight one specializa-
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tion of two Eisenstein families. Using a powerful commutative algebra, Wiles’ Numerical

Criterion, we refine the result Rcusp = Tcusp and obtain an isomorphisms between the

ordinary deformations rings Rord
ρ and Rord

ρ′ , and the local rings of the eigencurve corre-

sponding to the systems of eigenvalues of the Hecke module generated by the cuspidal

family and one Eisenstein family.

Finally, we describe the structure of the completed local ring of the eigencurve, de-

noted by T. We show that T is not Gorenstein; thus, not of complete intersection. In

particular, this provides an example of a height one prime ideal of the ordinary Hida

Hecke algebra such that the localization is not Gorenstein.

2.1 Generalities on the eigencurve

2.1.1 The modular curve and its canonical locus

Let X = X(Γ1(N)) be the proper smooth modular curve over Zp for a prime p - N , and

let Euniv → X be the universal generalized elliptic curve over X with identity section

e : X → Euniv. Let D ⊂ X be the divisor corresponding to the cusps of X. The open

modular curve X \D is a moduli space for elliptic curves E together with an embedding

µN ↪→ E[N ]. Denote by ω the invertible sheaf e∗(Ω1
Euniv/X) on X.

Let Γ = Γ0(p)∩Γ1(N) and letXΓ = X(Γ0(p)∩Γ1(N)) over Zp be the proper semistable

model for the modular curve of level Γ1(N) ∩ Γ0(p). Denote DΓ ⊂ XΓ the divisor of the

cusps. Then XΓ\DΓ parametrizes triples given by an elliptic curve E, with an embedding

µN ↪→ E[N ] and a finite flat subroup H ⊂ E[p] of rank p.

Denote X = Xan
Qp

and XΓ = Xan
Γ,Qp

the analytification of the generic fibers of X and

XΓ respectively. Let ωan be the analytification of the invertible sheaf ω. Forgetting the



p-level structure yields a natural projection of rigid analytic spaces

π : XΓ → X.

Denote Xord, Xord
Γ the ordinary loci of X and Xord. While the ordinary locus Xord is

connected, the ordinary locus Xord
Γ has two connected component, the multiplicative and

etale locus, denoted by Xmult and Xet. The multiplicative locus Xmult
Γ parametrizes elliptic

curves with good ordinary reduction, level Γ1(N)-structure and a subgroup of order p

lifting the kernel of the Frobenius morphism. For v ≥ 0, denote by X(v) (resp. Xmult
Γ (v))

the v-overconvergent neighborhood of Xord (resp. Xmult
Γ (v)). When v is sufficiently small,

the construction of the canonical subgroup by Katz and Lubin [Kat73] yields to a section

of the projection π

scan : X(v)→ Xmult
Γ (v). (2.1)

Denote by Dcan
Γ ⊂ DΓ the image of the divisor D ⊂ Xord under the canonical section scan.

The weight space

Let q = p if p is odd, and let q = 4 if p = 2. Let F be a finite extension of Qp containing

the values of all characters of (Z/NZ)×; let OF be the ring of integers of F . Denote

Z×
p,N = (Z/NZ)××Z×

p and consider the completed group ring

OF ⟦Z
×
p,N⟧ = lim←−

n

OF [(Z/p
nNZ)×].

It comes equipped with a natural universal character Z×
p,N → OF ⟦Z

×
p,N⟧

× sending x to

[x]. By a construction due to Berthelot, one can associate to OF ⟦Z
×
p,N⟧[

1
p
] a rigid analytic

space W over F . The Cp-valued points of the weight space W are in bijection with

the continuous homomorphisms Hom(Z×
p,N ,C

×
p ). We refer to these points as weight-



characters. A weight-character is called classical if it corresponds to a morphism ψ =

(ϕ·χk) : Z
×
p,N → C×

p where ϕ is a finite order character and χk is defined by χk(x) = xk for

k ∈ Z>0; we say that ψ is of weight k and character ϕ. Classical weights are Zariski-dense

in the weight space W.

From the split exact sequence (1.13), there is a canonical isomorphism OF ⟦Z
×
p,N⟧ =

OF [(Z/qNZ)×]⊗OFOF ⟦1+qZp⟧. Since 1+qZp is topologically generated by (1+q) there

is an isomorphism

OF ⟦1 + qZp⟧→ OF ⟦X⟧, [1 + q] 7→ 1 +X.

Thus, there is an isomorphism of rigid analytic spaces

WF =
⊔

ψ∈Hom((Z/qNZ)×,F×)

Wψ

where Wψ is the rigid analytic space associated to OF ⟦X⟧[
1
p
]; in other words, W is the

disjoint union of open unit discs indexed by the characters of (Z/qNZ)×.

The eigencurve and the full eigencurve

For the tame level N = 1, and a prime p > 2, Coleman and Mazur constructed a rigid

analytic space, the eigencurve, whose Cp-valued points are in bijection with overconver-

gent p-adic eigenforms of tame level 1 and finite slope [CM96]. This construction has

since been extended by Buzzard [Buz07] to a much broader class of settings and applies

in particular to arbitrary prime p and tame level N with (N, p) = 1.

Let C and Cfull be the reduced eigencurve and the full eigencurve of level N respec-

tively; they are rigid analytic spaces over Qp, equipped with locally-in-the-domain-finite-

flat maps

w : C→W and wfull : Cfull →W.



The reduced eigencurve is constructed via the spectral theory of the Hecke algebra gen-

erated by the diamond operators, Up and T` for primes ` - Np. In addition to these

operators, Cfull encodes Hecke eigenvalues for operators U` with ` | N . Note that the

eigencurve C is a reduced rigid analytic space (see, for example [Che05, Prop. 3.9]), while

the full eigencurve Cfull is not reduced in general.

Let H be the ring of polynomials over OF ⟦Z
×
p,N⟧ generated by formal variables cor-

responding to the diamond operators 〈d〉 for d ∈ (Z/NZ)×, the Hecke operators Up and

T` for ` prime not dividing Np; let Hfull = H[{U` | ` prime |N}]. By construction of the

eigencurve, there are OF ⟦Z
×
p,N⟧-linear homomorphisms

H→ OC(C) and Hfull → OCfull
(Cfull),

and the image of the T` and Uq under these maps are rigid analytic functions bounded

by 1. There is a commutative diagram

Cfull
π //

wfull
!!

C

w
��

W

that we now describe on Cp-valued points. The Cp-valued points of C and Cfull are in

one-to-one correspondence with systems of Hecke eigenvalues of overconvergent modular

forms with finite slope. For κ ∈ W(Cp), the points of the fiber w−1(κ) (resp. w−1
full(κ))

arise as follows. Let g ∈ M †
κ(N,Cp) be a normalized overconvergent eigenform with q-

expansion g(q) =
∑∞

n=0 an(g)q
n with finite slope, i.e. ap(g) 6= 0. Then g determines a

point yg ∈ C (resp. xg ∈ Cfull), corresponding to the ring homomorphism λg : H → Cp

(respectively λg,full : Hfull → Cp) sending

T` 7→ a`(g), ` - Np and Uq 7→ aq(g), q = p (resp. q|Np)



such that the kernel of OF ⟦Z
×
p,N⟧ → H

λg
−→ Cp (resp. OF ⟦Z

×
p,N⟧ → H

λg,full
−−−→ Cp) is the

ideal corresponding to the weight character κ. Note that the eigenform g is completely

determined by the corresponding point xg ∈ Cfull, but its image in yg ∈ C only accounts

for the Hecke eigenvalues for the good Hecke operators and Up. The map π is locally

finite and surjective.

The ordinary locus Cord of C (resp. Cord
full of Cfull) is the admissible open and closed

subspace characterized by the condition |Up| = 1. By construction of the eigencurve, the

ordinary locus of the eigencurve is isomorphic to the rigid analytic space attached to the

maximal spectrum of the generic fiber of the p-ordinary Hecke algebra of tame level N .

The cuspidal eigencurve Ccusp ↪→ C (resp. C
cusp
full ↪→ Cfull) is a Zariski closed subspace

of C; it is also equidimensional of dimension one [Buz07, Lemma 5.8]. We have

Cord
full = π−1(Cord) and C

cusp
full = π−1(Ccusp).

Remark 2.1.1. The comparison between the Hida Hecke algebra and the ring of analytic

functions over Cord relies on the fact that ordinary modular forms are automatically

overconvergent (see [Pil13, Prop. 6.2]). In particular, this applies to Eisenstein families.

A family of pseudorepresentations

For any classical point yg ∈ Ccusp(Q̄p) corresponding to a normalized eigenform g, there

exists a continuous absolutely irreducible odd representation ρg : GQ → GL2(Qp) unrami-

fied outside Np such that Tr(ρg(Frob`)) is equal to the T`-eigenvalue of g for every ` - Np.

A priori there is no global representation with values in GL2(OC(C)) that p-adically inter-

polates the representations ρg (although one can be constructed over the rigid analytic

functions on the normalization of C (see [CM96, Theorem 5.1.2]).



However, there is an odd two-dimensional pseudorepresentation

TOC(C) : GQ → OC(C)

sending Frob` to T` for every ` - Np [Che14a]. By Chebotarev density theorem, it follows

that TOC(C)⊗k(xg) = Tr(ρg). For every open affinoid subdomain Spm(A) ⊂ C, we obtain

a pseudorepresentations TA : GQ → GL2(A)

2.2 p-adic families of Eisenstein series

Let ψ, ϕ be two Dirichlet characters of coprime conductors Nψ and Nϕ and let k ∈ Z≥3

such that ψ(−1)φ(−1) = (−1)k. Consider Ek(ψ, ϕ) the Eisenstein series of weight k, level

N = NϕNψ and character ϕψ with q-expansion

Ek(ψ, ϕ)(q) = c(ψ)
L(ϕ, 1− k)

2
+

∞∑

n=1

σk,n(ψ, ϕ)q
n,

where σk,n(ψ, ϕ) =
∑

d|n ψ
(
n
d

)
ϕ(d)dk−1 and

c(ψ) =





1, if ψ = 1

0, otherwise

.

Fix a prime p - N . The p-th Hecke polynomial factors as

X2 − ak,p(ϕ, ψ)X + ϕ(p)ψ(p)pk−1 = (X − ψ(p))(X − ϕ(p)pk−1).

Denote

αp = ψ(p) and βp = ϕ(p)pk−1.



The Eisenstein series Ek(ϕ, ψ) is an eigenform for the (classical) Hecke algebra of level

N , in particular for Tp. The p-stabilizations

E
(p)
k (ψ, ϕ)(q) = Ek(ψ, ϕ)(q)− βpEk(ψ, ϕ)(q

p) (2.2)

Ecrit
k (ψ, ϕ)(q) = Ek(ψ, ϕ)(q)− αpEk(ψ, ϕ)(q

p) (2.3)

are eigenforms of level Γ1(N) ∩ Γ0(p) with Up eigenvalues αp and βp respectively.

The stabilization Ecrit
k (ψ, ϕ) is critical, in the sense that its Up-eigenvalue has p-adic

valuation k − 1. By the work of Coleman [Col96], the eigencurve is known to be etale

over the weight space for points corresponding to cuspforms of weight k and slope smaller

than k− 1 regular at p; moreover, those cuspforms are necessarily classical. On the other

hand, many questions related to the smoothness of the eigencurve at points of critical

slope remain open even for Eisenstein critical points. For k ≥ 2 and Eisenstein series of

character ϕ = ψ = 1, this question is addressed in [BC06].

On the other hand, the ordinary p-stabilizations E
(p)
k (ψ, ϕ) can be p-adically interpo-

lated as follows. Much like in the work of Serre [Ser73] for ψ = ϕ = 1, we have that for

k = 1 mod p− 1, the n-th coefficient of the q-expansion of E
(p)
k (ψ, ϕ), given by

σ
(p)
k,n(ψ, ϕ) =

∑

d|n,p-d

ψ
(n
d

)
ϕ(d)dk−1 =

∑

d|n,p-d

ψ
(n
d

)
ϕ(d)⟪d⟫k−1

extends to an analytic functions of k ∈ Zp. Moreover, the arguments of Serre in loc.cit.

show that for ψ = 1, the constant term inherits the same analyticity property, giving rise

to the Kubota-Leopoldt p-adic L-function Lp(ϕωp, s) for s ∈ Zp satisfying the relation

Lp(ϕωp, 1− k) = (1− ϕ(p)pk−1)L(ϕ, 1− k) (2.4)



for every k = 1 mod p− 1. There is a corresponding element ζϕ ∈ OF ⟦X⟧ satisfying

ζϕ((1 + p)k−1 − 1) = Lp(ϕωp, 1− k). (2.5)

We denote Eψ,ϕ the family of Eisenstein series with q-expansion

Eψ,ϕ = c(ψ)
ζϕ
2

+
∑

d|n,p-d

ψ
(n
d

)
ϕ(d)[⟪d⟫] ∈ OF ⟦X⟧⟦q⟧

interpolating the eigenvalues of E
(p)
k (ψ, ϕ) for k = 1 mod (p − 1). Let Wϕψωp be the

connected component of the weight space W for tame level N corresponding to the

character ϕψωp. Then the systems of Hecke eigenvalues of Eψ,ϕ define sections

λψ,ϕ : Wϕψωp → C and λψ,ϕ,full : Wϕψωp → Cfull

of the projections w and wfull. Note that since the C and Cfull are the eigencurves of tame

level N = NψNϕ, π defines an isomorphism between λψ,ϕ,full(Wϕψωp) and λψ,ϕ(Wϕψωp).

With an abuse of notation, we will also refer to the irreducible components of the eigen-

curves C and Cfull given by the images of λψ,ϕ and λψ,ϕ,full as the Eisenstein components

Eψ,ϕ.

2.2.1 Cuspidality and overconvergence

Consider the classical weight 1 Eisenstein series of level N with q-expansion

E1(ϕ, ψ)(q) = E1(ψ, ϕ)(q) = c(ψ)
L(ϕ, 0)

2
+ c(ϕ)

L(ψ, 0)

2
+

∞∑

n=1

σk,n(ψ, ϕ)q
n.



The p-stabilizations

E
(p)
1 (ψ, ϕ)(q) = E1(ψ, ϕ)(q)− ϕ(p)E1(ψ, ϕ)(q

p), (2.6)

E
(p)
1 (ϕ, ψ)(q) = E1(ϕ, ψ)(q)− ψ(p)E1(ϕ, ψ)(q

p), (2.7)

of Up-eigenvalue ψ(p) and ϕ(p) are the weight one specializations of the OF ⟦X⟧-adic

families Eψ,ϕ and Eϕ,ψ respectively. In particular, the irreducible components of the

eigencurve C (resp. Cfull) corresponding to Eψ,ϕ and Eϕ,ψ intersect at weight 1 precisely

when ψ(p) = ϕ(p).

Denote f = E
(p)
1 (ψ, ϕ) and let xf ∈ Cfull(Q̄p) and yf = π(xf ) ∈ C(Q̄p) be the points

corresponding to its systems of Hecke eigenvalues. The constant term of the q-expansion

of the OF ⟦X⟧-adic family Eψ,ϕ at the cusp ∞ is identically zero if ψ 6= 1. If ψ is trivial,

by the interpolation property (2.4), the constant term of the q-expansion at infinity is

Lp(ϕωp, 0), which has a trivial zero whenever ϕ(p) = 1. As a classical form of level

Γ1(N) ∩ Γ0(p), f is not cuspidal, because the constant term of its q-expansion does not

vanish at all cusps. We have, however, the following result [DLR15b, Prop. 1.3].

Proposition 2.2.1. The constant term of the q-expansion vanishes at all cusps in the

Dcan
Γ = Γ0(p)∞ if and only if ϕ(p) = ψ(p).

Following [CM96, Sec. 3.6], we say that a classical form g ∈ Mk(Γ,Cp) is cuspidal-

overconvergent if the constant term of its q-expansion vanishes at all cusps in Dcan
Γ . Given

g a cuspidal-overconvergent form, the pullback of g through scan is cuspidal when viewed

as a p-adic modular form of tame level N . Moreover, if g is a classical eigenform of level

Γ, the pullback of g to X(v) for some v > 0 is also an eigenform as an overconvergent

p-adic modular form.

Corollary 2.2.2. The following are equivalent:

(i) ϕ(p) = ψ(p);



(ii) f is cuspidal-overconvergent;

(iii) The point xf ∈ Cfull (resp. yf ∈ C) belongs to the intersection of the Eisenstein

components Eψ,ϕ and Eϕ,ψ.

We say that f is irregular if the assumptions of the previous corollary are satisfied,

regular otherwise. If f is regular, it is not cuspidal and belongs to a unique Eisenstein

component Eψ,ϕ of C (resp. Cfull). Since the component is the image of λψ,ϕ (resp.

λψ,ϕ,full), the projection w (resp. wfull) is etale at yf (resp. xf ).

Thus, we focus our attention on the irregular case. For simplicity of notation, assume

that ψ = 1 and ϕ = φ, and suppose φ(p) = 1. We denote

T = (OC,yf ⊗F Q̄p)
∧ Tcusp = (OCcusp,yf ⊗F Q̄p)

∧

Tfull = (OCfull,xf ⊗F Q̄p)
∧ T

cusp
full = (OC

cusp
full ,xf

⊗F Q̄p)
∧

where (−)∧ denotes the completion with respect to ideal corresponding to the system

of eigenvalues of f . Note that all these rings belong to the category CQ̄p . Let wf =

w(yf ) ∈ W(Q̄p) be the weight-character of weight one and nebentypus φ, belonging to

the component Wωpφ of the weight space. The completion of (OW,wf ⊗F Q̄p)
∧ with respect

to its maximal ideal is canonically isomorphic to Λ and the rings T, Tcusp, Tfull, T
cusp
full are

thus endowed with a Λ-algebra structure.

Remark 2.2.3. One can assume without loss of generality that ψ is trivial because, for

every representation ρ whose deformation functor is representable, the deformation rings

for ρ and ρ ⊗ ψ are canonically isomorphic [Maz89, Sec.1.3], so all the Galois theoretic

arguments in the previous chapter carry over unchanged.



2.3 Cuspidal Modularity Theorem

2.3.1 Construction of a Galois representation over the cuspidal

Hecke algebra

The aim of this section is to construct a surjective homomorphism Rcusp → Tcusp. We will

later show that this map is an isomorphism. Following the work of Hida, we can construct

an ordinary Galois representation VK over the total fraction field K of Tcusp. We want

to show that there exist two GQ-stable Tcusp-lattices in VK with residual representations

isomorphic to ρ and ρ′. The existence of such lattices is related to the fact that VK is

an irreducible but residually reducible representation. This result can be viewed as a

generalization of Ribet’s lemma. As in [BDP, Prop.3.3], we follow the version [BC06] of

a method due to Mazur and Wiles [MW84].

Proposition 2.3.1. There exists a pair of odd absolutely irreducible Galois representa-

tions ρTcusp , ρ′Tcusp : GQ → GL2(T
cusp) such that

(i) ρTcusp mod mTcusp = ρ and ρ′Tcusp mod mTcusp = ρ′;

(ii) det ρTcusp = det ρ′Tcusp = φκΛ;

(iii) For every prime ` - Np, the representations ρTcusp and ρ′Tcusp are unramified at ` and

Tr(ρTcusp(Frob`)) = Tr(ρ′Tcusp(Frob`)) = T`;

(iv) The representations ρTcusp , ρ′Tcusp are ordinary. The characters ϑTcusp , ϑ′
Tcusp acting on

the unramified quotients satisfy ϑTcusp(Frobp) = ϑ′
Tcusp(Frobp) = Up.

LetK = Frac(Tcusp) be the total fraction field of Tcusp. Denote by pi the minimal prime

ideals of Tcusp and let Ki be the fraction field of Tcusp/pi. We have K =
⊕

iKi. Since

Tcusp is reduced, the map Tcusp → K is injective. It is well-known that a representation

satisfying the above properties can be constructed over K [Hid93, Sec. 7.5].



Lemma 2.3.2. There exists an odd absolutely irreducible two-dimensional representation

ρK =
⊕

ρKi : GQ →
⊕

GL2(Ki) over K satisfying properties (ii), (iii), (iv) of Proposi-

tion 2.3.1.

We denote such representation by VK . Let TTcusp be the trace of ρK ; it coincides

with the pseudorepresentation induced by the global pseudorepresentation over C com-

posed with the morphism OC(C) → Tcusp (in fact, any odd two-dimensional absolutely

irreducible pseudorepresentation over a field is the trace of a representation).

We fix the basis (v−, v+) of VK in which the complex conjugation τ acts as [−1 0
0 1 ] .

Denote by ρ = [ a bc d ] the matrix of of the representation in such basis. Then

a(σ) =
1

2
(TTcusp(σ)−TTcusp(τσ)) d(σ) =

1

2
(TTcusp(σ) +TTcusp(τσ)), (2.8)

so the functions a, d are valued in Tcusp. Similarly, the function X(σ, σ′) = b(σ)c(σ′)

is also valued in Tcusp, since X(σ, σ′) = a(σσ′) − a(σ)a(σ′). Denote by B and C the

Tcusp-submodules of K generated by b(σ) and c(σ) for σ ∈ GQ respectively.

Let J ⊂ mTcusp be an ideal of Tcusp such that the pseudorepresentation TTcusp mod J

is the sum of two characters. Since TTcusp is odd, the two characters must be of different

signature, denoted by ψ± such that ψ±(τ) = ±1. Then TTcusp mod J satisfies the relations



1 1

1 −1






ψ+(σ)

ψ−(σ)


 =




TTcusp(σ)

TTcusp(τσ)


 .

Since



1 1

1 −1


 is invertible in GL2(T

cusp/J), the characters ψ± are uniquely determined

by these relations, hence by (2.8) that

ψ− = a mod J and ψ+ = d mod J



Moreover, since a mod J is a character, it follows that X(σ, σ′) ∈ J for every σ, σ′ ∈ GQ,

so BC ⊂ J . Let R be the Tcusp-subalgebra of M2(K) generated of elements [ a bc d ] such

that a, d ∈ Tcusp, b ∈ B and c ∈ C. For any Tcusp-module M and m ∈ M , denote

by m the image of m in M/JM . It follows from the above discussion that the maps

rB, rC : GQ → (R/J)× defined as

rB(σ) =
[
ā(σ) b̄(σ)

0 d̄(σ)

]
rC(σ) =

[
ā(σ) 0

c̄(σ) d̄(σ)

]
(2.9)

are group homomorphisms. This allows us to define maps

jB : HomTcusp(B/JB,Tcusp/J)→ Z1(Q, ψ−ψ
−1
+ ), jB(f) = ψ−1+ · (f ◦ b̄),

jC : HomTcusp(C/JC,Tcusp/J)→ Z1(Q, ψ+ψ
−1
− ), jC(f) = ψ−1− · (f ◦ c̄).

The maps jB, jC are injective because by definition B/JB and C/JC are generated by

the image of GQ over Tcusp/J . In fact a stronger statement is true. Let [jB] and [jC ]

images of jB and jC in H1(Q, ψ−ψ
−1
+ ) and H1(Q, ψ+ψ

−1
− ) respectively.

Lemma 2.3.3. The maps [jB] and [jC ] are injective.

Proof. Let f be in the kernel of [jB]. This means that jB(f) is a coboundary for the

character ψ−ψ
−1
+ , i.e. jB(f) = λ(1− ψ−ψ

−1
+ ) for some λ ∈ Tcusp/J .

In particular, the restriction of jB(f) to the kernel of ψ−ψ
−1
+ is zero. The kernel of

jB(f) contains the commutator of GQ, and in particular [σ, τ ] for every σ ∈ GQ. A direct

calculation shows that

b([σ, τ ]) = 2 det ρ(σ)−1a(σ)b(σ).

Since 2 det ρ(σ)−1a(σ) ∈ (Tcusp)×, and f(b̄([σ, τ ])) = 0, it follows that f is identically

zero.

Lemma 2.3.4. The Tcusp-modules B and C are free of rank one.



Proof. Let J = mTcusp . By Lemma [BC06, Sec. 2, Lemma 4] B and C are Tcusp-modules

of finite type, because the representations ρj are irreducible. By Lemma 2.3.3 there are

HomTcusp(B/mTcuspB, Q̄p) ↪→ H1(Q, φ)

Since the latter module is one-dimensional over Q̄p, it follows that B/mTcuspB ' Q̄p.

Thus, by Nakayama’s Lemma, B is generated by one element. Denote by b0 = b(σ0) the

generator of B over Tcusp and consider the morphism of Tcusp-modules Tcusp → B sending

1 to b0. The kernel of this map is the annihilator of B. By definition B is a submodule

of K =
⊕

iKi; denote by Bi the image of B in Ki. Let t ∈ Ann(B) be such that its

image in Ki is non-zero. This implies that Bi = 0, which contradicts the fact that ρi is

irreducible. Thus Ann(B) = 0 and B is free of rank one over Tcusp. The same argument

applies to C.

Proof of Proposition 2.3.1. Denote by b0 = b(σ′
0) and c(σ′

0) the generators of B and C

respectively. Consider the bases of K2 given by VB = (v−, b0v+) and VC = (c0v−, v+).

The representation ρK in these bases is given by



a bb−10

cb0 d


 and




a bc0

cc−1
0 d


 (2.10)

respectively. These representations take value in GL2(T
cusp) because a, d,X are valued

in Tcusp and b0, c0 are the generators of B and C respectively. Thus, the Tcusp-lattices

M = 〈v−, b0v+〉 and M
′ = 〈c0, v+〉 are GQ-stable. By construction the reduction modulo

mTcusp of the representation
[

a bb−10
cb0 d

]
is upper triangular with non-zero upper right entry.

In fact, by Lemma 2.3.3, b̄b̄−10 defines a non-trivial extension of 1 by φ. Since H1(Q, φ)

is one-dimensional, [b̄b̄−10 ] is a non-scalar multiple of [η]. Both η and b̄b̄−10 vanish when

evaluated at τ , so b̄b̄−10 is a scalar multiple of τ . Thus, up to multiplying b0v+ by a unit



of Tcusp, we can assume that the reduction of the representation in the basis (v−, b0v+)

is equal to ρ. We denote such representation by ρTcusp . Similarly, up to replacing c0v−

by a multiple in Tcusp, we obtain a basis (c0v−, v+) of M ′ assume that the reduction of
[

a cc0
bc−1

0 d

]
is ρ′. We denote this representation by ρ′Tcusp . This completes the proof of the

first two claims.

It remains to show that ρTcusp and ρ′Tcusp are ordinary. We will show this for ρTcusp ,

adapting an argument in [BD16]. The representation VK is ordinary, i.e. it admits a

filtration of K[GQp ]-modules

0→ V sub
K → VK → V quo

K → 0,

where V sub
K and V quo

K are free rank one K-modules and the action of GQp on the V quo
K is

given by the unramified character ϑTcusp by Lemma 2.3.2.

Denote by

M sub = V sub
K ∩M and Mquo = Im(M→ Vquo

K ).

There is an exact sequence of Tcusp[GQp ]-modules

0→M sub →M →Mquo → 0 (2.11)

and GQp acts on Mquo through ϑTcusp . Since M sub ⊗ K = V sub
K and Mquo ⊗ K = V quo

K ,

the modules M sub and Mquo are generically of rank one; it suffices to show that they

are free over Tcusp. Tensoring with Tcusp/mTcusp yields a surjective map M/mTcuspM →

Mquo/mTcuspMquo. If Mquo/mTcuspMquo is two-dimensional over Q̄p, the above map is an

isomorphism of Q̄p[GQp ]-module, contradicting the fact that the residual representation

is isomorphic to ρ. Hence, by Nakayama’s Lemma, the module Mquo is generated by one



element, and since it’s generically of rank one, it is free of rank one. Since the sequence

of 2.11 is split as a sequence of Tcusp-modules, M sub is also projective, hence free because

Tcusp is local.

We record for later use a refinement of the previous result. The representations ρTcusp

and ρ′Tcusp can be extended to an affinoid neighborhood of f on the cuspidal eigencurve.

Proposition 2.3.5. There exists an affinoid neighborhood SpmA of f in Ccusp and a

representation ρA : GQ → GL2(A) such that

Tr(ρA) = TA.

Proof. Fix an affinoid neighborhood Spm(A) of the cuspidal eigencurve Ccusp containing

f and let L be the ring of fractions of A. Denote by qj the minimal prime ideals of A, and

Lj be the fraction field of A/qj, so that L =
⊕

j Lj and A ↪→ L because A is reduced. For

every j we obtain by composition with A→ Lj a pseudorepresentation TLj which is odd

and absolutely irreducible because the specialization of TA (the pseudorepresentation

obtained by restricting TOC(C) to Spm(A)) at classical weights on Spm(A) is odd and ab-

solutely irreducible. Since Lj is a field, there exists a representation ρLj : GQ → GL2(Lj)

such that Tr(ρLj) = TLj . Denote VL = L2 with the action of GQ given by ρL. Since ρL

is odd, there exists a basis (v−, v+) of VL given by eigenvectors for the action of τ . Let

[ a bc d ] : GQ → GL2(L) be the matrix of the representation in the basis (v−, v+) and let B

(resp. C) be the A-submodules of L generated by the b(g) (resp. c(g)) for g ∈ GQ. The

same argument as in the proof of Proposition 2.3.1 then shows that the localization of

B (resp. C) at the maximal ideal corresponding to f) is free of rank one. Thus, again

by the same argument, we can conclude that there exists a free submodule MA in VL of

rank two stable under the action of GQ.



2.3.2 Modularity Theorem for the cuspidal Hecke algebra

From the previous theorem, we obtain a pair of ordinary lifts (ρTcusp , ρ′Tcusp) of (ρ, ρ′) to

Tcusp that by construction have the same determinant, trace and unramified quotient,

because they are given by different choices of Tcusp-lattices in the same VK . The pair

corresponds to a unique morphism

ϕcusp : Rcusp → Tcusp.

We show that ϕcusp is an isomorphism [BDP, Thm 3.4].

Theorem 2.3.6. (i) The map ϕcusp is a Λ-linear isomorphism.

(ii) Tcusp is etale over Λ.

Proof. The map ϕcusp is Λ-linear because det ρTcusp = det ρ′Tcusp = φκΛ is the character

induced by the universal character of Λ through the structural morphism Λ → Tcusp by

Proposition 2.3.1. Moreover,

ϕcusp(TrρRord(Frob`)⊗ 1) = T`, ` - Np and ϕcusp(ϑRord(Frobp)⊗ 1) = Up,

which shows that ϕcusp is surjective. Since Tcusp has Krull dimension one, this implies

that Rcusp has Krull dimension greater than or equal to one. By Proposition 1.5.11, the

tangent space of Rcusp is one-dimensional, which implies that Rcusp is isomorphic to the

ring of power series in one variable over Q̄p. Since ϕ
cusp is a closed immersion and Tcusp

has Krull dimension one, it follows that ϕcusp is an isomorphism. This concludes the

proof of (i). By Proposition 1.5.11, the map Λ → Tcusp induces an isomorphism on the

tangent spaces, which implies that it is an isomorphism since Λ and Tcusp are both rings

of power series in one variable over Q̄p. Since ϕ
cusp is an isomorphism, this shows (ii).



Corollary 2.3.7. The eigencurve C has a unique cuspidal component passing through f .

The projection of this component to the weight space is etale.

Denote πcusp : Tcusp → Λ the inverse of the structural morphism Λ→ Tcusp.

Corollary 2.3.8. The morphism πcusp satisfies the relations

πcusp(T`) = 1 + φ(`) +
logp(`)

logp(1+q)

(
L(φ−1)

L(φ−1)+L(φ)
φ(`) + L(φ)

L(φ−1)+L(φ)

)
X mod X2, (2.12)

πcusp(Up) = 1− L(φ)L(φ−1)

logp(1+q)(L(φ−1)+L(φ))
X mod X2, (2.13)

for every prime ` - Np.

Proof. The composition πcusp ◦ϕcusp : Rcusp → Λ corresponds to a pair of representations

(ρΛ, ρ
′
Λ) : GQ → Λ with determinant det ρΛ = det ρ′Λ = φκΛ, because π

cusp ◦ ϕcusp is Λ-

linear. Let (ρΛ/(X2), ρ
′
Λ/(X2)) be the reduction of (ρΛ, ρ

′
Λ) modulo the ideal (X2); after

identifying Λ/(X2) with Q̄p[ε] via X 7→ ε, this yields an element of the tangent space

tcusp. Since κΛ = 1 + X
logp(1+q)

η1 mod X2 by Lemma 1.2.2, the pair (ρΛ/(X2), ρ
′
Λ/(X2)) can

be described as in Proposition 1.5.11 with

λ = L(φ−1)
(L(φ)+L(φ−1)) logp(1+q)

and µ = L(φ)
(L(φ)+L(φ−1)) logp(1+q)

. (2.14)

It follows that

TrρΛ(Frob`) = 1 + φ(`) +
logp(`)

logp(1+q)

(
L(φ−1)

L(φ−1)+L(φ)
φ(`) + L(φ)

L(φ−1)+L(φ)

)
X mod X2,

ϑΛ(Frobp) = 1− L(φ)L(φ−1)

logp(1+q)(L(φ−1)+L(φ))
X mod X2,

which proves the desired relations.

Remark 2.3.9 (A residually semisimple lattice for the cuspidal representation). The

cuspidal deformation ring Rcusp is a discrete valuation ring. It follows from Proposition



1.5.11 that the image of the reducibility ideal Iredρ in Rcusp is contained in the square

of the maximal ideal of Rcusp. Adapting the arguments in Proposition 2.3.1, one can

choose a lattice for the cuspidal representation such that B,C ⊂ (X). In particular, the

corresponding residual representation is semisimple and the decomposition group at p

acts trivially. Pick any line L ⊂ Q̄2
p which is not stable under the action of GQ as in

[CE05]. An alternative approach to constructing a deformation ring corresponding to

Tcusp would be to consider the functor classifying equivalence classes of pairs of (ρA, LA)

were ρA is an ordinary lift of 1⊕ φ and LA is line lifting L such that LA is the ordinary

filtration. One can show that deformation functor is representable and its universal ring

is isomorphic to Rcusp by computing its tangent space.

2.4 Ordinary Modularity Theorem

Recall that T is the completed local ring of the eigencurve at the point corresponding to f .

There is a unique cuspidal component of the eigencurve passing through f , corresponding

to a minimal prime ideal pcusp. In addition to it, there are two minimal prime ideals

corresponding to the Eisenstein components of the eigencurve passing through f , given

by the system of eigenvalues of the Λ-adic forms E1,φ and Eφ,1. Denote peis
1,φ and peisφ,1 the

kernels of morphisms πeis
1,φ, π

eis
φ,1 : T → Λ defined by

πeis
1,φ(T`) = 1 + φ(`)[⟪`⟫], ` - Np, πeis

1,φ(Up) = 1 (2.15)

πeis
φ,1(T`) = φ(`) + [⟪`⟫], ` - Np, πeis

φ,1(Up) = 1. (2.16)



Lemma 2.4.1. The morphisms πeis
1,φ, π

eis
φ,1 : T → Λ satisfy the relations

πeis
1,φ(T`) = 1 + φ(`) +

logp(`)

logp(1 + q)
φ(`)X mod X2,

πeis
φ,1(T`) = 1 + φ(`) +

logp(`)

logp(1 + q)
X mod X2

for every prime ` - Np and πeis
1,φ(Up) = πeis

φ,1(Up) = 1.

Proof. This follows by formulas (2.15) and the fact that ⟪`⟫ ∈ 1 + qZp is viewed as an

element of Λ× via the character 1 + qZp → Λ× determined by (1 + q) 7→ (1 +X).

Denote Teis
1,φ = T/peis

1,φ and Teis
φ,1 = T/peisφ,1. There is a Λ-algebra morphism

(πeis
1,φ, π

eis
φ,1, π

cusp) : T → Λ× Λ× Λ, (2.17)

which is injective because T is reduced, since C is reduced. Thus, determining the struc-

ture of T as a Λ-module amounts to computing the image of this morphism.

Lemma 2.4.2. There exists an indecomposable reducible representation ρTeis
1,φ

: GQ →

GL2(T
eis
1,φ) (resp. ρ′

Teis
φ,1

: GQ → GL2(T
eis
φ,1)) unramified outside Np such that ρTeis

1,φ
mod

m
Teis
1,φ

= ρ (resp. ρ′) and TrρTeis
1,φ

(Frob`) = T` (resp. Trρ
′
Teis
φ,1

(Frob`) = T`) for every ` - Np.

Moreover, the quotient is a one-dimensional representation of GQ unramified at p, on

which GQ acts through a character satisfying ϑTeis
1,φ

(Frobp) = Up (resp. ϑ
′
Teis
φ,1

(Frobp) = Up).

Proof. By Corollary 1.5.14, there is an isomorphism Reis
ρ → Λ, yielding a deformation

of ρΛ : GQ → Reis
ρ such that the semisimplification is ρssΛ = 1 + φκΛ. Composing this

map with the structural morphism Λ → Teis
1,φ and comparing with (2.15) we obtain the

desired result. Similarly, we obtain a representation valued in Teis
φ,1 by composing the map

Reis
ρ′ → Λ with the structural morphism Λ→ Teis

φ,1.



The lemma yields Λ-linear isomorphisms ϕeis
ρ : Reis

ρ → Teis
1,φ and ϕeis

ρ′ : R
eis
ρ′ → Teis

φ,1. De-

note Tord
ρ and Tord

ρ′ the images of T in Λ×Λ through the maps (πeis
1,φ, π

cusp) and (πeis
φ,1, π

cusp)

respectively. We have the following result [BDP, Prop. 4.2]

Lemma 2.4.3. (i) There are isomorphisms

Tord
ρ ' Teis

1,φ ×Q̄p T
cusp ' Λ×Q̄p Λ and Tord

ρ′ ' Teis
φ,1 ×Q̄p T

cusp ' Λ×Q̄p Λ.

(ii) There are surjective Λ-algebras morphisms ϕord
ρ : Rord

ρ → Tord
ρ and ϕord

ρ′ : Rord
ρ′ → Tord

ρ′ .

Proof. (i) Since T is a local ring with maximal ideal defined as the kernel of the morphism

T → Q̄p sending T` to a`(f), every prime ideal is contained in the kernel of this map,

thus Tord
ρ ⊂ Λ×Q̄p Λ. By Corollary 2.3.8 and Lemma 2.4.1, we can find a pair (a, b) in the

image of Tord
ρ in Λ×Q̄p Λ such that a 6= b mod (X2). Since a− b ∈ (X) \ (X2), it is easy

to see that (0, X) =
(
b−a
X

)−1
((a, b) − (a, a)) is in the image of Tord

ρ and thus to conclude

that the image is isomorphic to Λ×Q̄p Λ.

(ii) We have isomorphisms Reis
ρ → Teis

1,φ and Rcusp → Tcusp. Composing with the pro-

jections of Rord
ρ onto Reis

ρ and Rcusp, we obtain a map Rord
ρ → Teis

1,φ ×Q̄p T
cusp, which is

isomorphic to Tord
ρ . Denote ϕord

ρ : Rord
ρ → Tord

ρ . It is Λ-linear because all the morphisms

above are and surjective because ϕord
ρ (Frob`) = T` and ϑ

ord
ρ (Frobp) = Up.

Remark 2.4.4. It follows that the Λ-algebra Tord
ρ is isomorphic to Λ⟦T ⟧/(T (X − T )).

In particular, it is a quotient of a ring of polynomials in one variable over Λ modulo the

ideal generated by one element, so it is of complete intersection.

Remark 2.4.5. Although Rord
ρ admits quotients Reis

ρ and Rcusp, it is not a priori clear

that the map Rord
ρ → Reis

ρ ×Q̄pR
cusp is injective, because the Krull dimension of the local

ring Rord
ρ might be two. Even if the Krull dimension is one, Rord

ρ might have more



than one irreducible component. We show that this situation does not arise and that

Rord
ρ → Reis

ρ ×Q̄pR
cusp is an isomorphism in Corollary 2.4.10.

We wish to prove that the map ϕord
ρ is an isomorphism of complete intersection Λ-

algebras. We invoke a version of Wiles’ Numerical Criterion due to Lenstra, which states

the following.

Theorem 2.4.6 (Wiles’ Numerical Criterion). Let ϕ : R → T be a surjective homo-

morphism of local Λ-algebras. Suppose that T is finite and flat as Λ-module and let

πT : T → Λ be a Λ-algebra homomorphism. Let pT = ker πT , pR = ker(πT ◦ ϕ) and

assume that ηT = πT (AnnT(pT )) 6= 0. Then

lengthΛ(pR/p
2
R) > lengthΛ(Λ/ηT )

and the equality holds if and only if ϕ is an isomorphism of relative complete intersection

rings over Λ.

We wish to apply the above criterion to the following setup. Let R = Rord
ρ , T = Tord

ρ

and ϕ = ϕord
ρ . Consider the diagram

Rord
ρ

ϕord
ρ

//

πeis
1,φ◦ϕ

ord
ρ   

Tord
ρ

πeis
1,φ~~

Λ

and let πT = πeis
1,φ. By Lemma 2.4.3, there is an isomorphism (πeis

1,φ, π
cusp) : Tord

ρ → Λ×Q̄pΛ,

so AnnTord
ρ
(ker πeis

1,φ) = ker πcusp = ((X, 0)) and ηT = πeis
1,φ(ker π

cusp) = (X). Thus, by

Theorem 2.4.6, in order to show that ϕord
ρ is an isomorphism, it suffices to show that

lengthΛ(pR/p
2
R) = 1. The morphism πeis

1,φ ◦ ϕ
ord
ρ factors through the quotient Reis

ρ of Rord
ρ .

Since ϕeis
ρ : Reis

ρ → Teis
1,φ is an isomorphisms, the ideal pR is equal to the kernel of the



projection Rord
ρ → Reis

ρ , which is by construction the ideal of Rord
ρ

Cord
ρ = 〈c(σ) | σ ∈ GQ〉

where ρRord
ρ

= [ a bc d ] is the universal ordinary representation in a basis e1,Rord
ρ
, e2,Rord

ρ
such

that 〈e1,Rord
ρ
〉 is the ordinary filtration. We have the following result [BDP, Prop. 4.9].

Proposition 2.4.7. Cord
ρ /Cord,2

ρ is a torsion Λ-module of length one.

Proof. Since Cord
ρ is a Rord

ρ -module of finite type, Cord
ρ /Cord,2

ρ is a Rord
ρ /Cord

ρ ' Λ-module

of finite type as well. Thus, it suffices to show that for every n ≥ 1

dimQ̄p HomΛ(C
ord
ρ /Cord,2

ρ , Λ/(Xn)) = 1.

Indeed, for n = 1, the statement implies that dimQ̄p C
ord
ρ ⊗ Rord

ρ /mRord
ρ

= 1 and hence by

Nakayama’s Lemma Cord
ρ /Cord,2

ρ is generated by one element over Λ. Then

HomΛ(C
ord
ρ /Cord,2

ρ , Λ/(Xn)) ' Λ/(Xn,AnnΛ(C
ord
ρ /Cord,2

ρ ))

and the claim follows. In the above basis, the representation induced by ρRord
ρ

on Rord
ρ /Cord

ρ '

Λ is ρΛ =
[
φκΛ ηΛ
0 1

]
and the restriction of c to GQp is identically zero. Thus, we obtain a

Λ-linear morphism

jCord
ρ

: HomΛ(C
ord
ρ /Cord,2

ρ , Λ/(Xn))→ ker(Z1(Q, (φκn)
−1)→ Z1(Qp, κ

−1
n )).

The morphism jCord
ρ

is injective. Thus, the dimension over Q̄p of the right hand side gives

an upper bound for the dimension of HomΛ(C
ord
ρ /Cord,2

ρ , Λ/(Xn)).

Lemma 2.4.8. For every n ∈ Z≥1, we have

(i) H1(GQ,S, φ
±κ−1n ) = Λ/(Xn) and H2(GQ,S, φ

±κ−1n ) = 0;



(ii) H1(Qp, κ
−1
n ) = Λ/(Xn)⊕ Q̄p and H2(Qp, κ

−1
n ) = 0;

(iii) the map H1(GQ,S, φ
±κ−1n )→ H1(Qp, κ

−1
n ) is injective.

Proof. The proof of (i) is identical to the proof of Proposition 1.5.13.

For (ii), by local Tate duality, for every m ∈ Z≥1, H
2(Qp,Z/p

mZ) is the Q/Z-dual to

H0(Qp, µpm) = 0. Thus, H2(Qp, Q̄p) = 0. There is an exact sequence of Λ[GQp ]-modules

0→ κ−1n−1
·X
−−→ κ−1n → Q̄p → 0 (2.18)

inducing a long exact sequence in cohomology from which one easily deduces by induction

on n that H2(Q, κ−1n ) = 0 for every n ∈ Z≥1. From the exact sequence of Λ[GQp ]-modules

0→ κ−1Λ
·Xn

−−−→ κ−1Λ → κ−1n → 0, (2.19)

we obtain a long exact sequence in cohomology

Hi−1(Qp, κ
−1
n )→ Hi(Qp, κ

−1
Λ )

·Xn

−−−→ Hi(Qp, κ
−1
Λ )→ Hi(Qp, κ

−1
n )→ Hi+1(Qp, κ

−1
Λ ) (2.20)

for i = 1, 2. Since H2(Qp, Q̄p) = 0, from the exact sequence above for n = 0 and

i = 2 we get that H2(Qp, κ
−1
Λ ) ⊗Λ Q̄p ' H2(Qp, Q̄p) = 0. As a consequence, the exact

sequence above for i = 1 implies that H1(Qp, κ
−1
Λ ) ⊗ Λ/(Xn) ' H1(Qp, κ

−1
n ) for every

n ∈ Z≥1. In particular, H1(Qp, κ
−1
Λ ) ⊗ Q̄p ' H1(Qp, Q̄p), which has dimension two over

Q̄p, so H1(Qp, κ
−1
n ) is generated by two elements over Λ for every n. From the short exact

sequence (2.18), we obtain an exact sequence

0→ H0(Qp, Q̄p)→ H1(Qp, κ
−1
n−1)

·X
−→ H1(Qp, κ

−1
n )→ H1(Qp, Q̄p)→ 0.

for every n ∈ Z≥1, which implies that dimQ̄p H
1(Qp, κ

−1
n−1) = n + 1 for every n. Hence



H1(Qp, κ
−1
Λ ) ' Λ⊕ Q̄p and the second statement follows.

It remains to show (iii). Denote by resp,n : H
1(GQ,S, φ

±κ−1n )→ H1(Qp, κn) the restric-

tion map, for n ∈ Z≥1. The map resp,1 is injective. For n ∈ Z>1, the exact sequence

(2.18) gives rise to a commutative diagram

0 // H1(GQ,S, φ
±κ−1n−1)

·X //

resp,n−1
��

H1(GQ,S, φ
±κ−1n ) //

resp,n

��

H1(GQ,S, φ
±) //

resp,1

��

0

H0(Qp, Q̄p)
δ0 // H1(Qp, κ

−1
n−1)

·X // H1(Qp, κ
−1
n ) // H1(Qp, Q̄p) // 0

(2.21)

where the horizontal arrows are exact. For n = 2, the diagram above shows that it

suffices to verify Im(resp,1) ∩ Im(δ0) = 0 because resp,1 is injective. The image of resp,1

is the restriction of ηφ± to GQp . For λ ∈ Q̄p = H0(Qp, Q̄p) the map δ0 is given by

δ0(λ) = λ
X
(1−κΛ) =

λ
logp(1+q)

η1 by Lemma 1.2.2; thus the image of δ0 is the restriction of

η1 to GQp . Since (ηφ±−η1)(Frobp) = L(φ∓) 6= 0 by Proposition 1.1.8, it follows that resp,2

is injective. For n ≥ 2 the claim follows from the diagram above by induction on n, since

the injectivity of resp,n−1 for n > 2 automatically implies that Im(δ0) ∩ Im(resp,n−1) = 0

because H1(GQ,S, φ
±κ−1n−1) ' Λ/(Xn−1) and H1(Qp, κ

−1
n−1) ' Λ/(Xn−1)⊕ Q̄p.

From the Lemma, it follows that for every n ∈ Z≥1,

ker(Z1(GQ,S, (φκn)
−1)→ Z1(Qp, κ

−1
n )) = ker(B1(GQ,S, (φκn)

−1)→ B1(Qp, κ
−1
n ))

Since B1(GQ,S, (φκn)
−1) = (1 − φ−1κ−1n )Λ/(Xn) and B1(Qp, κ

−1
n ) ' Λ/(Xn−1) and the

map sends generator to generator, the kernel is isomorphic to Q̄p. It follows that the

dimension over Q̄p of HomΛ(C
ord
ρ /Cord,2

ρ , Λ/(Xn)) is at most one for every n ∈ Z≥1, and

in fact the equality holds because Cord
ρ is non zero.

Applying Wiles’ Numerical Criterion in our setting yields the following result.



Theorem 2.4.9. The map ϕord
ρ : Rord

ρ → Tord
ρ (resp. ϕord

ρ′ : Rord
ρ′ → Tord

ρ′ ) is a Λ-algebra

isomorphism.

From this we can deduce some consequences about the ring Rord
ρ .

Corollary 2.4.10. The ring Rord
ρ (resp. Rord

ρ′ ) is a Λ-algebra of Krull dimension one and

of complete intersection. Moreover, Rord
ρ = Reis

ρ ×Q̄p R
cusp (resp. Rord

ρ′ = Reis
ρ′ ×Q̄p R

cusp).

2.5 Structure of the completed local ring of the eigen-

curve

We wish to determine the structure of the Hecke algebra T over Λ. Denote by T(p) the

Λ-subalgebra of T generated by the Hecke operators T` for ` - Np; clearly T = T(p)[Up].

It suffices to determine the image of T and T(p) under the (injective) morphism (2.24).

Denote

S = Λ×Q̄p Λ×Q̄p Λ = {(a, b, c) ∈ Λ× Λ× Λ | a(0) = b(0) = c(0)}

S(p) = {(a, b, c) ∈ S | L(φ−1)
∂a

∂X
(0) + L(φ)

∂b

∂X
(0) = (L(φ) + L(φ−1))

∂c

∂X
(0)}.

We determine the structure of T and T(p) as Λ-algebras [BDP, Prop. 5.1].

Theorem 2.5.1. There are isomorphisms of Λ-algebras

T(p) ' S(p) and T ' S.

Proof. The image of the map (πeis
1,φ, π

eis
φ,1, π

cusp) is contained in S, because T has a unique

maximal ideal. For every prime ` - Np, Corollary 2.3.8 and Lemma 2.4.1 yield the



congruence

(πeis
1,φ, π

eis
φ,1, π

cusp)(T`)− 1− φ(`) =
logp(`)

logp(1+q)

(
φ(`)X,X, (φ(`)L(φ

−1)+L(φ))X

L(φ−1)+L(φ)

)
mod X2

The image of T(p) is contained in S(p). Since X and (πeis
1,φ, π

eis
φ,1, π

cusp)(T`) − 1 − φ(`)

generate mS(p)/m2
S(p) over Q̄p, this shows that the image of T(p) is equal to S(p). Since the

ring T is T(p)[Up], it remains to compute the image of Up. We have

(πeis
1,φ, π

eis
φ,1, π

cusp)(Up)− 1 = (0, 0,− L(φ)L(φ−1)

logp(1+q)(L(φ−1)+L(φ))
X) mod X2

Thus, we see that X, (πeis
1,φ, π

eis
φ,1, π

cusp)(T`) − 1 − φ(`) and (πeis
1,φ, π

eis
φ,1, π

cusp)(Up) − 1 span

mS/m
2
S, so the image of T is equal to S.

Remark 2.5.2 (Up operator and pseudorepresentations). The existence of an isomor-

phism Rord
ρ ' Tord

ρ (resp. Rord
ρ′ ' Tord

ρ′ ) shows, in particular, that the map R
ps
1+φ → Tord

ρ is

surjective, i.e. that the Hecke algebras Tord
ρ and Tord

ρ′ are generated by traces of represen-

tations. The pseudorepresentation TTcusp induces a Λ-equivariant morphism R
ps
1+φ → T.

By Chebotarev density Theorem, the image of Rps
1+φ in T is generated by the T` operators

for infinitely many primes `, so it is equal to T(p). As a consequence of Theorem 2.5.3 , we

see that the Hecke algebra T is not generated by traces of representations. In geometric

terms, this means that the map from the eigencurve to the pseudodeformation space is

not (locally) a closed immersion, despite the fact that for each irreducible component it

is. This feature is specific to the irregular weight one setting; it was observed by Calegari

and Specter [CS] and motivated the definition of ordinary determinants in loc.cit.



2.5.1 Ring-theoretic properties of the Hecke algebra

We now examine in more detail the algebraic properties of the rings T(p) and T, describing

them as quotients of rings of formal power series. These characterizations are not at

all canonical but useful in order to determine regularity properties of the rings [BDP,

Cor.5.3].

Theorem 2.5.3. (i) The ring T(p) is isomorphic to Λ⟦T ⟧/(T (T−X)(T− L(φ−1)

L(φ−1)+L(φ)
X))

as a Λ-algebra. In particular, T(p) is of complete intersection but not regular.

(ii) The ring T is isomorphic to Λ⟦T1, T2⟧/(T1T2, T1(X −T1), T2(X −T2)). In particular,

T is Cohen-Macaulay, but not Gorenstein.

Proof. (i) By Theorem 2.5.3, T(p) is isomorphic to S(p) as a Λ-algebra. Since the tangent

space of S(p) is generated by (X,X,X) and (X, 0, L(φ−1)

L(φ−1)+L(φ)
X) there is a surjective map

Λ⟦T ⟧→ S(p) sending T to (X, 0, L(φ−1)

L(φ−1)+L(φ)
X) with kernel generated by T (T −X)(T −

L(φ−1)

L(φ−1)+L(φ)
X). In particular, T(p) is the quotient of a regular ring by the ideal generated

by a non-zero divisor, so T(p) is of complete intersection. It is not regular because it is

not a domain.

(ii) By Theorem 2.5.3, the ring T is isomophic to S. The maximal ideal of S is gener-

ated by (X,X,X), (X, 0, 0), and (0, 0, X), thus there is a surjective Λ-algebra morphism

Λ⟦T1, T2⟧ → S sending T1 7→ (X, 0, 0) and T2 7→ (0, X, 0) with kernel ((T1T2, T1(X −

T1), T2(X − T2)). In particular, S has codimension 2 in the regular ring Λ⟦T1, T2⟧, hence

by a theorem of Serre [Eis04, Corollary 21.20], it is Gorenstein if and only if it is of

complete intersection. Thus, it suffices to show that S is not of complete intersection.

Consider the triple (x1, x2, x3) = ((X, 0, 0), (0, X, 0), (0, 0, X)) of generators of mS. De-

note by K•(x1, x2, x3) the Koszul complex of the free S-module M = Su1 ⊕ Su2 ⊕ Su3,

so that Kr(x1, x2, x3) =
∧rM with differential maps di : Kr(x1, x2, x3)→ Kr−1(x1, x2, x3)



satisfying

dr(ui1 ∧ ui2 · · · ∧ uir) =
r∑

k=1

(−1)kxikui1 ∧ ui2 ∧ . . . ûik · · · ∧ uir

The homology groups Hi(K•(x1, x2, x3)) are S/mS = Q̄p-modules. The homology group

H1(K•(x1, x2, x3)) = ker d1/Im(d2) can be computed as follows. The kernel of d1 is given

by the space of
∑

i(ai, bi, ci)ui ∈ M with (ai, bi, ci) ∈ S satisfying a1 = b2 = c3 = 0. The

image of d2 is the subspace of ker(d1) defined by the equations

∂b1
∂X

(0) =
∂a2
∂X

(0),
∂c1
∂X

(0) =
∂a3
∂X

(0),
∂c2
∂X

(0) =
∂b3
∂X

(0).

Thus, the standard deviation ε1(R) = dimQ̄p H1(K•(x1, x2, x3)) is 3. Since

dimQ̄p mS/m
2
S = 3 < 3 + 1 = ε1(S) + Krull dim(S),

the ring S is neither of complete intersection nor Gorenstein. An analogous computation

shows that H3(K•(x1, x2, x3)) vanishes and dimQ̄p H2(K•(x1, x2, x3)) = 1, so S has depth

one. Since the depth is equal to the Krull dimension, the ring S is Cohen-Macaulay.

2.6 The full cuspidal Hecke algebra

In this section, we show an isomorphism between the completed local rings of the eigen-

curve C (resp. Ccusp) and the full eigencurve Cfull (resp. Ccusp
full ), denoted by T (resp. Tcusp)

and Tfull (resp. T
cusp
full ) respectively [BDP, Prop.4.4]. This argument is a variation of the

proof of the analogous statement in [BD16, Prop. 7.1]. The main differences are that in

our case ρ is indecomposable and has infinite image, causing some issues when analyzing



the action of the inertia groups for primes dividing the level.

The morphism ιcuspfull : Tcusp ↪→ T
cusp
full induces by composition a representation ρTcusp

full
=

ιcuspfull ◦ ρTcusp . Denote by M (resp. Mfull) the standard free Tcusp( resp. T
cusp
full )-module of

rank 2 with the action of GQ given by ρTcusp (resp. ρTcusp
full

).

Theorem 2.6.1. Let ` be a prime dividing N . Then:

(i) ρTcusp(IQ`) is finite;

(ii) The module M IQ` is a free direct summand of M of rank one;

(iii) The module M
IQ`
full is isomorphic to M IQ`⊗TcuspT

cusp
full and the action of Frob` on M

IQ`
full

is given by multiplication by U`.

Proof. (i) Let tp : IQ` → Zp be a non-trivial continuous homomorphism. Denote H =

ρTcusp(IQ`) ' ρTcusp
full

(IQ`). By the Grothendieck Monodromy Theorem in families [BC09,

Lemma 7.8.14], there exists a nilpotent matrix N ∈M2(T
cusp) and a finite index subgroup

of IQ` such that the restriction of ρTcusp to the subgroup is exp(tp(·)N). Thus, to show

that the image of IQ` is finite, it suffices to prove that N = 0. If N 6= 0, the representation

ρTcusp
full

to GQ` is of Steinberg type, i.e.

ρTcusp
full
|GQ`
'



χ ∗

0 1


⊗ ψ

for some unramified character ψ : GQ` → Q̄×
p . In particular, Tr(ρTcusp

full
)|IQ` = Tr(ρ)|IQ` =

ψ + ψχ 6= 1 + φ, by [BC09, Lemma 7.8.17]. Thus N must be zero and the image of H is

finite.

(ii) Since the image of IQ` is finite, the inclusion M IQ` ↪→ M admits a retraction s =

1
|H|

∑
h∈H h. Thus, M

IQ` is a direct summand of M ; in particular the map M IQ` ⊗ Q̄p →

(M⊗Q̄p)
IQ` is injective. Since (M⊗Q̄p)

IQ` is the image of s as endomorphism ofM⊗Q̄p,



the map is also surjective. It follows that M IQ` ⊗ Q̄p has dimension one over Q̄p. Since

M IQ` is a direct summand of M , it is free of rank one.

(iii) Since M
IQ`
full is the image of s⊗1Tcusp

full
on Mfull, we have that M

IQ`⊗TcuspT
cusp
full 'M

IQ`
full .

It remains to show that the action of a Frobenius element at ` is given by multiplication

by U`. By Proposition 2.3.5, there exists an affinoid neighborhood Spm(A) of f in Ccusp

and a representation ρA : GQ → GL2(A) such that ρA ⊗ Tcusp = ρTcusp . Denote Spm(B)

an affinoid neighborhood of f in C
cusp
full such that the image of Spm(B) is contained in

Spm(A). By composition with A → B, we get a lift ρB of ρTcusp
full

; denote by MB the

corresponding B[GQ]-module. Up to shrinking Spm(B), we can assume that M
IQ`
B is free

of rank one over B and M
IQ`
B ⊗ k(x) → (MB ⊗ k(x))IQ` is an isomorphism for every

point x ∈ Spm(B), where k(x) is the residue field of x. Denote by ρ
IQ`
B : GQ` → B the

unramified character given by the action of GQ` on M
IQ`
B . The function ρ

IQ`
B (Frob`)− U`

vanishes at all classical points of Spm(B). Since classical points are Zariski-dense in C
cusp
full ,

it follows that ρ
IQ`
B (Frob`) = U` in B. Thus, the equality holds in T

cusp
full .

Corollary 2.6.2. (i) The map ιcuspfull : Tcusp ↪→ T
cusp
full is an isomorphism.

(ii) Denote π̃cusp
1,φ = πcusp

1,φ ◦ ι
cusp
full

−1 : Tcusp
full → Λ. Then π̃cusp satisfies the relations

π̃cusp(U`) = 1 +
logp(`)

logp(1+q)

(
L(φ)

L(φ−1)+L(φ)

)
X mod X2

for every prime ` | N .

Proof. (i) By Theorem 2.6.1, M IQ` is a direct summand of M . Hence, there exists a

matrix g ∈ GL2(T
cusp) such that (gρTcuspg−1)(Frob`) = [ u ∗

0 ∗ ] . Then ι
cusp
full (u) = U`.

(ii) Via the isomorphism Rcusp ' Λ, we obtain a deformation ρΛ : GQ → GL2(Λ) of ρ



such that

ρΛ =



φ(1 +Xλη1) η +Xξ

0 1 +Xµη1


 mod X2 (2.22)

in some basis e1,Λ, e2,Λ of MΛ = Λ2 by Proposition 1.5.4 and the parameters satisfy

λ = L(φ−1)
(L(φ)+L(φ−1)) logp(1+q)

and µ = L(φ)
(L(φ)+L(φ−1)) logp(1+q)

(2.23)

by Proposition 1.5.11. The U`-eigenvalue is then given by the action of Frob` on the

IQ`-invariant subspace. By comparing with the inertia-invariant subspace of the residual

representation, it follows that M
IQ`
Λ ⊗Λ Q̄p = 〈e2〉, so (2.22) shows that

π̃cusp(Frob`) = µη1(Frob`) =
L(φ) logp(`)

(L(φ) + L(φ−1)). logp(1 + q)
mod X2

Theorem 2.6.3. The inclusion ιfull : T ↪→ Tfull is an isomorphism.

Proof. The irreducible components of the eigencurve C corresponding to the Eisenstein

families E1,φ and Eφ,1 are isomorphic to their preimages in Cfull. The morphism (2.24)

extends to an injective morphism

(π̃eis
1,φ, π̃

eis
φ,1, π̃

cusp) : Tfull → Λ× Λ× Λ, (2.24)

such that

π̃eis
1,φ(U`) = 1 and π̃eis

φ,1(U`) = [⟪`⟫],

for every `|N . The image of (π̃eis
1,φ, π̃

eis
φ,1, π̃

cusp) is contained in Λ×Q̄p Λ×Q̄p Λ, because Tfull

is local. But since the image of T is isomorphic to Λ ×Q̄p Λ ×Q̄p Λ, it follows that ιfull is

surjective.



Chapter 3

Arithmetic applications

In this chapter, we explore some arithmetic applications of the theorems proved in the pre-

vious chapters. One theme is the relation between the Kubota-Leopoldt p-adic L-function

Lp(φωp, s) and congruences between cuspidal and Eisenstein families. This connection

lies at the core of the proof of many deep results, including the original proof of the

Iwasawa Main Conjecture by Mazur and Wiles [MW84]. Using the results of the previ-

ous chapters, we give an independent proof of the Ferrero-Greenberg Theorem, stating

that the derivative of the Kubota Leopoldt p-adic L-function is non-zero. Moreover, we

recover the precise formula for the latter proved by Gross [Gro82] which constitutes an

instance of the celebrated Gross-Stark Conjecture.

Another theme is the relation between generalized weight one eigenforms and units

of number fields. Since three irreducible components of the eigencurve meet at points

corresponding to irregular weight one Eisenstein series, the generalized eigenspace corre-

sponding to their systems of eigenvalues is non trivial. In the spirit of the recent works

of Darmon, Rotger and Lauder [DLR15a], the coefficients of the q-expansion of overcon-

vergent forms in the generalized eigenspace can be written in terms of p-adic logarithms

of p-units in the splitting field of the charater φ.
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3.1 The Ferrero-Greenberg Theorem

The aim of this section is showing that the Lp(φωp, s) has a simple zero at s = 0,

recovering an instance of the famous theorem of Greenberg and Ferrero. Intuitively, since

the Kubota-Leopoldt p-adic L-function is the leading term of the q-expansion of E1,φ at

the cusp ∞, its order of vanishing is linked to congruences between E1,φ and a Λ-adic

cuspform. However, a more precise argument should be made that involves the order of

vanishing of the constant term of the q-expansion at all cusps.

3.1.1 Evaluation at the cusps

Evaluation at the cusps for ordinary forms

Let U = Spm(A) ⊂ W be an admissible open affinoid. By a construction of Andreatta,

Iovita and Stevens [AIS14] (see also [Pil13]), there exists an invertible sheaf ωU over the

rigid space X(0)×U satisfying the property that, for every classical weight k and trivial

character in U, the weight k-specialization of ωU is isomorphic to ω⊗k. Moreover, the

sheaves ωU are in fact overconvergent for sufficiently small U; i.e. they extend to line

bundles over X(v)×U for some v > 0. We denote D the divisor of cusps of X(0)×U and

ωU(−D) the line bundle ωU ⊗ O(−D). Let

SU = H0(X(0)× U, ωU(−D)) ⊂MU = H0(X(0)× U, ωU)

be the O(U)-modules of modular forms and cuspforms respectively. We denote

S†,0
U

= eord(SU) and M †,0
U

= eord(MU).

the images of the modules SU and MU under the Hida’s ordinary projector eord =

limn→∞ Un!
p . The notation here is motivated by the fact that slope 0-eigenforms are



automatically overconvergent in light of Remark 2.1.1.

By Hida theory, the morphism w|Cord : Cord → W is finite [Hid93, Sec. 7.3]. The

preimage of U is an affinoid of Cord, denoted by Spm(B), endowed with a finite flat

morphism A → B. By construction of the eigencurve, the modules S†,0
U

and M †,0
U

come

equipped with an action of the Hecke algebra B. There is an exact sequence

0→ SU →MU

ResU−−−→
⊕

δ∈D

O(U) (3.1)

where the map ResU sends a modular form G over O(U) to ResU(G) = (Aδ(G))δ and Aδ

is the constant term of G at the cusp δ. We have the following result about the image of

the residue map ResU [BDP, Prop.3.1].

Lemma 3.1.1. (i) The map ResU is surjective.

(ii) Let CU the image of M †,0
U

under ResU. Then CU is a direct summand of
⊕

δ∈D O(U).

Proof. There is an exact sequence of sheaves on X(0)× U

0→ ωU → ωU(−D)→
⊕

δ∈D

OD×U → 0.

where the sheaf OD×U is supported over D × U. Applying the functor of global section,

we obtain an exact sequence

0→ H0(X(0)× U, ωU(−D))→ H0(X(0)× U, ωU)
ResU−−−→

⊕

δ∈D

O(U)

→ H1(X(0)× U, ωU(−D)).

Since X(0)×U is an affinoid and ωU(−D) is a line bundle, the latter term of the sequence

vanishes. This proves (i).

The inclusion SU → MU is compatible with the action of eord, so the quotient



⊕
δ∈D O(U) inherits an action of eord. Since eord is an idempotent, the exact sequence

yields an exact sequence

0→ S†,0
U
→M †,0

U

ResU−−−→ CU → 0,

and CU is a direct summand of
⊕

δ∈D O(U).

Fix now U = Spm(A) an affinoid subdomain containing the point wf of weight one

and character φ. Recall that Λ is the completion of the local ring of the weight space at

wf . Let SΛ and MΛ be the completions of the localizations of SU and MU at the maximal

ideal of A corresponding to wf and let

S†,0
Λ = eord(SΛ) and M †,0

Λ = eord(MΛ).

Corollary 3.1.2. There is an exact sequence

0→ S†,0
Λ →M †,0

Λ

ResΛ−−−→ CΛ → 0, (3.2)

where CΛ is a direct sum of
⊕

δ∈D Λ.

Denote by mf the maximal ideal of B corresponding to the system of eigenvalues of

f , so that the completion of B ⊗ Q̄p with respect to mf is isomorphic to T. Then (B ⊗

Q̄p)⊗A⊗Q̄pΛ is a finite Λ-algebra; thus it is a semilocal ring with maximal ideals in bijection

with the systems of eigenvalues of overconvergent weight one ordinary eigenforms. In

particular, T is a direct summand of (B ⊗ Q̄p)⊗A⊗Q̄p Λ.

The modules S†,0
Λ and M †,0

Λ have an action of the Hecke algebra of T, so the quotient

CΛ inherits one as well. Thus, taking the localization at mf yields an exact sequence

0→ S†,0
Λ,mf
→M †,0

Λ,mf

ResΛ−−−→ CΛ,mf → 0. (3.3)



and CΛ,mf is a direct summand of CΛ and, as a consequence, a direct summand of
⊕

δ∈D Λ.

Remark 3.1.3. A direct description of the Hecke action on CΛ can be given as in [Oht03,

Sec. 2].

3.1.2 Duality for the cuspidal Hecke algebra

We now show that S†,0
Λ,mf

is a free Λ-algebra of rank one. As an application of the

modularity results for the cuspidal deformation ring Rcusp, we obtain an explicit formula

for the derivatives of the q-expansion coefficients of a generator of S†,0
Λ,mf

.

Proposition 3.1.4. The pairing

(−,−) : S†,0
Λ,mf
× Tcusp → Λ, (G, T ) = a1(TG) (3.4)

is perfect. In particular, S†,0
Λ,mf

is a free Λ-module of rank one.

Proof. Consider the map S†,0
Λ,mf

→ HomΛ(T
cusp, Λ) induced by the pairing above; the

isomorphism Tcusp → T
cusp
full established in Corollary 2.6.2, combined with the q-expansion

principle, implies that the map is injective. Similarly, the q-expansion principle implies

that T → HomΛ(S
†,0
Λ,mf
→ Λ) is injective. Therefore, the pairing is perfect. By Theorem

2.3.6, it follows that S†,0
Λ,mf

is isomorphic to Λ.

Proposition 3.1.5. Let F =
∑∞

n=1 an(F)q
n ∈ Λ⟦q⟧ be the q-expansion of the unique

normalized Λ-adic cuspform specializing to f . Then the derivatives of the coefficients of

F satisfy

∂
∂X

∣∣
X=0

ap(F) = −
L(φ)L(φ−1)

(L(φ) + L(φ−1)) logp(1 + q)
, and (3.5)

∂
∂X

∣∣
X=0

a`(F) =
(φ(`)L(φ−1) + L(φ)) logp(`)

(L(φ) + L(φ−1)) logp(1 + q)
, for every prime ` 6= p. (3.6)



Proof. Let F be the generator of the Λ-module S†,0
Λ,mf

normalized so that a1(F) = 1. Then,

an(F) = πcusp(Tn) for every n. The formulas above follow from Corollary 2.3.8 for primes

` - N and Corollary 2.6.2 for primes dividing the N .

Remark 3.1.6. By choosing an appropriate infinitesimal parameter (i.e. fixing a homo-

morphism Λ→ Q̄p[ε] sending X 7→ logp(1 + q)ε, compare with Lemma 1.2.2), we obtain

the q-expansion of a modular form of weight 1 + ε. Namely

Fε =
∑

n>0

(
an(f) +

ε

logp(1 + q)
∂
∂X

∣∣
X=0

an(F)

)
qn ∈ Q̄p[ε]⟦q⟧

can be viewed as the q-expansion of a cuspform of weight 1 + ε. The existence of this

infinitesimal cuspform was observed in [DDP11], where its q-expansion was obtained via

different methods based on calculations with families of Eisenstein series.

3.1.3 Evaluation of Eisenstein series at the cusps

We compute the constant term of the q-expansion of the Eisenstein families E1,φ and Eφ,1

at all cusps [BDP, Prop.4.6]. In order to do so, we use the computation of the constant

term at all cusps [Oza17] for classical Hilbert Eisenstein series, although these can be

easily calculated directly for modular forms.

Proposition 3.1.7. Let Aδ(E1,φ) and Aδ(Eφ,1) be the constant terms of E1,φ and Eφ,1 at

δ ∈ D.

(i) One has A∞(E1,φ) =
1
2
ζφ, A0(E1,φ) = 0 and Aδ(E1,φ) ∈ Λ · ζφ for all δ ∈ D.

(ii) One has A∞(Eφ,1) = 0, A0(Eφ,1) ∈ Λ
×ζφ−1 and Aδ(Eφ,1) ∈ Λ · ζφ−1 for all δ ∈ D.

Proof. (i) We will establish the lemma via a computation of the constant term of the

specializations of the Eisenstein families E1,φ and Eφ,1 at all classical weights k ≥ 3 such



that ωk−1
p = 1. Recall that DΓ the cuspidal divisor of XΓ and that Dcan

Γ is the image of

D under the canonical section (2.1). We have bijections

D = Γ1(N)\P1(Q), DΓ = Γ\P1(Q) and Dcan
Γ = Γ\(Γ0(p)∞).

In particular, via this identification, an element of δ ∈ Dcan
Γ corresponds to an element [ ac ]

where a, c are coprime integers and p|c. Denote ιp =
[
p 0
0 1

]
. For every g ∈Mk(Γ1(N), φ),

we define

g(p)(z) = (g − g|kιp)(z) = g(z)− pk−1g(pz) ∈Mk(Γ, φ).

We wish to relate the q-expansion of g(p) at all cusps in Dcan
Γ to the q-expansion of g at

cusps in D. For δ = [ ac ] ∈ D
can
Γ , choose a matrix γδ = [ a bc d ] ∈ SL2(Z). The q-expansion of

g(p) at the cusp δ is then given by

(g
(p)
|k
γδ)(z) = g|kγδ(z)− g|k(ιpγδ)(z) = g|kγδ(z)− g|k(γpδιp)(z)

= g|kγδ(z)− p
k−1g|kγpδ(pz)

where γpδ =
[

a bp
cp−1 d

]
∈ SL2(Z). Letting Aδ (resp. A

(p)
δ ) denote the constant term of the q-

expansion of g (resp. g(p)) at the cusp δ ∈ D (resp. δ ∈ Dcan
Γ ) we have A

(p)
δ = Aδ−p

k−1Apδ.

Let g be the weight k Eisenstein series Ek(1, φ) ∈ Mk(Γ1(N), φ). Then g(p) in the

above notation is the ordinary p-stabilization of g, which is the weight k-specialization

of the Eisenstein family E1,φ. The constant term of the q-expansion of f vanishes at all

cusps outside Γ1(N)\Γ0(N)∞. More precisely, by [Oza17, Prop.1.1], for δ = [ ac ] we have

Aδ = 0 , if N - c, Aδ =
φ−1(|a|)

2
L(φ, 1− k) , if N | c.



Thus, if N - c it follows that A
(p)
δ = 0; if N | c, by (2.4) and φ(p) = 1, we have

A
(p)
δ = Aδ − p

k−1Apδ = (1− pk−1)
φ−1(|a|)

2
L(φ, 1− k) =

φ−1(|a|)

2
Lp(φωp, 1− k).

The points of weight k satisfying the assumption above are Zariski dense in the connected

component ofW containing wf . Therefore, the constant term of the q-expansion of E1,φ at

the cusp δ ∈ Dcan
Γ vanishes if N - c and is equal to φ−1(|a|)

2
ζφ(X) otherwise. In particular,

the constant term of E1,φ at ∞ is 1
2
ζφ(X) and vanishes at the cusp 0.

(ii) Let g be the weight k Eisenstein series Ek(φ,1) ∈Mk(Γ1(N), φ). By [Oza17, Prop.1.1]

Aδ = 0 if (N, c) > 1, Aδ = −
τ(φ)

2Nk
φ−1(|c|)L(φ−1, 1− k) if (N, c) = 1

where τ(φ) denotes the Gauss sum of φ. Thus, if (c,N) > 1 then A
(p)
δ vanishes, while if

(c,N) = 1 we obtain

A
(p)
δ = Aδ − p

k−1Apδ = −
τ(φ)

2Nk
φ(|c|)(1− pk−1)L(φ−1, 1− k)

= −
τ(φ)

2Nk
φ(|c|)Lp(φ

−1ωp, 1− k).

The form g(p) is the weight k ordinary specialization of Eφ,1. Since (p,N) = 1 and ωk−1
p =

1, Nk is the weight k specialization of an element in Zp⟦X⟧
×, while Lp(φ

−1ωp, 1 − k) is

the weight k specialization of ζφ−1 . Thus, the constant term of Eφ,1 vanishes at ∞ and is

a multiple of ζφ−1 by a unit of Λ at Γ [ ac ] ∈ D
can
Γ if (c,N) = 1. In particular, let u, v be

integers satisfying pv+ uN = 1. Then Γ
[

1
pv

]
∈ Dcan

Γ and Γ1(N)
[

1
pv

]
= Γ1(N) [ 01 ], so the

constant term of the q-expansion at 0 is non-zero.

Corollary 3.1.8. We have ResΛ(E1,φ) ∈ ζφCΛ and ResΛ(Eφ,1) ∈ ζφ−1CΛ.



Proof. By Proposition 3.1.7, ResΛ(E1,φ) ∈
(
ζφ
⊕

δ∈D Λ
)
∩CΛ. Since by Corollary 3.1.2, CΛ

is a direct sum of
⊕

δ∈D Λ, it follows that ResΛ(E1,φ) ∈ ζφCΛ. Similarly for ResΛ(Eφ,1).

Theorem 3.1.9. The Kubota-Leopoldt p-adic L-functions Lp(φωp, s) and Lp(φ
−1ωp, s)

have a simple zero at s = 0.

Proof. Up to replacing φ by φ−1, it suffices to show the statement for Lp(φωp, s). By

the interpolation property Lp(φωp, s) has a trivial zero at s = 0. From (2.5), the zero

is simple if and only if ζφ /∈ (X2). Since CΛ,mf is a free Λ-module, tensoring (3.3) with

Λ/(ζφ) yields an exact sequence of Λ/(ζφ)-modules

0→ S†,0
Λ,mf
⊗ Λ/(ζφ)→M †,0

Λ,mf
⊗ Λ/(ζφ)

ResΛ/ζφ
−−−−→ CΛ,mf ⊗ Λ/(ζφ)→ 0.

The image of ResΛ/ζφ(E1,φ) is zero by Corollary 3.1.8. Thus, there exists G ∈ S†,0
Λ,mf

such

that

G− E1,φ ∈ ζφM
†,0
Λ,mf

.

In particular, the q-expansion of G−E1,φ satisfies (G−E1,φ)(q) ∈ ζφΛ⟦q⟧. By Proposition

3.4, G is of the form αF where F is the unique normalized eigenform in S†,0
Λ,mf

, and α ∈ Λ.

Moreover, since F and E1,φ are both normalized, it follows that 1 − α ∈ (ζφ); hence

(F−E1,φ) ∈ ζφΛ⟦q⟧. The first order derivatives of F and E1,φ are distinct by Proposition

3.1.5 and Corollary 2.4.1. Hence, we must have (ζφ) = (X) and Lp(φωp, s) has a simple

zero at s = 0.

3.2 Duality for the Hecke algebra

In this section, we establish a duality result between the space of ordinary Λ-adic modular

forms M †,0
Λ,mf

and the Hecke algebra T. The duality between the cuspidal Hecke algebra

Tcusp and S†,0
Λ,mf

follows from the general theory of ordinary Hida families (after showing



an isomorphism between Tcusp and the full Hecke algebra T
cusp
full ). However, Hida theory

only guarantees a perfect duality between the Hecke algebra T and an a priori larger space

containing forms whose constant coefficient is not necessarily Λ-integral (see [Hid93, Thm

5, Sec. 7.3]).

Recall that F is the generator of S†,0
Λ,mf

, with q-expansion F(q) =
∑

n≥1 an(F)q
n,

normalized so that a1(F) = 1. Denote

F1,φ =
E1,φ − F

X
, Fφ,1 =

Eφ,1 − F

X

Note that F1,φ,Fφ,1 ∈M
†,0
Λ,mf

because the reduction modulo (X) of F,E1,φ,Eφ,1 are equal

to f . We calculate a basis of M †,0
Λ,mf

[BDP, Prop. 5.4].

Proposition 3.2.1. {F,F1,φ,Fφ,1} is a basis of M †,0
Λ,mf

as a Λ-module.

Proof. The exact sequence (3.3) splits, because CΛ,mf is a free Λ-module. Since S†,0
Λ,mf

=

ΛF, it suffices to check that

ResΛ(〈F1,φ,Fφ,1〉) = CΛ,mf .

Let K(Λ) be the fraction field of Λ. Then {ResΛ(E1,φ),ResΛ(Eφ,1)} is a basis of CΛ,mf ⊗Λ

K(Λ), so {ResΛ(F1,φ),ResΛ(Fφ,1)} is also a basis over K(Λ). Thus, it suffices to show

that ResΛ(〈F1,φ,Fφ,1〉) is a direct summand of
⊕

δ∈D Λ. By Proposition 3.1.7,

A∞(F1,φ) ∈ Λ
×, A∞(Fφ,1) = 0 and A0(Fφ,1) ∈ Λ

×.

This guarantees that the span of ResΛ(F1,φ) and ResΛ(Fφ,1) is a direct summand.

We now establish a duality result [BDP, Prop.5.5].



Theorem 3.2.2. The pairing

(−,−) : M †,0
Λ,mf
× T → Λ, (G, T ) = a1(TG) (3.7)

is perfect.

Proof. Recall that, by Theorem 2.5.3, the map (πeis
1,φ, π

eis
φ,1, π

cusp) : T → Λ×Λ×Λ defines

an isomorphism between T and S = Λ×Q̄pΛ×Q̄pΛ. As a Λ-module, S ' 1Λ⊕(X, 0, 0)Λ⊕

(0, X, 0)Λ. Under the identification T ' S as above, the matrix of the pairing is given by




a1(F) a1((X, 0, 0)F) a1((0, X, 0)F)

a1(F1,φ) a1((X, 0, 0)F1,φ) a1((0, X, 0)F1,φ)

a1(Fφ,1) a1((0, X, 0)Fφ,1) a1((0, X, 0)Fφ,1)



=




1 0 0

0 1 0

0 0 1



. (3.8)

Thus, the pairing is perfect and (1, (X, 0, 0), (0, X, 0)) is the dual basis of (F,F1,φ,Fφ,1).

Corollary 3.2.3. (i) There exist elements T∞ and T0 in T such that A∞(G) = a1(T∞G)

and A0(G) = a1(T0G) for every G ∈M †,0
Λ,mf

.

(ii) Tord
ρ = T/(T0) and Tord

ρ′ = T/(T∞).

Proof. The constant terms of the q-expansion at the cusps 0 and ∞ define linear mor-

phisms M †,0
Λ,mf
→ Λ, thus the Hecke operators T0 and T∞ exist by duality. More precisely,

comparing the proof of Proposition 3.1.7, with the pairing (3.8) we obtain

T∞ =
ζφ
2X

(X, 0, 0) ∈ Λ× ·(X, 0, 0) and T0 = −
τ(φ)ζφ−1

2NX
(0, X, 0) ∈ Λ× ·(0, X, 0).

Since Tord
ρ′ ' T/((X, 0, 0)) and Tord

ρ ' T/((0, X, 0)), the conclusion follows.



As a corollary of the explicit description of the pairing, we obtain duality statements

for the quotients Tord
ρ and Tord

ρ′ of T. Denote M †,0
1,φ = ΛF⊕ΛF1,φ and M †,0

φ,1 = ΛF⊕ΛFφ,1.

Corollary 3.2.4. The pairing (3.7) induces a perfect pairing between Tord
ρ and M †,0

1,φ and

between Tord
ρ′ and M †,0

φ.1.

Remark 3.2.5. In light of Proposition 3.2.3, we obtain an alternative characterization of

the quotient Tord
ρ and Tord

ρ′ of T. Indeed, Tord
ρ is the completed local ring of the vanishing

locus of the constant term at 0, while Tord
ρ′ of the constant term at ∞.

Remark 3.2.6. The residue map and its connection with duality for Hida families was

extensively studied by Ohta [Oht03](although the case of irregular characters is treated by

Lafferty [Laf]). The results of these sections could have been derived directly combining

their works with our characterization of the structure of T.

3.2.1 Λ-adic modular forms as Hecke modules

Once we established the duality between T and M †,0
Λ,mf

, we examine the structure of

M †,0
Λ,mf

as a module over the Hecke algebra, which is closely related to the ring theoretic

properties of T discussed in the previous chapter. In particular, the Gorenstein property

can be phrased in terms of self-duality of certain algebras, thus explaining the interest

for Hecke rings. The failure of Gorensteinness of T implies that the module M †,0
Λ,mf

is not

free of rank one over T. However, this property holds for the submodules M †,0
1,φ and M †,0

φ,1

and the corresponding quotients of the Hecke algebras, reflecting the fact that the latter

are of complete intersection.

Proposition 3.2.7. (i) {F1,φ,Fφ,1} is a minimal set of generators for M †,0
Λ,mf

over T.

(ii) M †,0
1,φ and M †,0

φ,1 are free of rank one over Tord
ρ and Tord

ρ′ respectively.



Proof. By Nakayama’s Lemma, it suffices to show that the image of {F1,φ,Fφ,1} is a

minimal set of generators of M †,0
Λ,mf
⊗T T/mT. The ideal mT is generated by

(X, 0, 0), (0, X, 0), (0, 0, X)

over Λ. A direct computation shows that

(X, 0, 0)M †,0
Λ,mf

=(XF1,φ + F)Λ

(0, X, 0)M †,0
Λ,mf

=(XFφ,1, + F)Λ

(0, 0, X)M †,0
Λ,mf

=FΛ.

Therefore, mTM
†,0
Λ,mf

= FΛ ⊕ XF1,φΛ ⊕ XFφ,1Λ. In particular, M †,0
Λ,mf
⊗T T/mT is a Q̄p-

vector space of dimension 2 generated by F1,φ and Fφ,1. The same computation shows

that M †,0
1,φ is generated by F1,φ over Tord

ρ . The map Tord
ρ → M †,0

1,φ sending x to xF1,φ is

necessarily injective, because it is a surjective map between two free Λ-modules of rank

two. A similar argument applies to M †,0
φ,1 as a Tord

ρ′ -module.

3.3 q-expansion of a basis of overconvergent weight

one generalized eigenforms

In this section, we apply the strategy of [DLR15a] to compute the q-expansion of a basis of

the generalized eigenspace for the system of eigenvalues of f . This generalized eigenspace

is the Q̄p-dual of the relative Hecke algebra Twf = T/mΛT. The existence of non-trivial

elements of this eigenspace is guaranteed by the fact that the eigencurve is not etale

over the weight space at f . As in loc.cit, the key ingredient for this computation is the

isomorphism between the local ring of the cuspidal Hecke algebra and a deformation ring,



together with the description of the tangent space of the latter via group cohomology.

However, our approach diverges slightly from loc.cit ; rather than computing the relative

tangent space directly, we use the calculations of the first derivatives of the coefficients of

the q-expansion of the cuspidal family obtained in Proposition 3.1.5. These derivatives

are interesting in their own right, since they provide the q-expansion of a cuspform of

over an infinitesimal neighborhood of wf on the weight space.

As a corollary of these results we obtain an alternative proof of Gross’s formula for

the derivative of the p-adic L-function at 0, in a similar spirit to [DDP11]. Our argument

relies crucially on identifying the classical subspace in the overconvergent generalized

eigenspace.

3.3.1 The generalized eigenspace of f and the Gross-Stark Con-

jecture

Let M †,0
wf

(resp. S†,0
wf
) be the space of ordinary overconvergent p-adic modular forms

(resp. cuspforms) of weight 1 and character φ with coefficients in Q̄p. The relative Hecke

algebra Twf = T/mΛT is an artinian Q̄p-algebra. Denote by mf the maximal ideal of T

corresponding to the system of eigenvalues of f . The spaceM †,0
wf

has an action of Twf . For

every i > 0, denoteM †,0
wf

[mi
f ] (resp. S

†,0
wf
[mi

f ]) the subspace ofM
†,0
wf

(resp. S†,0
wf
) annihilated

by mi
f . Let

M †,0
wf
⟦f⟧ =

⋃

i>0

M †,0
wf

[mi
f ] and S†,0

wf
⟦f⟧ =

⋃

i>0

S†,0
wf
[mi

f ]

be the generalized eigenspace of f . They are isomorphic to the completions of M †,0
wf

and

S†,0
wf

at the mf .

LetM1(Γ, φ) (resp. S1(Γ, φ)) be the space of classical modular forms (resp. cuspforms)

of weight 1, level Γ = Γ1(N)∩Γ0(p) and character φ with coefficients in Q̄p. Let T1(N, p)

be the classical Hecke algebra generated by all Hecke operators T` for primes ` - Np and



U` for ` | Np acting on M1(Γ, φ). Denote by nf the maximal ideal corresponding to f .

Denote by M0
1 (Γ, φ) (resp. S0

1(Γ, φ)) the image of Hida ordinary projector eord. These

subspaces are stable under the action of T1(N, p). Let M0
1 (Γ, φ)[n

i
f ] (resp. S

0
1(Γ, φ)[n

i
f ])

be the subspace annihilated by nif and denote

M0
1 (Γ, φ)⟦f⟧ =

⋃

i>0

M0
1 (Γ, φ)[n

i
f ],

S0
1(Γ, φ)⟦f⟧ =

⋃

i>0

S0
1(Γ, φ)[n

i
f ]

There are natural inclusions

S0
1(Γ, φ)⟦f⟧

� � //
� _

��

M0
1 (Γ, φ)⟦f⟧� _

��

S†,0
wf
⟦f⟧ �

�
//M †,0

wf
⟦f⟧

Since f is cuspidal-overconvergent but not cuspidal as a classical form, S0
1(Γ, φ)⟦f⟧ =

0. The generalized eigespace M0
1 (Γ, φ)⟦f⟧ is annihilated by n2f and spanned by f and

E1(1, φ), because f is the unique p-stabilization of the form E1(1, φ) of level N .

Proposition 3.3.1. (i) S†,0
wf
⟦f⟧ = S†,0

wf
[mf ] = Q̄pf . Moreover, the cuspidal-overconvergent

generalized eigenspace is classical, in the sense that S†,0
wf
⟦f⟧ ⊂M0

1 (Γ, φ)⟦f⟧;

(ii) M †,0
wf
⟦f⟧ =M †,0

wf
[m2

f ] is a 3-dimensional Q̄p-vector space.

Proof. The module S†,0
wf
⟦f⟧ = S†,0

Λ,mf
⊗Λ Q̄p is spanned by the reduction modulo (X) of

F, which is f , that, in particular, belongs to the classical eigenspace M0
1 (Γ, φ)⟦f⟧. Since

M †,0
Λ,mf

is a free Λ-module of rank 3, M †,0
wf
⟦f⟧ = M †,0

Λ,mf
⊗Λ Q̄p is 3-dimensional over Q̄p.

From Theorem 2.5.3, it follows that

Twf ' Q̄p⟦T1, T2⟧/(T1T2, T
2
1 , T

2
2 ),



so M †,0
Λ,mf

is annihilated by m2
f .

We are now ready to determine the q-expansion of a basis of the generalized eigenspace

[BDP, Thm.C].

Theorem 3.3.2. The generalized eigenspace M †,0
wf
⟦f⟧ has a basis {f, f1,φ, fφ,1} over Q̄p,

where the q-expansions of f1,φ and fφ,1 are

f †
φ,1(q) =

∑

n>1

qn
∑

d|n, p-d

φ(d)
(
ordp(n)L(φ)− logp

(
d2

n

))
and

f †
1,φ(q) = −

(L(φ)+L(φ−1))L′
p(φωp,0)

2L(φ)
+
∑

n>1

qn
∑

d|n, p-d

φ(d)
(
ordp(n)L(φ

−1) + logp

(
d2

n

))
.

Proof. The module M †,0
wf

is spanned by the reductions of F,F1,φ,Fφ,1 modulo (X). Thus,

f †
1,φ =

(L(φ)+L(φ−1)) logp(1+q)

L(φ)
F1,φ(0) =

(L(φ)+L(φ−1)) logp(1+q)

L(φ)
∂
∂X

∣∣
X=0

(E1,φ − F) ,

f †
φ,1 =

(L(φ)+L(φ−1)) logp(1+q)

L(φ−1)
Fφ,1(0) =

(L(φ)+L(φ−1)) logp(1+q)

L(φ−1)
∂
∂X

∣∣
X=0

(Eφ,1 − F) .

are a basis of the supplement of Q̄pf in M †,0
wf

. We first calculate the coefficients a` for

` prime. For ` 6= p, from (2.15), it follows that a`(E1,φ) = 1 + φ(`)[⟪`⟫] and a`(Eφ,1) =

φ(`) + [⟪`⟫]. Combining this with Lemma 1.2.2 yields that

∂
∂X

∣∣
X=0

a`(E1,φ) = φ(`)
logp(`)

logp(1+q)
, and ∂

∂X

∣∣
X=0

a`(Eφ,1) =
logp(`)

logp(1+q)
.

For the p-th coefficient, since ap(E1,φ) = ap(Eφ,1) = 1, we have ∂
∂X

∣∣
X=0

ap(E1,φ) =

∂
∂X

∣∣
X=0

ap(Eφ,1) = 0. Combining these formulas with those given in Proposition 3.1.5

we obtain the desired formulas for the non-constant coefficients of f †
1,φ and f †

φ,,1

ap(f
†
1,φ) = L(φ−1), a`(f

†
1,φ) = (φ(`)− 1) logp(`), ` 6= p (3.9)

ap(f
†
φ,1) = L(φ), a`(f

†
φ,1) = (1− φ(`)) logp(`), ` 6= p. (3.10)



In order to compute the remaining coefficients an for n > 0, we work out the recursive

relations for the Hecke operators (notice that f1,φ and fφ,1 are not eigenforms). Denote

by f † an element of {f †
1,φ, f

†
φ,1}. We observe that, since E1,φ, Eφ,1 and F are normalized

eigenform for all Hecke operators (Tn)n>1, the classical relations between abstract Hecke

operators imply that for every n,m coprime integers

amn(f
†) = am(f)an(f

†) + an(f)am(f
†), (3.11)

Similarly, the prime power coefficients satisfy the relations

a`r(f
†) = ra`(f)

r−1a`(f
†) = ra`(f

†) (3.12)

for all primes ` | Np and integers r ≥ 1. For primes ` - Np and r ≥ 2, we have instead

a`r(f
†) = a`(f)a`r−1(f †) + a`r−1(f)a`(f

†)− φ(`)a`r−2(f †),

which combined with the formula a`r(f) =
∑r

i=0 φ(`)
i gives

a`r(f
†) = a`(f

†)
r∑

i=0

(i+ 1)(r − i)φ(`)i.

This yields the explicit formulas for the prime power coefficients of f for ` - Np,

a`r(f
†
1,φ) =

r∑

i=0

(2i− r)φ(`i) logp(`) = −a`r(f
†
φ,1),

which coincide with (3.12) for primes ` | N . The formulas for prime power coefficients,

together with (3.11), imply the desired result.

It remains to calculate the constant terms of the q-expansions of f †
1,φ and f †

φ,1. The

constant terms of F and Eφ,1 vanish at the cusp ∞, thus a0(f
†
φ,1) = 0. For f †

1,φ, we have



instead

a0(f
†
1,φ) =

(L(φ)+L(φ−1)) logp(1+q)

L(φ)
∂
∂X

∣∣
X=0

a0(E1,φ)

=
(L(φ)+L(φ−1)) logp(1+q)

L(φ)
∂
∂X

∣∣
X=0

ζφ
2

= −L(φ)+L(φ−1)
2L(φ)

L′
p(φωp, 0),

where in the last equality we used the interpolation property ζφ((1 + q)s−1 − 1) =

Lp(φωp, 1− s)

We conclude by giving a proof of an instance of the Gross-Stark Conjecture relating

the derivative of the Kubota-Leopoldt p-adic L-function with the L-invariant.

Theorem 3.3.3 (Gross-Stark Conjecture). The p-adic L-function Lp(φωp, s) satisfies

L′
p(φωp, 0) = −L(φ)L(φ, 0).

Proof. The classical form E1(1, φ) is an element ofM †,0
wf

, hence we can write it as a linear

combination of f, f †
1,φ, f

†
φ,1. Comparing the coefficients a` for ` - p and ap, it follows that

E1(1, φ) = f + 1
L(φ)+L(φ−1)

(f †
1,φ + f †

φ,1)

Comparing the constant coefficients, we obtain

L(φ, 0)

2
= a0(E1(1, φ)) = a0(f + 1

L(φ)+L(φ−1)
(f †

1,φ + f †
φ,1)) = −

L′
p(φωp,0)

2L(φ)
,

yielding the result.



Conclusion

The results of this work give a satisfactory description of T, the completed local ring of the

eigencurve at f and its structure as a Λ-algebra. We show that three irreducible compo-

nents of the eigencurve (two Eisenstein components and one cuspidal) meet transversally

at f , and each is etale over the weight space. We also prove that the tangent space of

the eigencurve at f is three-dimensional. The latter observation is crucial in order to

determine the ring-theoretic properties of T: we prove that T is Cohen-Macaulay, but

not Gorenstein. Among ring-theoretic properties, Gorensteinness is especially relevant in

the theory of Hecke algebra. We show a duality statement between T and an appropriate

localization of the module of ordinary Λ-adic forms; the failure of the Gorenstein property

implies that T is not self-dual, and in particular the module of modular forms is not free

over T. There are plenty of examples of failure of the Gorenstein property for the Hecke

algebras in characteristic p, hence at height two primes of the ordinary Hecke algebra

(see, for example [Wak15]). In our case, the Gorensteinness fails at a height one prime

instead. The two phenomena are rather different in nature: the failure of Gorensteinness

at height two primes is related to the vanishing of certain Iwasawa modules, and the

existence of non-trivial zeros of the p-adic L-function. In this work, the phenomenon is

geometric in nature and arises at a trivial zero. Understanding of the geometric picture

in this settings has bearings on the order of vanishing of the p-adic L-function.
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It is worth observing that the case in which the Dirichlet character φ is quadratic

is far simpler than the general one from an arithmetic point of view, in the sense that

no argument of linear independence of L-invariants is required. This is unsurprising,

given that in this case the cuspidal family specializing to f has the well-known explicit

description of the CM ordinary family interpolating classical theta series. In addition to

specializing to the the same form at weight one, the Eisenstein and the theta families

satisfy another congruence, which we recover in our computation of the tangent space of

Tcusp, namely

a`(F) =
1

2
(a`(E1,φ) + a`(Eφ,1)) (mod X2)

for every prime ` 6= p. An analoguous congruence between Kato classes has been exploited

in an upcoming work of Bertolini and Darmon to prove a conjecture of Perrin-Riou; given

an elliptic curve E, the conjecture relates the position of the Kato class KE(φ,1) in the

φ-isotypic component of the Mordell-Weil group of E to a global point. One might hope

that understanding the geometry of the eigencurve at all irregular Eisenstein weight one

points could prove instrumental to extending their results beyond the quadratic case.

Our modularity results could potentially be refined. We prove a modularity state-

ment for the cuspidal Hecke algebra; we further extend it by showing the existence of an

isomorphism Rord
ρ ' Tord

ρ where Tord
ρ is the completed local ring of the Zariski closed sub-

space of the eigencurve given by the cuspidal eigencurve and one Eisenstein component

and Rord
ρ is the ring of ordinary deformations of ρ. The construction is essentially sym-

metric in the two Eisenstein components, thus giving a Galois-theoretic interpretation

of the quotients of T denoted by Tord
ρ and Tord

ρ′ . It would however be more satisfactory

to obtain a modularity result for the ring T itself encompassing the previous statements.

This raises a challenge from different points of view. Firstly, when analyzing the structure

of T, we realize that T is not generated by traces of representations, unlike its quotients



Tord
ρ and Tord

ρ′ . This is due to the fact that the Up operator does not belong to the algebra

generated by the Hecke operators of Tn for (n, p) = 1. Secondly, even given a suitable

candidate of deformation ring for a modularity statement, one would not be able to ap-

ply the techniques of this work to show the existence of an isomorphism. Indeed, Wiles’

numerical criterion yields an isomorphism of rings of complete intersection, thus it would

a fortiori fail because T is not Gorenstein. One could venture a guess for a suitable

deformation ring for the modularity statement; through a Galois cohomology calculation

as in Proposition 1.5.13 one can construct a surjective homomorphism Rn.ord
ρ → T. The

corresponding Galois representation will not be ordinary, but only nearly ordinary. One

can define a quotient of Rn.ord
ρ by imposing the condition that the trace of the correspond-

ing representation is compatible with being ordinary, in the sense that the restriction to

the inertia group at p is 1 + κΛ.

The study of the relative local ring over the weight space Twf allows us to determine

the generalized eigenspace of f in the space of weight one overconvergent modular forms.

We determine a basis of a supplement of f given by two overconvergent non-classical

forms and compute the q-expansion coefficients of these elements. As a byproduct of this

calculation, we obtain a new proof of the Gross-Stark conjecture over Q. In addition,

these results have a second important arithmetic application, as they imply a classicality

statement. By the work of Coleman [Col96], the space of ordinary cuspforms of weight

k ≥ 2 is always classical. While this result fails for weight one, the classicality of the gen-

eralized eigenspace attached to a given system of Hecke eigenvalues is worth investigating.

In this work, we prove that the cuspidal generalized eigenspace S†,0
wf
⟦f⟧ is spanned by f , a

classical and cuspidal-overconvergent form, even though not cuspidal as a classical form.

This result was originally conjectured in [DLR15b, Hypothesis C’] in view of the following

application. Let E be an elliptic curve and g be another classical weight 1 form, denote



by ρg the Artin representation attached to g. Under the assumption that the analytic

rank of the pair (E, ρg ⊗ (φ ⊕ 1)) is greater than one, the elliptic Stark conjecture of

loc.cit. predicts a relation between the values of some p-adic integrals and the formal

group logarithms of global points of E. The assumption of classicality of the generalized

eigenspace of f is required to define these p-adic iterated integrals. Thus, the results

and numerical evidence towards the Elliptic Stark Conjecture stated in loc.cit. are now

unconditional in light of our classicality result.

Further developments

Our study of the local geometry of the eigencurve at Eisenstein weight one points lead

to a rather exhaustive picture. We would like to conclude by presenting some directions

of generalization.

A related project is tackling the remaining weight one case i.e. studying the local ring

of the eigencurve curve at cuspidal irregular weight one points. This scenario presents

significantly more technical difficulties than both the present work and [BD16]. Indeed,

the work of Bellaiche and Dimitrov builds on the calculation of the tangent space of certain

deformation rings via Galois cohomology, and ours does as well, even though in a less

direct manner. However, a similar strategy will not apply in the cuspidal irregular case.

Let ρ be the Artin representation associated to a weight one irregular cuspform. One can

define a deformation ring associated to ρ, and determine a quotient classifying ordinary

lifts of ρ. Every first order deformation of ρ is automatically ordinary; in particular, a

computation on the tangent space will not suffice to determine the ordinary deformation

ring. Thus, it will be necessary to calculate higher order coefficients of the ideal defining

the ordinary quotient. In [DLRar], the authors predict that the generalized eigenspace

attached to an irregular weight one cuspform is four dimensional, which suggests a rather

intricate geometric picture. One could again compute the q-expansion coefficients of a



basis of the generalized space in terms of p-adic logarithm of units of a number field. We

expect their expressions to involve products of logarithms, capturing the fact that the

square of the maximal ideal of the relative local ring will be non-zero.

A second natural question is how to extend this work to the Hilbert case, i.e. for

irregular parallel weight one Eisenstein series for a totally real field F . As in the F = Q

case, one could define a cuspidal deformation ring as a quotient of the tensor products

of certain nearly ordinary deformation rings attached to reducible indecomposable repre-

sentations of GF sharing the same semisimplification. This construction will depend on

the ramification of p in F in a crucial way. For example, let F be a real quadratic field

in which p is inert and let φ be a finite order character of GF ; under these assumptions,

the cohomology group H1(F, φ) is two-dimensional. Our approach in the present work

relied on the fact that the pair of reducible indecomposable representations associated

to f were essentially unique. Thus, generalizing this strategy to higher dimension poses

the question of understanding what residual representation can occur when considering

different lattices for a given irreducible but residually reducible representation of GF .

Advances in this direction would provide a different (Galois theoretic) point of view on

the Gross-Stark Conjecture proved in [DKV18].
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