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Abstract

This thesis studies three distinct but interrelated topics revolving around the theme of ra-
tional points on curves defined over number fields. The guiding questions differ depending
on the genus of the curves under investigation: we distinguish between the case of elliptic
curves (genus one case) and the case of higher genus curves.

In the context of elliptic curves, the difficulty lies in constructing interesting rational
points in view of shedding light on the famous Birch and Swinnerton-Dyer conjecture. A
possible direction is the study of algebraic cycles and their resulting Chow–Heegner points.

Chapter 2, which is joint work with Henri Darmon, Massimo Bertolini and Kartik
Prasanna, explores questions related to generalised Heegner cycles on products of Kuga–
Sato varieties with powers of a CM elliptic curve. The first main result is a formula for the
image of these cycles under the complex Abel–Jacobi map in terms of explicit line integrals
of modular forms on the complex upper half-plane. Such a formula has implications for the
corresponding Chow–Heegner points on the CM elliptic curve. The second main theorem
uses this formula to show that the Chow group and the Griffiths group of the relevant product
varieties are not finitely generated. More precisely, it is shown that the subgroup generated
by the images of generalised Heegner cycles has infinite rank in the group of null-homologous
cycles modulo both rational and algebraic equivalence.

Chapter 4 focuses on the setting of diagonal type cycles on the triple product of the
modular curve X0(p) of prime level p. The main motivation stems from the Beilinson–Bloch
conjecture in this particular setting. This conjecture predicts the equality between the central
order of vanishing of the triple product L-function associated to three normalised newforms
in S2(Γ0(p)) on the one hand, and the rank of the (f1, f2, f3)-isotypic component of the null-
homologous Chow group of X0(p)3 of codimension two on the other hand. One of the main
results asserts that the global root number of the triple product L-function of (f1, f2, f3)
twisted by the Legendre symbol χ at p is always −1. In parallel, we construct a canonical
null-homologous cycle on X0(p)3 of codimension 2 which lies in the (−1)-eigenspace of the
Chow group for the non-trivial element of Gal(Q(

√
χ(−1)p)/Q). This leads us to formulate

refinements of the Beilinson–Bloch conjecture in a setting which has not been considered
before. Specialising to the case where f3 has rational coefficients and f1 = f2, we formulate
further refined conjectures concerning the associated Chow–Heegner points on the elliptic
curve associated with f3. When the global root number of the triple product (f1, f2, f3) is +1,
we prove that the image of the Gross–Kudla–Schoen cycle under the complex Abel–Jacobi
map is torsion in the (f1, f2, f3)-isotypic component of the second intermediate Jacobian
of X0(p)3, and deduce torsion properties of the related Chow–Heegner points, which had
originally been studied by Darmon, Rotger and Sols in the case where the root number is
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−1. Moreover, we prove that the Chow–Heegner points associated to the special cycle defined
over Q(

√
−p) are torsion whenever p ≡ 3 (mod 4). Such torsion properties fit nicely with the

proposed conjectures, and are in line with the Beilinson–Bloch and Birch–Swinnerton-Dyer
conjectures.

In the context of higher genus curves, it is known by Faltings’ famous proof of Mordell’s
conjecture that any smooth, projective, geometrically irreducible curve of genus greater
than one over a number field has only finitely many rational points. However, this does
not allow for the explicit determination of this finite set, given that Faltings’ proof is not
effective. Chapter 3, which is joint work with Pavel Čoupek, Luciena Xiao Xiao and Zijian
Yao, generalises the geometric quadratic Chabauty method, initiated over Q by Edixhoven
and Lido, to higher genus curves defined over arbitrary number fields. This results in a
conditional bound on the number of rational points on curves that satisfy an additional
Chabauty type condition on the rank of the Jacobian of the curve. The method gives a
more direct approach to the generalisation by Dogra of the quadratic Chabauty method
to arbitrary number fields. As such, this work can be viewed as part of the non-abelian
Chabauty program initiated by Kim.
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Résumé

Cette thèse traite de trois sujets distincts quoique liés autour du thème des points rationnels
sur les courbes algébriques définies sur des corps de nombres. Les questions directrices varient
selon le genre des courbes considérées: nous distinguerons entre le cas des courbes elliptiques
(de genre égal à un) et celui des courbes de genre supérieur ou égal à deux.

La problématique principale dans le contexte des courbes elliptiques provient du fait
qu’il est difficile de construire des points rationnels interéssants sur de telles courbes. Ceci
est formulé plus précisément dans la fameuse conjecture de Birch et Swinnerton-Dyer. Une
approche possible de ce problème est l’étude de cycles algébriques et des points dits de
Chow–Heegner qui en découlent.

Le Chapitre 2, qui est un travail en commun avec Henri Darmon, Massimo Bertolini
et Kartik Prasanna, traite des cycles de Heegner généralisés sur le produit d’une variété de
Kuga–Sato avec une puissance d’une courbe elliptique à multiplication complexe. Le premier
résultat principal est une formule pour l’image de ces cycles par l’application d’Abel–Jacobi
complexe en termes d’intégrales explicites de formes modulaires sur le demi-plan supérieur
de Poincaré. Une telle formule peut être utilisée pour déduire des propriétés des points de
Chow–Heegner associés. Le second résultat principal se sert de cette formule pour démontrer
que le groupe de Chow ainsi que le groupe de Griffiths des variétés produits ci-dessus ne sont
pas de type fini. Plus précisément, il est démontré que le sous-groupe engendré par les cycles
de Heegner généralisés est de rang infini dans le groupe des cycles homologues à zéro modulo
l’équivalence rationnelle ainsi qu’algébrique.

Le Chapitre 4 porte sur les cycles diagonaux sur le produit triple de la courbe modu-
laire X0(p) où p est un nombre premier. La motivation principale provient de la conjecture
de Beilinson–Bloch dans le contexte particulier du produit triple. Celle-ci prédit l’égalité
entre, d’une part, l’ordre d’annulation de la fonction L associée à un triplet de formes mod-
ulaires paraboliques f1, f2, f3 ∈ S2(Γ0(p)) en son centre s = 2 et, d’autre part, le rang de
la composante (f1, f2, f3)-isotypique du groupe de Chow des cycles homologues à zéro et de
codimension 2 sur X0(p)3. Le premier résultat dit la chose suivante: si χ désigne le symbole
de Legendre en p, alors le signe de l’équation fonctionnelle de L(f1⊗f2⊗f3⊗χ, s) est négatif.
En parallèle, on construit sur X0(p)3 un cycle canonique, homologue à zéro, de codimension
2 et défini sur Q(

√
χ(−1)p) (i.e., l’extension quadratique de Q associée au caractère χ). De

plus, l’automorphisme non trivial de cette extension agit sur le cycle avec valeur propre égale
à −1. Ceci nous amène à formuler un raffinement de la conjecture de Beilinson–Bloch dans
un contexte nouveau. En spécialisant au cas où f3 est à coefficients de Fourier rationnels
et f1 = f2, nous formulons des raffinements de la conjecture de Birch et Swinnerton-Dyer
concernant les points de Chow–Heegner sur la courbe elliptique correspondant à f3 associés
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au cycle spécial. Lorsque le signe de l’équation fonctionnelle de L(f1⊗ f2⊗ f3, s) est positif,
nous démontrons que l’image du cycle de Gross–Kudla–Schoen par l’application d’Abel–
Jacobi complexe est de torsion dans la composante (f1, f2, f3)-isotypique de la Jacobienne
intermédiaire de X0(p)3, et nous déduisons les propriétés de torsion des points de Chow–
Heegner associés à ce cycle. Ces derniers ont fait l’objet d’étude dans le travail de Darmon,
Rotger et Sols lorsque le signe de l’équation fonctionnelle est négatif. De plus, nous prouvons
que les points de Chow–Heegner associés au cycle spécial défini sur Q(

√
−p) sont de tor-

sion lorsque p ≡ 3 (mod 4). Ces propriétés de torsion s’accordent bien avec les conjectures
proposées, ainsi que les conjectures de Beilinson–Bloch et de Birch et Swinnerton-Dyer.

Dans le contexte des courbes de genre supérieur, il est bien connu depuis la fameuse preuve
de Faltings de la conjecture de Mordell que toute courbe lisse, projective et géométriquement
irréductible de genre supérieur ou égal à deux définie sur un corps de nombres n’admet qu’un
nombre fini de points rationnels. Du fait que la preuve de Faltings n’est pas effective, la
détermination explicite de cet ensemble fini pour une courbe donnée demeure aujourd’hui un
problème difficile. Le Chapitre 3, qui est un travail en commun avec Pavel Čoupek, Luciena
Xiao Xiao, et Zijian Yao, généralise la méthode de Chabauty quadratique géométrique,
due à Edixhoven et Lido sur Q, aux courbes de genre supérieur définies sur des corps de
nombres arbitraires. Ceci fournit une borne conditionnelle sur le nombre de points rationnels
sur de telles courbes satisfaisant de plus à une condition de type Chabauty sur le rang de
la Jacobienne de la courbe en question. Cette méthode peut être interprétée comme une
approche plus directe à la généralisation de Dogra de la méthode de Chabauty quadratique
aux corps des nombres arbitraires. Ainsi, ce travail s’insère naturellement dans le cadre plus
général du programme de Chabauty non-abélien initié par Kim.
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Introduction

The unifying theme of the present thesis is the study of rational points on curves, using

methods and tools from algebraic geometry. The types of questions that arise depend on the

nature of the curves of interest: we will distinguish between two classes of curves, namely

elliptic curves and higher genus curves.

In the case of elliptic curves, the main motivation stems from the conjecture of Birch

and Swinnerton-Dyer and the inherent difficulty of constructing interesting rational points

on such curves. In particular, we will focus on the construction and properties of so-called

Chow–Heegner points, which arise as images of algebraic cycles under certain generalised

modular parametrisations. This construction generalises the one of the more classic Heegner

points, which account for the most significant progress towards the Birch and Swinnerton-

Dyer conjecture to date. Two different settings, along with their associated Chow–Heegner

points, will be considered in this thesis, namely the one of generalised Heegner cycles and

the one of diagonal type cycles on triple products of modular curves.

In the case of higher genus curves, it is known since Faltings’ proof of Mordell’s conjecture

that the set of rational points is finite. However, the available proofs of this result are

not effective, which prompts the question of the explicit determination of rational points

on such curves. To this end, many methods have been developed recently, originating in

the Chabauty–Coleman method. This method allows for the explicit determination of the

set of rational points of higher genus curves satisfying an additional so-called Chabauty

condition. The Chabauty–Kim method is a far-reaching non-abelian generalisation of the
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ideas of Chabauty, which aims to relax the original Chabauty condition, and thus to allow for

the determination of rational points on more general curves. The first non-abelian instance

of this program is known as the quadratic Chabauty method. Recently, Edixhoven and Lido

have found an approach to quadratic Chabauty which replaces Kim’s language of non-abelian

p-adic Hodge theory with the more geometric one of Jacobians and line bundles on curves.

Part of this thesis is concerned with the generalisation of the work of Edixhoven and Lido

to the case of arbitrary number fields.

0.1 Diophantine geometry

The study of Diophantine equations, named after the 3rd century greek mathematician

Diophantus of Alexandria, consists in finding integer or rational solutions to systems of

polynomials in several variables with rational coefficients. Individual Diophantine problems

are akin to puzzles and have been the objects of mathematical interest throughout history.

For instance, consider the Diophantine problem which asks for all the integer solutions to

the three variable equation

x2 + y2 = z2.

Equivalently, this problem is asking for the points with rational coordinates on the unit

circle. There are infinitely many solutions, the so-called Pythagorean triples, which, as their

name indicates, were considered by Pythagoras and his school.

Perhaps one of the most famous Diophantine problems is a variant of the above, originally

formulated by Pierre de Fermat and known as Fermat’s Last Theorem. In 1637 he claimed,

in the form of a scribbled note in the margin of his copy of the Arithmetica, that the equation

xn + yn = zn, with n ≥ 3,

has no integer solutions satisfying xyz 6= 0. This was proved, possibly even more famously,
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in 1995 by Sir Andrew Wiles. His proof is truly a 20th century proof, putting to use deep

tools from modern algebraic geometry, which were unavailable at the time of Fermat.

Modern day research in Diophantine problems has departed from individual equations

and seeks the formulation of more general theories of Diophantine equations. The systems

of equations of a Diophantine problem define algebraic varieties, and from this perspective

the problem becomes the one of finding rational or integral points on these varieties. It is

then natural to attempt to solve such problems by importing tools and techniques from the

world of algebraic geometry; this train of thought leads to a field of study known today as

Diophantine geometry.

The modern development of Diophantine geometry can provide answers to a variety

of geometric questions, ranging from Greek geometry to modern algebraic geometry. Vice-

versa, insights into the field of algebraic geometry can lead to solutions to previously unsolved

Diophantine problems, as in the case of Wiles’ proof of Fermat’s Last Theorem.

As an example of a piece of Greek mathematics that was only fully answered by modern

techniques, consider Problem 17 of Book VI of Diophantus’ Arithmetica:

Find three squares which when added give a square, and such that the first one is the

square-root of the second, and the second is the square-root of the third.

Solutions here are implicitly assumed to be positive rational numbers. In modern language,

the problem is therefore to find positive rational solutions to the equation

y2 = x8 + x6 + x2. (1)

Diophantus himself found that (x, y) = (1/2, 9/16) is a solution, and from his perspective

that solved the problem (as was the custom at his time). This is unsatisfactory from a

modern point of view, in that we wish to know all the solutions. The answer to this came

in the form of Wetherell’s thesis [152] in 1997: using a modern technique, known as the

Chabauty–Coleman method, he established that the only positive rational solution to (1) is
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the one discovered by Diophantus himself.

Another source of motivation for studying Diophantine geometry comes from the theory of

moduli spaces – algebraic varieties whose algebraic points represent certain geometric objects.

Via moduli spaces, questions that seemingly have nothing to do with finding solutions to

polynomial equations can be interpreted as Diophantine problems, and can thus be solved

using methods from Diophantine geometry. As an example, consider the following question

raised by Serre [132], known today as Serre’s Uniformity Question:

Question 0.1. Does there exist a constant N such that, for any prime ` ≥ N and any non-

CM elliptic curve E over Q, the Galois representation ρ̄E,` : GQ−→Aut(E[`](Q̄)) ' GL2(F`)

of E at ` is surjective ?

This question is still open in general but has seen significant recent progress – it is ex-

pected to be true for N = 37. One can turn the question around and try to establish

which elliptic curves have the property that the image of ρ̄E,` is contained in a maximal

subgroup of GL2(F`). These maximal subgroups are categorised as Borel subgroups, excep-

tional subgroups, normalisers of split Cartan subgroups and normalisers of non-split Cartan

subgroups. Serre [133] classified elliptic curves with residual Galois image in exceptional

subgroups. The set of elliptic curves whose residual Galois image modulo ` is contained

in a Borel subgroup (resp. normaliser of split/non-split Cartan subgroup) defines a mod-

uli problem which is representable by the modular curve X0(`) over Q of level Γ0(`) (resp.

the split/non-split Cartan modular curves Xs(`) and Xns(`) of level `). Serre’s Uniformity

Question can now be restated in terms of finding Q-rational points on these modular curves.

Mazur [113] classified the rational points on X0(`), thereby disposing of the Borel case. Bilu,

Parent and Rebolledo [21,22] classified the rational points of Xs(`) for ` ≥ 11 different from

13. This classification was completed recently, in a striking application of the quadratic

Chabauty method, when Balakrishnan, Dogra, Müller, Tuitman and Vonk [8] determined

the rational points of Xs(13) in the elusive case ` = 13. The case of non-split Cartan sub-

groups remains open today. However, Dogra and Le Fourn [61] have recently developed a
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“quadratic Chabauty for quotients” method for modular curves, which notably enables them

to effectively bound the size of the set of rational points Xns(`)(Q).

0.1.1 Rational points on curves

Let K denote a number field and let C be a “nice” curve (smooth, projective, geometrically

irreducible) defined over K. The main object of interest in this thesis is the set of rational

points C(K). Among the natural questions one might ask are the following:

1. Is C(K) empty ?

2. If not, then what is the cardinality of C(K) ?

3. If finite, can we find all the rational points explicitly ?

4. If infinite, can we generate all solutions using only finitely many of them ?

Let us suppose from the onset that C(K) 6= ∅, which effectively rules out the first question.

Associated to the curve C is a numerical invariant g called its genus. It is defined as the

dimension of the space of regular differential 1-forms on C, namely g := dimK H
0(C,Ω1

C).

The size of the set C(K), i.e., the answer to the second question above, is dictated by the

genus of the curve:

• When g = 0, the curve C is either a conic or the projective line. In any case, the

set C(K) is infinite and well understood, as established by Hilbert and Hurwitz [84].

Moreover, one obtains all solutions using a single rational point via a geometric recipe,

in answer to question 4 above.

• When g = 1, the curve C is an elliptic curve and the Mordell–Weil theorem [118,

151] asserts that C(K) has the structure of a finitely generated abelian group. As a

consequence, C(K) can be either finite or infinite, depending on whether its algebraic

rank is zero or positive.
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• When g ≥ 2, it was conjectured by Mordell [118] and proved by Faltings [68] in 1983,

that C(K) is finite. Subsequent proofs include the one by Vojta [148] and the recent

proof by Lawrence and Venkatesh [106].

We summarise this discussion about the cardinality of C(K) in the following table:

g #C(K)

0 infinite

1 finite or infinite

≥ 2 finite

As is clear, the situation of genus zero curves is fully understood, and the focus from now

on will be on the remaining two cases, namely elliptic curves and higher genus curves.

0.1.2 Questions in genus one

Let E denote a smooth projective genus one curve defined over some number field K and

assume that E(K) 6= ∅. After fixing a rational point OE ∈ E(K), the pair (E,OE) is an

elliptic curve. In the special case of elliptic curves, the set E(K) can be endowed with the

structure of an abelian group with identity element OE, and E(K) is in fact finitely generated

by the Mordell–Weil theorem. In particular, we have an identification

E(K) ' E(K)tors ⊕ Zralg(E/K),

where E(K)tors is the finite subgroup of torsion points, and ralg(E/K) is called the Mordell–

Weil rank of E. When K = Q, Mazur [112] established which abstract finite groups could

occur as E(Q)tors. The case of general number fields was settled by Merel [115].

Central to the theory of elliptic curves remains the unsolved problem of determining the

algebraic rank ralg(E/K). This quantity appears to be quite intractable as, for instance, it

is still unknown if there exist elliptic curves with arbitrarily large rank.
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During the 1960’s, Birch and Swinnerton-Dyer [23,24] observed, after conducting exten-

sive computations, the following experimental relation for an elliptic curve E/Q:

∏
p≤X

#E(Fp)
p

?∼ CE log(X)ralg(E/Q), as X → +∞,

where the product ranges over (all but finitely many) prime numbers, and CE is some

constant depending on E. Associated to E is a complex function L(E/Q, s) called the

Hasse–Weil L-function of E. It is given, except for finitely many primes p, by the product

∏
p

(1− (p+ 1−#E(Fp))p−s + p1−2s)−1

which converges to a holomorphic function for all <(s) > 3/2. Thus, formally we have

L(E/Q, 1) =
∏

p

(
#E(Fp)

p

)−1

, although the convergence of this product was unknown at the

time. Hasse conjectured that L(E/Q, s) admits analytic continuation to the whole complex

plane via a functional equation centred at s = 1. Motivated by their observations and

this conjecture, Birch and Swinnerton-Dyer were led to define the analytic rank of E as

ran(E/Q) := ords=1 L(E/Q, s), and to conjecture the equality ran(E/Q) = ralg(E/Q).

One can formulate a similar conjecture for elliptic curves over a general number field

K. The Hasse–Weil L-function L(E/K, s) can be defined by a similar convergent product

formula as above and one conjectures that it admits analytic continuation to the complex

plane along with a functional equation centred at s = 1, hence (conjecturally) the analytic

rank ran(E/K) := ords=1 L(E/K, s) is well-defined. The famous Birch and Swinnerton-Dyer

conjecture, now one of the seven Clay Millennium Prize Problems, predicts the following:

Conjecture 0.1 (weak BSD).

ran(E/K) = ralg(E/K).

When K = Q, the good analytic properties of L(E/Q, s), originally conjectured by
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Hasse, are known today as a consequence of the Modularity Theorem of Wiles [153], Taylor

and Wiles [145], and Breuil, Conrad, Diamond and Taylor [31]. Note that the Modularity

Theorem for semistable elliptic curves was the key ingredient in Wiles’ proof of Fermat’s

Last Theorem. As a consequence of these analytic properties, it makes sense to consider

the equality of ranks predicted by the BSD conjecture. The most significant progress to

date towards the Birch and Swinnerton-Dyer conjecture is due to the method of Gross and

Zagier [78], and Kolyvagin [75, 103], which rests on the construction of Heegner points, and

yields the implication

ran(E/Q) ∈ {0, 1} =⇒ ralg(E/Q) = ran(E/Q). (2)

Their strategy has been generalised to the case of totally real number fields by S. Zhang [156].

The work of Skinner and Urban [141], and Skinner [140], uses p-adic methods, and more

specifically Iwasawa theory, to produce the first instances of the opposite implication of (2)

ralg(E/Q) ∈ {0, 1} =⇒ ralg(E/Q) = ran(E/Q), (3)

under certain technical assumptions.

The Birch and Swinnerton-Dyer conjecture remains open in higher rank situations, as

well as for elliptic curves over general number fields in any rank. The key obstacle to further

progress is the construction of non-torsion rational points on elliptic curves that go beyond

the setting of Heegner points. We will elaborate more on this point in Section 0.2.

0.1.3 Questions in higher genus

Let us go back to the original notation of this introduction and let C denote a smooth,

projective, geometrically irreducible curve of genus g ≥ 2 defined over a number field K.

Recall that Faltings’ theorem [68] implies that C(K) is a finite set. However, none of the

currently available proofs of this theorem are effective: they do not give a way, for a given
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curve, to determine the set C(K) explicitly. The effective determination of the set of rational

points of higher genus curves is one of the key problems of modern Diophantine geometry.

Several recent methods attempt to address this question.

The first partial result towards Mordell’s conjecture [118] came in the form of the pio-

neering work of Chabauty [35] in 1941. He managed to prove finiteness of the set of rational

points under an additional constraint, known as the Chabauty condition – namely, the rank

r of the Mordell–Weil group of the Jacobian J of C is less than the genus g. In 1985,

Coleman [36] succeeded in making Chabauty’s method effective, resulting in explicit upper

bounds for the number of rational points on curves satisfying the Chabauty condition. Using

this bound and further refinements of the method, it is possible in many cases to determine

C(K) completely. The resulting method is known as the Chabauty–Coleman method. This

is the method used by Wetherell [152] in order to complete the solution of Problem 17 of

Book VI in Diophantus’ Arithmetica. More precisely, by removing the singularity of equation

(1) at (0, 0), Wetherell reduced the question to finding all the rational points on the genus 2

bielliptic curve given by the affine model

Y : y2 = x6 + x2 + 1. (4)

The Jacobian of this curve has rank 2, so we are in the case r = g = 2, and a priori the

Chabauty–Coleman method does not apply. However, the main innovation of Wetherell was

to consider a collection of covering curves of Y and apply Chabauty–Coleman succesfully to

these.

In the mid 2000’s, Kim [101,102] initiated a fascinating non-abelian Chabauty program,

known as the Chabauty–Kim method, which aims to relax the restrictive Chabauty condition

r < g. The first non-abelian instance of the program is called the quadratic Chabauty

method. It has recently been made effective over Q in [8]; the method is successfully applied

to determine all rational points on the “cursed” split Cartan modular curve Xs(13) of level
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13 (which satisfies r = g = 3, so not in range for Chabauty–Coleman), thereby settling

the classification of non-CM elliptic curves over Q of split Cartan type, which relates to

Serre’s Uniformity Question 0.1. Let us mention here that Bianchi [20] has recently revisited

Problem 17 of Book VI in Diophantus’ Arithmetica, obtaining a new proof of Wetherell’s

theorem using the quadratic Chabauty method.

Recently, Edixhoven and Lido [62] have found a different approach to quadratic Chabauty

over Q, which replaces Kim’s language of non-abelian p-adic Hodge theory with the more

geometric language of Jacobians and line bundles on curves. This method is therefore referred

to as the geometric quadratic Chabauty method. It is expected to work under the so-called

quadratic Chabauty condition r < g + ρ− 1, where ρ is the rank of the Néron–Severi group

of J . As we will see, it lies close in spirit to the original method of Chabauty.

0.2 Algebraic cycles and the arithmetic of elliptic curves

We review the construction of Heegner points and their role in the Gross–Zagier–Kolyvagin

strategy towards the Birch and Swinnerton-Dyer conjecture. This motivates a generalisation

of such points, known as Chow–Heegner points.

0.2.1 The three pillars of the BSD strategy over Q

The strategy of Gross, Zagier and Kolyvagin towards the BSD conjecture over Q relies, in an

essential way, on the construction of certain rational points on elliptic curves – the so-called

Heegner points. These arise, via a modular parametrisation, from special points on certain

modular curves, and are linked to the behaviour of the Hasse–Weil L-function via the famous

Gross–Zagier formula.
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Modular parametrisations

Let E be an elliptic curve defined over Q of conductor N – a positive integer which contains

the information about the places of bad reduction of E. The Modularity Theorem [31, 145,

153] associates to E a weight 2 normalised Hecke newform f ∈ S2(Γ0(N))new of level Γ0(N)

such that we have an equality of L-functions

L(E/Q, s) = L(f, s) :=
∑
n≥1

an(f)

ns
,

where f is given by the Fourier expansion f(z) =
∑

n≥1 an(f)e2πiz around the cusp at infinity.

It follows that the Hasse–Weil L-function of E inherits the good analytic properties of the

L-function of f ; namely, L(E/Q, s) admits analytic continuation to the whole complex plane

via a functional equation centred at s = 1. In other words, Hasse’s conjecture is true. Note

that these properties were not known before the proof of modularity for all rational elliptic

curves over Q, and modularity type statements are the only way to access such analytic

properties of L-functions of algebraic varieties.

The Eichler–Shimura construction [64, 135] associates to f an elliptic curve Ef over Q,

which is a quotient of the Jacobian J0(N) of the modular curve X0(N) over Q (which coarsely

represents pairs of elliptic curves related by a cyclic N -isogeny), in a way such that

L(f, s) = L(Ef/Q, s).

In particular, we have the equality

L(E/Q, s) = L(Ef/Q, s),

and it follows from Faltings’ proof [68] of the Tate conjecture for abelian varieties over

number fields, that the elliptic curves E and Ef are isogenous. As a consequence, there is a
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non-constant morphism of algebraic varieties over Q

πE : J0(N)−→E. (5)

Such a morphism is called a modular parametrisation of E. Note that the statement that

all elliptic curves over Q admit a modular parametrisation is equivalent to the Modularity

Theorem.

Heegner points

The key observation is that the modular curve X0(N) comes equipped, via the theory of

complex multiplication, with a special supply of rational points.

The set of complex points X0(N)(C) is a Riemann surface, and admits a uniformisation

by the extended Poincaré upper half-plane given by

H∗−→X0(N)(C), τ 7→ (C/Z⊕ τZ, 〈1/N + Z⊕ τZ〉)

which identifies X0(N)(C) with the quotient Γ0(N) \ H∗ where Γ0(N) ⊂ SL2(Z) is the

standard congruence subgroup. Let K be an imaginary quadratic field embedded in C, of

discriminant −dK , and let OK denote its ring of integers. Let Oc denote the unique order of

K of conductor c. One may consider on X0(N)(C) the following set of complex multiplication

(CM) points

CMC(Oc) = {[τ ] ∈ Γ0(N) \ H | aτ 2 + bτ + d = 0, gcd(a, b, d) = 1, b2 − 4ad = −c2dK}.

These points are so named because they correspond, via the moduli description, to elliptic

curves E/C with complex multiplication by Oc (i.e., EndC(E) ' Oc) together with a Γ0(N)-

level structure. There is a subset CMC(Oc)heeg ⊂ CMC(Oc) consisting of special points that

correspond via moduli to cyclic N -isogenies of elliptic curves E−→E ′ where E and E ′ both
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admit complex multiplication by the same order Oc.

Given x ∈ CMC(Oc)heeg, we define the corresponding Heegner point by applying the

modular parametrisation πE to the class of the degree zero divisor (x) − (∞), where ∞

denotes the cusp at infinity of X0(N):

Pc,x := πE([x]− [∞]) ∈ E(C).

By the theory of complex multiplication, this point is defined over an abelian extension of

K, and more precisely, over the ring class field Hc of K of conductor c. It can be shown

that the collection of all Heegner points, with imaginary quadratic field K and conductor c

varying, generates a subgroup of E(Q̄) of infinite rank.

The Gross–Zagier formula

In 1986, Gross and Zagier proved a now famous formula relating the behaviour of Heegner

points to the derivative of a Hasse–Weil L-function. Let us assume that the conductor N of

the elliptic curve is square-free and fix an imaginary quadratic field K. We need to assume

the so-called Heegner hypothesis:

Assumption 0.1. All primes dividing N are split in K.

As a consequence of this assumption, the sign of the functional equation of the Hasse–Weil

L-function L(E/K, s) of E base-changed to K is −1, hence the analytic rank ran(E/K) is

odd, and in particular greater or equal to 1. Let P1,x ∈ E(H) be a Heegner point associated

with the maximal order of K, and thus defined over the Hilbert class field H of K, and

consider its trace

PK := TrH/K(P1,x) ∈ E(K).

The Gross–Zagier formula [78] gives an equality (up to multiplication by some explicit non-

zero complex number)

L′(E/K, 1)
·

= h(PK),
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where h denotes the canonical Néron–Tate height on E.

By the properties of the canonical height, we get, as an immediate consequence, that the

Heegner point PK has infinite order in E(K) if and only if L′(E/K, 1) 6= 0, and we have the

implication

ran(E/K) = 1 =⇒ ralg(E/K) ≥ 1.

By combining this result with techniques exploiting the full Euler system of Heegner

points, Kolyvagin [75,103] was able to deduce the following implication:

ran(E/Q) ∈ {0, 1} =⇒ ran(E/Q) = ralg(E/Q) & |X(E/Q)| <∞. (6)

This remains to date the strongest implication towards the BSD conjecture.

Further progress and obstacles

The above described Gross–Zagier–Kolyvagin strategy towards the BSD conjecture has been

generalised by S. Zhang [156] to the case of elliptic curves defined over totally real number

fields; given a modular elliptic curve E/F , where F is a totally real field such that either

[F : Q] is odd or E/F has at least one prime of multiplicative reduction, we have

ran(E/F ) ∈ {0, 1} =⇒ ran(E/F ) = ralg(E/F ).

The work of Skinner and Urban [140, 141] uses p-adic methods, and more specifically

Iwasawa theory, to produce the first instances of the opposite implication (3).

The three key ingredients of the Gross–Zagier–Kolyvagin approach to the BSD conjecture

over Q that we have seen are:

1. A modular parametrisation πE : JX−→E, where JX is the Jacobian of a modular curve

X (or more generally a Shimura curve).

2. A special supply of rational points on X – the so-called CM points – which gives rise
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to Heegner points on E via the modular parametrisation.

3. TheGross–Zagier formula relating the height of Heegner points to the central derivative

of certain base-changes of the Hasse–Weil L-function of E.

Suppose that we wish to understand the higher rank situation when ran(E/Q) > 1.

Suppose that K is an imaginary quadratic field satisfying the Heegner hypothesis (Assump-

tion 0.1), so that ran(E/K) is odd. It is clear that we also have ran(E/K) > 1, thus the

Gross–Zagier formula implies that the Heegner point PK ∈ E(K) is torsion. Even though

we expect, by the BSD conjecture, to have ralg(E/K) ≥ 3, we can currently not produce

a point of infinite order. This highlights the limitations of Heegner points: they can only

know about rank 1 situations. In the higher rank case, we need a construction of interesting

rational points that goes beyond the setting of Heegner points.

Given an elliptic curve E over Q, even of small rank, we may wonder whether we can

say anything about the BSD conjecture for the base-change of E to some number field F .

But again we are limited: the Heegner point construction only yields rational points defined

over abelian extensions of imaginary quadratic fields which are generalised dihedral over Q.

Therefore, the Heegner point construction is insufficient to deal with the BSD conjecture

over arbitrary number fields.

Given the shortcomings of the Heegner point construction, a central obstacle to further

progress on the BSD conjecture is the construction of rational points on elliptic curves which

may account for higher rank situations, and which can be defined over arbitrary number

fields.

0.2.2 The construction of Chow–Heegner points

A generalisation of the Heegner point construction exists. The idea is to consider points

on elliptic curves arising as images of algebraic cycles under certain generalised modular

parametrisation maps. The name of Chow–Heegner points was coined by Bertolini, Darmon
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and Prasanna when they first envisioned such constructions in [13].

Algebraic cycles

Let X denote a smooth projective variety of dimension d defined over some number field K.

An algebraic cycle on X is a formal Z-linear combination of subvarieties of XK̄ . Hence, an

algebraic cycle can be written as a finite sum Z =
∑t

i=1 ni · Vi, where the coefficients ni are

integers, and the Vi are subvarieties. These form a group under addition, and if all the Vi’s

have codimension j, then the algebraic cycle Z is said to be of codimension j.

The Chow group of X is obtained by considering the group of algebraic cycles modulo

rational equivalence (i.e., by taking the quotient of the subgroup generated by cycles arising

as divisors of functions on subvarieties). The Chow group has the structure of a ring under

the intersection product, and the additive subgroup generated by cycles of codimension j is

denoted CHj(X). There is also a notion of an algebraic cycle being null-homologous (i.e.,

having image in cohomology equal to zero), and the subgroup generated by such cycles will

be denoted by CHj(X)0.

As an example, let us consider the case when d = 1, i.e., the variety X is a curve. In this

case, algebraic cycles of codimension 1 are given by formal sums of points in X(K̄), so the

group of codimension 1 cycles is the familiar divisor group Div(X). Rational equivalence

in this case is the perhaps more familiar relation of linear equivalence on divisors, hence

CH1(X) = Pic(X) is the Picard group of X. Finally, null-homologous divisors correspond to

degree zero divisors, so that the null-homologous Chow group is CH1(X)0 = Pic0(X) = JX ,

i.e., the Jacobian of X.
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The three pillars of BSD revisited

Let E/Q be an elliptic curve of conductor N . The language of algebraic cycles allows us to

recast the modular parametrisation (5) as a natural transformation

πE : CH1(X0(N))0−→E.

As explained in [13], it is tempting to define generalisations of modular parametrisations

by replacing the domain CH1(X0(N))0 with CHj(X)0 for some algebraic variety of higher

dimension, as natural transformations

ΠE : CHj(X)0−→E.

Such a generalised modular parametrisation then gives rise to rational points on E – namely,

Chow–Heegner points – by evaluating at suitable rational null-homologous algebraic cycles of

codimension j. Note that the use of the word “parametrisation” is a slight abuse of language,

since the natural transformations ΠE are in general not surjective.

From this perspective, one can devise a new strategy towards the BSD conjecture based

on three ingredients, generalising the Gross–Zagier–Kolyvagin picture:

1. A generalised modular parametrisation ΠE : CHj(X)0−→E, where X is an algebraic

variety.

2. A special supply of algebraic cycles on X (null-homologous of codimension j) which

gives rise to Chow–Heegner points on E via ΠE.

3. A Gross–Zagier type formula relating the height of Chow–Heegner points to the central

derivative of certain base-changes of the Hasse–Weil L-function of E.
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Chow–Heegner points

Let E denote an elliptic curve defined over a number field K, and let X denote a smooth

projective variety over K of dimension d. Any element Π of CHd−j+1(X ×E)(K) gives rise,

via push-forward of correspondences, to a natural transformation

Π∗ : CHj(X)0−→CH1(E)0, ∆ 7→ prE,∗(Π · pr∗X(∆)),

where prE : X × E−→E and prX : X × E−→X denote the natural projections, and the

product is the intersection product in Chow groups. Note that CH1(E)0 = JE is the Jacobian

of E, which in the case of elliptic curves is simply E. Hence the push-forward of Π gives rise

to a generalised modular parametrisation

ΠE := Π∗ : CHj(X)0−→E.

For any field extension F of K, it induces homomorphisms

ΠE : CHj(X)0(F )−→E(F ),

hence it can be used to produce rational points on E.

Definition 0.1. Given an algebraic cycle ∆ ∈ CHj(X)0(F ) defined over some extension F

of K, we define the associated Chow–Heegner point by

P (X,Π,∆) := ΠE(∆) = Π∗(∆) ∈ E(F ).

As an example, let us consider the case where K = Q and X = X0(N) is the modular

curve over Q of level Γ0(N) with N the conductor of E. Consider the graph of the modular

parametrisation Π := ΓπE ∈ CH1(X0(N)× E)(Q) arising from the Modularity Theorem. If
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x ∈ CMC(OK)heeg is a special CM point of X0(N), then the Chow–Heegner point

P (X0(N),ΓπE , [x]− [∞]) = πE([x]− [∞]) = P1,x ∈ E(H)

is the corresponding Heegner point of conductor 1. In particular, the Chow–Heegner con-

struction can be seen as a vast generalisation of the original construction of Heegner points.

Because it involves modular parametrisations whose domains are Chow groups, the name of

Chow–Heegner point was suitably chosen.

0.2.3 Complex Abel–Jacobi maps

Recall the Abel–Jacobi map of the elliptic curve E,

AJE : E(C)
∼−→J1(E)(C) :=

H0(E(C),Ω1
E)∨

ImH1(E(C),Z)
.

Here J1(E/C) denotes the complex points of the Jacobian of E, viewed as a complex torus

by taking the quotient of the dual of the 1-dimensional C-vector space of global regular

differentials by the lattice coming from the singular homology of the Riemann surface E(C)

(viewed inside H0(E(C),Ω1
E)∨ by integration of differential forms on topological 1-chains).

The map is defined, using as base point the origin OE ∈ E(C), by the integration formula

AJE(P )(ω) =

∫ P

OE

ω, for all ω ∈ H0(E(C),Ω1),

and it is an isomorphism by a classic result of Abel.

It admits a higher dimensional analogue for the variety X in form of a homomorphism

AJX : CHj(X)0(C)−→J j(X/C) :=
Fild−j+1 H2d−2j+1

dR (X/C)∨

ImH2d−2j+1(X(C),Z)
, (7)

where J j(X/C) is the j-th intermediate Jacobian of X first studied by Griffiths and Weil. It

19



is a complex torus realised by taking the dual of the (d−j+1)-th step in the Hodge filtration

of the de Rham cohomology of X/C in degree 2d−2j+1 modulo the lattice coming from the

singular homology of the complex manifold X(C) (viewed inside Fild−j+1 H2d−2j+1
dR (X/C)∨

by integration of differential forms on topological (2d−2j+1)-chains). This map is similarly

defined by an integration formula

AJX(Z)(α) =

∫
∂−1(Z)

α, for all α ∈ Fild−j+1 H2d−2j+1
dR (X/C),

where ∂−1(Z) denotes any topological (2d− 2j + 1)-chain whose boundary is the homology

class of Z. Note that AJX is no longer an isomorphism in general, and J j(X) does not carry

an algebraic structure.

Functoriality properties of these complex Abel–Jacobi maps with respect to correspon-

dences [65] yield a commutative diagram

CHj(X)0(C) J j(X/C)

E(C) J1(E/C),

AJX

Π∗ (Π∗dR)∨

∼
AJE

where Π∗dR denotes the pull-back of the correspondence Π on de Rham cohomology groups.

Since AJE is an isomorphism, studying the Chow–Heegner point P (X,Π,∆) in E(C) amounts

to studying its image via AJE. We have the following formula, for all ω ∈ H0(E(C),Ω1),

AJE(P (X,Π,∆))(ω) = AJE(Π∗(∆))(ω) = AJX(∆)(Π∗dR(ω)).

In conclusion, the computation of the image of algebraic cycles under complex Abel–

Jacobi maps can be used as a tool in the study of the associated Chow–Heegner points.
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0.3 Rational points on higher genus curves

Let C be a smooth, projective, geometrically irreducible curve of genus g ≥ 2 defined over

a number field K. The theorem of Faltings states that the set of rational points on C

is finite. Faltings’ spectacular proof, however, cannot be made effective and there is no

general algorithm for determining the set C(K) at present. (This is not quite true: there

is an algorithm by Alpöge and Lawrence that terminates assuming standard conjectures.

We refer to Chapters 7-9 of [2]). Let J denote the Jacobian of C, which is an abelian

variety over K of dimension g. By the Mordell–Weil theorem for abelian varieties [151], the

abelian group of rational points J(K) is finitely generated and thus has a well defined rank

r := rankZ J(K). In recent years, starting with the groundbreaking work of Chabauty in

1941, methods have been invented which lead, in many cases, to the explicit determination

of rational points on curves satisfying certain rank inequality conditions on r, commonly

referred to as Chabauty type conditions. In this introduction, we will restrict the attention

to the setting where K = Q.

0.3.1 Chabauty–Coleman

If the Mordell–Weil rank r of the Jacobian J of C satisfies the inequality r := rankZ J(Q) < g,

the pioneering work of Chabauty [35] and Coleman [36] can be used to give upper bounds

for the size of C(Q), and in many cases, to explicitly compute the set of rational points.

Upon choosing a prime p of good reduction, one obtains a homomorphism

logp : J(Qp)−→H0(CQp ,Ω
1)∨ ' H0(JQp ,Ω

1)∨

induced from a linear pairing J(Qp)×H0(JQp ,Ω
1) −→ Qp which sends (P, ω) to the Coleman

integral
∫ P

0
ω. We refer to [37] for details about Coleman integration. This map is the p-adic
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syntomic Abel–Jacobi map

AJp : CH1(X)0(Cp)−→Fil1 H1
dR(X/Cp)

∨,

a p-adic avatar of the complex Abel–Jacobi map introduced earlier.

The Abel–Jacobi embedding jb : C ↪→ J (relying on a fixed base point b ∈ C(Q)) leads

to the following diagram, which is central to the method:

C(Q) C(Qp)

J(Q) J(Qp) H0(CQp ,Ω
1)∨.

jb jb

∫

logp

(8)

The Chabauty condition r < g guarantees that the closure J(Q)
p
of J(Q) in J(Qp) with re-

spect to the p-adic topology has positive codimension. In particular, there exists a nontrivial

differential form ω which is annihilated by logp(J(Q)
p
), and thus

C(Q) ⊂ j−1
b (J(Q)

p
∩ jb(C(Qp))) ⊂

{
x ∈ C(Qp) :

∫ x

b

ω = 0

}
.

The Coleman function
∫ x
b
ω of x is given by a converging p-adic power series on each residue

disk of the curve C, and in particular has only finitely many zeros. It follows that C(Q)

is finite. Coleman [36] was able, using Newton polygons, to count the number of zeros of

converging p-adic power series on residue disks, and prove the following bound

|C(Q)| ≤ |C(Fp)|+ (2g − 2)

when r < g and p > 2g is a prime of good reduction for C.

The question of the uniformity of the bound on the number of rational points on higher

genus curves has been explored in the work of Stoll [143], Katz and Zureick-Brown [97],

and Katz, Rabinoff and Zureick-Brown [96]. They notably extend the ideas of Chabauty–
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Coleman to the setting of primes of bad reduction.

0.3.2 Quadratic Chabauty

The tantalising non-abelian Chabauty program, initiated by Kim [101,102], aims to relax the

Chabauty condition r < g by considering non-abelian variants of the objects in (8). To this

end, we first reinterpret the diagram above using the Bloch–Kato Selmer groups H1
f (Q, V )

(resp. H1
f (Qp, V )) in place of J(Q) (resp. J(Qp)) via the Kummer maps, where V := VpJ is

the p-adic Tate module of J with its canonical Galois action. The logarithm map above is

essentially the inverse of the Bloch–Kato exponential

H0(CQp ,Ω
1)∨ ' DdR(V )/D+

dR(V )
exp−−−−→ H1

f (Qp, V ).

Next, we replace V by certain pro-unipotent quotients Un of the étale fundamental group

πét
1 (CQ)Qp , one for each n ≥ 1, which again carries a continuous Galois action. Kim defines

a certain Selmer subgroup Sel(Un) ⊂ H1
f (Q, Un), and upgrades the previous diagram to

C(Q) C(Qp)

Sel(Un) H1
f (Qp, Un) πdR

1 (CQp)n/Fil
0.

jn jn,p

∫

locp locn

Here the vertical maps jn and jn,p are Kim’s unipotent Kummer maps. Define the sets

C(Qp)n := j−1
n,p

(
locp(Sel(Un))

)
,

which give rise to an infinite nested sequence of sets

C(Q) ⊂ . . . ⊂ C(Qp)n+1 ⊂ C(Qp)n ⊂ . . . ⊂ C(Qp)2 ⊂ C(Qp)1 ⊂ C(Qp).

For sufficiently large n, Kim conjectures that C(Qp)n is finite, and even coincides with C(Q).
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Here C(Qp)1 is the set studied in the Chabauty–Coleman method. It is the pre-image in

C(Qp) of the p-saturation of the rational points of J inside the p-adic points. More precisely,

it consists of those x ∈ C(Qp) such that n · jb(x) ∈ J(Q)
p
for some rational integer n. In

particular, C(Qp)1 contains j−1
b (J(Q)

p
∩ jb(C(Qp))), as well as j−1

b (J(Qp)tors ∩ jb(C(Qp))).

The first non-abelian instance of Kim’s program is known as the quadratic Chabauty

method – it consists of establishing the finiteness of C(Qp)2 under some quadratic Chabauty

condition on the rank r. This particular method has been developed by Balakrishnan and

Dogra in a series of papers [5–7]. In particular, they show that if the Mordell–Weil rank r

satisfies r < g + ρ− 1 (where ρ is the rank of the Néron–Severi group of J), then C(Qp)2 is

finite. This method has been made effective by Balakrishnan, Dogra, Müller, Tuitman and

Vonk [8], and applied to determine the rational points on the “cursed curve” Xs(13). This

work has been extended by the same authors in [9].

Dogra and Le Fourn [61] have recently developed a “quadratic Chabauty for quotients”

method that works well for modular curves; the quadratic Chabauty condition is replaced

by a condition on the rank of a quotient of the Jacobian plus an associated space of Chow–

Heegner points. This enables them to effectively bound the size of the rational points of

the modular curves X+
0 (`) and Xns(`) of prime level. We highlight the fact that their work

combines ideas from the two main themes of the present thesis: the quadratic Chabauty

method and the theory of Chow–Heegner points.

0.3.3 Geometric quadratic Chabauty

Recently, Edixhoven and Lido [62] have explored a different, less cohomological but ar-

guably more direct approach to quadratic Chabauty. Their method, known as the geometric

quadratic Chabauty method, proves finiteness of the set of rational points C(Q) under the

same quadratic Chabauty condition r < g + ρ − 1 as in the previous section. It has the

advantage of avoiding the consideration of iterated Coleman integrals and the analysis of

certain complicated p-adic heights. In fact, this method is rather geometric and elementary,
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and even eliminates the language of non-abelian p-adic Hodge theory used by Kim.

The strategy of Edixhoven and Lido is close in spirit to the original idea of Chabauty

from 1941. However, in order to relax the condition r < g, they replace the Jacobian J in

(8) by something bigger – namely, a certain Gρ−1
m -torsor T over J , which they construct.

This torsor comes equipped, by construction, with a lift j̃b : C−→T of the Abel–Jacobi

embedding of C in J . Letting p denote a prime of good reduction for the curve C, one may

then consider the diagram

C(Q) C(Qp)

T (Q) T (Q)
p

T (Qp),

j̃b j̃b
(9)

where T (Q)
p
denotes the closure of T (Q) in T (Qp) with respect to the p-adic topology. The

method now consists in bounding the size of the intersection

j̃−1
b (T (Q)

p
∩ j̃b(C(Qp))), (10)

which contains C(Q).

Note, however, that the torsor T has “too many rational points” as its fibre over J is

Gρ−1
m and Gm(Q) = Q× is not finitely generated. In fact, this brief overview of the method

is too simplified and it becomes necessary to work with (residue disks of) a regular, proper,

integral model C of C over Z and the corresponding diagram (9) over Z.

Their method allows Edixhoven and Lido to reprove Faltings’ theorem for curves satis-

fying the quadratic Chabauty condition r < g + ρ − 1. Furthermore, they have made their

method effective and have successfully used it to compute the rational points on the quotient

of the modular curve X0(129) by the Atkin–Lehner group 〈w3, w43〉 – a genus 2 curve with

Mordell–Weil rank 2, hence lying outside the Chabauty–Coleman range.
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0.4 Contributions of this thesis

This thesis explores several topics related to the themes described so far. We now introduce

each topic and outline the main contributions to be found in this thesis.

0.4.1 Generalised Heegner cycles

The first contribution of this thesis pertains to the study of certain algebraic cycles, known

as generalised Heegner cycles, with applications towards the study of their associated Chow–

Heegner points. This work is joint with Massimo Bertolini, Henri Darmon and Kartik

Prasanna, and has resulted in the published article [11].

Preliminaries

Let r and N be positive integers with N ≥ 5. Let X1(N) denote the modular curve over Q

of level Γ1(N) which classifies elliptic curves together with a point of order N . This moduli

problem admits a universal object π : E−→X1(N) known as the universal (generalised)

elliptic curve over X1(N). LetWr denote the r-th Kuga–Sato variety of level Γ1(N), which is

the canonical proper desingularisation of the r-fold self-fibre product of E over X1(N). Let A

be an elliptic curve with complex multiplication by OK , the ring of integers of some imaginary

quadratic field K. We can then consider the smooth projective (2r+ 1)-dimensional variety

Xr := Wr × Ar

defined over the Hilbert class field H of K. It comes equipped with a natural projection map

πr : Xr−→X1(N), whose fibre over a non-cuspidal point corresponding to an elliptic curve

E is π−1
r (E) = Er × Ar.

Let ωA be a Néron differential of A and let ηA ∈ H0,1(A/H) such that 〈ωA, ηA〉 = 1. In

particular, {ωA, ηA} is then a basis of H1
dR(A/H). Let θA be the theta series associated to

the Hecke character ψ of K of infinity type (r + 1, 0) satisfying ψH = ψr+1
A , where ψA is the
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Hecke character of H of infinity type (1, 0) corresponding to A. The Fourier coefficients of

this cusp form generate a finite extension EθA of Q and we let ωθA denote the associated

class in Hr+1
dR (Wr/EθA). Assuming the Tate conjecture for the variety Xr ×A, there exists a

correspondence Π? ∈ CHr+1(Xr × A)(H)⊗ EθA such that

Π?,∗
dR(ωA) = cA · (ωθA ∧ ηrA),

where cA ∈ (H ⊗ EθA)× is some constant. This gives rise, as in Section 0.2.2, to a modular

parametrisation

Π?
∗ : CHr+1(Xr)0 ⊗ EθA−→A⊗ EθA .

In order to construct Chow–Heegner points on A, we need a supply of special cycles in

the domain of this natural transformation. A distinguished collection of algebraic cycles in

CHr+1(Xr)0 was first introduced by Bertolini, Darmon and Prasanna [12]. These so-called

generalised Heegner cycles are naturally indexed by isogenies of elliptic curves with Γ1(N)-

level structure. If ϕ : A−→A′ is such an isogeny, the generalised Heegner cycle ∆ϕ is a

codimension r + 1 cycle that lives in the CM fibre of πr over A′ and is essentially given by

the r-fold self-product of the graph of ϕ.

The main result in loc. cit. is a p-adic Gross–Zagier formula that relates the images of

such cycles under the p-adic syntomic Abel–Jacobi map to special values of certain p-adic

Rankin L-series outside the range of classic interpolation.

We now have in hand the three ingredients of the BSD strategy outlined in Section 0.2.2,

namely:

1. A generalised modular parametrisation Π? : CHr+1(Xr)0−→A.

2. A special supply of generalised Heegner cycles, which give rise to Chow–Heegner points

P (Xr,Π
?,∆ϕ) ∈ A⊗ EθA .

3. The p-adic Gross–Zagier formula of [12].
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The difficulty in this situation stems from the fact that it is necessary to assume the Tate

conjecture in order to define the modular parametrisation Π?. In [13, Theorem 3.3], Bertolini,

Darmon and Prasanna manage to construct certain p-adic avatars of these Chow–Heegner

points unconditionally and relate them to global points with the expected field of rationality.

Moreover, the global point is of infinite order if certain related L-functions have the expected

orders of vanishing.

Contributions

In their series of papers [12–14], Bertolini, Darmon and Prasanna initiated a deeper study

of their generalised Heegner cycles – a study since then taken up by many authors including

Brooks [89], Burungale [33, 34], Elias [66, 67], Kriz [104], Longo and Pati [109], Longo and

Vigni [110], Ota [122] and Shnidman [137]. A possible direction, left unexplored, was to

consider their algebraic geometric, or even Hodge theoretic, incarnation: a study of the

complex Abel–Jacobi images of the cycles, and consequences for Chow and Griffiths groups.

The joint work [11], with Bertolini, Darmon and Prasanna, fills this gap.

The first main result is a formula for the image of ∆ϕ under the complex Abel–Jacobi

map

AJXr : CHr+1(Xr)0(C)−→Jr+1(Xr/C) :=
Filr+1 H2r+1

dR (Xr/C)∨

ImH2r+1(Xr(C),Z)
,

which is defined in terms of complex integration of differential forms, as in (7).

Theorem A (Bertolini–Darmon–Lilienfeldt–Prasanna). Let ϕ : A−→C/〈1, τ〉 be an isogeny

of degree dϕ = deg(ϕ), satisfying ϕ(tA) = 1
N

and ϕ∗(2πidw) = ωA. Let Λr,r denote the lattice

in (Sr+2(Γ1(N))⊗ SymrH1
dR(A/C))∨ defined in Section 2.2.4. For all f ∈ Sr+2(Γ1(N)) and

0 ≤ j ≤ r, we have

AJXr(∆ϕ)(ωf ∧ ωjAη
r−j
A ) =

(−dϕ)j(2πi)j+1

(τ − τ̄)r−j

∫ τ

i∞
(z − τ)j(z − τ̄)r−jf(z)dz (mod Λr,r).

This formula forms the basis of the numerical calculations of Chow–Heegner points carried
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out by Bertolini, Darmon and Prasanna [13], as we will now explain. Suppose, following loc.

cit. that K has class number one, odd discriminant and O×K = {±1}. Moreover, let ψ0 be

the canonical Hecke character of K of infinity type (1, 0), which corresponds (up to isogeny)

to an elliptic curve A/Q with EndK(A) ' OK satisfying L(A/Q, s) = L(ψ0, s). Now, θA

is the theta series associated to the Hecke character ψr+1
0 , hence EθA = Q. By clearing

denominators, we may then suppose that Π? ∈ CHr+1(Xr × A)(K) and thus it induces a

modular parametrisation

Π?
∗ : CHr+1(Xr)0−→A.

Note, moreover, that Π?,∗
dR(ωA) = cA ·(ωθA∧ηrA) with cA ∈ K×. It is possible to show [127, Ch.

5, Theorem 2.4] that there exists a non-zero scalar cr ∈ OK such that cr · (ωθA ∧ ηr+1
A ) is an

integral Hodge class on Xr × A. This implies that one can define a map

(Φ∗dR)∨ : Jr+1(Xr/C)−→J1(A/C)

of intermediate Jacobians, which satisfies Φ∗dR(ωA) = cr·(ωθA∧ηrA) and thus coincides with the

conjectural map (Π?,∗
dR)∨ (if it exists) up to a constant in K×. Since AJA is an isomorphism,

one can define complex avatars of Chow–Heegner points

P (Xr,∆ϕ) := AJ−1
A ((Φ∗dR)∨(AJXr(∆ϕ))) ∈ A(C).

This definition does not require the Tate (or Hodge) conjecture, but the price to pay is that

the rationality properties of these points are unknown and mysterious. Conjecturally, the

field of rationality is some abelian extension of K (a compositum of a ray class field and a

ring class field of K). One can access the point P (Xr,∆ϕ) via the formula

AJA(P (Xr,∆ϕ))(ωA) = AJXr(Φ
∗
dR(ωA)) = cr · AJXr(ωθA ∧ ηrA)

by functoriality of Abel–Jacobi maps. Thus, Theorem A (with j = 0) gives an explicit
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formula for the point P (Xr,∆ϕ) viewed inside the complex torus C/ΛA which uniformises

A(C), where ΛA is the period lattice of A. This is used by Bertolini, Darmon and Prasanna

in [13, Section 4] to numerically compute the points P (Xr,∆ϕ) and experimentally verify

their expected field of definition in many cases. Their calculations can be seen as providing

indirect evidence for the Tate and Hodge conjectures in this specific setup.

Another application of Theorem A is the second main theorem of the paper [11].

Theorem B (Bertolini–Darmon–Lilienfeldt–Prasanna). The subgroup generated by the col-

lection of generalised Heegner cycles in the group of null-homologous codimension r+1 cycles

of Xr modulo both rational and algebraic (assuming r ≥ 2) equivalence has infinite rank.

The proof makes up the technical core of the article, and the result can be viewed as

a generalisation of [128, Thm 4.7], which treats classic Heegner cycles on a Kuga–Sato

threefold.

The method uses purely transcendental, or Hodge theoretic, arguments coupled with

specific properties of modular forms to prove Theorem A. Analytic estimates of the explicit

line integrals appearing in the Abel–Jacobi formula are then used in order to determine their

vanishing (or not), and consequences for the order of the cycles in the relevant groups. Class

field theory, étale `-adic variants of Abel–Jacobi maps and fundamental properties of étale

cohomology are employed to upgrade the previous order estimates and show that infinitely

many of the cycles have infinite order. Finally, complex multiplication theory as formulated

by Shimura is key to understanding the Galois action on these cycles, which allows us to

prove that they generate a subgroup of infinite rank.

It is natural to expect the collection of (conjectural) Chow–Heegner points P (Xr,Π
?,∆ϕ)

to behave similarly to Heegner points – namely, to satisfy the properties of an Euler system

and to generate a subgroup of A(H̄) of infinite rank. While the latter would imply Theorem

B (at least the statement about rational equivalence), it is not implied by Theorem B, as the

injectivity properties of the modular parametrisation Π?
∗ are unknown. Theorem B can be

seen as lending support to the statement that the Chow–Heegner points generate a subgroup
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of infinite rank.

0.4.2 Geometric quadratic Chabauty over number fields

The second contribution of this thesis pertains to the question of the explicit determination

of rational points on higher genus curves. The work presented is joint with Pavel Čoupek,

Luciena Xiao Xiao and Zijian Yao, and has resulted in the preprint article [41].

Preliminaries

Recall from Section 0.3 the effective methods of Chabauty–Coleman, quadratic Chabauty,

and geometric quadratic Chabauty that were introduced. These are tools for the explicit

determination of rational points on higher genus curves defined over Q satisfying certain

rank conditions on their Jacobians:
r < g (Chabauty condition)

r < g + ρ− 1 (quadratic Chabauty condition),

where we recall that ρ denotes the rank of the Néron–Severi group of the Jacobian. A natural

question is the generalisation of these methods to the case of curves C defined over arbitrary

number fields K. This has been the subject of recent developments in the field, which we

briefly review.

The Chabauty–Coleman method naturally generalises over K. In fact, Coleman in his

original paper [36] directly considers this setup. Given an unramified prime p of K of good

reduction for C, he considers the diagram

C(K) C(Kp)

J(K) J(Kp) H0(CKp ,Ω
1)∨,

jb jb

∫

logp

(11)
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and, using his theory of p-adic integration, proves the following upper bound on the number

of rational points

|C(K)| ≤ N(p) + 2g(
√
N(p) + 1)− 1,

assuming that r < g and p > 2g where p lies above the prime p.

Siksek [138] extends the ideas of Chabauty–Coleman by studying all primes of K above

p simultaneously, instead of restricting to a single prime as above. This is achieved by

considered the Weil restrictions from K to Q of both the curve C and its Jacobian J in the

above picture. In this way, Siksek reduces the geometric situation to working entirely over

Q, but the price to pay is that it becomes necessary to work with higher dimensional (hence

more complicated) varieties. He successfully generalises the theory of Coleman integration

to the setting of the Weil restriction of the Jacobian. Siksek’s method, known as Restriction

of Scalars (RoS) Chabauty, results in a bound on the number of rational points on curves

over K satisfying the RoS Chabauty condition

r ≤ (g − 1)d, (12)

where d is the degree of K. Note, however, that the method can fail to produce a bound on

the number of rational points even when (12) is satisfied; examples include the case where

the curve C is the base change of a curve C ′ defined over Q which does not satisfy the

Chabauty condition rankZ Jac(C ′) < g. Aware of this, Siksek in his article asked whether a

sufficient condition for his method to prove finiteness is that for all extensions Q ⊂ L ⊂ K

over which C admits a good model CL we have

rankZ Jac(CL) ≤ (g − 1)[L : Q].

Failures of the method of RoS Chabauty have been studied by Triantafillou [146] who in-

troduces Base-Change-Prym (BCP) obstructions, which account for all known failures to

32



date.

Dogra [60] has recently combined ideas of the RoS Chabauty method with Kim’s non-

abelian Chabauty program, which has led to the generalisation of the Chabauty–Kim pro-

gram to arbitrary number fields. He obtains, as in Section 0.3.2, an infinite nested sequence

of Chabauty–Kim sets

C(K) ⊂ . . . ⊂ C(K⊗Qp)n+1 ⊂ C(K ⊗Qp)n ⊂ . . . ⊂ C(K⊗Qp)2 ⊂ C(K⊗Qp)1 ⊂ C(K⊗Qp)

where C(K ⊗ Qp)1 is the RoS Chabauty set studied by Siksek. Dogra provides a negative

answer to Siksek’s question using a BCP-obstruction, but also gives a sufficient condition for

RoS Chabauty to prove finiteness of C(K ⊗Qp)1 when r ≤ (g − 1)d, namely that

Hom(JQ̄,σ1
, JQ̄,σ2

) = 0 for any two distinct embeddings σ1, σ2 : K ↪→ Q̄. (13)

Moreover, he proves [60, Proposition 1.1], under the same condition (13), that the second

Chabauty–Kim set C(K ⊗ Qp)2 is finite whenever the following quadratic RoS Chabauty

condition is satisfied:

r + δ(ρ− 1) ≤ (g + ρ− 2)d, (14)

where δ := rankZO×K .

By the work of Dogra, the theoretical stage is set for the quadratic RoS Chabauty method.

It has been made effective recently by Balakrishnan, Besser, Bianchi and Müller [4] in the

case of odd degree hyperelliptic curves and genus 2 bielliptic curves. This allows them

to determine for example the Q(i)-rational points on the bielliptic modular curve X0(91)+

defined over Q, and also the Q(
√

34)-rational points on the bielliptic curve (4) defined over

Q studied by Diophantus, Wetherell [152] and Bianchi [20].
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Contributions

In the joint work [41] with Čoupek, Xiao and Yao, we generalise the recent geometric

quadratic Chabauty method, originally due to Edixhoven and Lido [62] over Q, to the case of

higher genus curves defined over arbitrary number fields. Assume that p is a prime such that

C admits good reduction at all the primes of K lying above p. We also assume some mild

additional ramification conditions on p, the details of which are spelled out in Assumption

3.1. The main theoretical result is roughly the following.

Theorem C (Čoupek–Lilienfeldt–Xiao–Yao). Let K be a number field of degree d. Let C/K

be a smooth, proper, geometrically connected curve of genus g ≥ 2 with Mordell–Weil rank

r = rankZ J(K) satisfying condition (14). Let R := Zp〈z1, ..., zr+δ(ρ−1)〉 be the p-adically

completed polynomial algebra over Zp. There exists an ideal I of R, which is explicitly

computable modulo p, such that if A := (R/I) ⊗ Fp is a finite dimensional Fp-vector space,

then the set of rational points C(K) is finite, of size bounded above by dimFp A.

The precise form of this theorem is slightly more involved than what is stated above. We

need to work integrally with a regular proper model C of C over OK , and in order for the

method to work, we need to cover Csm by certain open subschemes Ui and work with one

Ui at a time. Moreover, we work separately on each residue disk Ui,u at p of Ui and produce

a bound on the size of Ui,u(OK) by constructing an ideal Ii,u ⊂ R for each i, u. The bound

on the size of C(K) is then obtained by summing the bounds for each i and u. This is made

precise in Corollary 3.2.

If we were to work with a single fixed prime over p, the method would only have a chance

of working if the following condition is satisfied

r + δ(ρ− 1) < g + ρ− 1.

When K is imaginary quadratic, this amounts to the same quadratic Chabauty condition as

over Q and could still be useful. However, if K is real quadratic, the condition becomes r < g
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and the Chabauty–Coleman method can already be applied. When considering higher degree

number fields, the above condition is more restrictive than the classic Chabauty condition.

As a consequence, it is necessary to work with all primes above p simultaneously in order

to have a chance to bound the rational points on curves satisfying (14). This comes as no

surprise, as condition (14) stems from Dogra’s quadratic RoS Chabauty method, which by

definition involves all primes above p. However, the generalisation of the geometric quadratic

Chabauty method does not make use of restriction of scalars in the same way as the RoS

methods of Siksek, Dogra, and Balakrishnan, Besser, Bianchi and Müller. Where they use

Weil restriction to reduce the geometric situation to working over Q, we work directly over

K (and even integrally over OK). Only at the end of the argument do we apply a restriction

of scalars and work with all primes above p simultaneously, a step which is crucial.

Note that the bound produced in Theorem C depends on the choice of a prime p and

is conditional on a certain Fp-vector space Ā being finite dimensional. Hence one may ask

when is the method expected to work ? Edixhoven and Lido in their paper have given a new

proof of Faltings’ theorem, using their method, in the case of higher genus curves defined

over Q and satisfying r < g+ρ−1. Their argument is quite elegant: it uses complex analytic

methods to prove a Zariski density statement, which can then be bridged with their p-adic

geometric situation using formal geometry. This proves finiteness of the intersection (10)

and thus finiteness of C(Q). However, in order to extract an explicit bound for |C(Q)|, they

similarly rely on some Fp-vector space being finite dimensional. They conjecture [62, Section

4] that it is always possible in practice to choose p such that their condition is satisfied.

The setting over arbitrary number fields is more complicated. Reminiscent of the failures

of Siksek’s method, there are examples of curves satisfying (14) for which the analogous

intersection (10) over K is not finite. Examples include curves base changed from Q which

do not satisfy the quadratic Chabauty condition over Q. Based on Dogra’s results, we expect

the intersection to be finite whenever conditions (14) and (13) are both satisfied. However,

the proof of this still eludes us. Concerning the finite Fp-dimensionality criterion, we expect,
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following Edixhoven and Lido, that for curves satisfying (14) and (13), there always exists a

prime p such that the conditions of Theorem C are satisfied.

0.4.3 Triple product diagonal cycles on X0(p)

The third contribution of this thesis is concerned with algebraic cycles of diagonal type

on the triple product of the modular curve X0(p) of prime level, and associated Chow–

Heegner points. This project is the fruit of the author’s work alone. It is open-ended as it

explores certain algebraic cycle and Chow–Heegner point constructions, providing theoretical

evidence that suggests their non-triviality, but failing to prove so. Questions and conjectures

are formulated, which will be the subject of future work by the author.

Preliminaries

The study of the diagonal cycle on the triple product of modular curves originates in the

work of Gross and Kudla [76], and Gross and Schoen [77] – more precisely, they study a

null-homologous modification of the diagonal embedding of the curve in its triple product,

known today as the Gross–Kudla–Schoen cycle. Given three modular newforms of weight 2

and square-free level N such that the sign of the functional equation of the associated triple

product L-function is −1, Gross and Kudla [76] conjectured that the central value at s = 2

of the derivative of this L-function is given by the Beilinson–Bloch height of this cycle. A

proof of this conjecture due to Yuan, Zhang and Zhang is expected to appear in [154].

Around 2014, Darmon and Rotger [48–50] initiated a study of the Euler system properties

of diagonal cycles in products of Kuga–Sato varieties, which led to new instances of the

equivariant Birch and Swinnerton-Dyer conjecture. The study of diagonal cycles is today

an active area of research as evidenced by the work of many authors including Bertolini,

Seveso and Venerucci [15–17], Buhler, Schoen and Top [32], Blanco-Chacón and Fornea [26],

Darmon, Lauder and Rotger [46, 47], Darmon, Rotger and Sols [51], Fornea [69, 70], Fornea

and Jin [71], Gatti, Guitart, Masdeu and Rotger [73], Liu [107,108], and Wang [149,150].
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Let f ∈ S2(Γ0(p)) be a normalised newform of prime level p, and denote by Ef the elliptic

curve over Q associated to f by the Eichler–Shimura construction described in Section 0.2.

Using an auxiliary normalised newform g ∈ S2(Γ0(p)) (not Gal(Q̄/Q) conjugate to f), it is

possible to construct a correspondence Πg,f ∈ CH2(X0(p)3 × Ef )(Q), which gives rise, as in

Section 0.2.2, to a generalised modular parametrisation of Ef

Πg,f,∗ : CH2(X0(p)3)0−→Ef .

Let ∆ denote the image of X0(p) under the diagonal embedding X0(p)−→X0(p)3, i.e.,

∆ = {(x, x, x) | x ∈ X0(p)} ⊂ X0(p)3.

The Gross–Kudla–Schoen cycle arises from ∆ by applying a certain correspondence PGKS

due to Gross and Schoen [77]. The resulting cycle

∆GKS := (PGKS)∗(∆) ∈ CH2(X0(p)3)0(Q)

then lies in the domain of the modular parametrisation Πg,f,∗. Note that the definition of

the projector PGKS depends on a choice of a rational point of X0(p), which we take to be the

cusp at infinity. More generally, we denote by ∆GKS(e) the cycle based at e ∈ X0(p)(Q).

Darmon, Rotger and Sols [51] have studied, in the broader context of Shimura curves

over totally real fields, the Chow–Heegner point

P (X0(p)3,Πg,f ,∆GKS) ∈ E(Q), (15)

notably by computing the image of ∆GKS under the complex Abel–Jacobi map AJX0(p)3 in

terms of iterated integrals. Methods have been developed by Darmon, Daub, Lichtenstein

and Rotger [44] to numerically calculate such points.
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In this setting, the three ingredients of the BSD strategy outlined in Section 0.2.2 are:

1. The generalised modular parametrisation Πg,f,∗ : CH2(X0(p)3)0−→Ef .

2. The Gross–Kudla–Schoen cycle ∆GKS which gives rise to the Chow–Heegner point

P (X0(p)3,Πg,f ,∆GKS) ∈ Ef (Q).

3. The conjectural Gross–Kudla formula relating the first central derivative of the triple

product L-functions L(gσ, gσ, f, s) at s = 2 for all σ : Kg ↪→ C to the behaviour of

∆GKS.

Armed with these ingredients, Darmon, Rotger and Sols [51, Theorem 3.7] have given a

criterion for P (X0(p)3,Πg,f ,∆GKS) to have infinite order in E(Q) based on certain orders of

vanishing of L-functions. More precisely, observe that the triple product L-function decom-

poses as

L(g, g, f, s) = L(f, s− 1)L(Sym2(g)⊗ f, s).

Now, assuming that the global root numbers are W (f) = −1 and W (Sym2(g) ⊗ f) = +1,

they establish that P (X0(p)3,Πg,f ,∆GKS) has infinite order if and only if

ords=1 L(f, s) = 1 and ords=2 L(Sym2(gσ)⊗ f, s) = 0, ∀σ : Kg ↪→ C.

Contributions

We are mainly motivated by the important theme of detecting the position of algebraic cycles

in Chow groups via analytic or transcendental invariants such as L-functions. This problem

has been formulated more precisely in the Beilinson–Bloch conjecture (a generalisation of

the Birch and Swinnerton-Dyer conjecture 0.1 to higher dimensional varieties and algebraic

cycles). Let f1, f2, f3 be three newforms in S2(Γ0(p)) and let F = f1 ⊗ f2 ⊗ f3 denote their

triple tensor product. Associated to F is the Garrett–Rankin triple product L-function

L(F, s) (sometimes also denoted L(f1, f2, f3, s)). The Beilinson–Bloch conjecture in this
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setting predicts that the central order of vanishing ords=2 L(F, s) is equal to the rank of

the F -isotypic component of the Chow group CH2(X0(p)3)0(Q) of null-homologous cycles of

codimension 2 on X0(p)3. The first main result is a global root number calculation.

Theorem D (Lilienfeldt). Let f1, f2, f3 be three normalised newforms in S2(Γ0(p)) and let

F = f1 ⊗ f2 ⊗ f3. If χ denotes the Legendre symbol at p, then the global root number of the

twisted triple product L-function L(F ⊗ χ, s) is equal to −1.

The Legendre symbol χ is the character of the unique quadratic extension of Q which

ramifies only at p, namely K = Q(
√
χ(−1)p). Let τ denote the non-trivial element of

Gal(K/Q). Guided by the Beilinson–Bloch conjecture, we expect by Theorem D the ex-

istence of a non-torsion algebraic cycle in the F -isotypic component of CH2(X0(p)3)0(K)

which lies in the (−1)-eigenspace for τ . In parallel, we construct a canonical cycle

Ξ := ∆+ −∆− ∈ CH2(X0(p)3), (16)

where the cycles ∆+ and ∆− arise as images of maps ϕ+, ϕ− : X(p)−→X0(p)3 respectively.

Here X(p) denotes the modular curve of full level p-structure over the cyclotomic field Q(ζp).

Theorem E (Lilienfeldt). The cycle Ξ belongs to CH2(X0(p)3)0(K)τ=−1.

The maps ϕ+ and ϕ− are defined using the moduli interpretation of X0(p) in an essential

way. Therefore, this construction is not available for the triple product of a generic curve, as

opposed to the Gross–Kudla–Schoen cycle described above. The cycle Ξ is canonical in the

sense that it does not depend on the choice of a base-point, and does not require a projector to

render it null-homologous (again, as opposed to ∆GKS(e)). Moreover, there are no apparent

geometric phenomena that suggest that the construction yields a torsion element in the

Chow group. Guided by the Beilinson–Bloch conjecture, we are led to formulate refined

conjectures in a context that has never been explored before. In particular, we conjecture

the following (Conjecture 4.1).
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Conjecture (Lilienfeldt). Let f1, f2, f3 be three normalised newforms in S2(Γ0(p)) and let

F = f1 ⊗ f2 ⊗ f3 denote the associated triple product. The cycle

(tF )∗(Ξ) ∈ CH2(X0(p)3)0(Q(
√
p?))τ=−1 ⊗KF

is non-zero if and only if ords=2 L(F ⊗ χ, s) = 1. Here tF ∈ CH3(X0(p)6) is the F -isotypic

projector which cuts out the motive of F .

We further refine this by distinguishing between the situations where W (F ) = +1 and

W (F ) = −1 (Conjectures 4.2 and 4.3), bringing into play the interaction with the Gross–

Kudla–Schoen cycle. Another main result concerns the latter cycle when the global root

number of F is assumed to be +1, and is consistent with Conjecture 4.2.

Theorem F (Lilienfeldt). Let f1, f2 and f3 ∈ S2(Γ0(p)) be three normalised cuspforms,

denote by F = f1⊗f2⊗f3 their triple product and suppose that F satisfies W(F)=+1. Then

AJX0(p)3((tF )∗(∆GKS(e))) is torsion in J2(X0(p)3/C) for any base point e ∈ X0(p)(Q).

Here AJX0(p)3 denotes the complex Abel–Jacobi map of codimension 2 for X0(p)3 and

J2(X0(p)3/C) is the second intermediate Jacobian. See Section 0.2.3.

Specialising now to the case where one of the three forms, say f , has rational Fourier

coefficients and the other two forms are equal to some g (not Gal(Q̄/Q) conjugate to f), we

may consider the generalised modular parametrisation described above, namely

Πg,f,∗ : CH2(X0(p)3)0−→Ef ,

where Ef is the elliptic curve over Q attached to f by the Eichler–Shimura construction.

Applying this map to the cycle (16) yields a Chow–Heegner point

P (X0(p)3,Πg,f ,Ξ) ∈ Ef (K)τ=−1.

If we assume that p ≡ 3 (mod 4), then K = Q(
√
−p) and the global root number of the
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quadratic twist Eχ of E by χ is W (Eχ) = +1. In line with the Birch and Swinnerton-Dyer

conjecture 0.1, we prove the following.

Theorem G (Lilienfeldt). Let f and g be two normalised newforms in S2(Γ0(p)) as above.

If we assume p ≡ 3 (mod 4), then the Chow–Heegner point P (X0(p)3,Πg,f ,Ξ) is torsion in

Ef (Q(
√
−p)).

If we assume that p ≡ 1 (mod 4), then K = Q(
√
p) and the global root number of the

quadratic twist Eχ of E by χ is W (Eχ) = −1. Guided by the Birch and Swinnerton-Dyer

conjecture 0.1, the proposed conjectures about the cycle Ξ lead us to make analogous conjec-

tures about P (X0(p)3,Πg,f ,Ξ). In particular, we conjecture (Conjecture 4.4) the following.

Conjecture (Lilienfeldt). Let f and g be normalised newforms in S2(Γ0(p)) as above. If

p ≡ 1 (mod 4), then the point P (X0(p)3,Πg,f ,Ξ) ∈ Ef (Q(
√
p))τ=−1 has infinite order if and

only if ords=1 L(Eχ
f /Q, s) = 1 and L(Sym2(gσ)⊗ f ⊗ χ, 2) 6= 0 for all σ : Kg ↪→ C.

We further refine this depending on whether W (E/Q) = +1 or W (E/Q) = −1 in

Conjectures 4.5 and 4.6, bringing into play the interaction with the Chow–Heegner point

(15). Using Theorem F, we prove the following.

Theorem H (Lilienfeldt). If Ef admits split multiplicative reduction at p, then the Chow–

Heegner point P (X0(p)3,Πg,f ,∆GKS(e)) is torsion in Ef (Q) for all e ∈ X0(p)(Q).

This is a particular case of a more general result obtained by Daub [53], but the proof

differs as Daub relies on a comparison with Zhang points. Theorem H is consistent with

Conjecture 4.5.

Following Section 0.2.3, one strategy for addressing the conjecture above is to compute

the image of the Chow–Heegner point under the complex Abel–Jacobi isomorphism AJEf ,

which is given by the formula

AJEf (P (X0(p)3,Πg,f ,Ξ))(ωf ) = AJX0(p)3(Ξ)((Πg,f )∗dR(ωf )).
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The computation of AJX0(p)3(Ξ) will be addressed in future work. We note that the tech-

niques developed in [51] to compute AJX0(p)3(∆GKS) do not seem to carry over to the present

setting. See Section 5.1 for a more detailed discussion of possible strategies to tackle the

above conjectures.

0.5 Outline

We end the introduction with an outline of the contents of the thesis. We have attempted

to keep this document reasonably self-contained; where details are insufficient, we provide

references for the interested reader.

Chapter 1 reviews the background material necessary for the main body of the thesis.

The concepts of elliptic curves, modular forms and their L-functions are recalled, as well as

the theory of complex multiplication. The topic of algebraic cycles and associated Abel–

Jacobi maps is surveyed. This chapter is meant to be concise and precise, and as a result it

is non-exhaustive: only themes relevant for this thesis are covered.

Chapter 2 pertains to the author’s joint work on generalised Heegner cycles with Bertolini,

Darmon and Prasanna. As such, this chapter is a reformatted version of the article [11]. In

particular, all results presented are joint and taken from loc. cit.

Chapter 3 contains the author’s joint work with Čoupek, Xiao and Yao on the geometric

quadratic Chabauty method over arbitrary number fields. The content is based on the

preprint article [41] and is reformatted to fit this thesis.

Chapter 4 presents the author’s work on triple diagonal cycles on X0(p). As mentioned

previously, this is the result of the author’s sole work, and remains open-ended as questions

and conjectures are formulated, without full answers being given.

Chapter 5 concludes this thesis by briefly introducing open projects and questions that

the author plans to address in the future. Concerning the diagonal cycles introduced in

Chapter 4, we discuss the complex Abel–Jacobi map and the p-adic Abel–Jacobi map, as
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well as comparisons of Chow–Heegner points with Heegner points or Stark–Heegner points.

Concerning the method of Chapter 3, we would like to establish precise conditions that

guarantee that the method works, as well as apply the method to explicit examples in order

to test the sharpness of the bound. We also outline a project concerned with new examples

of curves whose Ceresa class is torsion.
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Chapter 1

Preliminaries

The goal of this first chapter is to lay the groundwork for the main body of the thesis. As

such, it is solely expository and contains almost no proofs. The exposition is kept brief and

references are provided to fill gaps where proofs are lacking, and also to supplement material

for the various themes covered.

We begin in Section 1.1 by reviewing how to attach L-functions to smooth algebraic vari-

eties, or more generally to pure motives, using Weil–Deligne representations. This approach

allows us to define ε-factors and global root numbers in order to state the conjectural func-

tional equation of such L-functions. This material will become handy in Chapter 4 when

proving Theorem D.

Section 1.2 introduces elliptic curves and modular forms with focus on the key properties

relevant for us. These are central concepts throughout Chapters 2 and 4. After a brief

introduction to elliptic curves and modular curves, we review the Modularity Theorem and

recall that the motive associated to higher weight modular forms can be realised in certain

Kuga–Sato varieties.

Section 1.3 surveys the theory of elliptic curves with complex multiplication and how this

relates to the class field theory of quadratic imaginary fields. This plays an important role

in Chapter 2.
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Section 1.4 defines algebraic cycles along with three equivalence relations: rational, al-

gebraic and homological equivalence. This leads to the definition of the Chow group of a

smooth projective variety and we formulate the Beilinson–Bloch conjecture, which generalises

the Birch and Swinnerton-Dyer conjecture to higher dimensions.

Section 1.5 introduces three types of so-called Abel–Jacobi maps: the complex Abel–

Jacobi map, the Bloch map, and the `-adic étale Abel–Jacobi map. The main properties are

reviewed and the existing comparison theorems between these maps are explained.

Notation 1.1. All number fields arising in this chapter are viewed as embedded in a fixed

algebraic closure Q̄ of Q. Moreover, we fix a complex embedding σ : Q̄ ↪→ C, as well as a

p-adic embeddings Q̄ ↪→ Cp for each rational prime p. In this way, all finite extensions of Q

are viewed simultaneously as subfields of C and Cp.

1.1 Weil–Deligne representations and L-functions

This section introduces the background material on Weil–Deligne representations, selecting

only the results relevant for our setup. The reader is referred to [56,126] for more details.

1.1.1 The Weil–Deligne group

Let q denote a prime number. The embedding Q̄ ↪→ Q̄q fixed in Notation 1.1 realises

Gal(Q̄q/Qq) as the decomposition subgroup at q of Gal(Q̄/Q). It sits in the short exact

sequence

1−→Iq−→Gal(Q̄q/Qq)
r−→Gal(F̄q/Fq)−→1

where Iq denotes the inertia subgroup at q and r denotes the natural reduction map. The

group Gal(F̄q/Fq) is topologically generated by the Frobenius automorphism φ : x 7→ xq

and is isomorphic to the profinite completion Ẑ of Z. We denote by ϕ the inverse of the

Frobenius automorphism φ.
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Definition 1.1. The Weil group at q, denoted W (Q̄q/Qq), is defined as the pre-image under

r of the infinite cyclic subgroup of Gal(F̄q/Fq) generated by φ. We endow it with the coarsest

topology for which r : W (Q̄q/Qq)−→〈φ〉 and Iq ↪→ W (Q̄q/Qq) are both continuous and for

which W (Q̄q/Qq) is a topological group.

By a representation of the Weil group we mean a continuous homomorphism of groups

σq : W (Q̄q/Qq)−→GL(V )

where V is a finite dimensional complex vector space. The continuity condition is equivalent

to asking that the homomorphism σq is trivial on an open subgroup of Iq.

Examples of Weil representations include all finite dimensional complex representations of

Galois groups of finite extensions of Q. Also, we identify all characters of Q×q with characters

of W (Q̄q/Qq) via the Artin isomorphism

Q×q ' W (Q̄q/Qq)
ab (1.1)

normalised so that it maps q to the image in W (Q̄q/Qq)
ab of an inverse Frobenius element

of W (Q̄q/Qq).

Definition 1.2. Another example of a Weil representation is given by the character

ωq : W (Q̄q/Qq)−→C×

defined by ωq(Iq) = 1 (i.e., it is unramified) and ωq(Φ) = q−1 where Φ is an inverse Frobenius

element of Gal(Q̄q/Qq) (i.e., an element satisfying r(Φ) = ϕ). Under the isomorphism (1.1)

the character ωq corresponds to the q-adic norm character ‖ · ‖q : Q×q −→C× normalised such

that ‖q‖q = q−1.

We letW ′(Q̄q/Qq) denote the Weil–Deligne group at q and we refer to [126, §3] for its defi-

nition. We do not need the precise definition of this group as its continuous finite dimensional
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complex representations admit a very nice description in terms of Weil representations.

Definition 1.3. A Weil–Deligne representation is a pair σ′q = (σq, Nq) where σq is a Weil

representation on a finite dimensional complex vector space V and Nq is a nilpotent endo-

morphism of V satisfying

σq(g) ◦Nq ◦ σq(g)−1 = ωq(g)Nq for all g ∈ W (Q̄q/Qq). (1.2)

For ` a prime distinct from q, it is possible to associate to an `-adic Galois representation

ρ` : Gal(Q̄/Q)−→GLd(Q`) a Weil–Deligne representation of W ′(Q̄q/Qq). This procedure is

due to Grothendieck and Deligne. Let ι : Q` ↪→ C denote a fixed embedding. One can restrict

ρ` to the Weil group W (Q̄q/Qq) and compose with ι to obtain a complex representation

σ`,ι : W (Q̄q/Qq)−→GLd(C).

If ρ` is trivial on an open subgroup of the inertia group Iq, then σ`,ι is a Weil representation

and the associated Weil–Deligne representation is σ′`,ι = (σ`,ι, 0). However, if ρ` is not trivial

on an open subgroup of Iq, then σ′`,ι has non-trivial monodromy and the precise recipe is

given in [126, §4].

Example 1.1. Consider the `-adic cyclotomic character

ωcyc,` : Gal(Q̄/Q) � Gal(Q(ζ`∞)/Q)−→Z×`

where ζ`∞ denotes a compatible system (ζ`n)n of primitive `n-th roots of unity. If σ is

an element in Gal(Q̄/Q), then σ(ζ`n) = ζmn`n for some compatible mn ∈ (Z/`nZ)× and

ωcyc,`(σ) = (mn)n ∈ Z×` . This character is unramified at q since the extension Q(ζ`∞) of

Q is ramified only at `. Hence the Weil–Deligne representation at q of ωcyc,` is the Weil

representation ι ◦ ωcyc,`|W (Q̄q/Qq). If Φ is a geometric Frobenius element of W (Q̄q/Qq), then

ωcyc,`(Φ) = q−1 ∈ Z×` and thus ι ◦ ωcyc,`|W (Q̄q/Qq) = ωq of Definition 1.2. In particular, the
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Weil–Deligne representation of ωcyc,` at q is independent of ι and `.

There is also a theory of Weil–Deligne representations at archimedean places. In this case

the Weil–Deligne group and the Weil group are equal. We have the following two situations:

• Over the field C, the Weil group isW (C/C) = C×. We consider on C the Haar measure

dx = |dz ∧ dz̄| = 2dadb where z = a + ib such that d(λx) = |λ|2dx for all λ ∈ C

and | · | is the complex modulus. This is twice the Lebesgue measure. The irreducible

Weil representations of C are given by quasi-character χ : C×−→C×. These take on

the form z−Nωs(z) or z̄−Nωs(z) for n ∈ N and s ∈ C where ωs = | · |2s.

• Over the field R, the Weil group isW (C/R) = C×∪JC× where J2 = −1 and JzJ−1 = z̄

for z ∈ C×. We consider on R the Lebesgue measure dx such that d(λx) = |λ|dx for

all λ ∈ R where | · | denotes the absolute value. The irreducible Weil representations

of R are given by quasi-character χ : C× ∪ JC×−→C× or indC/R χ := ind
W (C/R)
W (C/C) χ for

quasi-characters χ : C×−→C× with χ 6= χ ◦ c. The quasi-characters of W (C/R) take

on the form sign(x)−Nωs(x) for n ∈ {0, 1} and s ∈ C, where sign : W (C/R)−→C× is

the quadratic character with kernel W (C/C), i.e., sign(z) = 1 and sign(Jz) = −1 for

all z ∈ C×.

1.1.2 Local ε-factors

Epsilon factors were first introduced by Deligne [56] and their properties are summarised in

section 5 of loc. cit.. We will follow the exposition of [126] to collect the essential properties

needed for the purposes of this thesis. We begin by defining the epsilon factor of a Weil–

Deligne representation in terms of the epsilon factor of the corresponding Weil representation.

We then give the definition of the epsilon factor of a Weil representation.

At the infinite place ∞, let σ′∞ denote a representation of the Weil–Deligne group

W (C/R), let ψ : R−→C× denote a non-trivial addiditive character and dx the choice of
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a Haar measure on R. The epsilon factor depends on these choices and is given by

ε′(σ′∞, ψ,dx) = ε(σ∞, ψ,dx) ∈ C×.

If q is a finite place, let σ′q = (σq, Nq) be a Weil–Deligne representation with associated

finite dimensional complex vector space V . Let ψq : Qq−→C× denote an additive character

and let dxq denote the choice of a Haar measure on Qp. The epsilon factor associated to σ′q

depends on ψq and dxq and is given by

ε′(σ′q, ψq,dxq) := ε(σq, ψq,dxq)δ(σ
′
q) ∈ C×, (1.3)

where

δ(σ′q) := det(−Φ | V Iq/(V Iq ∩ kerNq)). (1.4)

In the case where the Weil–Deligne representation at a place v is a character, the epsilon

factor above is defined via Tate’s local functional equation. It satisfies

ε(χ, ψ, adx) = aε(χ, ψ,dx) and ε(χ, ψ(ax),dx) = χ(a)ω−1(a)ε(χ, ψ,dx).

Explicit formulas for the epsilon factor of a character are given as follows.

• Over C, take the additive character ψC : C−→C× to be ψC(z) = exp(2πi tC/R(z)) and

the Haar measure to be dxC = |dz ∧dz̄|. Given a quasi-character χ : C×−→C× of the

form z 7→ z−Nωs(z) or z 7→ z̄−Nωs(z) with N ∈ N and s ∈ C,

ε(χ, ψC,dxC) := iN . (1.5)

• Over R, take the additive character ψR : R−→C× to be ψR(x) = exp(2πix) and the

Haar measure dxR to be the Lebesgue measure. If χ : W (C/R)−→C× is a quasi-
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character of the form x 7→ sign(x)−Nωs(x) with N ∈ {0, 1} and s ∈ C, then

ε(χ, ψR,dxR) := iN . (1.6)

• Let χ be a character of Q×p identified with a one-dimensional representation of the Weil

group. Let n(ψq) denote the largest integer n such that ψq is trivial on q−nZq. Let

a(χ) denote the conductor of χ, i.e., a(χ) = 0 is χ is unramified and otherwise a(χ) is

the smallest positive integer m such that χ is trivial on 1 + qmZq. Then

ε(χ, ψq,dxq) =


∫
q−(n(ψq)+a(χ))Z×q

χ−1(x)ψq(x)dxq if χ is ramified

χω−1
q (qn(ψq))

∫
Zq dxq if χ is unramified.

(1.7)

The epsilon factor of a Weil representation is completely determined by the following

result.

Theorem 1.1. Let K be either R,C or Qq for some finite place q. There is a unique function

ε, which to any Weil representation σ, any non-trivial additive character ψ : K−→C× and

any choice of a Haar measure dx on K, associates a complex number ε(σ, ψ,dx) ∈ C×

satisfying:

i) ε(∗, ψ,dx) is multiplicative in short exact sequences.

ii) If L/K is any finite extension of K in K̄ and σL is a Weil representation of L, then

for any choice of Haar measure dxL on L, we have

ε(ind
W (K̄/K)

W (K̄/L)
σL, ψ,dx) = ε(σL, ψ ◦ tL/K ,dxL)

ε(ind
W (K̄/K)

W (K̄/L)
1L, ψ,dx)

ε(1L, ψ ◦ tL/K ,dxL)

dimσL

.

iii) If dimσ = 1, then ε(σ, ψ,dx) is given by the above formulas (1.5), (1.6), (1.7).

Proof. This is [56, Theorem 4.1].
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Definition 1.4. Let K be either R,C or Qq for some finite place q. Given a Weil–Deligne

representation σ′ = (σ,N) of K, the choice of an additive character ψ : K−→C× and a Haar

measure dx on K, we define the root number

W (σ′, ψ) =
ε′(σ′, ψ,dx)

|ε′(σ′, ψ,dx)|
.

Remark 1.1. As the notation suggests, the root number is independent of the choice of a

Haar measure dx, as can be seen from [126, §11 Proposition (ii)]. Moreover, if the Weil–

Deligne representation σ′q at a finite prime q is essentially symplectic, then the local root

number at q is independent of the additive character ψ and belongs to {±1} by [126, §12].

We shall simply write W (σ′q) in this case.

We end this section with a few results concerning epsilon factors of Weil–Deligne repre-

sentations at finite places.

Proposition 1.1. If χ is an unramified character of Q×q , ψ : Qq−→C× is a non-trivial

additive character and dx is Haar measure on Qq, then

ε(σq ⊗ χ, ψ,dx) = χ(qn(ψ) dim(σq)+a(σq))ε(σq, ψ,dx).

Here a(σq) is the conductor of σq defined in [126, §10].

Proof. This is [126, §11 Proposition (iii)].

The following proposition gives an explicit formula for the epsilon factor of a ramified

character of conductor 1. Note that if ψ : Qq−→C× is an additive character with n(ψq) = 0,

then ψ|Z×q = 1 but ψ|q−1Z×q 6= 1. Thus there exists c ∈ F×q such that ψ(1/q) = exp((2πic)/q).

In this case, we write ψc for ψ. The proof of the following proposition is part of the proof

of [123, Theorem 3.2 (2)], but we choose to include it here for the convenience of the reader.

Proposition 1.2. Let χ be a ramified character of Q×q identified with a one-dimensional

representation of the Weil group. Let ψ : Qq−→C× denote an unramified additive character,
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i.e., n(ψ) = 0, and dx denote the Haar measure on Qp such that
∫
Zp dx = 1. Suppose that

a(χ) = 1. Let c ∈ F×q such that ψ = ψc. Then the following formula holds:

ε(χ, ψ,dx) = χ(c)χ(q)G(χ−1)

where G(χ−1) =
∑

b∈F×q χ
−1(b)e

2πib
q is the Gauss sum of the character χ−1.

Proof. Since a(χ) = 1 we have χ|Z×q 6= 1 but χ|1+qZq = 1 (i.e., χ is tamely ramified). So

when restricted to Z×q , the character χ factors through the quotient Z×q /(1 + qZq) ' F×q and

can be seen as a Dirichlet character modulo q. Thus the expression defining the Gauss sum

makes sense. By Theorem 1.1 iii) we have the following formula for the epsilon factor:

ε(χ, ψ,dx) =

∫
q−1Z×q

χ−1(x)ψ(x)dx.

The normalisation of the Haar measure implies that for all a ∈ Zq we have the identity

d(ax) = ‖a‖qdx, where the q-adic norm is the one in Definition 1.2. Taking this into

account, a simple change of variables yields the following expression:

ε(χ, ψ,dx) = q

∫
Z×q
χ−1

(
x

q

)
ψ

(
x

q

)
dx.

Recall that Z×q ' F×q × (1 + qZq) and thus we have Z×q =
⋃
b∈F×q (b+ qZq) where the union is

disjoint. We decompose the above integral accordingly to get

ε(χ, ψ,dx) = q
∑
b∈F×q

∫
b+qZq

χ−1

(
x

q

)
ψ

(
x

q

)
dx = qχ(q)

∑
b∈F×q

∫
b+qZq

χ−1 (x)ψ

(
x

q

)
dx.

Making the change of variables x = b+ qy, we obtain

ε(χ, ψ,dx) = qχ(q)
∑
b∈F×q

∫
Zq
χ−1 (b+ qy)ψ

(
b

q
+ y

)
d(b+ qy).
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Since χ is trivial on 1 + qZq, we have χ−1 (b+ qy) = χ−1(b) whenever y ∈ Zq. Since ψ is

an additive character, we have ψ
(
b
q

+ y
)

= ψ
(
b
q

)
ψ(y). But ψ is trivial on Z×q , whence

ψ(y) = 1 for y ∈ Zq. We therefore arrive at the formula

ε(χ, ψ,dx) = qχ(q)
∑
b∈F×q

χ−1(b)ψ

(
b

q

)∫
Zq
d(b+ qy) = χ(q)

∑
b∈F×q

χ−1(b)ψ

(
b

q

)

since
∫
Zq d(b + qy) =

∫
Zq d(qy) = 1

q

∫
Zq dy = 1

q
by the normalisation of the Haar measure.

Finally, we assumed that ψ = ψc, and therefore

∑
b∈F×q

χ−1(b)ψ

(
b

q

)
=
∑
b∈F×q

χ−1(b)e
2πibc
q = χ(c)G(χ−1)

and the proof is complete.

Corollary 1.1. With the same notations and assumptions as in Proposition 1.2, we have

the formula

ε(χ, ψ,dx)ε(χ−1, ψ,dx) = qχ(−1).

Proof. Applying the result of the proposition to χ and χ−1 leads to

ε(χ, ψ,dx)ε(χ−1, ψ,dx) = G(χ−1)G(χ).

By standard properties of Gauss sums, we have G(χ−1) = χ(−1)G(χ). Using the fact that

|G(χ)|2 = q we obtain the desired result.

1.1.3 Local L-factors

Given a prime q, let V denote the finite dimensional complex vector space associated with

the Weil–Deligne representation σ′q. Let V Iq denote the subspace of vectors invariant under
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the action of inertia and let V Iq
Nq

= V Iq ∩ kerNq. Define the local L-factor at q to be

L(σ′q, s) = det(1− q−sΦ | V Iq/V
Iq
Nq

)−1.

We also define local L-factors (also known as gamma factors) at the archimedean places:

• Over C, define ΓC(s) = 2(2π)−sΓ(s). If χ = z−Nωt : C×−→C× for N ∈ N and t ∈ C,

then define

LC(χ, s) = ΓC(s+ t).

For any finite dimensional complex representation V of C×, decompose it into a sum

of quasi-characters V =
⊕

i χi and define

L(V, s) =
∏
i

LC(χi, s).

• Over R, define ΓR(s) = π−s/2Γ(s/2). If χ = sign−N ωt : R×−→C× for N ∈ {0, 1} and

t ∈ C, then define

LR(χ, s) = ΓR(s+ t).

For any finite dimensional complex representation V of W (C/R), decompose it into a

sum of quasi-characters and induced characters in the Grothendieck group of represen-

tations of W (C/R), [V ] =
∑

i[χi] +
∑

j[indC/R χj], and define

L(V, s) =
∏
i

LR(χi, s)
∏
j

LC(χj).

1.1.4 Motivic L-functions

Suppose now that M is a pure motive over Q. We refer to Section 1.4.2 below for the defini-

tion. Its `-adic realisations give rise to a compatible family of `-adic Galois representations

by considering the Galois action on `-adic étale cohomology. Given a prime q, choose a
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prime ` distinct from q and an embedding ι : Q` ↪→ C. Then the `-adic representation gives

rise to a Weil–Deligne representation σ′M,q,ι,` = (σM,q,ι,`, NM,q,ι,`). A priori, this construction

depends on ` and the embedding ι, but it can be shown that it is in fact independent of

these choices. Hence we write σ′M,q = (σM,q, NM,q). One defines the L-function of the motive

M by

L(M/Q, s) :=
∏
q

L(σ′M,q, s).

This function converges on some right half-plane <(s)� 0.

We can also consider the Betti realisation of M which is a pure rational Hodge structure

of weight n for some n ∈ N. For the sake of simplicity and because this is the case we will

be interested in, let us assume that n is odd. Consider the Hodge decomposition

HB(M)⊗ C =
⊕
p+q=n

Hp,q(M)

and let hp,q(M) = dimCH
p,q(M) denote the corresponding Hodge numbers. For p, q ∈ Z,

consider the quasi-character ϕp,q : C×−→C× given by ϕp,q(z) = z−pz̄−q. Since n is odd,

we have ϕp,q 6= ϕp,q ◦ c and thus indC/R ϕp,q = indC/R ϕq,p is an irreducible representation of

W (C/R). We define the Weil–Deligne representation of M at the infinite place by

σ′M,∞ =
⊕
p+q=n
p<q

(indC/R ϕp,q)⊗Hp,q(M)

where Hp,q(M) is given the trivial action. If p < q, then

ϕp,q(z) = z̄−(q−p)|z|−2p = z̄−(q−p)ω−p(z).

It follows that the L-factor at infinity is given by

L(σ′M,∞, s) =
∏

p+q=n
p<q

LC(ϕp,q, s)
hp,q(M) =

∏
p+q=n
p<q

ΓC(s− p)hp,q(M).
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One can now form the completed L-function of M

Λ(M/Q, s) :=
∏
v

L(σ′M,v, s) = L(σ′M,∞, s)L(M/Q, s),

where the product runs over all places v of Q.

The conductor of M is defined to be

cond(M/Q) :=
∏
q

qa(σ′M,q) ∈ N (1.8)

where the product is over all finite places q.

Consider ψ =
∏

v ψv : AQ/Q−→C an additive character of the adèles and let dx denote

the normalised Haar measure on the adèles such that
∫
AQ/Q

dx = 1. It decomposes as a

product of local Haar measures dxv which satisfy
∫
Zv dxv = 1 for almost all finite places v.

We can then define the global epsilon factor of M to be

ε(M/Q) =
∏
v

ε′(σ′M,v, ψv,dxv)

which is independent of the choice of ψ and dx. Moreover, ε(σ′M,v, ψv,dxv) = 1 for almost

all v.

The global root number is similarly defined as

W (M/Q) =
∏
v

W (σ′M,v, ψv,dxv).

Conjecture 1.1. The completed L-function Λ∗(M/Q, s) := cond(M/Q)
s
2 Λ(M/Q, s) can be

continued meromorphically to the whole complex plane and satisfies the functional equation

Λ∗(M/Q, s) = W (M/Q)Λ∗(M∨/Q, 1− s) (1.9)

where M∨ is the dual of the motive M .
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1.2 Elliptic curves and modular forms

We review the necessary background on elliptic curves and modular forms. In particular,

we cover the Modularity Theorem relating elliptic curves over Q with cusp forms of weight

2 for Γ0(N). Concerning modular forms on Γ1(N), we recall that the space of cusp forms of

weight ≥ 2 can be realised inside the de Rham cohomology of suitable Kuga–Sato varieties.

1.2.1 Elliptic curves

An elliptic curve over a scheme S is a proper smooth morphism E−→S, whose geometric

fibres are connected curves of genus 1, together with a section e : S−→E. In particular,

an elliptic curve over a field K, i.e., over Spec(K), is a smooth proper curve over K of

genus 1, together with a prescribed K-rational point OE ∈ E(K). Consequently, an elliptic

curve over a scheme S can be seen as a family of (classic) elliptic curves defined over fields

parametrised by the scheme S.

Any smooth proper curve is projective, and thus an elliptic curve E/K is a smooth

projective curve of genus 1 with a K-rational point. The Riemann–Roch theorem [139,

Theorem 5.4] implies that any such curve is isomorphic to a smooth plane projective curve

given by a Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (1.10)

with coefficients a1, . . . , a6 ∈ K satisfying the smoothness criterion that the discriminant

∆(a1, . . . , a6) is non-zero. See [139, §III.1]. This isomorphism maps the point OE ∈ E(K)

to the point at infinity [0, 1, 0] ∈ P2.

Commutative group scheme structure

An elliptic curve p : E−→S has a natural structure of commutative group scheme over S as

explained in [100]. Any point P ∈ E(S), i.e., a section P : S−→E, determines an effective
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Cartier divisor on E with sheaf of ideals denoted I(P ). Let I−1(P ) denote the inverse

of this ideal sheaf as an invertible OE-module. For any S-scheme T , there is a bijection

E(T )−→Pic0
E/S(T ) given by sending a point P ∈ E(T ) = ET (T ) to the invertible OET -

module I−1(P )⊗ I(eT ), where eT denotes the base change of the trivial section e to T . Here

Pic0
E/S(T ) denotes the abelian group of isomorphism classes of degree 0 invertible sheaves

on ET modulo the subgroup of those of the form p∗T (L), where L any invertible sheaf on T .

By transfer of group structure, E/S represents a functor from S-schemes to the category of

abelian groups, hence acquires the structure of a commutative group scheme over S.

When S = Spec(K), the natural bijection E ' Pic0
E/K is given by mapping a point P to

the divisor class of (P ) − (OE) and identifies E with its Jacobian. If E is described in the

projective plane by a Weierstrass equation, the classic geometric chord-and-tangent recipe

endows E with the structure of an algebraic group, as illustrated in the following figure:

P

Q

+P Q

x

y

These two group structures, the one coming the Jacobian of E and the other coming from

the description of E as a plane projective curve, coincide.

In this thesis, we will mostly focus on elliptic curves defined over a number field K,

in which case the Mordell–Weil theorem asserts that the abelian group E(K) is finitely

generated. As a consequence, there is an isomorphism

E(K) ' E(K)tors ⊕ Zralg(E/K), (1.11)

where E(K)tors denotes the finite subgroup of torsion points and ralg(E/K) ∈ Z≥0 is the
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algebraic rank of E, also referred to as the Mordell–Weil rank of E.

The Weil–Deligne representations of an elliptic curve

Let E be an elliptic curve defined over Q. Associated to E is a family of compatible 2-

dimensional `-adic Galois representations ρE,` for each prime ` coming from the `-adic étale

cohomology groups H1
et(Ē,Q`). This is the contragredient of the representation arising from

the action of the Galois group on the `-adic Tate module

V`(E) := lim
←−

E[`n](Q̄)⊗Z` Q`.

Let q be a prime, ` a prime distinct from q, and choose an embedding ι` : Q` ↪→ C. Follow-

ing [126, §4], one may associate to ρE,` a complex representation σ′E,`,ι`,q = (σE,`,ι`,q, NE,`,ι`,q)

of the Weil–Deligne group W ′(Q̄q/Qq). It turns out that the isomorphism class of the Weil–

Deligne representation σ′E,`,ι`,q is independent of ` and ι`, as follows from the two propositions

below, and we shall simply write σ′E,q = (σE,q, NE,q). This is the Weil–Deligne representation

of E at q.

Proposition 1.3. If E has potential good reduction at q, then NE,q = 0 and σE,q is semisim-

ple. Furthermore, E has good reduction if and only if σE,q is unramified, in which case

σE,q ' ξq ⊕ ξ−1
q ω−1

q

for some unramified character ξq. Here ωq is the Weil–Deligne representation of the `-adic

cyclotomic character of Definition 1.2 and Example 1.1.

Proof. This is [126, §14 Proposition].

Definition 1.5. Let (e0, e1) denote the standard basis of C2. The special representation

of the Weil–Deligne group at q of dimension 2, denoted sp(2), is the representation (σq, N)
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defined by the matrices

σq :=

1 0

0 ωq

 and N :=

0 0

1 0

 .

It is an admissible, indecomposable, reducible 2-dimensional representation of W ′(Q̄q/Qq).

Proposition 1.4. Suppose that E has potential multiplicative reduction at q and let λ be a

character of W (Q̄q/Qq) such that λ2 = 1 and the twist Eλ of E by λ has split multiplicative

reduction at q. Then

σ′E,q ' λω−1
q ⊗ sp(2),

so that, in particular, NE,q 6= 0 and σ′E,q is ramified. Moreover, λ is trivial, unramified

but nontrivial, or ramified according as E has split multiplicative, non-split multiplicative

reduction, or additive reduction at q.

Proof. This is [126, §15 Proposition].

Finally, we describe the Weil–Deligne representation of E at the infinite place. The

rational Hodge structure H1
B(E(C),Q) is of weight 1 and admits the Hodge decomposition

H1
B(E(C),C) = H1,0(E)⊕H0,1(E)

with Hodge numbers h1,0(E) = h0,1(E) = 1. Therefore the Weil–Deligne representation at

infinity is given by

σ′E,∞ = indC/R ϕ0,1 ⊗H0,1(E). (1.12)

The root number of an elliptic curve

Let E be an elliptic curve defined over Q with conductor N . Having described the Weil–

Deligne representations of E, one can define the global root number W (E/Q) following

Section 1.1.4.
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Remark 1.2. Note that for finite primes q, the Weil–Deligne representation σ′E,q ⊗ ω
1/2
q is

symplectic due to the existence of the Weil pairing for elliptic curves. In other words, σ′E,q is

essentially symplectic of weight 1. By Remark 1.1, the local root number W (σ′E,q) belongs

to {±1} and does not depend on the choice of additive characters or Haar measures. In

particular, the global root number of E belongs to {±1}.

We proceed to computeW (E/Q) in the case where the conductor N is square-free; E ad-

mits good reduction at all primes not dividing N , and either split or non-split multiplicative

reduction at the primes dividing N . For primes p |N , we define

ap(E) =


+1 if E admits split multiplicative reduction at p

−1 if E admits non-split multiplicative reduction at p.
(1.13)

Proposition 1.5. Suppose that the conductor N of E is square-free. The local root numbers

of E are given by the following:


W (σ′E,q) = 1, for q - N

W (σ′E,p) = −ap(E), for p |N

W (σ′E,∞) = −1.

In particular, the global root number is given by

W (E/Q) = −(−1)ω(N)
∏
p|N

ap(E),

where ω(N) denote the number of distinct prime divisors of N .

Remark 1.3. For the general case, we refer to [126, §19 Proposition]. We choose to include

a detailed proof here as the local epsilon factor computations will be useful when dealing

with more difficult situations as in Section 4.4. Moreover, this is a nice concrete application

of the theory outlined in Section 1.1. Note that W (E/Q) is the negative of the eigenvalue
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of the Atkin–Lehner [3] operator wN acting on the newform in S2(Γ0(N)) associated to E.

See Section 1.2.3.

Proof. Let q denote a prime not dividing N and choose an additive character ψq of Qq with

n(ψq) = 0 as well as the Haar measure dxq on Qq normalised such that
∫
Zq dxq = 1. By

Proposition 1.3, the Weil–Deligne representation of E at q is given by

σ′E,q = σE,q ' ξq ⊕ ξ−1
q ω−1

q

for some unramified character ξq. In particular, since NE,q = 0, we have

ε′(σ′E,q, ψq,dxq) = ε(σE,q, ψq,dxq)

and by Theorem 1.1 i) we find that

ε(σE,q, ψq,dxq) = ε(ξq, ψq,dxq)ε(ξ
−1
q ω−1

q , ψq,dxq).

By Proposition 1.1 applied to the unramified characters ξq and ξ−1
q ω−1

q , we find that

ε(σE,q, ψq,dxq) = ξqξ
−1
q ω−1

q (q)n(ψq)+a(1)ε(1, ψq,dxq)
2.

But n(ψq) = 0 and the trivial character is unramified so a(1) = 0. Moreover, ε(1, ψq,dxq) = 1

by (1.7) and the normalisation of the Haar measure. It follows that W (σ′E,q) = 1.

We now deal with the local root number at a prime p |N . Choose an additive character

ψp of Qp with n(ψp) = 0 as well as the Haar measure dxp on Qp normalised such that∫
Zp dxp = 1. Let λp be an unramified character of W (Q̄p/Qp) such that λ2

p = 1 and the twist

Eλp of E by λp has split multiplicative reduction at p. By Proposition 1.4 we have

σ′E,p ' λpω
−1
p ⊗ sp(2).
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Let V = C(λpω
−1
p ) ⊗ C2 denote the complex vector space associated to this representation.

Let (e0, e1) denote the standard basis of C2 as in Definition 1.5. Since the characters λp and

ωp are unramified, we have V Ip = V and thus V Ip
NE,p

= kerNE,p = Ce1 and V Ip/V
Ip
NE,p

= Ce0.

We deduce that

δ(σ′E,p) = det(−Φ | Ce0) = −λp(Φ)p

since σ′E,p acts as λpω−1
p on e0 and ω−1

p (Φ) = p. So far, we see that

ε′(σ′E,p, ψp,dxp) = −λp(Φ)p · ε(σE,p, ψp,dxp).

However, σE,p = λpω
−1
p ⊕ λp and thus, by Theorem 1.1 i) and (1.7), we have

ε(σE,p, ψp,dxp) = ε(λpω
−1
p , ψp,dxp)ε(λp, ψp,dxp) = 1.

In conclusion, we have established that ε′(σ′E,p, ψp,dxp) = −λp(Φ)p. Note that the quadratic

character λp is trivial or non-trivial, i.e., λp(Φ) = +1 or −1, according as E has split or

non-split multiplicative reduction at p. In other words, we have λp(Φ) = ap(E), and we have

proved that W (σ′E,p) = −ap(E).

Finally, we take care of the infinite place. Recall from (1.12) that

σ′E,∞ = indC/R ϕ0,1 : W (C/R)−→GL2(C).

By Theorem 1.1 ii) we have

ε(σ′E,∞, ψR,dxR) = ε(ϕ0,1, ψC,dxC)
ε(indC/R 1C, ψR,dxR)

ε(1C, ψC,dxC)
.

A set of representatives for the left cosets W (C/R)/W (C/C) is given by {1, J}. The induced

representation indC/R 1C is the permutation representation associated to this set. If we let

(e1, eJ) denote a basis for the space of indC/R 1C, then α ∈ W (C/R) maps e1 to eα and eJ
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to eα·J . If α belongs to JNC× with N ∈ {0, 1}, then α acts on Ce1 ⊕ CeJ via the matrix(
1−N N
N 1−N

)
. By conjugating with respect to the matrix

(
1 1
−1/2 1/2

)
we obtain the matrix(

1 0
0 sign

)
. We conclude that indC/R 1C = 1R ⊕ sign, and by Theorem 1.1 i), we have

ε(indC/R 1C, ψR,dxR) = ε(1R, ψR,dxR)ε(sign, ψR,dxR).

Finally, using the defining formulas (1.5) and (1.6), we obtain

ε(σ′E,∞, ψR,dxR) = i
1 · i
1

= i2 = −1.

Remark 1.4. In the course of the proof, we have seen that for primes p |N ,

a(σ′E,p) = a(σE,p) + dimV Ip/V
Ip
NE,p

= 1

since σE,p is unramified. At primes q not dividing N , σ′E,q is unramified and thus a′(σ′E,q) = 0.

In particular, we recover the fact that cond(E/Q) =
∏

` `
a′(σ′E,`) = N .

The L-function of an elliptic curve

Recall from Section 1.1.3 that for each finite prime q, the local L-factor associated to the

Weil–Deligne representation of E is

L(σ′E,q, s) = det(1− q−sΦ | V Iq
q,NE,q

)−1

where Vq is the underlying complex vector space of σ′E,q and V
Iq
q,NE,q

:= V
Iq
q ∩ kerNE,q.

At the infinite prime, we have

L(σ′E,∞, s) = LC(ϕ0,1, s)
h0,1(E) = ΓC(s) = 2(2π)−sΓ(s).
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Having described the Weil–Deligne representations of E at the finite places in Proposi-

tions 1.3 and 1.4, one can work out explicit formulas for the corresponding local L-factors,

as done in [126, §17 Proposition]. We content ourselves with stating the formulas. We have

Λ(E/Q, s) =
∏
v

L(σ′E,v, s) = 2(2π)−sΓ(s)L(E/Q, s)

where v runs over all places and L(E/Q, s) denotes the Hasse–Weil L-function. If N denotes

the conductor of E, then we have the explicit formula

L(E/Q, s) =
∏
p-N

(1− ap(E)p−s + p1−2s)−1
∏
p|N

(1− ap(E)p−s)−1 (1.14)

where

ap(E) =



p+ 1− |E(Fp)| if E has good reduction at p

1 if E has split multiplicative reduction at p

−1 if E has non-split multiplicative reduction at p

0 if E has additive reduction at p.

It can be shown to converge absolutely on the right half-plane <(s) > 3/2.

We have cond(E/Q) = N and

Λ∗(E/Q, s) := N
s
2 2(2π)−sΓ(s)L(E/Q, s).

For ` a prime, the dual of H1
et(Ē,Q`) is H1

et(Ē,Q`)(1) = H1
et(Ē,Q`) ⊗ ωcyc,`. It follows

that Λ∗(E∨/Q, s) = Λ∗(E/Q, s + 1), and thus the conjectural functional equation (1.9) for

Λ∗(E/Q, s) reads

Λ∗(E/Q, s) = W (E/Q)Λ∗(E/Q, 2− s). (1.15)

This conjecture is a corollary of the Modularity Theorem as we will explain in Section 1.2.3.
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Remark 1.5. One can also define the Hasse–Weil L-function of an elliptic curve defined over

more general number fields and describe its local factors explicitly. We content ourselves with

the description given over Q for the purposes of this thesis.

The Birch and Swinnerton-Dyer conjecture

Let E be an elliptic curve defined over a number field K. The famous conjecture of Birch

and Swinnerton-Dyer, now one of the Clay Millennium Prize Problems, relates the algebraic

rank ralg(E/K) to the behaviour of the Hasse–Weil L-function of the curve.

Conjecture 1.2 (Birch–Swinnerton-Dyer). Let E be an elliptic curve over a number field

K. The Hasse–Weil L-function L(E/K, s) admits analytic continuation to the whole complex

plane via a functional equation centred at s = 1, and the rank ralg(E/K) := rankZ(E(K)) is

given by ralg(E/K) = ords=1 L(E/K, s).

By the pioneering work of Wiles [153], Taylor and Wiles [145], and Breuil, Conrad, Dia-

mond and Taylor [31], it is known, for K = Q, that L(E/Q, s) admits analytic continuation

and a functional equation centred at s = 1. The most significant progress to date towards

the Birch and Swinnerton-Dyer conjecture is due to the method of Gross, Zagier and Kolyva-

gin [75,78,103], which rests on the construction of Heegner points, and yields the implication

ords=1 L(E/Q, s) ∈ {0, 1} =⇒ ralg(E/Q) = ords=1 L(E/Q, s). (1.16)

Their strategy has been generalised to the case of totally real number fields by S. Zhang

[156]. The work of Skinner and Urban [140,141], uses p-adic methods, and more specifically

Iwasawa theory, to produce the first instances of the opposite implication (3). The Birch and

Swinnerton-Dyer conjecture remains open in higher rank situations, as well as for elliptic

curves over general number fields in any rank. More details about this can be found in

Section 0.2.1.
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1.2.2 Modular curves

We recall the definitions and introduce the notation for the various modular curves that we

will be working with. Throughout we fix an integer N ≥ 3 and work with level N structures.

For more details we refer to [59,98].

Γ(N)-level structure

Let M̄N denote the fine moduli scheme representing pairs (E,αN) consisting of a generalised

elliptic curve E over a Z[1/N ]-scheme S together with a full level N structure, that is, an

isomorphism αN : E[N ]
∼−→(Z/NZ×Z/NZ)S of group schemes over S. The scheme M̄N is a

smooth proper curve over Z[1/N ] and we will mostly work with its base-change to Q which

we, by abuse of notation, denote again by M̄N . Let ζN denote a choice of a primitive N -th

root of unity. The base-change M̄N ⊗Q(ζN) of this curve to the cyclotomic extension Q(ζN)

is the disjoint union of ϕ(N) geometrically connected smooth proper curves Xn(N) over

Q(ζN) indexed by n ∈ (Z/NZ)×. The curve Xn(N) is the fine moduli scheme classifying

pairs (E, (P,Q)) consisting of a generalised elliptic curve over a Q(ζN)-scheme S together

with the choice of a basis {P,Q} for the N -torsion group E[N ] satisfying eN(P,Q) = ζnN ,

where eN denotes the Weil pairing on the N -torsion. We will often write X(N) for the curve

X1(N). Taking ζN to be e
2πi
N over C, there is a uniformisation of X(N) by the extended

complex upper half-plane H∗ given by

H∗−→X(N)(C), τ 7→ (C/Z⊕ τZ, (1/N + Z⊕ τZ, τ/N + Z⊕ τZ))

which identifies X(N)(C) with the quotient Γ(N) \ H∗ where Γ(N) denotes the full level N

congruence subgroup of SL2(Z) acting on H∗ by Möbius transformations. More precisely,

Γ(N) :=


a b

c d

 ∈ SL2(Z) :

a b

c d

 ≡
1 0

0 1

 (mod N)

 .
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There is a natural projection map X(N)−→SL2(Z) \ H∗ over C which has degree equal to

N3

2

∏
p|N(1− 1

p2 ).

When N = p is prime, the curve X(p) has p2−1
2

cusps and its genus is given by

g(X(p)) = 1 +
(p2 − 1)(p− 6)

24
for p > 2 and g(X(2)) = 0.

Γ1(N)-level structure

If N ≥ 5, let X1(N) denote the fine moduli scheme representing pairs (E,P ) consisting of a

generalised elliptic curve E over a Q-scheme S together with the choice of a point P on E

of exact order N . Then X1(N) is a geometrically connected smooth proper curve over Q. It

admits a uniformisation by the extended complex upper half-plane given by

H∗−→X(N)(C), τ 7→ (C/Z⊕ τZ, 1/N + Z⊕ τZ)

which identifies X1(N)(C) with the quotient Γ1(N) \ H∗ where Γ1(N) ⊂ SL2(Z) is the

congruence subgroup defined by

Γ1(N) :=


a b

c d

 ∈ SL2(Z) :

a b

c d

 ≡
1 ∗

0 1

 (mod N)

 . (1.17)

There is a natural projection map X(N)−→X1(N) over C of degree N .

When N = p is prime, the curve X1(p) has p− 1 cusps and its genus is given by

g(X1(p)) = 1 +
(p− 1)(p− 11)

24
for p > 3 and g(X1(2)) = g(X1(3)) = 0.

Γ0(N)-level structure

If N ≥ 5, let X0(N) denote the coarse moduli scheme representing pairs (E,H) consisting

of a generalised elliptic curve E defined over a Q-scheme S together with a cyclic subgroup
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scheme H of order N . Then X0(N) is a geometrically connected smooth proper curve over

Q. It admits a uniformisation by the extended complex upper half-plane given by

H∗−→X0(N)(C), τ 7→ (C/Z⊕ τZ, 〈1/N + Z⊕ τZ〉)

which identifies X0(N)(C) with the quotient Γ0(N) \ H∗ where Γ0(N) ⊂ SL2(Z) is the

congruence subgroup

Γ0(N) :=


a b

c d

 ∈ SL2(Z) :

a b

c d

 ≡
∗ ∗

0 ∗

 (mod N)

 .

The natural projection X1(N)−→X0(N) over C descends to a morphism of curves over

Q and has degree ϕ(N)
2

= [Γ0(N) : ±Γ1(N)]. In fact, X0(N) classifies elliptic curves with

Γ0(N)-structures up to isomorphism. Hence the two distinct elements (E,P ) and (E,−P ) of

X1(N) both map to (E, 〈P 〉) of X0(N), as [−1] : (E, 〈P 〉) ' (E, 〈−P 〉) is an automorphism

of elliptic curves with Γ0(N)-structure.

When N = p is prime, the curve X0(p) has two cusps ξ∞ and ξ0 corresponding via the

complex uniformisation to the points i∞ and 0 respectively. The genus of X0(p) is given by

the formula

g(X0(p)) =


bp+1

12
c − 1 if p ≡ 1 (mod 12)

bp+1
12
c otherwise.

(1.18)

1.2.3 Weight 2 modular forms of level Γ0(N)

A modular form of weight 2 for the congruence subgroup Γ0(N) is a holomorphic function

on the complex upper half-plane f : H−→C satisfying the transformation property

f

(
aτ + b

cτ + d

)
= (cτ + d)2f(τ), ∀τ ∈ H, ∀γ =

a b

c d

 ∈ Γ0(N),
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and which is holomorphic at the cusps of X0(N). The space of such modular forms is denoted

M2(Γ0(N)). Note that Γ0(N) contains the matrix T = ( 1 1
0 1 ), so that we have f(τ+1) = f(τ)

for all τ ∈ H. It follows that f admits a Fourier expansion around the cusp at infinity

f(q) =
∑
n≥0

an(f)qn, q = e2πiτ .

In fact, f admits a Fourier expansion around each cusp, and if the constant term of all these

expansions is zero, we say that f is a cusp form. We denote by S2(Γ0(N)) the subspace of

cusp forms of weight 2 and level Γ0(N). One can identify S2(Γ0(N)) with the space of global

sections of the sheaf of regular differential 1-forms on the modular curve X0(N)

S2(Γ0(N))
∼−→H0(X0(N),Ω1

X0(N)), f 7→ ωf := 2πif(τ)dτ. (1.19)

In particular, the dimension of S2(Γ0(N)) is equal to the genus of X0(N). Let Kf be the field

generated by the Fourier coefficients of the cuspform f . AsX0(N) admits a rational structure

as an algebraic curve over Q, the space of differential 1-forms admits a basis consisting of

differentials defined over Q. By (1.19), the space S2(Γ0(N)) similarly admits a basis of

cuspforms defined over Q, i.e., with Fourier coefficients in Q. It follows that the extension

Kf/Q is finite. We will denote by df the degree of this extension.

Hecke operators

The curve X0(N) is equipped with a collection of Hecke correspondences, which act on

cohomology and give rise to operators on S2(Γ0(N)) via (1.19). These correspondences and

their induced operators are traditionally denoted by Tn for integers n ≥ 1 coprime to the

level N , and by Uq for primes q that divide N . Defining formulas for these operators on the

Fourier expansions of cusp forms can be found in [3, (3.1)]. For integers d ‖ N , there are

Atkin–Lehner operators wd acting on S2(Γ0(N)). See [3, p. 138] for their definition. The

operators Tm with (m,N) = 1 commute with the operators Tn, Uq and wd, but the operators
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Uq and wd do not commute with each other. See for instance [3, Lemma 17].

Let T := T(N) denote the full commutative Hecke Q-algebra generated by the Hecke

operators Tn with (n,N) = 1 and Uq with q | N acting on S2(Γ0(N)). Let T0 := T0(N)

denote the subalgebra generated only by the operators Tn with (n,N) = 1. The space of

cusp forms S2(Γ0(N)) admits a basis of eigenfunctions for T0. Essentially, the operators Tn

commute and are Hermitian with respect to the Petersson inner product [3, (1.3)], and they

can therefore be simultaneously diagonalised. For the full proof we refer to [3, Theorem 2]

which is attributed to Hecke and Petersson. We refer to eigenfunctions for T0 as eigenforms.

There is a theory of oldforms and newforms developed in [3, §4]. Briefly, oldforms are

elements of S2(Γ0(N)) that arise from modular forms in S2(Γ0(d)) for d | N . The space

S2(Γ0(N))new is the orthogonal complement of the space of oldforms with respect to the

Petersson inner product. As in the previous paragraph, S2(Γ0(N))new also admits a basis

consisting of eigenforms for T0. Such a basis element will be called a newform. The first

Fourier coefficient of a newform f is necessarily nonzero by [3, Lemma 19] and such forms

can thus be rescaled so that a1(f) = 1. A newform f with the property that a1(f) = 1

is called a normalised newform. Normalised newforms satisfy the theorem of mulitplicity

one [3, Lemmas 20 and 21]: any two normalised newforms that have the same eigenvalues

for the operators Tp with p - N must be equal, and any form in S2(Γ0(N))new which is an

eigenform for T0 is a constant multiple of some normalised newform. Note that a normalised

newform is also an eigenvector for the Atkin–Lehner involutions wd with d‖N : indeed,

wd(f) ∈ S2(Γ0(N))new and by commutativity of wd with the operators Tp for p - N , wd(f) and

f share the same eigenvalues for Tp. By multiplicity one, we necessarily have wd(f) = λ(d)f .

Moreover, since wd is an involution, we have λ(d) ∈ {±1}. More is true, as Uq(f) = aq(f)f

for any prime q |N . Let d = qα‖N with q prime. If α ≥ 2, then Uq(f) = 0 and in particular

aq(f) = 0. If α = 1, it is possible to read off the Atkin–Lehner eigenvalue λ(q) from the

Fourier coefficient aq(f): indeed, λ(q) = −aq(f), and in particular aq(f) ∈ {±1}. This

follows from the fact that in this case Uq(f) + wq(f) is an oldform [3, Lemma 17 (iii)]. The
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detailed proofs of these facts along with additional basic properties of newforms can be found

in [3, Theorem 3].

Eichler–Shimura theory

The Eichler–Shimura construction [64, 135] associates to the Gal(Q̄/Q) conjugacy class [f ]

of any normalised newform f ∈ S2(Γ0(N)) a simple abelian variety A[f ] defined over Q as a

quotient of J0(N) := Pic0
X0(N)/Q, the Jacobian of X0(N). The quotient map J0(N)−→A[f ]

is defined over Q and its kernel is stable under the action of T0(N). Moreover, we have

EndQ(A[f ])⊗Q = Kf and the dimension of Af is df = [Kf : Q]. The association [f ] 7→ A[f ]

is unique up to isogeny.

In particular, if f is a normalised newform in S2(Γ0(N)) with Fourier coeffecients in Q,

then the Eichler–Shimura construction associates to f and elliptic curve Ef over Q (up to

isogeny), which is a quotient of J0(N). The association is such that we have an equality of

L-functions L(f, s) = L(Ef/Q, s), where

L(f, s) :=
∑
n≥1

an(f)

ns

is the L-function associated to f , and L(Ef/Q, s) is the Hasse–Weil L-function (1.14) of Ef .

The Modularity Theorem

Let E be an elliptic curve over Q of conductor N . The Modularity Theorem [31, 145, 153]

is a converse to the Eichler–Shimura construction; it associates to E a normalised newform

f ∈ S2(Γ0(N)) such that

L(E/Q, s) = L(f, s).

As a consequence, L(E/Q, s) admits analytic continuation to the whole complex plane and

satisfies a functional equation centred at s = 1. These analytic properties of the Hasse–Weil

L-function were not known before the proof of the Modularity Theorem.
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By the Eichler–Shimura construction, there is an elliptic curve Ef , which is a quotient

of J0(N) and satisfies L(f, s) = L(Ef/Q, s), hence we obtain the equality of L-functions

L(E/Q, s) = L(Ef/Q, s).

By Faltings’ proof of the Tate conjecture for abelian varieties defined over number fields,

this equality implies that the elliptic curves E and Ef are isogenous. Since Ef arises as a

quotient of J0(N), we deduce that there exists a non-constant morphism of abelian varieties

over Q

πE : J0(N)−→E. (1.20)

By fixing an embedding of X0(N) into its Jacobian using the base point ξ∞, we obtain a

non-constant morphism of algebraic curves over Q

πE : X0(N)−→E, (1.21)

which we still denote by πE, by slight abuse of notation. Any of the two morphisms (1.20)

and (1.21) will be called a modular parametrisation of E. Note that the existence of a

modular parametrisation of E is equivalent to the Modularity Theorem.

There is a unique invariant differential ω of E such that π∗E(ω) = ωf := 2πif(z)dz. Write

ω = cωE, where ωE is a Néron differential of E. Then c is an integer known as the Manin

constant of the modular parametrisation πE.

1.2.4 Higher weight modular forms for Γ1(N)

This section is derived from [11, §3]. Let N ≥ 5 and consider the open modular curve Y1(N)

which is the fine moduli space representing pairs (E,P ) consisting of an elliptic curve E

over a Q-scheme S together with the choice of a point P of E of exact order N . It is a

geometrically connected smooth affine curve over Q and it is the complement of the set of
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cusps in the curve X1(N) described in Section 1.2.2.

Let π : E−→Y1(N) be the universal elliptic curve with Γ1(N)-level structure over Y1(N),

and let ω := π∗Ω
1
E/Y1(N) be the coherent sheaf of relative differentials on E/Y1(N), extended

to a coherent sheaf on X1(N) in the standard way. See [12, §1.1]. Let ωr be the r-th

tensor power of this line bundle. The sheaf ω2 is related to the sheaf Ω1
X1(N)(log cusps) of

regular differentials on X1(N) with logarithmic poles at the cusps by the Kodaira–Spencer

isomorphism

σ : ω2 ∼−→ Ω1
X1(N)(log cusps), (1.22)

as described for instance in [12, §1.1].

Definition 1.6. Let r denote a non-negative integer. A (holomorphic) modular form of

weight k = r + 2 is a global section of the sheaf ωk, or – equivalently, by (1.22) – of

ωr⊗Ω1
X1(N)(log cusps) over X1(N). The global sections of ωr⊗Ω1

X1(N) are called cusp forms.

Let Mk(Γ1(N)) and Sk(Γ1(N)) denote the complex vector spaces of modular forms and cusp

forms on Γ1(N), respectively.

When working over the field of complex numbers, the set X1(N)(C) of complex points

of X1(N) is a compact Riemann surface, and the analytic map

pr : H−→Y1(N)(C), pr(τ) :=

(
C/〈1, τ〉, 1

N

)

identifies Y1(N)(C) with the quotient Γ1(N)\H. Let τ denote a point of H and let w be

the standard complex coordinate on the elliptic curve C/〈1, τ〉. The Hodge filtration on

H1
dR(C/〈1, τ〉) admits a canonical, functorial (but not holomorphic) splitting

H1
dR(C/〈1, τ〉) := Cdw ⊕ Cdw̄. (1.23)

This is the Hodge decomposition of the elliptic curve. In terms of the coordinates τ , dw,
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and dw̄, one has [12, §1.2]

σ((2πidw)2) = 2πidτ, (1.24)

and a modular form ωf ∈Mk(Γ1(N)) gives rise to a holomorphic function on the upper half

plane H by the rule

ωf (τ) = f(τ)(2πidw)r+2 = f(τ)(2πidw)r ⊗ (2πidτ). (1.25)

This function obeys the familiar transformation rule

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), for all

a b

c d

 ∈ Γ1(N), (1.26)

and the modular form ωf is completely determined by the associated function f(τ).

Modular forms and Kuga–Sato varieties

We retain the assumptions that N ≥ 5 and r ≥ 0. Let π : Ē−→X1(N) denote the universal

generalised elliptic curve over X1(N) that extends the universal elliptic curve E over Y1(N)

introduced in Section 1.2.4. This is a smooth and proper variety over Q, and the geometric

fibres over a closed point x ∈ X1(N) are singular precisely when x is a cusp. Let

W#
r := Ē ×X1(N) Ē ×X1(N) . . .×X1(N) Ē (1.27)

denote the r-fold self-product of Ē over X1(N).

Definition 1.7. The canonical desingularisation, described for instance in [12, Appendix]),

of W#
r is denoted Wr and called the r-th Kuga–Sato variety with Γ1(N)-level structure.

The variety Wr is smooth and proper over Q of dimension r + 1 and it is fibred over

X1(N) via the natural projection πr : Wr−→X1(N). If x ∈ X1(N) is a closed non-cuspidal
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point corresponding to an elliptic curve E with Γ1(N)-structure, then the fibre π−1
r (x) is Er,

the r-fold self-product of E.

Following [12], we now introduce an idempotent in the ring of automorphism ofWr/X1(N)

which will enable us to identify the space of cusp forms Sr+2(Γ1(N)) with a piece of the de

Rham cohomology of Wr.

The generalised elliptic curve π : Ē−→X1(N) is equipped with a Γ1(N)-level structure,

i.e., with a section s : X1(N)−→Ē of order N . Translation by this section gives rise to

an action of Z/NZ on Ē ; if a ∈ Z/NZ and x ∈ Ē lies over (E,P ) ∈ X1(N), then we

let a · x = x + a · s(E,P ), where the addition is the group structure on E. The variety

W#
r −→X1(N) is the r-fold fibre product of Ē , and therefore there is a natural action of

(Z/NZ)r on W#
r . By the canonical nature of the desingularisation of W#

r , this action

extends to Wr. Let σa denote the automorphism of Wr/X1(N) associated to a ∈ (Z/NZ)r

and define

ε
(1)
Wr

:=
1

N r

∑
a∈(Z/NZ)r

σa, (1.28)

which is an idempotent in the group ring Z[1/N ][Aut(Wr/X1(N))].

Let Sr denote the symmetric group on r letters. Multiplication by −1 on the generalised

elliptic curve Ē/X1(N) together with the natural action of Sr onW#
r gives rise to an action of

the semidirect product (µ2)roSr onW#
r , which extends to an action on Wr by the canonical

nature of the desingularisation. Let j : (µ2)r o Sr−→µ2 be the homomorphism which is the

identity on µ2 and the sign character on Sr and define

ε
(2)
Wr

:=
1

2rr!

∑
σ∈(µ2)roSr

j(σ)σ, (1.29)

which is an idempotent in the group ring Z[1/2r!][Aut(Wr/X1(N))].

Definition 1.8. The two idempotents ε(1)
Wr

and ε(2)
Wr

commute and hence define an idempotent

εWr := ε
(1)
Wr
◦ ε(2)

Wr
∈ Q[Aut(Wr/X1(N))].
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Most useful for us is the following result.

Proposition 1.6. For any field F of characteristic zero, we have an identification

Sr+2(Γ1(N), F ) ' Filr+1 εWrH
r+1
dR (Wr/F ),

via the association f 7→ ωf := f(E, t, ω)ωr⊗σ(ω2), for an elliptic curve with Γ1(N)-structure

(E, t) and an invariant differential ω of E.

Proof. This is [12, Lemma 2.2, Corollary 2.3].

1.3 Complex multiplication theory

We review the theory of elliptic curves with complex multiplication and its relation to the

explicit class field theory of imaginary quadratic fields. A complete reference is [136], but

we mainly follow [42,131].

1.3.1 Class field theory for imaginary quadratic fields

Let K be an imaginary quadratic field of discriminant −dK where dK > 0, and let OK denote

its ring of integers. Recall from Notation 1.1 the fixed embedding K̄ ↪→ C. For simplicity,

we assume that dK 6= 3, 4, so that O×K = {±1}.

Orders in quadratic imaginary fields

Let τ := (−dK +
√
−dK)/2 be the standard generator of OK = 〈1, τ〉 := Z ⊕ τZ. Any

order O in K is uniquely determined by its conductor c := [OK : O]. The unique order of

conductor c will be denoted Oc = 〈1, cτ〉 and its discriminant is equal to −c2dK .

Given an order O, its class group is defined as Cl(O) := I(O)/P (O), where I(O) denotes

the multiplicative group of proper fractional O-ideals and P (O) is the subgroup of principal
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O-ideals. The size of this class group will be denoted h(O). We will write IK = I(OK),

PK = P (OK), Cl(K) = Cl(OK) and hK = h(OK) in the case of the maximal order.

We denote by I(Oc, c) the subgroup of fractional ideals relatively prime to the conductor c

and let P (Oc, c) = P (Oc)∩I(Oc, c). Similarly, we write IK(c) for the group of fractional OK-

ideals relatively prime to c and we define PK,Z(c) to be the subgroup generated by principal

OK-ideals αOK where α ∈ OK satisfies α ≡ a (mod cOK) for some integer a relatively prime

to c. We then have [42, Proposition 7.22]

Cl(Oc) ' I(Oc, c)/P (Oc, c) ' IK(c)/PK,Z(c). (1.30)

From this isomorphism and the exact sequence

1−→(Z/cZ)×−→(OK/cOK)×−→(IK(c) ∩ PK)/PK,Z(c)−→1, (1.31)

one can deduce the formula [42, Theorem 7.24]

h(Oc)
h(OK)

= |(IK(c) ∩ PK)/PK,Z(c)| = c
∏
p|c

(
1−

(
−dK
p

)
1

p

)
. (1.32)

Ray class fields and ring class fields

Given an ideal N of OK , we define IK(N) to be the group of fractional OK-ideals relatively

prime to N and PK(N) = PK ∩ IK(N). We also define PK,1(N) as the subgroup generated

by principal ideals αOK where α ≡ 1 (mod N).

Given a finite abelian extension L/K, let N denote an ideal of OK divisible by all primes

that ramify in L. The Artin reciprocity map

φL/K,N : IK(N)−→Gal(L/K)

is then defined by mapping a prime ideal p to the Frobenius element σp ∈ Gal(L/K). This
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map is surjective by the Cebotarev Density Theorem [42, Theorem 8.17].

Definition 1.9. LetN be an ideal of OK . By the Existence Theorem of class field theory [42,

Theorem 8.6], there exists a unique abelian extension KN of K, ramified only at primes

dividing N, such that the Artin reciprocity map induces an isomorphism

φKN/K,N : IK(N)/PK,1(N)
∼−→Gal(KN/K).

The field KN is called the ray class field of K of conductor N.

Any finite abelian extension L of K has a conductor f [42, Theorem 8.5], which is an

ideal of OK , such that a prime in K ramifies in L if and only if the prime divides f and such

that L is contained in the ray class field Kf [42, Theorem 8.2].

Definition 1.10. In the special case when N = 1, the ray class field is denoted H and called

the Hilbert class field of K. In this case the Artin reciprocity map induces an isomorphism

φH/K,1 : ClK = IK/PK
∼−→Gal(H/K)

and H is the maximal unramified abelian extension of K.

Definition 1.11. Let c be a positive integer. By the Existence Theorem of class field

theory [42, Theorem 8.6], there exists a unique abelian extension HOc = Hc of K, ramified

only at primes dividing cOK , such that the Artin reciprocity map induces an isomorphism

φHc/K,cOK : Cl(Oc) = IK(c)/PK,Z(c)
∼−→Gal(Hc/K). (1.33)

The field Hc is called the ring class field of K of conductor c and is contained in the ray class

field KcOK .

The ring class field Hc is fixed by complex conjugation and is therefore a Galois extension

over Q. In fact, it is a generalised dihedral extension of Q, meaning that its Galois group
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can be written as a semi-direct product

Gal(Hc/Q) ' Gal(Hc/K) o Gal(K/Q),

where the non-trivial element τ of Gal(K/Q) acts on Gal(Hc/K) by inversion [42, Lemma

9.3], i.e., τστ−1 = σ−1 for all σ ∈ Gal(Hc/K). Any abelian extension of K is generalised

dihedral over Q if and only it is contained in a ring class field of K [42, Theorem 9.18].

The following properties concern the behaviour of primes in ring class fields and will be

particularly useful in Section 2.3.3 of Chapter 2. Let n be a square-free integer and let q | n

denote a rational prime. Write n = qm with (q,m) = 1. We begin with the following simple

observation.

Proposition 1.7. The intersection Hq ∩Hm is the Hilbert class field H of K, and the ring

class field Hn is the compositum of Hq and Hm.

Proof. Let p denote a prime of K. If p ramifies in Hq ∩Hm, then p ramifies both in Hq and

in Hm. By Definition 1.11, this implies that p divides q and m, respectively. But q and m

are coprime, so this is not possible. As a consequence, Hq ∩ Hm is an unramified abelian

extension of K, hence contained in H by Definition 1.10.

For the second statement, observe that for any k | n, Hn contains the ring class field Hk.

This follows from [42, Corollary 8.7] after noting the inclusion

PK,1(n) ⊂ PK,Z(n) = ker(φHn/K,n) ⊂ PK,Z(k) ∩ IK(N) = ker(φHk/K,n).

In particular, Hn contains the compositum Hq ·Hm as a subfield. As Hq ∩Hm = H, we have

an isomorphism

Gal(Hq ·Hm/H) ' Gal(Hq/H)×Gal(Hm/H). (1.34)

Using formula (1.32), we then see that [Hq ·Hm : H] = [Hn : H], hence Hq ·Hm = Hn.
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Let us draw the following diagram of Galois extensions:

Hn = Hq ·Hm

Hq Hm

H = Hq ∩Hm

K

(1.35)

Note that the natural restriction maps induce isomorphisms

Gal(Hn/Hm) ' Gal(Hq/H) Gal(Hn/Hq) ' Gal(Hm/H), (1.36)

as can be seen by comparing cardinalities.

Proposition 1.8. Let n be a square-free positive integer, and let q be a rational prime which

is inert in K. The ideal qOK has residual degree 1 in Hn/K.

Proof. If q | n, we write n = qm with (q,m) = 1. If q - n, then we set m = n. In any case,

we have (q,m) = 1. Since q is coprime to m, the ideal qOK belongs to PK,Z(m), hence its

class in Cl(Om) = IK(m)/PK,Z(m) is trivial. Thus, its image under the Artin reciprocity

map φHm/K,m is trival in Gal(Hm/K). Since q is inert, the ideal qOK is prime and its image

under this map is the Frobenius element at q. In particular, this Frobenius element is trivial

and qOK splits completely in the extension Hm/K. This completes the proof in the case

q - n.

From now on, suppose that q | n and let m = n/q. Since q is inert in K, the residual

degree of qOK is 2. Observe then, following Section 1.3.1, that

Gal(Hq/H) ' (IK(q) ∩ PK)/PK,Z(q) ' (OK/qOK)×/(Z/qZ)× (1.37)

81



is cyclic of order q + 1. From the first part of the proof (with n = 1), qOK splits completely

in H. Let q denote a prime of H above q. Since Hq 6= H, by Definitions 1.10 and 1.11 we see

that qOK must ramify in Hq. In particular, q must ramify in Hq/H. This fact, combined

with the fact that Gal(Hq/H) is cyclic, implies that there is a unique prime of Hq above q.

The fact that H is the maximal abelian unramified extension of K can then be used to show

that the ramification degree of q is q + 1. In other words, q is totally ramified in Hq/H. In

particular, the ramification index of qOK in Hn/K is greater or equal to q + 1. Recall that

qOK splits completely in Hm and let q′ denote a prime of Hm above qOK . Since the degree

of Hn/Hm is q + 1, as seen from the isomorphism (1.36), the ramification index of q′ in Hn

is forced to be q + 1. In conclusion, each factor of qOK in Hm is totally ramified in Hn and

the proof is complete.

Corollary 1.2. Let N denote a prime ideal of OK and let N denote its norm. Let q be a

prime satisfying (2N, q) = 1 and such that q is inert in K. Fix a prime ideal q in H above

q and denote by s its residual degree in the extension KN/H. For any square-free positive

integer n coprime to N , the residual degree of q in the compositum KN ·Hn is equal to s.

Proof. We begin by noting that KN ∩ Hn = H. Indeed, if a prime ideal in K ramifies in

the abelian extension KN ∩ Hn over K, then it divides both N and nOK . But these two

ideals are coprime by assumption since the norm of N is N . Thus KN ∩ Hn is everywhere

unramified above K and is therefore contained in H by Definition 1.10.

We have the following diagram of Galois extensions:

KN ·Hn

KN Hn

H = KN ∩Hn

K

(1.38)
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The natural restriction map induces an isomorphism of Galois groups

Gal(KN ·Hn/KN) ' Gal(Hn/H). (1.39)

Let qN denote a prime ideal of KN above q. Let Dq and Iq be respectively the decomposition

group and inertia group of q in Gal(Hn/H). Similarly, denote by DqN and IqN respectively

the decomposition and inertia groups of qN in Gal(KN ·Hn/KN). Restricting the map (1.39)

to the decomposition group and inertia group yields injective maps DqN ↪→ Dq and IqN ↪→ Iq,

and thus induces an injection DqN/IqN ↪→ Dq/Iq. As a result, the residual degree of qN in

KN ·Hn/KN divides the residual degree of q in Hn/H. The latter is equal to 1 by Proposition

1.8. By multiplicativity of residual degrees, the residual degree of q in KN ·Hn/H is s.

1.3.2 Main theorems of complex multiplication

Let E be an elliptic curve defined over C and consider its ring of endomorphisms EndC(E).

The elliptic curve admits a complex uniformisation E(C) = C/ΛE where ΛE is the period

lattice of E. Given this uniformisation, we have

EndC(E) = {α ∈ C | αΛE ⊂ ΛE},

hence EndC(E) is a discrete subring of C, as it preserves a lattice, and thus must be either

Z or an order in a quadratic imaginary field. In fact, this ring acts faithfully on both the

one dimensional complex vector space Ω1(E) = H1,0(E(C)) and the 2-dimensional module

H1(E(C),Z), and therefore injects into both C and M2(Z).

Definition 1.12. If EndC(E) is an order in a quadratic imaginary field, then E is said to

have complex multiplication (CM).

Definition 1.13. Let O be an order in a quadratic imaginary field K. For any field F , let

CMF (O) denote the set of F̄ -isomorphism classes of elliptic curves E/F equipped with an
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isomorphism O ∼−→EndF (E) satisfying, for α ∈ O, [α]∗ω = αω. Here α ∈ O is viewed as an

endomorphism [α] : E−→E and [α]∗ : Ω1(E/F )−→Ω1(E/F ) is the pull-back on differentials.

When F = C, we have |CMC(O)| = h(O), as elliptic curves over C correspond to

lattices up to homothety and E has CM by O if and only if the corresponding lattice ΛE

is a projective O-module. There are h(O) distinct such homothety classes. This set can be

described as follows

CMC(O) = {τ ∈ SL2(Z) \ H | aτ 2 + bτ + c = 0, gcd(a, b, c) = 1,Disc(O) = b2 − 4ac}

= {[τ1], . . . , [τh(O)]}.

If E/C has CM by O, then the j-invariant j(E) of E is algebraic and generates a field

of degree less than or equal to h(O) over K. This results from the fact that Aut(C/K) acts

on CMC(O) and thus permutes the j-invariants j(τ1), . . . , j(τh(O)). Let LO denote the field

generated by j(τ1), . . . , j(τh(O)) over K. This is a finite extension of K and every elliptic

curve with CM by O is defined over LO. Thus, using the fixed embedding LO ↪→ C of

Notation 1.1, we may identify CMLO(O) = CMC(O).

The first main theorem of complex multiplication asserts that LO is the ring class field

HO of K associated to the order O, see Definition 1.11.

Theorem 1.2. Let O be an order in an imaginary quadratic field K and let E ∈ CMC(O) be

an elliptic curve with complex multiplication by O. Then the j-invariant j(E) is an algebraic

integer and K(j(E)) = HO is the ring class field of K associated to the order O.

Proof. This is [42, Theorem 11.1].

The theorem gives an explicit description of the ring class fields of K, hence enables a

description of all abelian extension of K which are generalised dihedral over Q. See the

comment following Definition 1.11. The second main theorem of complex multiplication

completes the description of all abelian extensions of K by describing the ray class fields.
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Theorem 1.3. Let N be an ideal of OK. The ray class field KN of conductor N is obtained

from the Hilbert class field H by adjoining the coordinates of the torsion points E(H̄)[N]

of some E ∈ CMH(OK). As a consequence, for such a choice of elliptic curve E, we have

KN = K(j(E), E(H̄)[N]).

Proof. This is [42, Theorem 11.39].

1.4 Algebraic cycles

We review the definition of algebraic cycles and various associated adequate equivalence

relations. This will enable us to state the Beilinson–Bloch conjecture, a generalisation of the

Birch and Swinnerton-Dyer conjecture to higher dimensional varieties. We introduce tools,

in the form of Abel–Jacobi maps, for the study of algebraic cycles and their properties.

By an algebraic variety we shall mean an integral separated scheme of finite type over a

field. A subvariety is an integral separated closed subscheme.

1.4.1 Algebraic cycles and Chow groups

Let X be a smooth projective algebraic variety of dimension d defined over a field K of

characteristic zero. Fix an algebraic closure K̄ of K, as well as an embedding σ : K̄ ↪→ C.

Definition 1.14. Let r be a non-negative integer. The group Zr(X) of codimension r

algebraic cycles in X is the free abelian group generated by the codimension r subvarieties

of XK̄ . A codimension r algebraic cycle Z is thus a Z-linear combination Z =
∑

V nV · V ,

where the sum is over all codimension r subvarieties of XK̄ and nV = 0 for all but finitely

many V .

If F is a field extension of K contained in K̄, we denote by Zr(X)(F ) the subgroup of

algebraic cycles which are fixed by the natural action of the Galois group Gal(K̄/F ) =: GF .

Note that Z1(X) = Div(X) is the group of Weil divisors. In particular, when X is a curve,

elements of Z1(X) are formal linear combinations of points in X(K̄).
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Let V be a subvariety of XK̄ of codimension r − 1 and let W be a subvariety of V of

codimension 1. The local ring OW,V , i.e., the localisation of OV at the generic point of W ,

is a discrete valuation ring with quotient field R(V ), the function field of V . We denote the

associated discrete valuation by ordW . For any f ∈ R(V )×, we may form the codimension r

cycle

div(f) :=
∑
W

ordW (f) ·W ∈ Zr(X)

where the sum ranges over all subvarieties of V of codimension 1.

Definition 1.15. Two codimension r cycles Z1 and Z2 are rationally equivalent if there

exists subvarieties V1, . . . , Vt of XK̄ of codimension r − 1 and functions fi ∈ R(Vi)
× for

i = 1, . . . , t such that

Z1 − Z2 =
t∑
i=1

div(fi).

In this case we write Z1 ∼rat Z2. This defines an equivalence relation on codimension r

cycles and the subgroup of cycles rationally equivalent to zero will be denoted Zr(X)rat.

The codimension r Chow group is the quotient CHr(X) := Zr(X)/Zr(X)rat. We shall often

write [Z] for the image of a cycle Z in the Chow group.

We regard the Chow group as a functor from the category of field extensions of K

contained in C to the category of abelian groups given by the rule

F/K 7→ CHr(X)(F ) := {[Z] ∈ CHr(X) : σ(Z) ∼rat Z, ∀σ ∈ Aut(C/F )}.

For any non-negative integers r and s, there is an intersection product

CHr(X)× CHs(X)−→CHr+s(X), ([Z], [Z ′]) 7→ [Z] · [Z ′]

which endows CH∗(X) :=
⊕

r≥0 CHr(X) with the structure of a graded ring.

Let f : X−→Y be a morphism of smooth projective varieties over K, with dimX = dX

and dimY = dY . If f is proper, then the push-forward map on cycles preserves rational
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equivalence and induces a push-forward map

f∗ : CHr(X)−→CHr+dY −dX (Y ),

defined by mapping a codimension r subvariety V of X to [R(V ) : R(f(V ))] · f(V ) if

dim f(V ) = dimV and to 0 if dim f(V ) < dimV , and extended by linearity to arbitrary

cycles.

If f is flat, then the pull-back map on cycles preserves rational equivalence and induces

a pull-back map

f ∗ : CHr(Y )−→CHr(X)

given by mapping a codimension r subvariety V to the cycle associated to the subscheme

X ×Y V , and extending by linearity to arbitrary cycles. See [72, Ch. 1 §1.5] for the cycle

associated to a subscheme.

1.4.2 Correspondences and pure motives

We briefly introduce the notion of a pure motive. We will not use any deep facts related to

the theory of motives, but the language and notations are convenient.

Correspondences

Let X and Y be two smooth projective varieties of respective dimensions dX and dY , defined

over some field K.

Definition 1.16. A correspondence between X and Y of degree r is an element of the Chow

group CHdX+r(X × Y ). We denote the set of correspondences of degree r by Corrr(X, Y ).

Let prX : X×Y−→X and prY : X×Y−→Y denote the two natural projection maps, and

note that these are smooth and proper. In particular, they induce push-forward and pull-

back maps on Chow groups and any correspondence Γ ∈ Corrr(X, Y ) induces a push-forward
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and a pull-back map on Chow groups defined as follows:

Γ∗ : CHj(X)−→CHr+j(Y ) Z 7→ (prY )∗(Z · pr∗X(Γ)) (1.40)

Γ∗ : CHj(Y )−→CHr+j+dx−dy(X) Z 7→ (prX)∗(Z · pr∗Y (Γ)). (1.41)

Suppose we are given three smooth projective varieties X1, X2 and X3, and denote by

pri,j : X1×X2×X3−→Xi×Xj the natural projection maps for 1 ≤ i < j ≤ 3. For any two

correspondences T ∈ Corrr(X1, X2) and S ∈ Corrs(X2, X3), we define their composition

T ◦ S = (pr13)∗(pr∗12(T ) · pr∗23(S)) ∈ Corrr+s(X1, X3), (1.42)

where · denotes the intersection product on Chow groups. Note that the composition of

degree zero correspondences is again a degree zero correspondence. In particular, the group

Corr0(X,X) for a smooth projective variety X is endowed with a ring structure.

Pure Chow motives

The category of pure Chow motives Chow(K) over a field K has objects defined as triples

(X, p, n) where X is a smooth projective variety over K, p is an idempotent in the ring of

correspondences Corr0(X,X) and n ∈ Z is an integer. A morphism between two objects

f : (X, p, n)−→(Y, q,m) is a correspondence f ∈ Corrm−n(X, Y ) such that f ◦ p = f = q ◦ f .

There is a functor h : SmProj(K)−→Chow(K) from the category of smooth projective

varieties over K to the category of pure Chow motives given by

h(X) := (X,∆X , 0) h(f : X−→Y ) = Γf

where ∆X ⊂ X×X denotes the graph of the identity morphism idX and Γf ⊂ X×Y denotes

the graph of the morphism f . The image h(X) of X under this functor is called the motive

of X.
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For any commutative ring A, we will also talk about the category Chow(K)A of pure

Chow motives over K with coefficients in A, which is defined by tensoring the morphisms of

Chow(K) by A.

Realisations of motives

There are functors from Chow(K) to various categories which associate to a motive its

various cohomology groups with their additional structures. The image of a motive under

these functors are called its realisations.

Let M = (X, p, n) denote an object in Chow(K). Let H∗(X) denote a Weil coho-

mology associated to the smooth projective variety X. Any idempotent correspondence

p ∈ Corr0(X,X) induces a projection map, also denoted by p, on Hr(X), in any degree of

cohomology. We list some of the realisations of M :

• The Betti realisationMB := pH∗(X(C),Q)(n) whereH∗(X(C),Q) denotes the rational

singular cohomology of the complex manifold X(C), and we used the fixed embedding

σ : K̄ ↪→ C.

• The de Rham realisation MdR := pH∗dR(X/K)(n) where H∗dR(X/K) denotes the alge-

braic de Rham cohomology of X over K. The finite dimensional K-vector space MdR

comes equipped with a Hodge filtration.

• For a prime `, the `-adic realisationM` := pH∗et(XK̄ ,Q`)(n) where H∗et(XK̄ ,Q`) denotes

the geometric `-adic étale cohomology lim
←−

H∗et(XK̄ ,Z/`νZ) ⊗Z` Q` of X. The finite

dimensional Q`-vector space M` comes equipped with an action of the absolute Galois

group GK = Gal(K̄/K).

• The crystalline realisation Mcris is similarly defined when K is a discrete valuation

field over Qp using the crystalline cohomology of X. It is naturally equipped with the

structure of a Frobenius monodromy module.
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There are various natural comparison isomorphisms relating the realisations of M :

MB ⊗Q C 'MdR ⊗K C

MB ⊗Q Q` 'M`.

Furthermore, there are theorems Ccris and Cst of p-adic Hodge theory which relate, for K a

finite extension of Qp, Mcris and Mp by tensoring with Fontaine’s period rings Bcris or Bst,

and Mcris with MdR by tensoring with K.

1.4.3 Cycle class maps and homological equivalence

Cycle class maps are maps from Chow groups to various Weil cohomology groups which

double degrees. These maps are central in the formulation of the Hodge conjecture and the

Tate conjecture. They allow us to define homological equivalence on algebraic cycles, and

subsequently the null-homologous Chow group, which is the domain of various Abel–Jacobi

maps that we will describe in the next section.

The Betti – de Rham cycle class maps

The exposition follows [147]. Let X be a smooth projective variety of dimension d defined

over a subfield K of C. The set of complex points of X(C) is endowed with the structure of

a compact complex manifold and the Betti cohomology of X is the singular cohomology of

X(C), i.e., H∗B(X,Z) := H∗(X(C),Z). The (topological) cycle class map is a homomorphism

cl : CHr(XC)−→H2r(X(C),Z). (1.43)

It is defined on codimension r subvarieties of XC and then extended to codimension r alge-

braic cycles by linearity. It can then be shown to factor through rational equivalence, and

hence gives a map defined on the Chow group.
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A subvariety Z ⊂ XC can be viewed as an analytic subset of the complex manifold X(C).

For the general definition of cl(Z) we refer to [147, §11.1.2] and we content ourselves with

a description of cl(Z) in the case where Z is a complex submanifold of X(C), i.e., when

Z is smooth. Let therefore Z ⊂ X(C) be a closed complex submanifold of codimension r.

Let Hj
Z(X(C),Z) denote the relative singular cohomology group Hj(X(C), X(C) \ Z,Z), or

cohomology with support in Z. Associated to the pair (X(C), X(C) \ Z) is a long exact

sequence

· · · −→Hj
Z(X(C),Z)

ιjZ−→Hj(X(C),Z)−→Hj(X(C) \ Z,Z)−→Hj+1
Z (X(C),Z)−→· · ·

and we have Thom isomorphisms T j : Hj
Z(X(C),Z) ' Hj−2r(Z,Z). In particular, taking

j = 2r, we obtain a homomorphism

jZ : H0(Z,Z)
(T 2r)−1

−→ H2r
Z (X(C),Z)

ι2rZ−→H2r(X(C),Z)

and we define cl(Z) := jZ(1).

Since X(C) is a compact complex manifold, we have at our disposal Poincaré duality for

singular cohomology, as well as the de Rham comparison theorem:

PD : H2r(X(C),Z) ' H2d−2r(X(C),Z) (1.44)

αdR : H2r(X(C),R) ' H2r
dR(X(C),R) (1.45)

induced respectively by the intersection pairing on homology and the integration pairing of

closed differential forms against homology classes. Tensoring with R and composing with

αdR leads to the definition of the de Rham cycle class map

cldR = αdR ◦ (cl⊗R) : CHr(XC)−→H2r
dR(X(C),R). (1.46)
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Consider the de Rham pairing

〈·, ·〉dR : H2r
dR(X(C),R)×H2d−2r

dR (X(C),R)−→H2d
dR(X(C),R)−→R

given by cup-product followed by integration. If Z ⊂ X(C) is a complex submanifold of

codimension r, then cldR is characterised by

〈cldR(Z), [α]〉dR =

∫
Z

α, ∀ [α] ∈ H2d−2r
dR (X(C),R).

In particular, PD(cl(Z)) ∈ H2d−2r(X(C),Z) is the canonical homology class of Z. More

generally, if Z ⊂ X(C) is an analytic subset of a smooth compact complex manifold, then

〈cldR(Z), [α]〉dR =

∫
Zsmooth

α, ∀ [α] ∈ H2d−2r
dR (X(C),R), (1.47)

where Zsmooth denotes the smooth locus of Z. See [147, Theorem 11.21].

Finally, by precomposing these cycle class maps with the map CHr(X)−→CHr(XC)

arising from the embedding K̄ ⊂ C, we obtain the Betti and de Rham cycle class maps

clB : CHr(X)−→H2r
B (X,Z)

cldR : CHr(X)−→H2r
dR(X/C).

Proposition 1.9. For Z ∈ Zr(X), the image in H2r
B (X,C) of the class clB(Z) ∈ H2r

B (X,Z)

lies in Hr,r(X/C), i.e., clB(Z) is a Hodge class.

Proof. This is [147, Proposition 11.20] and follows from (1.47).

We will write Hdg2r(X) := H2r
B (X,Z) ∩ Hr,r(X/C) for the set of Hodge classes of the

Hodge structure H2r
B (X,Z). Consider the cycle class map tensored with Q

clB ⊗Q : CHr(X)⊗Q−→H2r
B (X,Q).
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The famous Hodge conjecture, now one of the Clay Millennium Problems, is concerned with

the cycle class map and says the following:

Conjecture 1.3 (Hodge). The map clB ⊗Q surjects onto Hdg2r(X), i.e., for any Hodge

class α ∈ Hdg2r(X), there exist a positive integer N and an algebraic cycle Z ∈ Zr(X) such

that clB(Z) = Nα.

Definition 1.17. Define the subgroup of null-homologous codimension r algebraic cycles

to be Zr(X)0 := ker(clB). Two cycles Z1 and Z2 are said to be homologically equivalent,

written Z1 ∼hom Z2, if Z1 − Z2 ∈ Zr(X)0. The r-th null-homologous Chow group is defined

as CHr(X)0 := Zr(X)0/Zr(X)rat.

If f : X−→Y is a morphism of smooth projective varieties, dimX = dX and dimY = dY ,

then proper push-forward and flat pull-back preserve null-homologous cycles, as do maps

induces by correspondences Γ ∈ Corrr(X, Y ):

f∗ : CHj(X)0−→CHj+dY −dX (Y )0

f ∗ : CHj(Y )0−→CHj(X)0

Γ∗ : CHj(X)0−→CHr+j(Y )0

Γ∗ : CHj(Y )0−→CHr+j+dx−dy(X)0.

The étale and `-adic cycle class maps

This expository section follows [117]. As per usual, X is a smooth projective variety over a

field K of characteristic zero and the dimension of X is d. Let ` denote a fixed prime. For

each n, r and ν we use the convention

Hn
et(XK̄ ,Z/`νZ(r)) := Hn

et(XK̄ , µ
⊗r
`ν )
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where µ`ν is the étale sheaf of `ν-roots of unity. There are natural multiplication-by-` maps

Hn
et(XK̄ ,Z/`ν+1Z(r))−→Hn

et(XK̄ ,Z/`νZ(r)) (1.48)

induced by the natural quotient maps Z/`ν+1Z � Z/`νZ, or the quotient maps µ`ν+1 � µ`ν

given by ζ 7→ ζ`. By taking the inverse limit, we obtain the `-adic cohomology groups

Hn
et(XK̄ ,Z`(r)) := lim

←−
Hn

et(XK̄ ,Z/`νZ(r))

Hn
et(XK̄ ,Q`(r)) := Hn

et(XK̄ ,Z`(r))⊗Z` Q`.

The étale cycle class map is a homomorphism

cl`,νet : CHr(X)−→H2r
et (XK̄ ,Z/`νZ(r)).

It is defined for codimension r subvarieties of XK̄ , and then extended by linearity to codi-

mension r algebraic cycles. It can then be shown that the map on cycles factors through

rational equivalence and hence induces a map on the Chow group. As in the previous section,

we will content ourselves with describing cl`,νet (Z) in the case where Z ⊂ XK̄ is a smooth

subvariety of codimension r, referring to [117, Ch. VI §9] for the more general situation. For

any sheaf F on Xet, we shall denote by Hj
Z(XK̄ ,F) the étale cohomology of X with support

on Z. Associated to the pair (XK̄ , XK̄ \ Z) is a long exact cohomology sequence

· · · −→Hj
Z(XK̄ ,Z/`νZ(r))

ιjZ−→Hj
et(XK̄ ,Z/`νZ(r))−→Hj

et(XK̄ \ Z,Z/`νZ(r))

−→Hj+1
Z (XK̄ ,Z/`νZ(r))−→· · ·

and by purity (since Z is smooth) there are canonical isomorphisms

P j : Hj−2r
et (Z,Z/`νZ) ' Hj

Z(XK̄ ,Z/`νZ(r))
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for all j ≥ 0. In particular, taking j = 2r, we obtain a homomorphism

ιZ,∗ : H0
et(Z,Z/`νZ)

P 2r

−→H2r
Z (XK̄ ,Z/`νZ(r))

ι2rZ−→H2r
et (XK̄ ,Z/`νZ(r))

known as the Gysin map. Then we define cl`,νet (Z) := ιZ,∗(1).

The maps cl`,νet are compatible with the maps (1.48) for ν varying and therefore give rise,

by taking the inverse limit, to the `-adic cycle class map

cl` : CHr(X)−→H2r
et (XK̄ ,Z`(r)). (1.49)

We shall use the same name and notation for the map obtained when passing to Q` coefficients

cl` : CHr(X)−→H2r
et (XK̄ ,Q`(r)) = H2r

et (XK̄ ,Z`(r))⊗Z` Q`.

Since K has characteristic zero, we may fix an embedding σ : K̄ ↪→ C. Following [121],

the following diagram commutes

CHr(X) H2r
et (XK̄ ,Q`(r)) H2r

et (XC,Q`(r))

CHr(XC) H2r(X(C),Q(r))⊗Q Q`

cl`

σ∗

σ∗
∼

o

cl

where σ∗ is an isomorphism on étale cohomology by [117, Ch. VI Corollary 4.3] and the

vertical isomorphism is the comparison theorem [117, Ch. III Theorem 3.12] between étale

cohomology and singular cohomology. In particular, this implies that ker(cl`) is independent

of the prime ` since ker(cl`) = ker(clB) = Zr(X)0.

1.4.4 Algebraic equivalence and Griffiths groups

We have seen in Section 1.4.1 the definition of rational equivalence on algebraic cycles in

terms of divisors of functions on subvarieties. There is an alternative formulation which
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involves correspondences. Given Γ ∈ Zr(P1
K ×X) such that the projection to P1

K restricted

to Γ is flat, there is an induced push-forward map on algebraic cycles

Γ∗ : Z1(P1
K)−→Zr(X)

defined by the same formula as (1.40). Note that Z1(P1
K) = Div(P1

K) consists of formal

finite sums of points in P1(K̄) with coefficients in Z. Two codimension r cycles Z1 and Z2

are rationally equivalent if and only if there exists Γ1, . . . ,Γt ∈ Zr(P1
K × X) flat over P1

K

such that

Z1 − Z2 =
t∑
i=1

(Γi)∗((0)− (∞)).

If we replace P1
K by any smooth projective connected curve C over K and 0,∞ ∈ P1

K

by any two points a, b ∈ C, then we obtain the definition of algebraic equivalence. More

precisely, we have the following definition.

Definition 1.18. Let Zr(X)alg denote the subgroup of Zr(X) generated by all subgroups

Γ∗(Z1(C)0), where C is any smooth projective connected curve over K and Γ ∈ Zr(C ×X)

is flat over C. We write Z1 ∼alg Z2 and say that Z1 and Z2 are algebraically equivalent

whenever Z1 − Z2 ∈ Zr(X)alg.

If C is a smooth projective connected curve over K, then we have Z1(C) = Div(C), and

Z1(C)0 = Div0(C) is the subgroup of degree zero divisors. Therefore, if Z1, Z2 ∈ Zr(X),

then Z1 ∼alg Z2 if and only if there exist smooth projective connected curves C1, . . . , Ct over

K, cycles Γi ∈ Zr(Ci ×X) flat over Ci for i = 1, . . . , t, and points ai, bi ∈ Ci(K̄), such that

Z1 − Z2 =
t∑
i=1

Γi,∗((ai)− (bi)).

Example 1.2. If C is smooth projective connected curve over K and a, b ∈ C(K̄), then

(a) ∼alg (b). Indeed, we can take ∆C ∈ Z1(C × C) to be the graph of the identity idC , and
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then

∆C,∗((a)− (b)) = pr2,∗(∆C · pr∗1((a)− (b)))

= pr2,∗(∆ · ({a} × C − {b} × C)) = pr2,∗((a, a)− (b, b)) = (a)− (b).

As a consequence, we have Z1(C)alg = Z1(C)0.

By Definition 1.18 and the fact that correspondences preserve null-homologous cycles, we

immediately see that cycles that are algebraically equivalent to zero are also null-homologous.

We have defined three equivalence relations on algebraic cycles, which give rise to subgroups

nested as follows:

Zr(X)rat ⊂ Zr(X)alg ⊂ Zr(X)0 ⊂ Zr(X).

Modulo rational equivalence, this gives rise to a filtration of the Chow group

0 ⊂ CHr(X)alg ⊂ CHr(X)0 ⊂ CHr(X).

The subgroup CHr(X)0 is referred to as the rth null-homologous Chow group as in Definition

1.17 and the 0-th graded piece satisfies, under Conjecture 1.3,

clB ⊗Q : CHr(X)Q/CHr(X)0,Q ' Hdg2r(X),

where the subscript Q denotes the tensor product with Q.

Definition 1.19. The first graded piece of the above filtration is called the r-th Griffiths

group

Grr(X) := CHr(X)0/CHr(X)alg = Zr(X)0/Zr(X)alg. (1.50)

We regard the Griffiths group as a functor from the category of field extensions of K
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contained in C to the category of abelian groups given by the rule

F/K 7→ Grr(X)(F ) := {[Z] ∈ Grr(X) : σ(Z) ∼alg Z, ∀σ ∈ Aut(C/F )}.

1.4.5 The Beilinson–Bloch conjecture

Let X denote a smooth projective variety of dimension d defined over a number field K. For

any 0 ≤ j ≤ 2d, consider the motive hj(X) attached to X, whose realisations correspond to

the cohomology of X in degree j. The `-adic realisations Hj
et(XK̄ ,Q`) of hj(X) give rise to a

compatible family of `-adic Galois representations. Following Section 1.1.4, one associates to

this motive an L-function L(hj(X)/K, s) which converges on some right half-plane. When

appropriately completed, this L-function should admit analytic continuation to the whole

complex plane and satisfy a functional equation as formulated in Conjecture 1.9.

Bloch [28] has formulated what he describes as a “recurring fantasy”. The same state-

ment was formulated independently by Beilinson and is referred to as the Beilinson–Bloch

conjecture.

Conjecture 1.4 (Beilinson–Bloch). The null-homologous Chow group CHr(X)0(K) is a

finitely generated abelian group whose rank is given by

rankZ CHr(X)0(K) = ords=r L(h2r−1(X)/K, s).

Remark 1.6. When X = E is an elliptic curve over a number field, Z1(E)0 = Div0(E)

and rational equivalence is linear equivalence on divisors. Hence CH1(E) = Pic(E) and

CH1(E)0 = Pic0(E). Recall from Section 1.2 the identification Pic0(E)(K) = E(K) which

implies that CH1(E)0(K) is a finitely generated abelian group by the Mordell–Weil theorem.

Moreover, the L-function L(h1(E)/K, s) is the Hasse–Weil L-function L(E/K, s) of E over

K. It follows that the statement of the Beilinson–Bloch conjecture in the case of elliptic

curves reduces to the Birch and Swinnerton-Dyer conjecture 1.2. As a consequence, the
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Beilinson–Bloch conjecture can be viewed as a higher dimensional generalisation of the Birch

and Swinnerton-Dyer conjecture.

Suppose that M = (X, p, 0) is a pure motive defined over the number field K. The

idempotent correspondence p acts as a projector on cohomology groups and Chow groups.

We shall write CHj(M) := pCHj(X) and let L(hj(M)/K, s) be the L-function associated to

the family of `-adic realisations M j
` of M in degree j, as defined in Section 1.1.4. One is led

naturally to formulate the Beilinson–Bloch conjecture for the motive M .

Conjecture 1.5.

rankZ CHr(M)0(K) = ords=r L(h2r−1(M)/K, s).

Consider the decomposition

H2r−1
et (XK̄ ,Q`) = I ⊕M2r−1

` .

Suppose that the Betti realisation M2r−1
B has Hodge structure of type (2r−1, 0) + (0, 2r−1)

and that h2r−1,0(I) = 0. In this case, Bloch makes a further conjecture which he calls the

“son of recurring fantasy”.

Conjecture 1.6.

rankZ Grr(X)(K) = ords=r L(h2r−1(M)/K, s).

The Beilinson–Bloch conjectures remain open today, but there has been gathering evi-

dence for their truth in special cases, see for example [14, 28,32,130].

1.5 Abel–Jacobi maps

We define three types of Abel–Jacobi maps: the complex Abel–Jacobi map, the Bloch map,

and the `-adic étale Abel–Jacobi map. We review some of their key features and explain the

99



relationships between them.

1.5.1 The complex Abel–Jacobi map

Let C be a smooth projective curve over a number field K. Recall the Abel–Jacobi isomor-

phism

AJC : CH1(C)0(C)
∼−→J1(C/C) :=

H0(C(C),Ω1
C)∨

ImH1(C(C),Z)

given by the familiar integration formula, for D a degree zero divisor,

AJC(D)(α) :=

∫
∂−1(D)

α for α ∈ H0(C(C),Ω1
C),

where ∂−1(D) denotes any continuous 1-chain in C(C) whose image under the boundary

map ∂ is D.

Remark 1.7. In the case when C is an elliptic curve E, using the identification of E with

Pic0(E) (after fixing as base point the origin OE), the Abel–Jacobi isomorphism

AJE : E(C)
∼−→J1(E/C) :=

H0(E(C),Ω1
E)∨

ImH1(E(C),Z)

is given by

AJE(P )(α) :=

∫ P

OE

α for α ∈ H0(E(C),Ω1
E).

Since E has genus 1 by definition, the complex vector space H0(E(C),Ω1
E) is 1-dimensional

and the lattice ImH1(E(C),Z) is the period lattice ΛE ⊂ C of E. Hence the complex Abel–

Jacobi map is the familiar complex uniformisation map of E which identifies E(C) with the

complex torus C/ΛE.

The g-dimensional complex torus J1(C/C) is called the Jacobian of C and will often be

denoted Jac(C)(C). The Abel–Jacobi isomorphism identifies Jac(C)(C) with the complex

points of Pic0
C/K and endows it with the structure of an abelian variety defined over K which
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we shall denote Jac(C).

Abel–Jacobi maps for algebraic varieties

Let X denote a smooth projective variety of dimension d defined over a number field K.

The complex Abel–Jacobi map admits a higher dimensional analogue

AJrX : CHr(X)0(C)−→Jr(X/C) :=
Fild−r+1 H2d−2r+1

dR (X/C)∨

ImH2d−2r+1(X(C),Z)
. (1.51)

Originally considered by Griffiths, this map is defined by the formula

AJrX(Z)(α) =

∫
∂−1(Z)

α for α ∈ Fild−r+1 H2d−2r+1
dR (X/C),

where ∂−1(Z) denotes any continuous (2d − 2r + 1)-chain in X(C) whose image under the

boundary map ∂ is Z.

The complex torus Jr(X/C) is called the r-th intermediate Jacobian of X and Poincaré

duality induces an isomorphism

Jr(X/C) ' H2r−1(X(C),C)/(FilrH2r−1
dR (X/C)⊕ ImH2r−1(X(C),Z)). (1.52)

Remark 1.8. In general, when r is not 1 or d these complex tori do not have the structure

of abelian varieties. When r = 1, CH1(X)0 is the connected component of the identity

in the Picard scheme of X, and Abel’s theorem implies that the Abel–Jacobi map is an

isomorphism, hence J1(X) admits the structure of an abelian variety. When r = d, Jd(X/C)

is an abelian variety by [147, Corollary 12.12], called the Albanese variety of X.
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Transcendental Abel–Jacobi maps

Consider C a smooth projective connected curve over K and Γ ∈ CHr(C ×X). Recall the

map Γ∗ : CH1(C)0−→CHr(X)0 and compose it with AJrX in order to obtain a map

ψC,Γ : Jac(C)(C)−→Jr(X/C), (a)− (b) 7→ AJrX(Γ∗((a)− (b)))

where we identified CH1(C)0 = Jac(C) using the isomorphism AJC . This is equal to the

map of complex tori which is induced by the morphism

[Γ] : H1
B(C,Z)−→H2r−1

B (X,Z), (1.53)

given by the Künneth component [Γ]1,2r−1 ∈ H1
B(C,Z) ⊗ H2r−1

B (X,Z) ⊂ H2r
B (C × X,Z) of

clB(Γ). See [147, Theorem 12.17]. Here, using Poincaré duality, we make the identification

H1
B(C,Z)⊗H2r−1

B (X,Z) = H1
B(C,Z)∨ ⊗H2r−1

B (X,Z) = Hom(H1
B(C,Z), H2r−1

B (X,Z)).

Since clB(Γ) is a Hodge class by Proposition 1.9, the corresponding morphism (1.53) is a

morphism of Hodge structures of bidegree (r−1, r−1) by [147, Lemma 11.41], and therefore

does indeed induce a map between intermediate Jacobians as can be seen from the description

(1.52).

Proposition 1.10. The image of the map (1.53) is contained in Hr,r−1(X)⊕Hr−1,r(X). In

particular, the image of ψC,Γ is a complex subtorus of Jr(X/C) whose tangent space at 0 is

contained in Hr−1,r(X).

Proof. This is a special case of the more general [147, Corollary 12.19]. The Hodge structure

H1
B(C,Z) is of type (1, 0)+(0, 1) and [Γ] is of bidegree (r−1, r−1), hence the image of [Γ] is

contained in Hr,r−1(X)⊕Hr−1,r(X). Following the description (1.52), we identify the tangent

space at 0 of Jr(X/C) with the complex vector space H2r−1(X(C),C)/FilrH2r−1
dR (X/C)
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which naturally contains Hr−1,r(X), and the result follows.

Definition 1.20. Let Jr(X/C)alg ⊂ Jr(X/C) denote the largest complex subtorus of Jr(X/C)

whose tangent space at 0 is contained in Hr−1,r(X).

Proposition 1.11. The image of CHr(X)alg under the complex Abel–Jacobi map AJrX is

contained in Jr(X)alg.

Proof. This is an immediate consequence of Definition 1.18 of algebraic equivalence and

Proposition 1.10.

As a consequence of this proposition, we can define the transcendental Abel–Jacobi map

from the Griffiths group to the transcendental part of the intermediate Jacobian

AJrX,tr : Grr(X)−→Jr(X/C)tr := Jr(X/C)/Jr(X/C)alg (1.54)

as the factorisation of AJrX .

Remark 1.9. When r = 1, we have J1(X/C)alg = J1(X/C) by definition, so AJ1
X,tr = 0.

Let D be a degree zero divisor on X, i.e., a null-homologous algebraic cycle of codimension

1, and write D = D1 − D2 as the difference of two effective divisors. The divisors D1 and

D2 lie in the same connected component of Pic(X) and one can choose a curve connecting

these two points. This curve can be taken to be algebraic by algebraicity of the Picard

scheme. The universal divisor restricted to this curve gives an algebraic family through D1

and D2, showing that their difference D is algebraically trivial. Hence for divisors on a

smooth projective variety, homological equivalence and algebraic equivalence coincide and

Gr1(X) = 0. As a consequence, AJ1
X,tr is the trivial map.
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1.5.2 The Bloch map

Let X denote a smooth projective variety of dimension d defined over a number field K and

let ` denote a prime. For each n, r and ν, there are natural maps

Hn
et(XK̄ ,Z/`νZ(r))−→Hn

et(XK̄ ,Z/`ν+1Z(r)) (1.55)

induced by the natural inclusion maps Z/`νZ ↪→ Z/`ν+1Z given by m 7→ `m, or the natural

inclusion maps µ`ν ↪→ µ`ν+1 . By taking the direct limit, we obtain the cohomology groups of

X with `-torsion coefficients:

Hn
et(XK̄ ,Q`/Z`(r)) := lim

−→
Hn

et(XK̄ ,Z/`νZ(r)). (1.56)

Viewing Q`/Z` as a torsion étale sheaf on X, there is a natural isomorphism

Hn
et(XK̄ ,Q`/Z`)⊗Q`/Z` Q`/Z`(r) ' Hn

et(XK̄ ,Q`/Z`(r)) (1.57)

where the right hand side cohomology group is defined by (1.56).

Let CHr(X)(`) := CHr(X)[`∞] denote the `-power torsion subgroup of the Chow group.

Bloch [27] has defined a map

λr` : CHr(X)(`)−→H2r−1
et (XK̄ ,Q`/Z`(r))

which, when restricted to null-homologous cycles, can be regarded as an arithmetic avatar

of the complex Abel–Jacobi map on torsion.

Sketch of construction

Let Hq(µ⊗r`ν ) denote the Zariski sheaf on XK̄ associated to the presheaf U 7→ Hq
et(U, µ

⊗r
`ν ). If

π : (XK̄)Zar−→(XK̄)et denotes the natural morphism from the Zariski site to the étale site
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of XK̄ , then Hq(µ⊗r`ν ) := Rqπ∗µ
⊗r
`ν . The Leray spectral sequence of the morphisms of sites

(XK̄)Zar
π−→(XK̄)et−→ Spec(K̄) is

Ep,q
2 = Hp(XK̄ ,H

q(µ⊗r`ν )) =⇒ Hp+q
et (XK̄ ,Z/`νZ(r)). (1.58)

The main theorem of [30] gives an acyclic resolution [27, (1.3)] of Hq(µ⊗r`ν ) which computes

its Zariski cohomology groups E•,q2 . From the particular shape of this resolution, one derives

two important consequences, the first one being that Ep,q
2 = 0 for p > q, which simplifies the

shape of the spectral sequence (1.58). As a corollary, we obtain the following.

Proposition 1.12. There is a map

Hr−1(XK̄ ,H
r(µ⊗r`ν ))−→H2r−1

et (XK̄ ,Z/`νZ(r)) (1.59)

obtained as the boundary map coming from the spectral sequence (1.58).

Proof. This is [27, Corollary 1.4] and is standard given the shape of the spectral sequence.

Nevertheless, we review the construction briefly. Since Ep,q
2 = 0 whenever p > q, we

have in particular that Ep,q
2 = 0 = Ep,q

∞ whenever p + q = 2r − 1 and p ≥ r. It fol-

lows that FilpH2r−1
et (XK̄ ,Z/`νZ(r)) = 0 for all p ≥ r where Fil denotes the filtration of

H2r−1
et (XK̄ ,Z/`νZ(r)) induced by the spectral sequence. Next, since Er+1,r−1

2 = 0, the sec-

ond page around Er−1,r
2 is of the shape

Er−3,r+1
2

d2−→Er−1,r
2 −→0,

where d2 denotes the second page differential. It follows that there is a natural quotient

map Er−1,r
2 � Er−1,r

∞ = grr−1 H2r−1
et (XK̄ ,Z/`νZ(r)) = Filr−1 H2r−1

et (XK̄ ,Z/`νZ(r)), where gr

stands for the graded piece of the filtration. The boundary map (1.59) is now given by the
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composition

Hr−1(XK̄ ,H
r(µ⊗r`ν )) = Er−1,r

2 � Filr−1 H2r−1
et (XK̄ ,Z/`νZ(r)) ↪→ H2r−1

et (XK̄ ,Z/`νZ(r)).

Recall from Section 1.4.1 the definition of rational equivalence and the Chow group; we

have the defining exact sequence

⊕
V r−1⊂XK̄

R(V )×
∂−→Zr(X)−→CHr(X)−→0, (1.60)

where the direct sum is taken over all subvarieties of XK̄ of codimension r− 1, and the map

∂ sends a function f ∈ R(V )× to its divisor div(f) ∈ Zr(X). By Definition 1.15, the image

of ∂ is Zr(X)rat. One can consider the reduction of ∂ modulo `ν and obtain the map

∂`ν :
⊕

V r−1⊂XK̄

R(V )×/(R(V )×)`
ν−→Zr(X)⊗Z Z/`νZ.

The second consequence of the explicit acyclic resolution [27, (1.3)] is that there is a surjection

[27, Corollary 1.5]

ker ∂`ν � Hr−1(XK̄ ,H
r(µ⊗r`ν )). (1.61)

Consider the following commutative diagram of groups with exact rows [27, (2.1)]

0
⊕
V r−1

R(V )×/K̄×
⊕
V r−1

R(V )×/K̄×
⊕
V r−1

R(V )×/(R(V )×)`
ν

0

0 Zr(X) Zr(X) Zr(X)⊗Z Z/`νZ 0.

(·)`ν

∂ ∂ ∂`ν

`ν

(1.62)
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We obtain a commutative diagram of groups with exact rows [1, A.11]

0 ker ∂
`ν ker ∂

ker ∂`ν CHr(X)[`ν ] 0

Hr−1(XK̄ ,H
r(µ⊗r`ν ))

0 δ`ν H2r−1
et (XK̄ ,Z/`νZ(r)) H2r−1

et (XK̄ ,Z/`νZ(r))/δ`ν 0

ρ`ν

(1.61)

(1.59)

(1.63)

where the top row results from applying the Snake lemma to the previous diagram (1.62)

and recalling the exact sequence (1.60). This diagram (1.63) is an extended version of the

diagram [27, 2.2]. Following [1], δ`ν denotes the image of ker ∂/`ν ker ∂ under the map ρ`ν

defined by commutativity of the diagram. The lower row is then just the natural short exact

sequence obtained by quotienting by the subgroup δ`ν .

Following Bloch, one can define the map

ρ : ker ∂−→ lim
←−

(ker ∂/`ν ker ∂)
lim
←−

ρ`ν

−→ lim
←−

H2r−1
et (XK̄ ,Z/`νZ(r)) = H2r−1

et (XK̄ ,Z`(r))

by compatibility of ρ`ν with the maps (1.48) when ν varies.

Lemma 1.1. The image of ρ is torsion and so is the image of the map lim
←−

ρ`ν .

Proof. The first assertion is Bloch’s key lemma [27, Lemma 2.4] and the second assertion

follows from the first as explained in [1, Lemma A.5]. In his proof, Bloch uses the Weil

conjectures as proved by Deligne [57] via specialisation to finite fields.

Since taking direct limits is an exact functor, from diagram (1.63) we obtain the following
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commutative diagram with exact rows

0 lim
−→

(
ker ∂
`ν ker ∂

)
lim
−→

ker ∂`ν CHr(X)(`) 0

lim
−→

Hr−1(XK̄ ,H
r(µ⊗r`ν ))

0 lim
−→

δ`ν H2r−1
et (XK̄ ,Q`/Z`(r)) H2r−1

et (XK̄ ,Q`/Z`(r))
lim
−→

δ`ν
0.

lim
→
ρ`ν

(1.61)

(1.59)

(1.64)

Lemma 1.2. The map

lim
−→

ρ`ν : lim
−→

(
ker ∂

`ν ker ∂

)
−→H2r−1

et (XK̄ ,Q`/Z`(r))

is the zero map.

Proof. This is stated in [27, p. 112] as a consequence of Lemma 1.1. The detailed proof can

be found in [1, Lemma A.8].

Definition 1.21. The Bloch map in codimension r

λr` : CHr(X)(`)−→H2r−1
et (XK̄ ,Q`/Z`(r))

is the negative of the map obtained from diagram (1.64) and Lemma 1.2.

As explained by Bloch, the minus sign is there for reasons of compatibility in the case

r = 1 with the natural map arising from the Kummer sequence. See Proposition 1.16 below.

Properties

Following [27] and [1, Appendix A], we now collect some of the properties of the Bloch map.

Another brief overview of some of these properties is provided in [129].
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Proposition 1.13. The Bloch map is functorial with respect to flat pull-back, proper push-

forward and actions of correspondences.

Proof. Functoriality for pull-back and push-forward is [27, Proposition 3.3]. The statement

for correspondences is [27, Proposition 3.5] and follows from the compatibility of the Bloch

map with products [27, Proposition 3.4]; if Z ∈ CHj(X) and Γ ∈ CHr(X)(`), then

λr+j` (Γ · Z) = λr`(Γ) ∪ cl`(Z)

where ∪ denotes the cup product on étale cohomology induced by the bilinear map

Q`/Z`(r)× Z`(j)−→Q`/Z`(r + j).

Proposition 1.14. The Bloch map is Gal(K̄/K)-equivariant.

Proof. This follows from functoriality for pull-back and push-forward as explained in the

proof of [1, Proposition A.22].

Proposition 1.15. The Bloch map is compatible with specialisation.

Proof. This is [27, Proposition 3.8].

Proposition 1.16. The Bloch map λ1
` in codimension 1 is the natural isomorphism arising

from the Kummer sequence.

Proof. This is [27, Proposition 3.6].

Proposition 1.17. The Bloch map λ2
` in codimension 2 is injective.

Proof. This is [1, Proposition A.27] and is originally due to [116].

Proposition 1.18. The Bloch map λd` in codimension d = dimX is an isomorphism.
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Proof. The proof is presented in [27] and attributed to Roitman.

From the long exact sequence in cohomology associated to the short exact sequence

0−→Z`−→Q`−→Q`/Z`−→0 (1.65)

we obtain a connecting homomorphism

δ : H2r−1
et (XK̄ ,Q`/Z`(r))−→H2r

et (XK̄ ,Z`(r)).

The following proposition says that the Bloch map λr` is compatible with the `-adic cycle

class map (1.49).

Proposition 1.19. Up to sign, the map δ ◦ λr` is equal to the cycle class map cl`.

Proof. This is [39, Corollary 4].

Corollary 1.3. When restricted to null-homologous cycles, the image of the Bloch map λr`

lies in Dr
` (XK̄) := H2r−1

et (XK̄ ,Q`(r))/H
2r−1
et (XK̄ ,Z`(r)), hence we obtain a map

λr` : CHr(X)0(`)−→Dr
` (XK̄) ⊂ H2r−1

et (XK̄ ,Q`/Z`(r)). (1.66)

Proof. This is a direct consequence of the previous proposition using the long exact sequence

in cohomology coming from the short exact sequence (1.65).

Remark 1.10. The notation Dr
` (XK̄) is borrowed from [129].

Comparison with the complex Abel–Jacobi map

We now make precise the claim that the Bloch map, when restricted to null-homologous

cycles, can be viewed as an arithmetic avatar of the complex Abel–Jacobi map introduced

in Section 1.5.1. This link between the complex Abel–Jacobi map and the Bloch will prove

to be crucial in Chapter 2.
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Observe that we have an isomorphism of R-vector spaces

H2r−1(X(C),R) ' H2r−1(X(C),C)/FilrH2r−1
dR (X/C), (1.67)

hence by (1.52) we have

Jr(X/C) ' H2r−1(X(C),R)/ ImH2r−1(X(C),Z),

and we may identify

Jr(X/C)tors ' H2r−1(X(C),Q)/ ImH2r−1(X(C),Z). (1.68)

From the long exact sequence in singular cohomology associated to the short exact sequence

0−→Z−→Q−→Q/Z−→0 (1.69)

we deduce a short exact sequence

0−→Jr(X/C)tors
u−→H2r−1(X(C),Q/Z)−→H2r(X(C),Z)tors−→0. (1.70)

Note that H2r(X(C),Z) is a group of finite type and thus its torsion subgroup is finite. We

have thus identified Jr(X/C)tors up to a finite group with H2r−1(X(C),Q/Z).

Composing the complex Abel–Jacobi map (1.51) restricted to torsion with u yields a map

u ◦ AJrX : CHr(X)(C)0(`)−→H2r−1(X(C),Q`/Z`). (1.71)

For each natural number ν, we have a sequence of isomorphisms

H2r−1
et (XK̄ , µ

⊗r
`ν )

σ∗' H2r−1
et (XC, µ

⊗r
`ν ) ' H2r−1(X(C), µ⊗r`ν ). (1.72)
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For the first isomorphism, apply [117, VI Corollary 4.3] with respect to the fixed complex

embedding σ : K̄ ↪→ C. The second isomorphism is an application of [117, III Theorem

3.12]. Taking direct limits, we obtain a sequence of isomorphisms

H2r−1
et (XK̄ ,Q`/Z`(r))

σ∗' H2r−1
et (XC,Q`/Z`(r)) ' H2r−1(X(C),Q`/Z`(r)). (1.73)

Proposition 1.20. If we identify Q`/Z` ' Q`/Z`(r) by taking e
2πi
`ν as the generator of the

`ν-th roots of 1, then the diagram

CHr(X)0(`) H2r−1
et (XK̄ ,Q`/Z`(r))

CHr(XC)0(`) H2r−1(X(C),Q`/Z`)

λr`

σ∗ (1.73)o

u◦AJrX

(1.74)

commutes.

Proof. This is [27, Proposition 3.7].

1.5.3 The `-adic étale Abel–Jacobi map

We give an alternative description of the Bloch map restricted to null-homologous cycles

(1.66) in terms of the perhaps more classic `-adic étale Abel–Jacobi map first considered by

Bloch in [28]:

AJrX,et : CHr(X)0(K)−→H1(K,H2r−1
et (XK̄ ,Z`(r))). (1.75)

The cohomology appearing on the right hand side is continuous Galois cohomology of the

group GK := Gal(K̄/K).

We briefly review Bloch’s construction. The variety X comes equipped with a cycle class

map

clXK ,` : CHr(X)(K)−→H2r
et (XK ,Z`(r)) (1.76)

from the Chow group to the (continuous in the sense of [93]) arithmetic étale cohomology.
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This map is due to Grothendieck and coincides with the usual cycle class map cl` (1.49) after

passage to K̄. The Hochschild–Serre spectral sequence

Ep,q
2 = Hp(K,Hq

et(XK̄ ,Z`)(r)) =⇒ Hp+q
et (XK ,Z`(r)) (1.77)

is obtained from the Leray spectral sequence of the structure morphism XK−→ Spec(K)

using proper base change. It degenerates at E2, hence there are isomorphisms

Ej,m−j
∞ = grj Hm

et (XK ,Z`(r))
∼−→Hj(K,Hm−j

et (XK̄ ,Z`)(r)) = Ej,m−j
2 . (1.78)

Using (1.78) in the case j = 0,m = 2r, one obtains the composite map

cl` : CHr(X)(K)
(1.76)−→H2r

et (XK ,Z`(r)) � gr0 H2r
et (XK ,Z`(r))

(1.78)−→(H2r
et (XK̄ ,Z`)(r))GK (1.79)

which corresponds to the cycle class map (1.49).

Since CHr(X)0(K) = ker cl`, we see that the image of CHr(X)0(K) under (1.76) lands

in Fil1 H2r
et (XK ,Z`(r)). Using (1.78) in the case j = 1,m = 2r, we may form the composite

map

CHr(X)0(K)
(1.76)−→ Fil1 H2r

et (XK ,Z`(r)) � gr1 H2r
et (XK ,Z`(r))

(1.78)−→H1(K,H2r−1
et (XK̄ ,Z`)(r)).

(1.80)

By definition this map is (1.75) and is called the `-adic étale Abel–Jacobi map of X over K

in codimension r.

Remark 1.11. There is an alternative description of AJrX,et in terms of extensions using the

identification

H1(K,H2r−1
et (XK̄ ,Z`)(r)) = Ext1

RepQ`
(GK)(Q`, H

2r−1
et (XK̄ ,Z`)(r)) (1.81)
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where RepQ`(GK) denotes the category of finite-dimensional continuous Q`-representations

of GK . For details about this description we refer to [93, Lemma 9.4].

Recall the notation Dr
` (XK̄) := H2r−1

et (XK̄ ,Q`(r))/H
2r−1
et (XK̄ ,Z`(r)) of Corollary 1.3.

The short exact sequence of Galois modules

0−→H2r−1
et (XK̄ ,Z`(r))/ tors−→H2r−1

et (XK̄ ,Q`(r))−→Dr
` (XK̄)−→0

gives rise to a long exact sequence of continuous Galois cohomology. The first connecting

homomorphism yields a surjective map

Dr
` (XK̄)GK � H1(K,H2r−1

et (XK̄ ,Z`(r))/ tors)tors (1.82)

which can be shown to be an isomorphism [38, Theorem 1.5]. Composing AJrX,et restricted

to torsion with the inverse of (1.82) yields a map

αrX,K : CHr(X)0(K)(`)−→Dr
` (XK̄)GK .

Passing to the limit over finite extensions of K yields a map

αr : CHr(X)0(`)−→Dr
` (XK̄) (1.83)

Proposition 1.21. The Bloch map in codimension r restricted to null-homologous cycles

(1.66) agrees up to a sign with the map (1.83).

Proof. This is [129, Theorem 1.2.7], see references in the proof.
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Chapter 2

Generalised Heegner cycles

This chapter is a reformatted version of the article [11] and all results presented herein are

joint with Massimo Bertolini, Henri Darmon and Kartik Prasanna.

Generalised Heegner cycles were introduced in [12] as a variant of Heegner cycles on

Kuga–Sato varieties. The first main result of this chapter is a formula for the image of

these cycles under the complex Abel–Jacobi map of Section 1.5.1 in terms of explicit line

integrals of modular forms on the complex upper half-plane. The second main theorem

uses this formula to show that the Chow group and the Griffiths group, defined in Sections

1.4.1 and 1.4.4, of the product of a Kuga–Sato variety with an elliptic curve with complex

multiplication are not finitely generated. See Sections 1.2.4 and 1.3.2 for details about Kuga–

Sato varieties and the theory of complex multiplication. More precisely, it is shown that the

subgroup generated by the image of generalised Heegner cycles has infinite rank in the group

of null-homologous cycles modulo both rational and algebraic equivalence.
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Introduction

In their article [12], Bertolini, Darmon and Prasanna introduced a distinguished collection

of null-homologous, codimension r + 1 cycles on the (2r + 1)-dimensional variety

Xr := Wr × Ar,

where Wr is the Kuga–Sato variety of Definition 1.7 obtained from the r-fold fibre power

(1.27) of the universal elliptic curve over the modular curve X1(N), and A is a fixed elliptic

curve with complex multiplication, see Definition 1.12. Referred to as generalised Heegner

cycles in [12] because of their close affinity with the Heegner cycles on Kuga–Sato varieties

studied in [128], [120] and [155], they are indexed by isogenies ϕ : A−→A′. The cycle ∆ϕ

labeled by ϕ is supported on the fibre (A′)r × Ar above a point of X1(N) attached to A′,

and is equal, roughly speaking, to the r-fold self-product of the graph of ϕ.

One may consider the images of the ∆ϕ under the p-adic syntomic Abel–Jacobi map

AJp : CHr+1(Xr)0(Cp)−→Jr+1(Xr/Cp) := Filr+1 H2r+1
dR (Xr/Cp)

∨ (2.1)

whose domain is the Chow group of null-homologous codimension r + 1 cycles on Xr over

Cp := Q̂p and whose target is the Cp-linear dual of the middle step in the de Rham coho-

mology H2r+1
dR (Xr/Cp) relative to the Hodge filtration. The main result of [12] is a formula

relating AJp(∆ϕ) to special values of certain p-adic Rankin L-series. An analogous formula

for the p-adic heights of the same cycles was later obtained in [137]. A key ingredient in [12],

made explicit in Section 3 of loc.cit., is a description of the relevant p-adic Abel–Jacobi

images in terms of p-adic integration of higher weight modular forms, à la Coleman.

The goal of the present chapter is to give an analogous description of the image of the
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cycles ∆ϕ under the complex Abel–Jacobi map (1.51)

AJC := AJr+1
Xr

: CHr+1(Xr)0(C)−→Jr+1(Xr/C) =
Filr+1 H2r+1

dR (Xr/C)∨

ImH2r+1(Xr(C),Z)
, (2.2)

where Jr+1(Xr/C) is the r+ 1 Griffiths intermediate Jacobian. This map is defined in terms

of complex integration of differential forms attached to classes in H2r+1
dR (Xr/C). One of the

main results of this work is Theorem 2.1 of Section 2.2.4, which gives a formula for AJC(∆ϕ)

in terms of explicit line integrals of modular forms on the complex upper half-plane. An

application of this formula is given in Theorem 2.2 of Section 2.3, where it is shown that

the Chow group of homologically trivial cycles (resp. the Griffiths group when r ≥ 2)

of Xr over Q̄ has infinite rank. More precisely, it is proved that the subgroup generated

by the images of generalised Heegner cycles in these groups has infinite rank. A second

motivation for publishing a detailed proof of Theorem 2.1 is that this result forms the basis

for the numerical calculations of Chow–Heegner points carried out in [13, §3], as explained

in more details in Section 0.4.1. It may also be useful in further numerical explorations of

generalised Heegner cycles – for instance, in extending the calculations of [86] beyond the

more “traditional” setting of Heegner cycles on Kuga–Sato varieties.

The proof of Theorem 2.2 follows closely that of Theorem 4.7 of [128] which treats the

case of “usual” Heegner cycles on a Kuga–Sato threefold, and rests on an ingenious method

of Bloch. The most significant difference lies in the setting that is treated: whereas Schoen’s

cycles are indexed by arbitrary quadratic orders of varying discriminant, generalised Heegner

cycles are forced by necessity to be indexed by (not necessarily maximal) orders of a fixed

imaginary quadratic field.

The present work can be compared with [14], which studies the position of generalised

Heegner cycles relative to the coniveau filtration on the relevant Chow groups, construct-

ing non-torsion elements in the Griffiths group by methods that are purely p-adic, relying

crucially on p-adic Hodge theoretic invariants and their relation to p-adic L-functions. In
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contrast, the approach described herein rests on a blend of complex and p-adic techniques,

and the results obtained are more general if somewhat more qualitative.

The preliminary Section 2.1 provides an overview of the theory of generalised Heegner

cycles and modular forms over the complex numbers. Section 2.2 deals with the computa-

tion of the Abel–Jacobi map. In Sections 2.2.1 and 2.2.2, purely transcendental, or Hodge

theoretic, arguments are used for the computation. Specific properties of modular forms

on modular curves (period lattices, modular symbols) lead to simplifications of the previous

Abel–Jacobi computations, culminating in the proof of Theorem 2.1 in Section 2.2.4. Section

2.2.5 provides a summary of the proof, which is hopefully helpful for the reader. Section 2.3,

which forms the technical core of the chapter, is devoted to the study of the Chow group and

Griffiths group of Xr. Section 2.3.1 singles out a distinguished subcollection of generalised

Heegner cycles. The aim is to study the subgroup generated by these in the various cycle

groups. Analytic estimates of the explicit line integrals appearing in the Abel–Jacobi formula

are used in Section 2.3.2 in order to determine their vanishing (or not), and consequences

for the order of the cycles in the relevant groups. Section 2.3.3 uses class field theory as

described in Section 1.3, the Bloch map from Section 1.5.2 and fundamental properties of

étale cohomology to upgrade the previous order estimates and show that infinitely many

of the cycles have infinite order. Class field theory and complex multiplication theory as

formulated by Shimura are key in Section 2.3.4 where it is proved that the cycles generate a

subgroup of infinite rank. Section 2.3.5 goes through the necessary modifications that allow

one to deduce, when r ≥ 2, the analogous result for the Griffiths group.

2.1 Preliminaries

We give an overview of the theory of generalised Heegner cycles and modular forms over the

complex numbers. Along the way, we introduce conventions and notations necessary for the

later sections. We end this preliminary section with a detailed proof of the homological trivi-
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ality of generalised Heegner cycles, laying the groundwork for the Abel–Jacobi computations

to come.

2.1.1 Generalised Heegner cycles

We begin with the definition of generalised Heegner cycles, following the notations of [12, §2].

Fix an integer N ≥ 5 and let Γ := Γ1(N) be the standard congruence subgroup of level N

whose definition (1.17) we recall:

Γ1(N) :=


a b

c d

 ∈ SL2(Z) :

a b

c d

 ≡
1 ∗

0 1

 (mod N)

 . (2.3)

Let Y1(N) andX1(N) denote the usual (affine and projective, respectively) modular curves of

level Γ1(N) described in Section 1.2.2 and Section 1.2.4, and writeWr for the r-th Kuga–Sato

variety over X1(N) as described for instance in Section 1.2.4 and the appendix of [12].

Let K be an imaginary quadratic field of dicriminant −dK , let OK be its ring of integers,

and let H denote the Hilbert class field of K of Definition 1.10. Choose once and for all

a complex embedding K̄ ↪→ C, and let A be a fixed elliptic curve over C with complex

multiplication by the maximal order OK . See Definition 1.12. By the theory of complex

multiplication, see Theorem 1.2, the curve A is defined over H and satisfies EndH(A) ' OK .

The generalised Heegner cycles of [12] are an infinite collection of codimension r+1 cycles

on the smooth projective (2r + 1)-dimensional variety

Xr := Wr × Ar.

To define them precisely, assume that K satisfies the Heegner hypothesis relative to N :

Assumption 2.1. The integer N is the norm of an ideal N for which OK/N ' Z/NZ.

Equivalently, all primes dividing N are split in K/Q.

Let tA ∈ A[N] be a choice of N-torsion point on A. Following the moduli description in
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Section 1.2.2 of X1(N), the pair (A, tA) corresponds to a complex point on X1(N)(C). This

point is defined, in fact, over the ray class field KN of K of conductor N by Theorem 1.3.

For obvious reasons, the datum of the point tA on A of order N is sometimes referred to as

a Γ1(N)-structure on A.

Consider the set of pairs (ϕ,A′), where ϕ : A−→A′ is an isogeny of A defined over K̄. Two

pairs (ϕ1, A
′
1) and (ϕ2, A

′
2) are said to be isomorphic if there is a K̄-isomorphism ι : A′1−→A′2

satisfying ιϕ1 = ϕ2. Let

Isog(A) := {Isomorphism classes of pairs (ϕ,A′)}.

There is a natural bijection between this set and the set of finite subgroups of A(H̄). The

absolute Galois group GH = Gal(H̄/H) acts naturally on Isog(A) by acting on the corre-

sponding subgroups and a pair (ϕ,A′) admits a representative defined over a field F ⊂ H̄ if

it is fixed by the subgroup GF ⊂ GH .

The generalised Heegner cycles are naturally indexed by the subset IsogN(A) of Isog(A)

consisting of pairs (ϕ,A′), where ϕ is an isogeny whose kernel intersects A[N] trivially. An

element (ϕ,A′) ∈ IsogN(A) determines a point PA′ = (A′, tA′ := ϕ(tA)) on X1(N), and an

embedding

ιA′ : (A′)r−→Wr

of (A′)r as the fibre of Wr above the point PA′ with respect to the structural morphism

πr : Wr−→X1(N). Given (ϕ,A′) ∈ IsogN(A), let Υϕ be the codimension r+1 cycle on Xr

defined by letting Graph(ϕ) ⊂ A× A′ be the graph of ϕ, and setting

Υϕ := Graph(ϕ)r ⊂ (A× A′)r '−→ (A′)r × Ar ⊂ Wr × Ar, (2.4)

where the last inclusion is induced from the pair (ιA′ , id
r
A).

Definition 2.1 (r = 0). When r = 0, the cycle Υϕ is just the CM point on the modular
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curve X1(N) attached to the pair (A′, tA′). The generalised Heegner cycle ∆ϕ attached to ϕ

is then obtained by setting

∆ϕ := Υϕ −∞ ∈ CH1(X1(N))0(C), (2.5)

where ∞ is the standard cusp on X1(N) (although any fixed choice will do). This modifica-

tion has the effect of making the cycle ∆ϕ homologically trivial.

For general r ≥ 1, we obtain a homologically trivial cycle by applying to Υϕ a suitable

correspondence εXr ∈ Corr0(Xr, Xr)Q, which we now define. Recall from Definition 1.8 the

idempotent

εWr := ε
(1)
Wr
◦ ε(2)

Wr
∈ Q[Aut(Wr/X1(N))],

where the idempotents ε(1)
Wr

and ε(2)
Wr

are defined by (1.28) and (1.29) respectively. By taking

the graphs of automorphisms, we will view εWr as an element of Corr0(Wr,Wr)Q, and by

slight abuse keep the same notation for this element.

Replacing the generalised elliptic curve Ē/X1(N) in the definition of ε(2)
Wr

by the elliptic

curve A, we obtain similarly an idempotent of Q[Aut(Ar)]. More precisely, recall that Sr

denotes the symmetric group on r letters. Multiplication by −1 on A together with the

natural permutation action of Sr on Ar gives rise to an action of the semi-direct product

(µ2)r o Sr on Ar. Let j : (µ2)r o Sr−→µ2 be the homomorphism which is the identity on µ2

and the sign character on Sr and define

εAr :=
1

2rr!

∑
σ∈(µ2)roSr

j(σ)σ ∈ Q[Aut(Ar)]. (2.6)

By taking the graphs of automorphisms, we will view εAr as an element of Corr0(Ar, Ar)Q,

and by slight abuse keep the same notation for this element.

Definition 2.2. Let πWr : Xr−→Wr and πAr : Xr−→Ar denote the natural projections and
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define the idempotent

εXr := εWr ⊗ εAr := (πWr × πWr)
∗(εWr) · (πAr × πAr)∗(εAr) ∈ Corr(Xr, Xr)Q.

We can now define generalised Heegner cycles by letting the projector εXr act on Υϕ (2.4).

Definition 2.3 (r ≥ 1). For r ≥ 1, we define the generalised Heegner cycle associated to an

isogeny ϕ ∈ IsogN(A) by

∆ϕ := εXrΥϕ ∈ CHr+1(Xr)(C), (2.7)

where the correspondence εXr acts on the Chow group via either of the fomulas (1.40) or

(1.41) (so this action is denoted εXr again by slight abuse of notation).

Since the correspondence εXr is compatible with the projection πr : Xr−→X1(N), the

generalised Heegner cycle ∆ϕ is supported on the fibre π−1
r (PA′) of πr above PA′ . As in the

case where r = 0, it is also homologically trivial. This follows from the fact that the image of

∆ϕ under the cycle class map belongs to εXrH
2r+2
dR (Xr/C), which is zero by [12, Prop. 2.4].

Section 2.1.3 below gives a more explicit description of a chain of real dimension 2r + 1 in

Xr(C) having ∆ϕ as boundary, which will be used in subsequent calculations.

2.1.2 Modular forms and de Rham cohomology of Xr

We retain the notations and definitions introduced in Section 1.2.4. Recall in particular

the canonical line bundle of relative differentials ω on X1(N), defined as the extension of

π∗Ω
1
E/Y1(N) to a coherent sheaf on X1(N), where π : E−→Y1(N) is the universal elliptic curve

with Γ1(N)-level structure over Y1(N).

The sheaf ω is a subsheaf of the relative logarithmic de Rham cohomology sheaf on X1(N)

defined by taking the relative hypercohomology of the complex of sheaves

L1 := R1π∗(0−→OE−→Ω1
E/Y1(N)−→0), (2.8)
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and extending to X1(N) following the prescription given in [12, §1.1]. The Hodge filtration

gives rise to an exact sequence of coherent sheaves over X1(N):

0−→ω−→L1−→ω−1−→0. (2.9)

The vector bundle L1 is also equipped with the canonical integrable Gauss–Manin connection

∇ : L1−→L1 ⊗ Ω1
X1(N)(log cusps), (2.10)

and Poincaré duality on the fibres of L1 gives rise to a canonical pairing

〈 , 〉 : L1 × L1−→OX1(N). (2.11)

Let Lr := Symr L1 denote the r-th symmetric power of L1. Definition 1.6 and the natural

inclusion ωr−→Lr give rise to inclusions

Sr+2(Γ1(N)) := H0(X1(N), ωr ⊗ Ω1
X1(N)) ↪→ H0(X1(N),Lr ⊗ Ω1

X1(N)). (2.12)

The self-duality

〈 , 〉 : Lr × Lr−→OX1(N) (2.13)

induced by (2.11) is given by the rule

〈α1 · · ·αr, β1 · · · βr〉 =
1

r!

∑
σ∈Sr

〈α1, βσ(1)〉 · · · 〈αr, βσ(r)〉. (2.14)

We will also have use for further coherent sheaves of OX1(N)-modules arising in the cohomol-

ogy of the fibres for the natural projection πr : Xr−→X1(N),

Lr,r = Lr ⊗ SymrH1
dR(A). (2.15)
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Note that Lr,r is also equipped with the self-duality

〈 , 〉 : Lr,r × Lr,r−→OX1(N) (2.16)

arising from (2.14), which is discussed in more details in [12, §2.2].

As explained in [12, §1.1], all the notions introduced so far in this section are purely

algebraic and make sense over an arbitrary field over which the modular curve X1(N) can

be defined. We will be interested solely in their complex incarnations. The set X1(N)(C) of

complex points of X1(N) is a compact Riemann surface, and the analytic map

pr : H−→Y1(N)(C), pr(τ) :=

(
C/〈1, τ〉, 1

N

)

identifies Y1(N)(C) with the quotient Γ1(N)\H. Let τ denote a point on H, w the standard

complex coordinate on the elliptic curve C/〈1, τ〉 and recall the Hodge decomposition (1.23)

H1
dR(C/〈1, τ〉) := Cdw⊕Cdw̄. In terms of the coordinates τ , dw, and dw̄, one has [12, §1.2]

∇dw =

(
dw − dw̄
τ − τ̄

)
dτ. (2.17)

The coherent sheaf Lr gives rise to an analytic sheaf Lan
r on the surface X1(N)(C). Let

L̃an
r := pr∗ Lan

r denote its pullback to H. Recall the elliptic fibration π : E−→Y1(N) and let

LB1 := R1π∗Z, LBr := Symr LB1 , (2.18)

be the locally constant sheaves of Z-modules whose fibres at x ∈ Y1(N)(C) are identified

with the Betti cohomology H1
B(Ex,Z) and SymrH1

B(Ex,Z) respectively. The local system

Lr := LBr ⊗ZC (2.19)

is identified with the sheaf of horizontal sections of (Lan
r ,∇) over Y1(N)(C), see [55, thm. 2.17].
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Likewise, let

Lr,r := Lr⊗ SymrH1
dR(A/C) (2.20)

denote the sheaf of locally constant sections (for the complex topology on Y1(N)(C)) of the

sheaf Lr,r.

The relation between the sheaves Lr,r, the cohomology of Xr and the spaces of cusp forms

is described in the following result.

Proposition 2.1. Assume that r ≥ 1. Let F be any field extension of the Hilbert class field

H. The image of the projector εXr acting on the de Rham cohomology of Xr is

εXrH
j
dR(Xr/F ) =


0 if j 6= 2r + 1

H1
par(X1(N)/F,Lr,r,∇) if j = 2r + 1

where H1
par(X1(N)/F,Lr,r,∇) = H1

par(X1(N)/F,Lr,∇)⊗ SymrH1
dR(A/F ) denotes parabolic

cohomology [12, (2.1.3)] of X1(N) attached to (Lr,r,∇). Moreover, there is an identification

Filr+1 εXrH
2r+1
dR (Xr/F ) = H0(X1(N)/F, ωr ⊗ Ω1

X1(N))⊗ SymrH1
dR(A/F ). (2.21)

In particular, using (1.25), the assignment f ⊗ α 7→ ωf ∧ α induces an identification

Sr+2(Γ1(N), F )⊗ SymrH1
dR(A/F ) ' Filr+1 εXrH

2r+1
dR (Xr/F ). (2.22)

Proof. This is [12, Proposition 2.4 & 2.5] and follows from Proposition 1.6.

2.1.3 Homological triviality

All Chow groups will henceforth be taken with rational coefficients, so that they consist of

Q-linear combinations of cycles modulo rational equivalence.

The goal of this section is to express the generalised Heegner cycles ∆ϕ as the boundaries
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of explicit (2r+1)-dimensional topological chains in X0
r (C). Such a calculation will be useful

in calculating the images of these cycles under the complex Abel–Jacobi map, which is the

goal of the next section.

Let W 0
r := Wr ×X1(N) Y1(N) and X0

r = Xr ×X1(N) Y1(N) denote the complements in Wr

and Xr respectively of the fibres above the cusps of X1(N). Let W̃r be the r-fold product

of the universal elliptic curve over the upper half-plane H (which we will denote E by slight

abuse of notation). It is isomorphic as an analytic variety to the quotient Z2r\(Cr × H),

where Z2r acts on Cr ×H by the rule

(m1, n1, . . . ,mr, nr)(w1, . . . , wr, τ) := (w1 +m1 + n1τ, . . . , wr +mr + nrτ, τ). (2.23)

Finally, let

X̃r = W̃r × Ar(C).

It follows from these definitions that

W 0
r (C) = Γ1(N)\W̃r, X0

r (C) = Γ1(N)\X̃r,

where Γ1(N) acts on W̃r by the rule

 a b

c d

 (w1, . . . , wr, τ) =

(
w1

cτ + d
, . . . ,

wr
cτ + d

,
aτ + b

cτ + d

)
, (2.24)

and acts trivially on Ar(C). Write pr for the natural Γ1(N)-covering maps X̃r−→X0
r (C)

and H−→Y1(N)(C), and let π̃r be the natural fibreing X̃r−→H. These maps fit into the

cartesian diagram
X̃r X0

r (C)

H Y1(N)(C).

pr

π̃r � πr

pr

(2.25)
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The fundamental group Γ1(N) of Y1(N) acts naturally on H2r(X̃r,Q), and the kernel of the

pushforward map

pr∗ : H2r(X̃r,Q)−→H2r(X
0
r (C),Q)

contains the module IΓ1(N)H2r(X̃r,Q), where IΓ1(N) is the augmentation ideal in the rational

group ring Q[Γ1(N)].

Following the recipe of Definition 2.2, one can define the idempotent correspondence

εX̃r = εW̃r
⊗ εAr ∈ Corr0(X̃r, X̃r)Q (2.26)

via the same formulas as for εXr , but replacing the universal elliptic curve E/Y1(N) with the

universal elliptic curve E/H. This projector acts on H2r(X̃r,Q) and we have the following

description of its image.

Lemma 2.1. Let τ ∈ H and denote by Eτ the fibre of E−→H above τ . For all r ≥ 1,

εX̃rH2r(X̃r,Q) = SymrH1(Eτ ,Q)⊗ SymrH1(A(C),Q) ⊂ IΓ1(N)H2r(X̃r,Q).

Proof. Since H is contractible, the inclusion

ιτ : π̃−1
r (τ)−→X̃r

induces an isomorphism

ιτ,∗ : H2r(π̃
−1
r (τ),Q)

∼−→H2r(X̃r,Q). (2.27)

The fibre π̃−1
r (τ) is (Eτ )r × A(C)r, hence we obtain an identification

H2r((Eτ )r × A(C)r,Q)
∼−→H2r(X̃r,Q). (2.28)
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Since multiplication by (−1) acts as −1 on H1
dR(A/F ) and as 1 on H0

dR(A/F ) and

H2
dR(A/F ), it follows that εAr annihilates all the terms except H1

dR(A/F )⊗r in the Kün-

neth decomposition

H∗dR(Ar/F ) =
⊕

(i1,...,ir)

H i1
dR(A/F )⊗ · · · ⊗H ir

dR(A/F ), (2.29)

where the direct sum is taken over all r-tuples (i1, . . . , ir) with 0 ≤ ij ≤ 2. The natural

action of Sr on H1
dR(A/F )⊗r corresponds to the geometric permutation action of Sr on Ar,

twisted by the sign character. It follows that the restriction of εAr toH1
dR(A/F )⊗r induces the

natural projection onto the space SymrH1
dR(A/F ) of symmetric tensors. A similar argument

applies to the projector εW̃r
and its action on the cohomology of (Eτ )r. The first equality

follows.

Following (2.18), consider the locally constant sheaf of Z-modules

LBr,r := Lr⊗ SymrH1(A(C),Z),

such that LBr,r⊗C = Lr,r is the sheaf (2.20) of locally constant sections of (Lan
r,r,∇). Pulling

back to H using the Cartesian square (2.25), we obtain

L̃Br,r := pr∗(LBr,r) = Symr R1π̃∗Z⊗ SymrH1(A(C),Z),

where π̃ : E−→H is the elliptic fibration. Since H is contractible, this is the constant sheaf

(SymrH1(Eτ ,Z)⊗ SymrH1(A(C),Z)).

The second containment of the lemma is a consequence of the fact that

(SymrH1(Eτ ,Q)⊗ SymrH1(A(C),Q))⊗Q C = pr∗(Lr,r) =: L̃r,r,
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and that the representation of Γ1(N) associated to this local system is isomorphic to a

direct sum of r + 1 copies of the r-th symmetric power of the standard two-dimensional

representation of Γ1(N). Each of these copies is irreducible and, since r > 0, is non-trivial

and hence has a trivial space of Γ1(N)-coinvariants.

Given (ϕ,A′) ∈ IsogN(A), set t′ := ϕ(tA), so that ϕ : (A, tA)−→(A′, t′) is an isogeny

of elliptic curves with Γ1(N)-level structure, in the obvious sense. Let PA′ be the point

of Y1(N)(C) associated to the pair (A′, t′). The main result of this section, which directly

implies the homological triviality of ∆ϕ, is the following.

Proposition 2.2. Assume r > 0. Then there exists a topological cycle ∆̃ϕ on X̃r satisfying:

1. The pushforward pr∗(∆̃ϕ) satisfies pr∗(∆̃ϕ) = ∆ϕ+∂ξ, where ξ is a topological (2r+1)-

chain supported on π−1
r (PA′).

2. The cycle ∆̃ϕ is homologically trivial on X̃r.

Proof. Choose a point τA′ ∈ H such that pr(τA′) = PA′ . Since pr induces an isomorphism be-

tween π̃−1
r (τA′) and π−1

r (PA′), the choice of τA′ determines cycles Υ \ϕ and ∆\
ϕ on X̃r supported

on π̃−1
r (τA′) and satisfying

pr∗(Υ
\
ϕ) = Υϕ, pr∗(∆

\
ϕ) = ∆ϕ. (2.30)

These cycles need not be homologically trivial on X̃r. In fact, there is an isomorphism (2.27)

ιτA′ ,∗ : H2r(π̃
−1
r (τA′),Q)

∼−→ H2r(X̃r,Q), (2.31)

and the classes [Υ \ϕ] := PD(cl(Υ \ϕ)) and [∆\
ϕ] := PD(cl(∆\

ϕ)) of Υ \ϕ and ∆\
ϕ in H2r(X̃r,Q) are

identified with those of Υϕ and ∆ϕ in H2r((A
′ × A)r(C),Q). (Recall the definitions (1.44)

and (1.43) of PD and cl).
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Note that the projector εX̃r of (2.26) acts naturally on H2r(X̃r,Q) and [∆\
ϕ] = εX̃r [Υ

\
ϕ]

belongs to εX̃rH2r(X̃r,Q). It now follows from Lemma 2.1 that

PD(cl(∆ϕ)) = pr∗([∆
\
ϕ]) ∈ pr∗(IΓ1(N)H2r(X̃r,Q)) = 0,

and therefore ∆ϕ is homologically trivial. To produce the cycle ∆̃ϕ explicitly, let

[∆\
ϕ] =

t∑
j=1

(γ−1
j − 1)Zj,

γ1, . . . , γt ∈ Γ1(N),

Z1, . . . , Zt ∈ H2r(X̃r,Q)
(2.32)

be an expression of [∆\
ϕ] as an element of IΓ1(N)H2r(X̃r,Q). Letting Z(τ, Z) denote any

topological 2r-cycle supported on π̃−1
r (τ) and determined by the class of Z in H2r(X̃r,Q) via

(2.27), define

∆̃ϕ :=
t∑

j=1

(
Z(γjτA′ , Zj)−Z(τA′ , Zj)

)
. (2.33)

It is then straightforward to check that ∆̃ϕ has the required properties. For example, the

homological triviality of ∆̃ϕ follows from the fact that

∆̃ϕ = ∂∆̃]
ϕ, with ∆̃]

ϕ :=
t∑

j=1

Z(τA′ → γjτA′ , Zj), (2.34)

where

Z(τA′ → γjτA′ , Zj) := path(τA′ → γjτA′)× Zj (2.35)

and path(τA′ → γjτA′) is any continuous path on H joining τA′ to γjτA′ . Note that in (2.35)

we have identified X̃r(C) with H× (C2r/Z4r).

Remark 2.1. Yet another approach to proving the homological triviality of ∆ϕ, by deform-

ing these cycles to the fibres supported above the cusps of the modular curve, is described

in [128]. The approach we have given adapts more readily to the setting of Shimura curves

attached to arithmetic subgroups of SL2(R) with compact quotient.
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Remark 2.2. A decomposition as in (2.32) with Z1, . . . , Zt ∈ H2r(X̃r,Z) is said to be

integral. Such a decomposition may not always be possible, owing to the possible presence

of torsion in H2r(X
0
r (C),Z). But it may be obtained after replacing [∆\

ϕ] by a suitable integer

multiple. In the rest of this note, when the image of ∆ϕ under the complex Abel–Jacobi

map is computed, it will be tacitly assumed that the Zi do belong to this integral lattice.

2.2 The complex Abel–Jacobi formula

The complex Abel–Jacobi map (1.51) is a function from the Chow group CHr+1(Xr)0(C)

into a complex torus:

AJC := AJr+1
Xr

: CHr+1(Xr)0(C)−→Jr+1(Xr/C) =
Filr+1 H2r+1

dR (Xr/C)∨

ImH2r+1(Xr(C),Z)
,

where the superscript ∨ denotes the dual of complex vector spaces, and ImH2r+1(Xr(C),Z)

is viewed as a sublattice of Filr+1 H2r+1
dR (XrC)∨ via integration of closed differential (2r+ 1)-

forms against singular integral homology classes of dimension 2r + 1. Recall from Section

1.5.1 that the linear functional AJC(∆) is defined by choosing a continuous integral (2r+1)-

chain ∆] on Xr(C) whose boundary ∂(∆]) is equal to ∆, and setting

AJC(∆)(α) =

∫
∆]

α, for all α ∈ Filr+1 H2r+1
dR (Xr/C). (2.36)

We will be solely interested in the piece of the Abel–Jacobi map that survives after applying

the projector εXr of Definition 2.2. Proposition 2.1 allows us to view AJC as a map

AJC : εXr CHr+1(Xr)0(C)−→(Sr+2(Γ1(N))⊗ SymrH1
dR(A/C))∨

Πr,r

,

where the lattice Πr,r is defined by

Πr,r := εXr(ImH2r+1(Xr(C),Z)). (2.37)
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The goal of the present section is to prove Theorem 2.1 of Section 2.2.4, which gives a

formula for AJC(∆ϕ) in terms of explicit line integrals of modular forms on the complex

upper half-plane.

2.2.1 Global primitives

We will follow the notations that were introduced in Section 2.1.2 and in the proof of Lemma

2.1. Let L̃r := pr∗(Lr), L̃r,r := pr∗(Lr,r), and L̃r := pr∗(Lan
r ), L̃r,r := pr∗(Lan

r,r) denote the

pullbacks via the analytic projection pr of (2.25).

Remark 2.3. The local systems L̃r and L̃r,r are trivial, i.e., they admit a basis of global

sections over H. In other words, if θ is an element of the fibre L̃r,r(τ) of L̃r,r at τ ∈ H, then

there is a unique global horizontal section θ∇ ∈ H0(H, L̃r,r)∇=0 satisfying θ∇(τ) = θ.

More generally, if L is any vector bundle over Y1(N) equipped with an integrable con-

nection and L denotes the corresponding local system, we will write L̃ := pr∗(L) and

L̃ := pr∗(Lan), and define global primitives in the following way:

Definition 2.4. Let ω be a global section of L⊗Ω1
X1(N) over Y1(N). A primitive of ω is an

element F ∈ H0(H, L̃) satisfying

∇F = pr∗(ω).

Such a primitive always exists, and is well-defined up to elements of the space of global

horizontal sections of L̃ over H.

Definition 2.5. An L-valued divisor on X1(N) is a finite formal linear combination of the

form
∑t

j=1 θj · Pj with Pj ∈ X1(N)(C) and θj ∈ L(Pj). The module of all such divisors is

denoted Div(X1(N),L).

One defines the notion of a L̃-valued divisor onH in a similar way. The analytic projection

pr : H−→Y1(N)(C) induces the natural push-forward map

pr∗ : Div(H, L̃)−→Div(X1(N),L).
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Given G ∈ H0(H, L̃r,r) and D =
∑t

j=1 θj · τj ∈ Div(H, L̃r,r), the “value” of G at D is

defined by the rule:

[G,D] :=
t∑

j=1

〈G(τj), θj〉,

where the pairing 〈 , 〉 on the right is the duality on the fibres at τj of the local system L̃r,r

induced by the pairing of equation (2.16).

For D =
∑t

j=1 θj · τj as above, the coefficient θj belongs to L̃r,r(τj) by definition, i.e., to

SymrH1
dR(Eτj)⊗ SymrH1

dR(A), where Eτj denotes the fibre at τj of the pull-back of E to H

by pr. Calculations similar to those in the proof of Lemma 2.1 identify

εX̃rH
2r
dR(π̃−1

r (τj)) = L̃r,r(τj). (2.38)

Moreover, since H is contractible, the inclusion of π̃−1
r (τj) in X̃r induces a canonical isomor-

phism of H2r
dR(X̃r) onto H2r

dR(π̃−1
r (τj)), and hence a canonical identification

εX̃rH
2r
dR(X̃r) = L̃r,r(τj). (2.39)

In view of these remarks, the degree of an L̃r,r-valued divisor on H can be defined by the

equation

deg

(
t∑

j=1

θj · τj

)
:=

t∑
j=1

θj ∈ εX̃rH
2r
dR(X̃r).

Given τ ∈ H or P ∈ Y1(N), let

clτ : CHr((Eτ )r × Ar)−→L̃r,r(τ), clP : CHr((EP )r × Ar)−→Lr,r(P )

denote the (εXr -components of the) cycle class maps on the associated fibres. The first map

is defined by composing the usual cycle class map (1.46) with isomorphism (2.38). The

second map is defined in terms of the first by identifying EP with Eτ and Lr,r(P ) with L̃r,r(τ)

if P = pr(τ).
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The cycle ∆\
ϕ that was introduced in the proof of Proposition 2.2 gives rise to the L̃r,r-

valued divisor (which shall be denoted by the same symbol, by abuse of notation):

∆\
ϕ = clτA′ (∆

\
ϕ) · τA′ .

Note that pr∗(∆
\
ϕ) = clPA′ (∆ϕ) · PA′ , but that ∆\

ϕ is not of degree 0. We will identify the

cycle ∆̃ϕ defined in equation (2.33) with the corresponding degree zero divisor on H with

values in L̃r,r given by

∆̃ϕ :=
t∑

j=1

(
PDγjτA′

(Zj) · (γjτA′)− PDτA′
(Zj) · τA′

)
, (2.40)

where, for τ ∈ H, we define the map PDτ as the composition

PDτ : H2r(X̃r,Q)
(2.27)−→H2r(π̃

−1
r (τ),Q)

(1.44)−→H2r(π̃−1
r (τ),Q)

(1.45)−→H2r
dR(π̃−1

r (τ))

εX̃r−→εX̃rH
2r
dR(π̃−1

r (τ))
(2.38)−→ L̃r,r(τ). (2.41)

Remark 2.4. Let ωf ∈ Sr+2(Γ1(N)) be a cusp form, viewed in H0(X1(N),Lr⊗Ω1
X1(N)) via

(2.12). Given a class α ∈ SymrH1
dR(A/C), a primitive of ωf ∧α ∈ H0(X1(N),Lr,r⊗Ω1

X1(N))

is given by Ff ∧α, where Ff is a primitive of ωf . This is because α is a horizontal section of

the trivial bundle SymrH1
dR(A) = SymrH1

dR((A ×X1(N))/X1(N)) over X1(N) that arises

in the identification Lr,r = Lr ⊗ SymrH1
dR(A/C).

The following proposition gives an explicit formula for AJC(∆ϕ) in terms of this divisor

and a primitive of ωf .

Proposition 2.3. For all f ∈ Sr+2(Γ1(N)) and all α ∈ SymrH1
dR(A/C),

AJC(∆ϕ)(ωf ∧ α) = [Ff ∧ α, ∆̃ϕ] (mod Πr,r), (2.42)

where Ff is any primitive of ωf .
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Remark 2.5. Both sides in (2.42) are to be viewed as belonging to the complex vector space

(Sr+2(Γ1(N)) ⊗ SymrH1
dR(A/C))∨, the equality being up to an element of the lattice Πr,r

(2.37) in this vector space. Note also that the right hand side of (2.42) depends on the choice

of a degree 0 divisor ∆̃ϕ satisfying pr∗(∆̃ϕ) = ∆ϕ, but only up to an element of Πr,r.

Proof. Recall the (2r + 1)-cycle ∆̃]
ϕ arising in equation (2.34). The definition of AJC and

Proposition 2.2, combined with Fubini’s theorem, imply the equalities

AJC(∆ϕ)(ωf ∧ α) =

∫
pr∗(∆̃

]
ϕ)

ωf ∧ α =

∫
∆̃]
ϕ

pr∗ ωf ∧ α (mod Πr,r)

=
t∑

j=1

∫ γjτA′

τA′

〈pr∗ ωf ∧ α, θ∇Zj〉 (mod Πr,r),

where θ∇Zj is the horizontal section of L̃r,r whose value at τA′ is equal to PDτA′
(Zj) as in

Remark 2.3, and the integral is taken over any continuous path in H joining τA′ to γjτA′ .

Note the independence on the choice of paths, which follows from the fact that the expressions

〈pr∗ ωf ∧ α, θ∇Zj〉 are holomorphic 1-forms on H. Since θ∇Zj is horizontal, it follows from the

definition of the Gauss-Manin connection that

〈pr∗ ωf ∧ α, θ∇Zj〉 = 〈∇Ff ∧ α, θ∇Zj〉 = d〈Ff ∧ α, θ∇Zj〉.

Hence Stokes’ theorem yields the equalities modulo Πr,r

AJC(∆ϕ)(ωf ∧ α) =
t∑

j=1

(
〈Ff (γjτA′) ∧ α, θ∇Zj〉 − 〈Ff (τA′) ∧ α, θ

∇
Zj
〉
)

=
t∑

j=1

(
[Ff ∧ α,PDγjτA′

(Zj) · (γjτA′)]− [Ff ∧ α,PDτA′
(Zj) · τA′ ]

)
= [Ff ∧ α, ∆̃ϕ],

as was to be shown.

Remark 2.6. The expression on the right of Proposition 2.3 is independent of the choice
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of primitive Ff for ωf . This is because the primitive Ff ∧ α is well-defined up to addition of

global horizontal sections of the sheaf L̃r,r over H. If θ is such a horizontal section, we have

[θ, ∆̃ϕ] = 〈θ, deg ∆̃ϕ〉 = 0.

Note that this independence ceases to hold if ∆̃ϕ is replaced by ∆\
ϕ, because the latter divisor

is not of degree 0.

2.2.2 Calculation of the primitive

We now turn to the explicit calculation of the primitive Ff that appears in Proposition 2.3.

Let p1 and pτ denote the elements of H1(Eτ ,Q) corresponding to a closed path from 0 to 1

and from 0 to τ respectively along the fibre Eτ = C/〈1, τ〉. Write η1 and ητ for the associated

basis of H1
dR(Eτ ), satisfying

〈ω, η1〉 =

∫
p1

ω, 〈ω, ητ 〉 =

∫
pτ

ω, for all ω ∈ H1
dR(Eτ ). (2.43)

After writing w for the natural holomorphic coordinate on Eτ , the values of 〈dw, ξ〉 and

〈dw̄, ξ〉 for various classes ξ are summarised in the following table:

dw dw̄ η1 ητ

dw 0 −1
2πi

(τ − τ̄) 1 τ

dw̄ 1
2πi

(τ − τ̄) 0 1 τ̄

(2.44)

It follows directly from this table that

2πidw = τη1 − ητ , 2πidw̄ = τ̄ η1 − ητ , (2.45)

and that

〈dwr, ηjτη
r−j
1 〉 = τ j. (2.46)
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It will be convenient to work with the basis for H1
dR(Eτ ) given by setting

ω = 2πidw, η =
dw̄

τ̄ − τ
. (2.47)

The class η is completely determined (relative to ω) by the conditions

η ∈ H0,1
dR(Eτ ), 〈ω, η〉 = 1.

A basis for H0(H, L̃r) is given by the expressions ωjηr−j, as 0 ≤ j ≤ r.

Proposition 2.4. Choose a base point τ0 ∈ H, and let ω, η be given by (2.47). The section

Ff of L̃r over H satisfying

〈Ff (τ), ωjηr−j〉 =
(−1)j(2πi)j+1

(τ − τ̄)r−j

∫ τ

τ0

(z − τ)j(z − τ̄)r−jf(z)dz, (0 ≤ j ≤ r)

is a primitive of ωf .

Proof. By definition of the Gauss-Manin connection, since the sections ηjτη
r−j
1 are horizontal,

d〈Ff , ηjτη
r−j
1 〉 = 〈∇Ff , ηjτη

r−j
1 〉 = 〈pr∗ ωf , η

j
τη

r−j
1 〉. (2.48)

By formula (1.25) for pr∗ ωf , this last expression is equal to

〈pr∗ ωf , η
j
τη

r−j
1 〉 = (2πi)r+1〈f(τ)dwr, ηjτη

r−j
1 〉dτ = (2πi)r+1f(τ)τ jdτ. (2.49)

Combining (2.48) and (2.49) and integrating the resulting identity with respect to τ , we find

(after fixing some τ0 ∈ H) that the global section of L̃r over H defined by the rule

〈Ff , ηjτη
r−j
1 〉 = (2πi)r+1

∫ τ

τ0

f(z)zjdz, (0 ≤ j ≤ r) (2.50)

is a global primitive of ωf . The defining relation (2.50) implies that, for all homogenous
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polynomials P (x, y) of degree r,

〈Ff , P (ητ , η1)〉 = (2πi)r+1

∫ τ

τ0

f(z)P (z, 1)dz.

After noting from (2.44) that

ωjηr−j = Q(ητ , η1), with Q(x, y) =
(−1)j

(2πi(τ − τ̄))r−j
(x− τy)j(x− τ̄ y)r−j,

we obtain

〈Ff , ωjηr−j〉 =
(−1)j(2πi)r+1

(2πi(τ − τ̄))r−j

∫ τ

τ0

(z − τ)j(z − τ̄)r−jf(z)dz,

as was to be shown.

Remark 2.7. Recall the Shimura–Maass differential operator δr defined by

δrf(τ) :=
1

2πi

(
d

dτ
+

r

τ − τ̄

)
f(τ), (2.51)

which maps real analytic modular forms of weight r to real analytic modular forms of weight

r + 2. The real analytic functions Gj on H defined by the rule

Gj(τ) := 〈Ff (τ), ωjηr−j〉 =
(−1)j(2πi)j+1

(τ − τ̄)r−j

∫ τ

τ0

(z − τ)j(z − τ̄)r−jf(z)dz

satisfy

δrG0(τ) = f(τ), δr−2jGj(τ) = jGj−1(τ), for all 1 ≤ j ≤ r. (2.52)
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For example, the integrand in the expression defining G0 is antiholomorphic in τ , and thus

δrG0(τ) =
1

2πi

(
d

dτ
+

r

τ − τ̄

)
2πi

(τ − τ̄)r

∫ τ

τ0

(z − τ̄)rf(z)dz

=
−r

(τ − τ̄)r+1

∫ τ

τ0

(z − τ̄)rf(z)dz +
1

(τ − τ̄)r
(τ − τ̄)rf(τ)

+
r

(τ − τ̄)r+1

∫ τ

τ0

(z − τ̄)rf(z)dz

= f(τ).

A similar direct calculation proves (2.52) for all 1 ≤ j ≤ r.

An analogous formula in the p-adic context, with δr replaced by the operator θ = q d
dq

on

p-adic modular forms, is proved in [12, Prop. 3.24]. The reader may find it instructive to

compare (2.52) with its p-adic analogue given in [12, (3.8.6)].

2.2.3 Integral primitives

Propositions 2.3 and 2.4 yield a formula for AJC(∆ϕ), but this formula is not as explicit

as one could desire, because it requires evaluating the primitives Ff ∧ α on the divisor ∆̃ϕ

instead of the simpler divisors ∆\
ϕ which are supported on a single point τA′ (but are not

of degree 0). We will now study the relation between [Ff ∧ α, ∆̃ϕ] and [Ff ∧ α,∆\
ϕ]. Given

Z ∈ L̃r(τ) = H0(H, L̃r)∇=0, let PZ ∈ C[x, y] be the homogenous polynomial of degree r

satisfying

Z = PZ(ητ , η1).

Lemma 2.2. Let Ff be the primitive of f given in Proposition 2.4. Then for all γ ∈ Γ1(N),

〈Ff (γτ), Z〉 − 〈γFf (τ), Z〉 = (2πi)r+1

∫ γτ0

τ0

PZ(z, 1)f(z)dz. (2.53)

Proof. By (2.50),

〈Ff (γτ), Z〉 = (2πi)r+1

∫ γτ

τ0

PZ(z, 1)f(z)dz. (2.54)
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The fact that f is a modular form of weight r + 2 on Γ1(N), coupled with the fact that PZ

is homogenous of degree r, shows that

PZ(γw, 1)f(γw)d(γw) = Pγ−1Z(w, 1)f(w)dw.

Therefore

〈γFf (τ), Z〉 = 〈Ff (τ), γ−1Z〉 = (2πi)r+1

∫ τ

τ0

Pγ−1Z(z, 1)f(z)dz

= (2πi)r+1

∫ γτ

γτ0

PZ(z, 1)f(z)dz.

(2.55)

The lemma follows from (2.54) and (2.55).

Note in particular that the global section τ 7→ Ff (γτ) − γFf (τ) does not depend on τ ,

and can be viewed as a horizontal section of L̃r over H. The function κFf defined on Γ1(N)

by

κFf (γ) := Ff (γτ)− γFf (τ)

is a one-cocycle on Γ1(N) with values in

H0(H, L̃r)∇=0 = L̃r(τ) ' Lr(C),

where Lr(C) is the space of homogenous polynomials of degree r in two variables with

complex coefficients, equipped with its natural action of Γ1(N). The class of κFf in the

cohomology group H1(Γ1(N), Lr(C)) depends only on the differential ωf and not on the

choice of primitive Ff . This class will therefore be denoted by κf .

We briefly recall the definition of the period lattice in the space Sr+2(Γ1(N))∨. Let

Lr(Q) and Lr(Z) be the rational structure and lattice in Lr(C) obtained by considering the

polynomials with rational and integer coefficients respectively, and let Lr(Z)∨ inside Lr(Q)

be the dual lattice relative to the inner product on Lr(C) = Lr(τ) arising from equation
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(2.14). After choosing a basis f1, . . . , fg for Sr+2(Γ1(N)), and a Z-module basis κ1, . . . , κ2g

for H1
par(Γ1(N), Lr(Z)∨), let (λij) be the g × 2g matrix with complex entries satisfying

κf1 = λ1,1κ1 + · · ·+ λ1,2gκ2g,

κf2 = λ2,1κ1 + · · ·+ λ2,2gκ2g, (2.56)

...
...

...

κfg = λg,1κ1 + · · ·+ λg,2gκ2g.

For each 1 ≤ j ≤ 2g, let φj ∈ Sr+2(Γ1(N))∨ be the element defined by the rule

φj(fi) = λij.

Definition 2.6. The period lattice attached to Sr+2(Γ1(N)), denoted Λr, is the Z-submodule

of Sr+2(Γ1(N))∨ generated by the vectors φ1, . . . , φ2g.

Hodge theory asserts that Λr is indeed a lattice (of rank 2g) in the complex vector space

Sr+2(Γ1(N))∨, justifying this terminology. Note that the module Λr does not depend on the

choices of complex basis for Sr+2(Γ1(N)) and of integral basis for H1
par(Γ1(N), Lr(Z)∨) that

were made to define it.

Let F1, . . . , Fg be arbitrarily chosen primitives of ωf1 , . . . , ωfg , and let κ̃1, . . . , κ̃2g be a

choice of one-cocycles on Γ representing κ1, . . . , κ2g. The linear equations (2.56) defining the

period lattice imply that there exist vectors ξ1, . . . , ξg ∈ Lr(C) such that, for all γ ∈ Γ1(N)

and all τ ∈ H:

κF1(γ) = λ1,1κ̃1(γ) + · · ·+ λ1,2gκ̃2g(γ) + (γξ1 − ξ1),

κF2(γ) = λ2,1κ̃1(γ) + · · ·+ λ2,2gκ̃2g(γ) + (γξ2 − ξ2), (2.57)

...
...

...

κFg(γ) = λg,1κ̃1(γ) + · · ·+ λg,2gκ̃2g(γ) + (γξg − ξg).
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After replacing Fj by Fj + ξj (viewing the ξj as elements of H0(H, L̃r)∇=0), we obtain a new

collection of primitives satisfying the following relation, for all γ ∈ Γ1(N) and τ ∈ H:

F1(γτ)− γF1(τ) = λ1,1κ̃1(γ) + · · ·+ λ1,2gκ̃2g(γ),

F2(γτ)− γF2(τ) = λ2,1κ̃1(γ) + · · ·+ λ2,2gκ̃2g(γ), (2.58)

...
...

...

Fg(γτ)− γFg(τ) = λg,1κ̃1(γ) + · · ·+ λg,2gκ̃2g(γ).

Definition 2.7. A collection of integral primitives is a choice of a primitive Fj of fj for each

j = 1, . . . , g satisfying (2.58). Such a collection determines, by linearity, a primitive Ff of

f for each f ∈ Sr+2(Γ1(N)). The primitive Ff arising from such a choice will be called an

integral primitive of ωf .

Lemma 2.3. Let f 7→ Ff be a choice of integral primitives of f . For each γ ∈ Γ1(N) and

v ∈ Lr(Z), the assignment

f 7→ 〈Ff (γτ)− γFf (τ), v〉

belongs to Λr ⊂ Sr+2(Γ1(N))∨.

Proof. This follows directly from (2.58) in light of the fact that the scalars

〈κ̃1(γ), v〉, . . . , 〈κ̃2g(γ), v〉

are integers.

By definition, the Z-module

Λr,r := Λr ⊗ SymrH1(A(C),Z)

is a lattice in Sr+2(Γ)∨ ⊗ SymrH1
dR(A/C)∨ = Filr+1 εXrH

2r+1
dR (Xr)

∨. It is commensurable

with the lattice Πr,r appearing in (2.37). After eventually replacing Λr,r by a larger lattice,
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we may therefore assume that Λr,r contains Πr,r. This assumption allows us to replace Πr,r

by Λr,r in the arguments to follow.

Lemma 2.3 implies that

〈Ff (γτ) ∧ α,Z〉 = 〈Ff (τ) ∧ α, γ−1Z〉 (mod Λr,r), (2.59)

for all Z ∈ Lr(Z) ⊗ SymrH1(A,Z). Here both f and α are treated as variables, and the

equality is viewed as taking place in Filr+1 εXrH
2r+1
dR (Xr/C)∨.

The Abel–Jacobi image of generalised Heegner cycles can be expressed more simply in

terms of integral primitives, as follows.

Proposition 2.5. Let f 7→ Ff be a choice of integral primitives, and let ∆ϕ be a generalised

Heegner cycle attached to ϕ : A−→A′. Then

AJC(∆ϕ)(ωf ∧ α) = 〈Ff (τA′) ∧ α, clτA′ (∆
\
ϕ)〉 (mod Λr,r),

where the pairing is the natural one on L̃r,r(τA′).

Proof. By Proposition 2.3 combined with the formula (2.33) for ∆̃ϕ,

AJC(∆ϕ)(ωf ∧ α) = [Ff ∧ α, ∆̃ϕ] (mod Λr,r)

=
t∑

j=1

〈Ff (γjτA′) ∧ α,Zj〉 − 〈Ff (τA′) ∧ α,Zj〉 (mod Λr,r)

=
t∑

j=1

〈Ff (τA′) ∧ α, γ−1
j Zj〉 − 〈Ff (τA′) ∧ α,Zj〉 (mod Λr,r)

= 〈Ff (τA′) ∧ α,
t∑

j=1

(γ−1
j − 1)Zj〉 (mod Λr,r),

where we have used (2.59) in deriving the penultimate equality. Proposition 2.5 now follows

from equation (2.32) for the class of ∆\
ϕ.
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Proposition 2.6. With the same notations as in Proposition 2.5,

AJC(∆ϕ)(ωf ∧ α) = 〈ϕ∗Ff (τA′), α〉A (mod Λr,r),

where the pairing 〈 , 〉A on the right is the Poincaré duality on SymrH1
dR(A/C).

Proof. Let

% := (ϕr, idr) : Ar−→Υϕ ⊂ (A′)r × Ar.

Note that

%∗(Ff (τA′) ∧ α) = ϕ∗(Ff (τA′)) ∧ α, %([Ar]) = clτA′ (Υ
\
ϕ),

where [Ar] ∈ H0
dR(Ar/C) is the fundamental class associated to the variety Ar. Let

〈 , 〉A,j : H2r−j
dR (Ar/C)×Hj

dR(Ar/C)−→H2r(Ar/C) = C

denote the Poincaré pairing, so that the restriction of 〈 , 〉A,r to the subspace

SymrH1
dR(A/C) ⊂ Hr

dR(A/C)

agrees with 〈 , 〉A. Observe that

〈Ff (τA′) ∧ α, clτA′ (∆
\
ϕ)〉 = 〈Ff (τA′) ∧ α, clτA′ (Υ

\
ϕ)〉 = 〈Ff (τA′) ∧ α, %([Ar])〉. (2.60)

The functoriality properties of the Poincaré pairing imply that

〈Ff (τA′) ∧ α, %([Ar])〉 = 〈%∗(Ff (τA′) ∧ α), [Ar]〉A,0

= 〈ϕ∗(Ff (τA′)) ∧ α, [Ar]〉A,0 = 〈ϕ∗(Ff (τA′)), α〉A.
(2.61)

Proposition 2.6 follows by combining Proposition 2.5 with (2.60) and (2.61).
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2.2.4 Modular symbols

Propositions 2.5 and 2.6 gain in explicitness because they involve the divisor ∆\
ϕ supported

on a single point, rather that the more complicated divisor (2.32) which is given in terms of

a (non-canonical) expression for the class of ∆\
ϕ as an element of IΓ1(N)H2r(X̃r,Q). The price

one pays is that it becomes necessary to work with integral primitives rather than arbitrary

primitives.

In the case of a group like Γ1(N) containing parabolic elements, an integral primitive

can be defined explicitly by invoking the theory of modular symbols. More precisely, let us

define primitives Ff of ωf by allowing the base point τ0 appearing in Proposition 2.4 to tend

to a cusp. The integrals appearing in Proposition 2.4 still converge, by the cuspidality of f .

Furthermore, the right-hand term appearing in (2.53) is of the form

Js,t,P (f) := (2πi)r+1

∫ t

s

P (z)f(z)dz, with s, t ∈ P1(Q), P (x) ∈ Z[x]deg=r.

Let Λ′r denote the Z-module generated by Λr and the functionals Js,t,P in the complex vector

space Sr+2(Γ1(N))∨. The following theorem is the basis for the theory of “modular symbols”

attached to modular forms of higher weight.

Proposition 2.7. The group Λ′r is a sublattice of Sr+2(Γ1(N))∨ which contains Λr with finite

index.

Proof. The proof of this theorem can be found, for instance, in Proposition 3.5 of [128].

The statement and proof are given there for r = 2, i.e., forms of weight 4, but no serious

modification is required to handle the case of general r.

After replacing the period lattice Λr by the possibly slightly larger lattice Λ′r, and re-

defining Λr,r accordingly, we obtain Theorem 2.1 below on the complex Abel–Jacobi images

of generalised Heegner cycles, which is one of the two main results of this chapter. Because

the formula is given modulo a larger lattice, it is slightly less precise, but has the virtue of

being more explicit and amenable to numerical calculation.
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Theorem 2.1. Let ϕ : A−→C/〈1, τ〉 be an isogeny of degree dϕ = deg(ϕ), satisfying

ϕ(tA) =
1

N
, ϕ∗(2πidw) = ωA,

and let ∆ϕ be the associated generalised Heegner cycle on Xr. Then

AJC(∆ϕ)(ωf ∧ ωjAη
r−j
A ) =

(−dϕ)j(2πi)j+1

(τ − τ̄)r−j

∫ τ

i∞
(z − τ)j(z − τ̄)r−jf(z)dz (mod Λr,r).

Proof. Let Ff be the integral primitive of ωf obtained by setting τ0 = i∞. By Proposition

2.6,

AJC(∆ϕ)(ωf ∧ ωjAη
r−j
A ) = 〈ϕ∗Ff (τ), ωjAη

r−j
A 〉A (mod Λr,r). (2.62)

But letting ω′, η′ ∈ H1
dR(C/〈1, τ〉) be defined by

ω′ = 2πidw, η′ ∈ H0,1
dR (C/〈1, τ〉), 〈ω′, η′〉 = 1,

we have

ϕ∗(ω′) = ωA, ϕ∗(η′) = dϕηA. (2.63)

Hence

〈ϕ∗Ff (τ), ωjAη
r−j
A 〉A = dj−rϕ 〈ϕ∗Ff (τ), ϕ∗((ω′)j(η′)r−j)〉A

= djϕ〈Ff (τ), (ω′)j(η′)r−j〉A′ .

The result now follows from Proposition 2.4 with τ0 = i∞.

2.2.5 Summary

For the convenience of the reader, we summarise the Abel–Jacobi computation in one big

self-contained calculation. Hopefully, this will allow for a better overview of the underlying
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strategy, as well as for a broader appreciation of the bigger picture.

So let f ∈ Sr+2(Γ1(N)), and let Ff be the integral primitive of ωf obtained from Propo-

sition 2.4 by taking τ0 = i∞. As previously, we work modulo Λr,r = Λr⊗SymrH1(A(C),Z),

where Λr ⊂ Sr+2(Γ1(N))∨ is taken large enough so that it contains the lattice Λ′r of Propo-

sition 2.7. Retain the notations and assumptions of Theorem 2.1. Then, working with

equalities modulo Λr,r, we have:

AJC(∆ϕ)(ωf ∧ ωjAη
r−j
A ) =

∫
pr∗(∆̃

]
ϕ)

ωf ∧ ωjAη
r−j
A

=

∫
∆̃]
ϕ

pr∗ ωf ∧ ωjAη
r−j
A

=
t∑

j=1

∫ γjτ

τ

〈pr∗ ωf ∧ ωjAη
r−j
A , θ∇Zj〉

=
t∑

j=1

∫ γjτ

τ

d〈Ff ∧ ωjAη
r−j
A , θ∇Zj〉

=
t∑

j=1

(〈Ff (γjτ) ∧ ωjAη
r−j
A ,PDγjτ (Zj)〉 − 〈Ff (τ) ∧ ωjAη

r−j
A ,PDτ (Zj)〉)

=
t∑

j=1

(〈Ff (τ) ∧ ωjAη
r−j
A ,PDτ (γ

−1
j Zj)〉 − 〈Ff (τ) ∧ ωjAη

r−j
A ,PDτ (Zj)〉)

=

〈
Ff (τ) ∧ ωjAη

r−j
A ,

t∑
j=1

PDτ ((γ
−1
j − 1)Zj)

〉
= 〈Ff (τ) ∧ ωjAη

r−j
A , clτ (∆

\
ϕ)〉

= 〈Ff (τ) ∧ ωjAη
r−j
A , clτ (Υ

\
ϕ)〉

= 〈Ff (τ) ∧ ωjAη
r−j
A , %([Ar]))〉

= 〈%∗(Ff (τ) ∧ ωjAη
r−j
A ), [Ar])〉A,0

= 〈ϕ∗(Ff (τ)) ∧ ωjAη
r−j
A , [Ar])〉A,0

= 〈ϕ∗(Ff (τ)), ωjAη
r−j
A 〉A

= dj−rϕ 〈ϕ(Ff (τ)), ϕ∗((ω′)j(η′)r−j)〉A
= djϕ〈Ff (τ), (ω′)j(η′)r−j〉A′

=
(−dϕ)j(2πi)j+1

(τ − τ̄)r−j

∫ τ

i∞
(z − τ)j(z − τ̄)r−jf(z)dz.
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2.3 The Chow group of Xr

Assume in this section that A is isomorphic over C to the complex torus C/OK and let Xr

be the (2r + 1)-dimensional variety over H defined previously. For simplicity, we assume

that dK 6= 3, 4, so that O×K = {±1}. For any field F , recall from (1.50) the definition of the

Griffiths group

Grr+1(Xr)(F ) := CHr+1(Xr)0(F )/CHr+1(Xr)alg(F ),

where CHr+1(Xr)alg(F ) is the subgroup of null-homologous codimension r + 1 cycles on Xr

that are defined over F and are algebraically equivalent to zero.

The goal of this section is to prove the following:

Theorem 2.2. For all r ≥ 0 the Chow group CHr+1(Xr)0(H̄) of null-homologous cycles

modulo rational equivalence has infinite rank. Furthermore, for all r ≥ 2, the Griffiths group

Grr+1(Xr)(H̄) also has infinite rank.

The proof follows closely that of Theorem 4.7 of Schoen’s paper [128] which treats the

case of “usual” Heegner cycles on a Kuga–Sato threefold, and rests on an ingenious method

of Bloch. The most significant difference lies in the setting that is treated: whereas Schoen’s

cycles are indexed by arbitrary quadratic orders of varying discriminant, generalised Heegner

cycles are forced by necessity to be indexed by (not necessarily maximal) orders of the fixed

imaginary quadratic field K. The reader is referred to Chapter 1 for background material on

the tools from class field theory, complex multiplication theory, and étale cohomology that

are used below, as well as to the introduction of [12] for further background on generalised

Heegner cycles beyond the material covered in the earlier sections.

Remark 2.8. When r = 0 the variety X0 is the modular curve X1(N) which is defined

over Q. Codimension 1 cycles are divisors and rational equivalence corresponds to linear

equivalence on divisors, whence CH1(X1(N)) = Pic(X1(N)). Moreover, a divisor is null-

homologuous if and only if it has degree zero and any degree zero divisor on a smooth
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connected curve is algebraically equivalent to zero, as explained in Example 1.2. It follows

that the Griffiths group Gr1(X1(N)) is trivial. The content of Theorem 2.2 is that the Chow

group CH1(X1(N))0(Q̄) has infinite rank, a well-known result. The generalised Heegner

cycles in this case are images of Heegner points on the Jacobian variety of X1(N), see

Definition 2.1, and the method consists in showing that the subgroup generated by these

Heegner points has infinite rank. In [90, Proposition 2.8], it is shown that E(Q̄) has infinite

rank where E is an elliptic curve defined over Q by proving that the subgroup generated by

Heegner points on X0(N) via a modular parametrisation X0(N)−→E has infinite rank. In

particular, this implies Theorem 2.2 in the case r = 0.

Notation 2.1. Throughout this section we will adopt the following notational conventions.

If X is a variety defined over H and F is any field containing H, then we let XF denote its

base change to F , i.e., X ×SpecH SpecF . We fix an algebraic closure H̄ of H and we will

use the shorthand notation X̄ := XH̄ . Recall that K has discriminant −dK and OK denotes

its ring of integers. Let τ := (−dK +
√
−dK)/2 be the standard generator of OK = 〈1, τ〉,

as in the beginning of Section 1.3.1. Fix an analytic isomorphism ξ : C/OK ' A(C) and let

ωA ∈ Ω1
A/H be the regular differential satisfying ξ∗(ωA) = 2πidw.

2.3.1 A subcollection of cycles

We introduce a distinguished subcollection of generalised Heegner cycles. The fields of

definition of these cycles will play a crucial role in Section 2.3.3 and the understanding of

the Galois action on these cycles is key in Section 2.3.4.

Let p and q be distinct odd primes which are congruent to 1 modulo N , and consider the

following lattices associated to β ∈ P1(Fq),

Λp,q,∞ := Z
1

pq
⊕ Zτ, Λp,q,β := Z

1

p
⊕ Z

τ + β

q
, for 0 ≤ β ≤ q − 1,

which each contain OK with index pq, and let Ap,q,β be the elliptic curve whose complex
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points are isomorphic to C/Λp,q,β. The natural isogeny

ϕp,q,β : A−→Ap,q,β (2.64)

of degree pq gives rise to the generalised Heegner cycle

∆p,q,β := ∆ϕp,q,β . (2.65)

The theory of complex multiplication, as reviewed in Section 1.3, allows us to pin down the

field of definition of the cycles ∆p,q,β. Let Fpq denote the field compositum of KN and Hpq,

where KN denotes the ray class field of K of modulus N defined in Assumption 2.1, and Hpq

is the ring class field of K conductor pq. See Definition 1.9 and 1.11.

Proposition 2.8. For all β ∈ P1(Fq), the cycle ∆p,q,β is defined over Fpq.

Proof. The Kuga–Sato variety Wr is defined over Q, and the elliptic curve A along with

its complex multiplication can be defined over the Hilbert class field H of K by Theorem

1.2. Following the moduli description of X1(N), the pair (A, tA) corresponds to a complex

point on X1(N) defined over the abelian extension of K corresponding to the subgroup

K×W ⊂ A×K , where

W :=
{
x ∈ A×K : xOK = OK , xξ−1(tA) = ξ−1(tA)

}
.

This field is the ray class field KN of K of conductor N by Theorem 1.3. The elliptic curves

Ap,q,β have complex multiplication by the order Opq of conductor pq and can thus be defined

over the ring class field Hpq by Theorem 1.2. The isogenies ϕp,q,β are also defined over Hpq.

Note that since (pq,N) = 1, we have (ϕp,q,β, Ap,q,β) ∈ IsogN(A). The point (Ap,q,β, tAp,q,β) on

X1(N) can thus be defined over the field compositum Fpq. Since the correspondence εXr of

Definition 2.2 that was used to define the generalised Heegner cycle is defined over Q, we

can conclude that the cycle ∆p,q,β is defined over Fpq as well.
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Remark 2.9. More generally, let (ϕ,A′) be an element of Isog(A). Since A has complex

multiplication by OK , the endomorphism ring of A′ is an order in OK . Such an order is

completely determined by its conductor, as explained in Section 1.3.1, and therefore there is

a unique integer c ≥ 1 such that EndK̄(A′) = Oc := Z + cOK . The pair (ϕ,A′) is then said

to be of conductor c and we set

Isogc(A) := {Isomorphism classes of pairs (ϕ,A′) of conductor c}

and IsogN
c (A) := Isogc(A) ∩ IsogN(A). Note that if (ϕ,A′) ∈ IsogN

c (A), then by a similar

reasoning as above the associated cycle ∆ϕ is defined over the field compositum Fϕ := KN·Hc,

where Hc := K(j(Oc)) denotes the ring class field of K of conductor c.

2.3.2 Cycles of large order

Using the explicit formula for the image of generalised Heegner cycles under the complex

Abel–Jacobi map obtained in Theorem 2.1, we will now prove, following the approach of [128,

§3], that many of the cycles ∆p,q,β are of large (possibly infinite) order in the Chow group

and even in the Griffiths group (if r ≥ 1). This part of the argument uses only complex

analytic and Hodge theoretic methods, and rests on the following theorem.

Theorem 2.3. For all r ≥ 0 (resp. for all r ≥ 1) the order of ∆p,q,β in CHr+1(Xr)0(H̄)

(resp. in Grr+1(Xr)(H̄)) tends to ∞ as p/q tends to ∞.

Remark 2.10. If f ∈ Sr+2(Γ1(N)) and 0 ≤ j ≤ r, then we will identify, by a slight abuse of

notation, AJC(∆p,q,β)(ωf∧ωjAη
r−j
A ) with the complex number appearing in the right hand side

of the displayed equation in Theorem 2.1. This amounts to choosing a fixed representative

of AJC(∆p,q,β) in (Sr+2(Γ1(N))⊗ SymrH1
dR(A))∨, and then evaluating it at ωf ∧ ωjAη

r−j
A .

The proof of Theorem 2.3 relies on the following intermediate result.
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Lemma 2.4. For any non-zero cusp form f ,

lim
p/q→∞

AJC(∆p,q,β)(ωf ∧ ωjAη
r−j
A ) = 0

and AJC(∆p,q,β)(ωf ∧ ωjAη
r−j
A ) is non-zero for all large enough p/q.

Proof. Fix p, q, and β ∈ P1(Fq). The lattice Λp,q,β is homothetic to 〈1, τp,q,β〉, where

τp,q,∞ := pqτ, τp,q,β :=
p

q
(τ + β). (2.66)

Set τp,q,β := Xβ + iYβ, and note that

Yβ =


pq ·
√
dK/2 if β =∞

p/q ·
√
dK/2 if β 6=∞.

By Theorem 2.1, AJC(∆p,q,β)(ωf ∧ ωjAη
r−j
A ) is equal to

(−1)j(2πi)j+1 · κβ
(τ − τ̄)r−j

∫ τp,q,β

i∞
(z − τp,q,β)j(z − τ̄p,q,β)r−jf(z)dz

= γβ

∫ ∞
Yβ

(y − Yβ)j(y + Yβ)r−jf(Xβ + iy)dy, (2.67)

where

κβ :=

 (pq)2j−2r if β =∞,

p2j−2rqr if β 6=∞,
γβ := (−1)j+1 · ir+1 · (2πi)j+1 · κβ

(τ − τ̄)r−j
,

and the equality in (2.67) is obtained by performing the change of variables z = Xβ + iy.

Assume, without loss of generality, that f is a normalised cuspidal eigenform. By exam-

ination of the Fourier expansion of f , there is an absolute real constant Cf > 0 (depending

only on f) for which

|f(z)− e2πiz| ≤ Cf · e−4πIm(z)
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on the domain {Im(z) > 1}. Combining this with (2.67) gives

∣∣AJC(∆p,q,β)(ωf ∧ ωjAη
r−j
A )− γβ · e2πiXβ · Aβ

∣∣
≤ γβ · Cf ·

∫ ∞
Yβ

(y − Yβ)j(y + Yβ)r−je−4πydy, (2.68)

where

Aβ :=

∫ ∞
Yβ

(y − Yβ)j(y + Yβ)r−je−2πydy (2.69)

is clearly non-zero and positive since the function appearing in the integral is strictly positive

on the domain of integration. The error term in (2.68) is majorised by

∣∣∣∣∣γβ · Cf ·
∫ ∞
Yβ

(y − Yβ)j(y + Yβ)r−je−4πydy

∣∣∣∣∣ ≤ Cf · γβ · e−2πYβAβ. (2.70)

If we let

Bβ := γβ · e2πiXβ · Aβ, (2.71)

then (2.70) implies that AJC(∆p,q,β)(ωf ∧ωjAη
r−j
A ) is asymptotically equivalent, as a function

of p and q, to Bβ as p/q tends to infinity, in the sense that the ratio of these two functions

tends to 1 as p/q tends to infinity. The result now follows after observing that the quantity

Bβ is non-zero but tends to 0 as p/q tends to infinity.

Proof of Theorem 2.3. As p/q tends to ∞, Lemma 2.4 shows that AJC(∆p,q,β) tends to the

origin in Jr+1(Xr/C) without being equal to it. Consequently, the order of AJC(∆p,q,β) tends

to ∞ in Jr+1(Xr/C). It follows that the order of ∆p,q,β in the Chow group CHr+1(Xr)0(H̄)

tends to ∞ as p/q tends to ∞.

To treat the image of ∆p,q,β in the Griffiths group, let Jr+1(Xr/C)alg denote, following

Definition 1.20, the complex subtorus of Jr+1(Xr/C) which is the intermediate Jacobian of
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the largest sub-Hodge structure V of Hr+1,r(Xr)⊕Hr,r+1(Xr). More precisely,

Jr+1(Xr/C)alg = Jr+1(V ) := VC/(Filr+1 V ⊕ VZ). (2.72)

The image of CHr+1(Xr)alg(C) under AJC is a complex subtorus of Jr+1(Xr/C) which is

contained in Jr+1(Xr/C)alg and has the structure of an abelian variety, as explained in

Proposition 1.11. One can thus define the transcendental part of the Abel–Jacobi map

(1.54)

AJC,tr : Grr+1(Xr)(C)−→Jr+1(Xr/C)tr := Jr+1(Xr/C)/Jr+1(Xr/C)alg (2.73)

as the factorisation of AJC. Note that for r = 0, Jr+1(Xr/C) = Jr+1(Xr/C)alg and

Grr+1(Xr)(C) = 0 by Remark 2.8, so the transcendental part of the Abel–Jacobi map is

trivial in this case. For r ≥ 1, by (2.1), we observe that

(Hr+1,r(Xr)⊕Hr,r+1(Xr))∩εXrH2r+1
dR (Xr/C) = (Sr+2(Γ1(N))⊗CηrA)⊕(Sr+2(Γ1(N))⊗CωrA).

The same reasoning as before shows that the order of ∆p,q,β in Grr+1(Xr)(H̄) tends to ∞

with p/q.

2.3.3 Cycles of infinite order

Theorem 2.3 implies that for sufficiently large p/q, the cycles ∆p,q,β have large (possibly

infinite) order in the Chow group. Following [128, §4], we show that for large p/q, the cycles

∆p,q,β are non-torsion in the Chow group. This section constitutes the algebraic part of the

argument, where the fields of definition of the cycles play a crucial role.

Proposition 2.9. For all r ≥ 0, there exists a non-negative integer Mr with the property

that if ∆ ∈ 〈{∆p,q,β}〉 ⊂ CHr+1(Xr)0(H̄) is such that the order of AJC(∆) in Jr+1(Xr/C)

does not divide Mr, then ∆ has infinite order in CHr+1(Xr)0(H̄).
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Before proving this proposition, we deduce the following two corollaries.

Corollary 2.1. For p/q sufficiently large, ∆p,q,β has infinite order in the Chow group.

Proof. It suffices to combine Lemma 2.4 and Proposition 2.9.

Corollary 2.2. Fix a rational prime q congruent to 1 modulo N . There exist infinitely many

rational primes p congruent to 1 modulo N such that the cycle ∆p,q,β − ∆p,q,γ has infinite

order in the Chow group when β 6= γ.

Proof. Let f be a normalised cuspidal eigenform and consider Bβ = γβ · e2πiXβ ·Aβ of (2.71)

defined in the proof of Lemma 2.4 for all β ∈ P1(Fq). If β = ∞, then γ 6= ∞ and a

comparison of integrals reveals that

∣∣∣∣B∞Bγ

∣∣∣∣ ≤ e−π
p
q

(q2−1)
√
dKq2(j+1)−r

from which we deduce that B∞/Bγ tends to zero as p/q tends to ∞. In particular, B∞ and

Bγ are not asymptotically equivalent as p/q →∞ and it follows that for infinitely many p/q,

AJC(∆p,q,∞)(ωf ∧ ωjAη
r−j
A ) 6= AJC(∆p,q,γ)(ωf ∧ ωjAη

r−j
A ) (2.74)

since asymptotic equivalence is an equivalence relation. Moreover, we have

lim
p/q→∞

AJC(∆p,q,∞ −∆p,q,γ) = 0. (2.75)

Suppose now that β, γ 6=∞ and observe that Bβ = e2πi p
q

(β−γ)Bγ, so the complex argument

of the ratio Bβ/Bγ is greater in absolute value than 2π/q for all p. In particular, Bβ and

Bγ are not asymptotically equivalent as p tends to ∞ and thus for infinitely many rational

primes p congruent to 1 modulo N ,

AJC(∆p,q,β)(ωf ∧ ωjAη
r−j
A ) 6= AJC(∆p,q,γ)(ωf ∧ ωjAη

r−j
A ). (2.76)
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Moreover, we have limp/q→∞AJC(∆p,q,β −∆p,q,γ) = 0.

Hence, by taking p sufficiently large, we can ensure that the order of AJC(∆p,q,β −∆p,q,γ)

in Jr+1(Xr/C) is greater than Mr and thus, by Proposition 2.9, ∆p,q,β−∆p,q,γ is non-torsion

in CHr+1(Xr)0(H̄).

We now turn to the proof of Proposition 2.9. For any rational prime `, Bloch [27] has

defined a map of Galois modules

λ` := λr+1
` : CHr+1(Xr)(H̄)(`)−→H2r+1

et (X̄r,Q`/Z`(r + 1)) (2.77)

where CHr+1(Xr)(H̄)(`) denotes the `-power torsion subgroup. The construction of this map

was reviewed in Section 1.5.2 along with its salient properties. Recall in particular the short

exact sequence (1.70)

0−→Jr+1(Xr/C)tors
u−→H2r+1(Xr(C),Q/Z)−→H2r+2(Xr(C),Z)tors−→0, (2.78)

which identifies Jr+1(Xr/C)tors up to a finite group with H2r+1(Xr(C),Q/Z).

Summing over all primes ` yields a map of Galois modules

λ : CHr+1(Xr)(H̄)tors−→H2r+1
et (X̄r,Q/Z(r + 1)) (2.79)

which, by Proposition 1.20, fits into a commutative diagram

CHr+1(Xr)0(H̄)tors H2r+1
et (X̄r,Q/Z(r + 1))

CHr+1(Xr)0(C)tors H2r+1(Xr(C),Q/Z),

λ

σ∗ (1.73)o

u◦AJC

(2.80)

where σ : H̄ ↪→ C denotes the fixed embedding.
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Lemma 2.5. For all r ≥ 0, there exists a non-negative integer Mr that annihilates the group

H2r+1
et (X̄r,Q/Z(r + 1))GFn

for any square-free positive integer n coprime to N , where Fn = KN ·Hn.

Proof. We refer to Section 1.3 for the various notations and tools from class field theory used

in this proof. Let us fix two distinct rational primes q1 and q2 which are inert in K and satisfy

(2N, q1q2) = 1 with the property that there exist two primes q1 and q2 in H which lie above

q1 and q2 respectively such that Xr has good reduction at q1 and q2. See [12, Appendix].

Let s1 and s2 denote the residual degrees of q1 and q2 in KN/H respectively. By Corollary

1.2, the residual degrees of q1 and q2 in Fn/H are again equal to s1 and s2 respectively. In

particular, these residual degrees are independent of n. Let H∞ denote the compositum of

all ring class fields of K of square-free conductor coprime to N and define F∞ = KN ·H∞. It

follows from the above that the residual degrees of q1 and q2 in F∞/H are equal to s1 and s2,

respectively. We fix q∞1 and q∞2 two primes of F∞ above q1 and q2 respectively, and let D1

and D2 denote the decomposition groups in GF∞ of a prime above q∞1 and q∞2 , respectively.

Let ` be a rational prime and pick i ∈ {1, 2} such that ` 6= qi. Because of the assumption

of good reduction, the inertia group Ii ⊂ Di acts trivially on H2r+1
et (X̄r,Q`/Z`(r + 1)) and

we have, by [117, VI Corollary 4.2],

H2r+1
et (X̄r, µ

⊗(r+1)
`ν )Di ' H2r+1

et (Xr,F̄qi
, µ
⊗(r+1)
`ν )

GF
q
si
i (2.81)

for all ν. Taking direct limits, we obtain an isomorphism

H2r+1
et (X̄r,Q`/Z`(r + 1))Di ' H2r+1

et (Xr,F̄qi
,Q`/Z`(r + 1))

GF
q
si
i . (2.82)
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From the long exact sequence in `-adic cohomology associated to the short exact sequence

0−→Z`(r + 1)−→Q`(r + 1)−→Q`/Z`(r + 1)−→0 (2.83)

we obtain a short exact sequence

0−→
H2r+1

et (Xr,F̄qi
,Q`(r + 1))

Im(H2r+1
et (Xr,F̄qi

,Z`(r + 1)))
−→H2r+1

et (Xr,F̄qi
,Q`/Z`(r + 1))

−→H2r+2
et (Xr,F̄qi

,Z`(r + 1))tors−→0. (2.84)

Consequently, the order of H2r+1
et (Xr,F̄qi

,Q`/Z`(r+ 1))
GF

q
si
i is bounded by the product of

|H2r+2
et (Xr,F̄qi

,Z`(r + 1))tors| and

∣∣∣∣∣∣
(

H2r+1
et (Xr,F̄qi

,Q`(r + 1))

Im(H2r+1
et (Xr,F̄qi

,Z`(r + 1)))

)GF
q
si
i

∣∣∣∣∣∣ .
We claim that both these quantities are finite, and equal to 1 for all but finitely many `.

On the one hand, we have a sequence of isomorphisms

H2r+2
et (Xr,F̄qi

,Z`(r + 1)) ' H2r+2
et (Xr,H̄qi

,Z`(r + 1))

' H2r+2
et (X̄r,Z`(r + 1)) ' H2r+2(Xr(C),Z)(r + 1)⊗ Z`

where Hqi denotes the completion of H at qi. The first isomorphism is obtained from [117, VI

Corollary 4.2] by taking inverse limits. For the second one, we fix an embedding H̄ ↪→ Hqi ,

apply [117, VI Corollary 4.3] and take inverse limits. The last one is a consequence of [117, III

Theorem 3.12] and taking inverse limits. Since H2r+2(Xr(C),Z) is finitely generated, its

torsion subgroup is finite and thus the torsion subgroup of H2r+2(Xr(C),Z)(r + 1) ⊗ Z` is

trivial for all but finitely many `.
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On the other hand, we have

∣∣∣∣∣∣
(

H2r+1
et (Xr,F̄qi

,Q`(r + 1))

Im(H2r+1
et (Xr,F̄qi

,Z`(r + 1)))

)GF
q
si
i

∣∣∣∣∣∣
=

∣∣∣∣∣ker

(
1− Frobq∞i

∣∣ H2r+1
et (Xr,F̄qi

,Q`(r + 1))

Im(H2r+1
et (Xr,F̄qi

,Z`(r + 1)))

)∣∣∣∣∣ (2.85)

which is equal to the `-part of

| det(1− Frobq∞i

∣∣ Im(H2r+1
et (Xr,F̄qi

,Z`(r + 1))))|. (2.86)

By the Weil conjectures as proved by Deligne [57], the quantity (2.86) does not depend on

`. In particular, (2.85) is equal to 1 for all but finitely many `.

We conclude that the order of H2r+1
et (X̄r,Q`/Z`(r + 1))GF∞ is finite and equal to 1 for

almost all `. Hence H2r+1
et (X̄r,Q/Z(r + 1))GF∞ is finite and we may define

Mr := |H2r+1
et (X̄r,Q/Z(r + 1))GF∞ |. (2.87)

Then Mr annihilates H2r+1
et (X̄r,Q`/Z`(r + 1))GFn for all square-free n coprime to N .

We are now in a good position to prove Proposition 2.9. We will do so by proving the

contrapositive of the statement.

Proof of Proposition 2.9. LetMr be the non-negative integer of Lemma 2.5 defined in (2.87).

The cycle ∆ is defined over the field Fn = KN · Hn for some square-free integer n coprime

to N by Proposition 2.8. Suppose that ∆ is a torsion element of the group CHr+1(Xr)0(H̄).

Using the Galois equivariance of the Bloch map of Proposition 1.14, Lemma 2.5 implies that

the order, say m, of λ(∆) must divide Mr. By compatibility of the Bloch map with the

complex Abel–Jacobi map (2.80), we have λ(∆) = u ◦ AJC(∆), where u is the map defined

in (2.78). Thus u(mAJC(∆)) = 0 and by injectivity of u, we deduce that mAJC(∆) = 0.
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Hence the order of AJC(∆) divides m and in particular divides Mr.

2.3.4 Infinite rank

In this section we prove the following result, which directly implies the part of Theorem 2.2

concerned with the Chow group of Xr.

Theorem 2.4. The subgroup of CHr+1(Xr)0(H̄) generated by the generalised Heegner cycles

∆p,q,β (for p, q distinct odd primes congruent to 1 modulo N and β ∈ P1(Fq)) has infinite

rank.

Let q be a rational odd prime q congruent to 1 modulo N which remains inert in K.

There are q + 1 distinct isogenies ϕq,β : A−→Aq,β of degree q with β ∈ P1(Fq) attached to

the following lattices Λq,β containing OK with index q:

Λq,∞ := Z
1

q
⊕ Zτ, Λq,β := Z⊕ Z

τ + β

q
, for 0 ≤ β ≤ q − 1.

The theory of complex multiplication, see Theorem 1.2, implies that the elliptic curves Aq,β,

as well as the isogenies ϕq,β, can be taken to be rational over Hq, the ring class field of K of

conductor q. As q is assumed to be inert in K, the extension Hq/H is cyclic of degree q+1, as

remarked in (1.37). We let σq denote a fixed generator of its Galois group Gq = Gal(Hq/H).

As we will see, the proof of Theorem 2.4 exploits the action of the Galois group GH on

generalised Heegner cycles. The understanding of this Galois action rests on the following

intermediate result.

Lemma 2.6. The Galois group Gq = Gal(Hq/H) acts simply transitively on the set of

isogenies {ϕq,β}β∈P1(Fq).

Proof. Recall the analytic isomorphism ξ : C/OK ' A(C) fixed in Notation 2.1. Define, for
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all β ∈ P1(Fq), the point

tq,β :=


ξ((τ + β)/q), if β 6=∞

ξ(1/q), if β =∞

of A(C) and note that ker(ϕq,β) = 〈tq,β〉.

For any σ ∈ Aut(C/H), observe that Aσ = A and σ|Kab = (s|K) is the Artin symbol

for an idele s of K, which is a unit at all finite places by the idelic description of the ideal

class group and the idelic formulation of class field theory. In particular, for any σ ∈ Gq and

any idele s of K with σ = (s|K)|Hq and sv ∈ O×K,v for all v - ∞, there is a unique analytic

isomorphism ξσ : C/OK ' A(C) such that the diagram

K/OK A

K/OK A

ξ

s−1 σ

ξσ

(2.88)

commutes, according to Shimura’s formulation of the main theorem of complex multiplication

[136, Theorem 5.4]. Observe that ξσ = ξ ◦ ασ for some ασ ∈ O×K = {±1} (recall the

assumption dK 6= 3, 4), as σ ∈ AutH(A) = O×K . Note that ker(ϕq,β) is a subgroup of the

q-torsion group of A, and we may thus restrict the focus to the q-torsion subgroup of K/OK ,

namely q−1OK,q/OK,q.

Since (s|K)|Hq is an element of Gq, the fractional ideal (s−1) associated to s−1 belongs

to the group (IK(q) ∩ PK)/PK,Z(q) described in Section 1.3.1. This group is isomorphic to

the quotient (OK/qOK)×/(Z/qZ)× and acts on Fq-lines in q−1OK,q/OK,q ' OK,q/qOK,q by

multiplication. In particular, we see that s−1 permutes the Fq-lines in q−1OK,q/OK,q without

preserving any of them. We conclude from (2.88) that σ permutes the kernels 〈tq,β〉 without

preserving any of them. In other words, the action of Gq on the set of q+ 1 isogenies ϕq,β is

simply transitive.
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Proof of Theorem 2.4. Let ` be an arbitrary odd rational prime which does not divide dKN .

Fix a rational odd prime q congruent to 1 modulo N , which remains inert in K and such

that ` divides the degree of Hq/H, i.e., q + 1 ≡ 0 mod `.

Let p be a rational prime congruent to 1 modulo N and distinct from q. The isogeny

ϕp,q,β of (2.64) corresponds to the subgroup 〈ξ(1/p), tq,β〉 of A(H̄), which is defined over Hpq.

Because p and q are distinct, we have Hpq = Hp ·Hq and Hp ∩Hq = H by Proposition 1.7,

and the natural restriction map induces an isomorphism

Gal(Hpq/Hp) ' Gal(Hq/H). (2.89)

Recall from Proposition 2.8 that ∆p,q,β is defined over Fpq = KN · Hpq and since the inter-

section KN ∩Hpq is H, as explained in the proof of Corollary 1.2, we have an isomorphism

induced by restriction

Gal(Fpq/KN) ' Gal(Hpq/H). (2.90)

Consider the cyclic subgroup of Gal(Hq/H) of order ` which exists because of the as-

sumption q + 1 ≡ 0 mod `. Let G` denote the image of this group in Gal(Fpq/KN) under

the above isomorphisms (2.89) and (2.90), and let σ` be a generator of G`. Consider the

homomorphism of Q-vector spaces

ψ : Q[G`]−→CHr+1(Xr)0(H̄)⊗Q, (2.91)

which to σ ∈ G` associates σ(∆p,q,β). Note that the kernel of ψ is stable under multiplication

by Q[G`], hence ker(ψ) is an ideal of Q[G`]. But Q[G`] has a very simple structure; it is

isomorphic to the product of two fields, namely Q and Q(ζ`), where ζ` is a primitive `-th

root of unity. Indeed, the map

Q[G`]−→Q×Q(ζ`),
`−1∑
i=0

λiσ
i
` 7→

(
`−1∑
i=0

λi,

`−1∑
i=0

λiζ
i
`

)
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is an isomorphism of rings. There are exactly two proper ideals of Q × Q(ζ`), namely

{0} ×Q(ζ`) and Q× {0}, which correspond respectively to the augmentation ideal and the

ideal Q ·N of Q[G`], where N =
∑`−1

i=0 σ
i
`.

By Corollary 2.1, we may assume, by taking p large enough, that ∆p,q,β is non-torsion in

the Chow group. In other words ψ(1) 6= 0 and therefore ker(ψ) is not equal to all of Q[G`].

Because the action of Gal(Hq/H) on the set of q-isogenies of A is simply transitive by

Lemma 2.6, we see that (ϕq,β, Aq,β)σ` = (ϕq,γ, Aq,γ) in Isog(A) for some γ 6= β in P1(Fq).

Since σ` fixes Hp it must fix the subgroup 〈ξ(1/p)〉 of A(H̄), and consequently

(ϕp,q,β, Ap,q,β)σ` = (ϕp,q,γ , Ap,q,γ) (2.92)

in Isog(A). It follows that σ`(∆p,q,β) = ∆p,q,γ in CHr+1(Xr)0(H̄), i.e., ψ(σ`) = ∆p,q,γ .

By Corollary 2.2, we may choose p such that ∆p,q,β −∆p,q,γ is non-torsion in the Chow

group. In other words, ψ(σ`−1) 6= 0 and thus ker(ψ) is not equal to the augmentation ideal.

We conclude that the kernel of ψ is either trivial or equal to Q ·N . In any case, we have

dimQ Q[G`]/ ker(ψ) ≥ `− 1 (2.93)

and we have thus constructed a subgroup of the Chow group of rank greater or equal to

`− 1. Since ` was chosen arbitrarily, this proves the theorem.

2.3.5 The Griffiths group of Xr

By Theorem 2.3, we know that many of the generalised Heegner cycles have large (possibly

infinite) order in the Griffiths group, at least when r ≥ 1. In the proof of this theorem, we

were able to extract information concerning the Griffiths group by studying the transcen-

dental Abel–Jacobi map (2.73), a modified version of the complex Abel–Jacobi map which

enjoys the property that it factors through Grr+1(Xr)(C). If we wish to apply the algebraic

arguments of Section 2.3.3 in order to show that many of the cycles have infinite order in the
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Griffiths group, we need a modified version of Bloch’s map λ of Galois modules (2.79) which

factors through Grr+1(Xr)(H̄). To this end, we introduce an algebraic projector which we

compose with λ.

We use the same conventions and notations for motives as in [58, §0], see also Section

1.4.2. Given two nonsingular varieties X and Y , we define the rings of correspondences

Corr0(X, Y ) := CHdim(X)(X × Y ) and Corr0(X, Y )E := Corr0(X, Y )⊗ E,

if E is a number field, as in Section 1.4.2.

Proposition 2.10. For all r ≥ 2, there exists an idempotent element PXr in Corr0(Xr, Xr)Q

with the following properties:

1. The map

CHr+1(Xr)0(C)
AJC−→Jr+1(Xr/C)

(PXr )∗−→ J(N)

factors through Grr+1(Xr)(C), where J(N) denotes the intermediate Jacobian associ-

ated to the Betti realisation of the Chow motive N := (Xr, PXr , r + 1) over H with

coefficients in Q.

2. The map of Galois modules

CHr+1(Xr)0(H̄)tors
λ−→H2r+1

et (X̄r,Q/Z(r + 1))
(PXr )∗−→ H2r+1

et (X̄r,Q/Z(r + 1))

factors through Grr+1(Xr)(H̄)tors, and thus induces a map of Galois modules

(PXr)∗ ◦ λ : Grr+1(Xr)(H̄)tors−→H2r+1
et (X̄r,Q/Z(r + 1)).

We begin with the construction of the projector PXr and assume from now on that r ≥ 2.

Write [x] for x ∈ K viewed as an element of EndH(A) ⊗ Q. The identification of K with

EndH(A) ⊗ Q is normalised such that [x]∗ωA = xωA for all x ∈ K. We shall consider the
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following idempotents of EndH(A)⊗K:

e =

√
−dK + [

√
−dK ]

2
√
−dK

and ē =

√
−dK − [

√
−dK ]

2
√
−dK

and view them as elements of Corr0(A,A)K by taking their graphs. For all 0 ≤ j ≤ r, we

define the idempotent

e(j) :=
∑

I⊂{1,...,r}
|I|=j

e1,I ⊗ . . .⊗ er,I ∈ Corr0(Ar, Ar)K ,

where ei,I := e or ē depending on whether i ∈ I or i 6∈ I.

Consider the Chow motive M := (Ar, er, 0) over H with coefficients in Q where

er :=

( ∑
0<j<r

e(j)

)
◦
(

1− [−1]

2

)⊗r
∈ Corr0(Ar, Ar)Q.

The Betti realisation MB of this motive is a Hodge structure of weight r. We have MB(C) =

erH
r
dR(Ar) and its Hodge decomposition is given by

Hj,r−j(MB(C)) =


Hj,r−j(Ar) for 0 < j < r

0 for j = 0 or j = r.

(2.94)

We will use the same notation for er and its pull-back to Corr0(Xr, Xr)Q and define

PXr := er ◦ εXr ∈ Corr0(Xr, Xr)Q, (2.95)

which is an idempotent in the ring of correspondences of Xr with coefficients in Q since er

and εXr commute.

Remark 2.11. As in Remark 2.2, we will assume throughout that the projector PXr has

been multiplied by a suitable integer so that it lies in Corr0(Xr, Xr).
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The correspondence PXr induces morphisms (PXr)∗ = (pr2)∗ ◦ (·PXr) ◦ (pr1)∗ between

Chow groups, cohomology groups and intermediate Jacobians and acts as a projector on

these various objects.

The map of intermediate Jacobians

(PXr)∗ : Jr+1(Xr/C)−→Jr+1(Xr/C) (2.96)

is induced from the map on singular cohomology

(PXr)∗ : H2r+1(Xr(C),Z)−→H2r+1(Xr(C),Z) (2.97)

which makes sense since the latter is a morphism of Hodge structures of bidegree (0, 0)

by [147, Lemma 11.41], and thus maps Filr+1 H2r+1
dR (Xr/C) into itself.

We will henceforth work with the Chow motive N := (Xr, PXr , r + 1) over H with

coefficients in Q. Its Betti realisation NB = (PXr)∗(H
2r+1(Xr(C),Z))(r + 1) is a Hodge

structure of weight −1 and the 0-th step of its Hodge filtration is given by

Fil0 NB(C) = (PXr)∗ Filr+1 H2r+1
dR (Xr/C)

= Sr+2(Γ1(N))⊗

(
r−1⊕
j=1

CωjAη
r−j
A

)
⊂

r−1⊕
j=1

Hr+1+j,r−j(Xr).
(2.98)

We note that H0,−1(NB(C)) = Hr,−(r+1)(NB(C)) = 0 and in particular we have the crucial

property

(PXr)∗(H
r+1,r(Xr)⊕Hr,r+1(Xr)) = 0. (2.99)

Associated to the Hodge structure NB is a complex torus

J(N) := NB(C)/(Fil0(NB(C))⊕NB)

which is the image of the projection (2.96). By (2.98) and Poincaré duality, we have an
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isomorphism of complex tori

J(N) '

(
Sr+2(Γ1(N))⊗

(⊕r−1
j=1 Cω

j
Aη

r−j
A

))∨
Π′r,r

, (2.100)

where the lattice Π′r,r is defined by

Π′r,r := (PXr)∗(ImH2r+1(Xr(C),Z)). (2.101)

Proof of Proposition 2.10. Recall from (2.72) that Jr+1(Xr/C)alg = Jr+1(V ) where V is the

largest sub-Hodge structure of Hr+1,r(Xr) ⊕ Hr,r+1(Xr) and the image of CHr+1(Xr)alg(C)

under AJC is a complex subtorus of Jr+1(Xr/C) which is contained in Jr+1(Xr/C)alg. The

morphism of tori (PXr)∗ : Jr+1(Xr/C)−→J(N) is induced from the morphism of Hodge

structures (2.97). The latter restricts to a morphism of Hodge structures (PXr)∗ : VZ−→NB

which is the zero map when tensored up to C by (2.99) since VC ⊂ Hr+1,r(Xr)⊕Hr,r+1(Xr).

Hence the induced map (PXr)∗ : Jr+1(V )−→J(N) is the zero map and the first statement of

the proposition follows.

The group CHr+1(Xr)alg(H̄) is divisible since it is generated by images under correspon-

dences of H̄-valued points on Jacobians of curves, by Definition 1.18 of algebraic equivalence.

Therefore we have an exact sequence

0−→CHr+1(Xr)alg(H̄)tors−→CHr+1(Xr)0(H̄)tors−→Grr+1(Xr)(H̄)tors−→0 (2.102)

and in order to prove the second statement of the proposition it suffices to show that the

subgroup CHr+1(Xr)alg(H̄)tors lies in the kernel of (PXr)∗ ◦ λ. Observe from (2.80) that

(PXr)∗ ◦ λ = (PXr)∗ ◦ u ◦ AJC (2.103)

where we use the compatibility of the comparison isomorphism (1.73) with correspondences,
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which follows from the compatibility of the cycle class maps with respect to the comparison

isomorphism. See [94, §5.3]. Note that the maps (2.97) and (2.96) commute with u since

the latter is induced from the former and we therefore have

(PXr)∗ ◦ λ = u ◦ (PXr)∗ ◦ AJC . (2.104)

It follows from statement (1.) that (PXr)∗ ◦ λ(CHr+1(Xr)alg(H̄)tors) = 0.

When r ≥ 2, applying the map (PXr)∗ on Chow groups yields the cycles

Ξp,q,β := (PXr)∗∆p,q,β, (2.105)

whose classes in the Griffiths group will be denoted [Ξp,q,β]. Since the projector PXr is defined

over Q, these cycles and their classes are defined over Fpq by Proposition 2.8.

Proposition 2.11. For all r ≥ 2, the order of [Ξp,q,β] in Grr+1(Xr)(H̄) tends to ∞ as p/q

tends to infinity.

Proof. By functoriality of the complex Abel–Jacobi map [65], we may view AJC(Ξp,q,β) as

an element of J(N). If f ∈ Sr+2(Γ1(N)) is non-zero and 0 < j < r, then

AJC(Ξp,q,β)(ωf ∧ ωjAη
r−j
A ) = AJC(∆p,q,β)(ωf ∧ ωjAη

r−j
A ). (2.106)

As p/q tends to ∞, by Lemma 2.4, AJC(Ξp,q,β) becomes arbitrarily close but not equal to

the origin in J(N). It follows, by Proposition 2.10 (1.), that the order of [Ξp,q,β] tends to ∞

with p/q.

Proposition 2.12. For all r ≥ 2, if Ξ ∈ 〈{Ξp,q,β}〉 ⊂ CHr+1(Xr)0(H̄) is such that the order

of AJC(Ξ) in Jr+1(Xr/C) does not divide Mr, then Ξ has infinite order in Grr+1(Xr)(H̄).

Proof. Suppose that [Ξ] is a torsion element. The cycle Ξ and its class in the Griffiths group

are both defined over the field Fn = KN ·Hn for some square-free integer n coprime to N by
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Proposition 2.8 and we have the identity (PXr)∗Ξ = Ξ. By Proposition 2.10 (2.),

(PXr)∗ ◦ λ([Ξ]) ∈ H2r+1
et (X̄r,Q/Z(r + 1))GFn

and thus by Lemma 2.5, the order, say m, of (PXr)∗ ◦λ([Ξ]) must divide Mr. By (2.104), we

have

(PXr)∗ ◦ λ([Ξ]) = u ◦ (PXr)∗ ◦ AJC([Ξ]) = u ◦ (PXr)∗ ◦ AJC(Ξ).

By functoriality of the complex Abel–Jacobi map with respect to correspondences, see [65],

we obtain

(PXr)∗ ◦ λ([Ξ]) = u(AJC((PXr)∗Ξ)) = u(AJC(Ξ)).

By injectivity of u, the order of AJC(Ξ) must divide m and thus divides Mr.

Proof of Theorem 2.2. Proceeding as in Section 2.3.3, one uses Propositions 2.11 and 2.12

to deduce the analogue statements of Corollaries 2.1 and 2.2 for the Griffiths group and the

classes [Ξp,q,β]. Using these two statements, the same arguments as in Section 2.3.4 apply,

proving that Grr+1(Xr)(H̄) has infinite rank.

Remark 2.12. Applying the construction of the projector PXr in the case r = 1 yields

nothing interesting. In fact, there is no algebraic splitting of the motive X1 into its algebraic

and transcendental components and for this reason we cannot apply the arguments to show

that the Griffiths group is infinitely generated in this case. More precisely, we cannot obtain

Proposition 2.10 (2.) and therefore we fail to obtain Proposition 2.12. As a consequence,

even though we can show that many of the cycles have large order in the Griffiths group, we

are unable to prove that they generate a group of infinite rank.

Remark 2.13. Section 2.4 in [12] exhibits a correspondence from X2r to W2r under which

generalised Heegner cycles are mapped to (rational multiples of) “traditional” Heegner cycles

on Kuga–Sato varieties. While this does not imply directly the analogue of Theorem 2.2 in
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the setting of Kuga–Sato varieties, the methods of this paper can be expected to carry over

to proving the analogues of Theorem 2.1 and Theorem 2.2 in this setting.

Remark 2.14. In [90], Bo-Hae Im exploits Heegner points in an ingenious way to prove that

Mordell–Weil groups over large fields are of infinite rank, where a field is said to be large if

it is of the form Q̄σ, with σ an element of Gal(Q̄/Q). We believe that the techniques used

in the proof [90, Prop. 2.9] can be combined with Theorem 2.2 to show that

dim CHr+1(Xr)0(Q̄σ)⊗Q =∞,

as well as similar statements for the Griffiths group when r ≥ 2.
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Chapter 3

Geometric quadratic Chabauty over

number fields

This chapter is a reformatted version of the preprint article [41] and all results presented

herein are joint with Pavel Čoupek, Luciena Xiao Xiao and Zijian Yao.

It is known by Faltings’ famous proof of Mordell’s conjecture that any smooth, projective,

geometrically irreducible curve of genus greater than one over a number field has only finitely

many rational points. However, this does not allow for the explicit determination of this finite

set, given that Faltings’ proof is not effective. In this chapter we generalise the geometric

quadratic Chabauty method, initiated over Q by Edixhoven and Lido, to higher genus curves

defined over arbitrary number fields. This results in a conditional bound on the number of

rational points on curves that satisfy an additional Chabauty type condition on the rank of

the Jacobian of the curve. The method gives a more direct approach to the generalisation

by Dogra of the quadratic Chabauty method to arbitrary number fields using restriction of

scalars. As such, this work can naturally be viewed as part of the non-abelian Chabauty

program initiated by Kim.
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Introduction

It has been known since Faltings’ proof [68] in 1983 of Mordell’s conjecture [118] that there

are only finitely many rational points on (smooth, proper, geometrically connected) curves

CK of genus g ≥ 2 defined over a number field K. However, Faltings’ proof cannot be made

effective, hence the problem of explicitly determining this set remains open.

The first partial result towards Mordell’s conjecture came in the form of the pioneering

work of Chabauty [35] in 1941. He proved finiteness of the set of rational points under an

additional constraint, known as the Chabauty condition – namely, the rank r of the Mordell–

Weil group of the Jacobian JK of CK is less than g. Let us, for the purpose of exposition,

restrict ourselves to the case K = Q. Upon choosing a prime p of good reduction, Chabauty

considered the following commutative diagram

CQ(Q) CQ(Qp)

JQ(Q) Z JQ(Qp)

(3.1)

where the vertical maps are Abel–Jacobi embeddings based at a fixed point b ∈ CQ(Q),

and Z := JQ(Q) ⊂ JQ(Qp) is the closure of the Mordell–Weil group in the p-adic Lie group

JQ(Qp). Chabauty proved that dimZ ≤ r and thus, under the Chabauty condition r < g,

the dimensions suggest that the intersection CQ(Qp) ∩ Z should be at most 0-dimensional,

thus should be finite. Chabauty proved finiteness of this intersection, and hence also of its

subset CQ(Q). In 1985, Coleman [36] succeeded in making Chabauty’s method effective,

resulting in explicit upper bounds on the number of rational points on curves satisfying the

Chabauty condition. This led to the explicit determination of the set of rational points on

many examples of such curves. The so-called Chabauty–Coleman method is described in

more detail in Sections 0.3.1 and 0.4.2.

In the mid 2000’s, Kim [101, 102] initiated a fascinating program, known as the non-

abelian Chabauty program (or Chabauty–Kim method), which aims to relax the restrictive
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Chabauty condition r < g. The first non-abelian instance of the program is called the

quadratic Chabauty method. It has recently been made effective over Q by Balakrishnan,

Dogra, Müller, Tuitman and Vonk [8], and spectacularly applied to determine the rational

points of the “cursed” curve Xs(13). More details about these developments can be found in

Section 0.3.2.

Recently, Edixhoven and Lido [62] have found a different approach to quadratic Chabauty

over Q. Their method is expected to work under the condition r < g + ρ− 1, known as the

quadratic Chabauty condition, where ρ is the rank of the Néron–Severi group of JQ. It lies

close in spirit to the original method of Chabauty and presents the advantage that it avoids

the (complicated) language of non-abelian p-adic Hodge theory used by Kim. An overview

of their method is described in Section 0.3.3.

A natural question is the generalisation of these methods to arbitrary number fields. In

order to apply the ideas of Chabauty–Coleman, Siksek [138] considered the Weil restriction

ResK/Q(JK) and studied Coleman integration in this context; this gives rise to the Restriction

of Scalars (RoS) Chabauty method. The work of Balakrishnan, Besser, Bianchi and Müller [4]

builds on this idea and studies rational points on hyperelliptic or bielliptic curves satisfying

a more relaxed Chabauty condition compared to [138], see Section 3.3.3; this is the RoS

quadratic Chabauty method. The work of Dogra [60] combines restriction of scalars with

the ideas of Kim, leading to an RoS generalisation of the Chabauty–Kim program. For a

more detailed account of these methods, we refer to Section 0.4.2.

In this chapter, we generalise the Edixhoven–Lido method, also known as the geometric

quadratic Chabauty method, to general number fields. The main theorem is, in rough form,

the following.

Theorem 3.1. Let K be a number field of degree d. Let CK be a smooth, proper, geometri-

cally connected curve of genus g ≥ 2 defined over K with Mordell–Weil rank r = rankZ J(K)

satisfying the condition

r + δ(ρ− 1) ≤ (g + ρ− 2)d, (3.2)
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where δ := rankZO×K and ρ = rankZ NS(JK). Let R := Zp〈z1, ..., zr+δ(ρ−1)〉 be the p-adically

completed polynomial algebra over Zp. There exists an ideal I of R, which is explicitly

computable modulo p, such that if A := (R/I) ⊗ Fp is a finite dimensional Fp-vector space,

then the set of rational points CK(K) is finite and

|CK(K)| ≤ dimFp A.

Remark 3.1. The precise form of this theorem is slightly more involved than what is stated

above. We need to work integrally with a regular proper model C of C over OK , and in order

for the method to work, we need to cover the smooth locus Csm by certain open subschemes

Ui and work with one Ui at a time. Moreover, we work separately on each residue disk at p

of Ui and produce a bound on the size of Ui(OK)u by constructing an ideal Ii,u ⊂ R for each

i and each u ∈ Ui(OK ⊗ Fp). The bound on the size of C(K) is then obtained by summing

the bounds for each i and u. This is made precise in Corollary 3.2.

Remark 3.2. The condition (3.2), which we refer to as the geometric quadratic Chabauty

condition in Definition 3.8, is the “best bound” for explicit quadratic Chabauty methods over

number fields in the literature. See for instance Section 0.4.2 or Section 3.3.3 for comparisons

with other Chabauty bounds that arise in the aforementioned works [4, 60,138].

The strategy, following [62], is to replace the Jacobian in Chabauty’s original approach

(3.1) by something higher dimensional in order to play the Chabauty game. More precisely,

we will construct a certain Gρ−1
m -torsor TK over JK (where ρ is defined in Theorem 3.1)

which will replace JK . This, however, introduces “too many rational points” as the fibre of

TK over JK is Gρ−1
m and Gm(K) = K× is not finitely generated, thus it becomes necessary

to consider a regular proper model C of CK over the ring of integers OK and spread out the

geometry. Consequently, we construct a certain Gρ−1
m -torsor T over J, the latter being the

Néron model of JK . The idea is then to carefully lift the Abel–Jacobi map jb : C → J to
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the torsor T
T

C J.

j̃b

jb

(The exposition here is too crude, as this steps requires the introduction of the subschemes

Ui of Remark 3.1). We then let OK,p := OK ⊗Z Zp and consider the following quadratic

Chabauty diagram (compare with (3.1))

C(OK) C(OK,p)

T(OK) Y T(OK,p).

j̃b j̃b
(3.3)

Here Y := T(OK)
p
is the closure of T(OK) in T(OK,p) for the p-adic topology. The ra-

tional points CK(K) = C(OK) are contained in j̃b(C(OK,p)) ∩Y, which is often finite and

computable.

The key of the approach is thus to analyse the p-adic closure Y of the OK-points of

the torsor T. If K = Q, then this can be done by parametrising the p-adic closure of

J(Z) = J(Q), as Gm(Z) = ±1. This is a major simplification and essentially why [62] decides

to work over Q. In fact, it was suggested to us by the authors of [62] that a restriction of

scalars approach might reduce the case of general number fields K back to the case of Q. In

this work, however, we decide to take a more direct approach which departs from the RoS

arguments of [4, 60, 138]. One of the main observations is that one can in fact fully utilise

the Gm-action on the fibres of the torsor T−→J to parametrise Y, which is sufficient for the

purposes of this work. Roughly, we pick a “Z-coordinate” map Zr → T(OK) essentially by

choosing a basis for the Mordell–Weil group J(K). We then use the Gm-action to propagate

these coordinates to get a “Z-coordinate” map Zδ(ρ−1)+r → T(OK), where δ is as defined in

Theorem 3.1. Finally, interpolating these coordinates p-adically allows us to parametrise Y

via a surjective map

κ : Zδ(ρ−1)+r
p −→ Y,

175



which turns out to be given by convergent p-adic power series. In fact, the ideal I in Theorem

3.1 is built such that the cardinality of Spec(R/I)(Zp) is the size of κ−1(Y ∩ j̃b(C(OK,p))).

In particular, in order for the method to be able to explicitly determine the rational points

on CK , we need to choose a prime p such that


Y ∩ j̃b(C(OK,p)) is finite

κ is “finite-to-one” on κ−1(Y ∩ j̃b(C(OK,p))).

This observation prompts the following question:

Question 3.1. Let p be a prime of good reduction for CK. What conditions are necessary to

guarantee that the intersection Y ∩C(OK,p) as in the commutative diagram (3.3) is finite ?

In Section 3.1 we recall some basic background on the Poincaré torsor, from which we

build the torsor TK over JK mentioned in the overview above. We then spread out the

entire picture from SpecK to SpecOK to obtain a precise version of diagram (3.3). In

Section 3.2 we construct the torsor T. Section 3.3 makes the strategy of geometric quadratic

Chabauty precise and the main technical results of this work are stated. We also explain

how the geometric quadratic Chabauty condition arises and discuss how it specialises to

the condition that appear in the RoS quadratic Chabauty method that is part of Dogra’s

generalisation of Kim’s program. In Section 3.4, which is the technical core of this chapter,

we parametrise the p-adic closure Y of the rational points T(OK) by performing a p-adic

interpolation. Finally, we complete the proof of the main theoretical results in Section 3.5

and discuss Question 3.1 raised above.

3.1 Preliminaries

In this section we recall some background on algebraic geometry necessary for the method

of geometric quadratic Chabauty. In particular, we review the key geometric object studied
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in this chapter, namely the Poincaré torsor along with its biextension structure. We also

explain how to extend this picture to obtain a biextension over SpecOK .

3.1.1 The Poincaré biextension

We recall the definition of the Poincaré bundle and the associated torsor. We then recall

that the Poincaré torsor can be endowed with the structure of a Gm-biextension.

The Poincaré bundle

For details about this section, we refer to [63, Chapter VI]. As in the introduction, we let

CK be a smooth proper geometrically connected curve of genus g ≥ 2 defined over K with

CK(K) 6= ∅. Let JK be its Jacobian, i.e., JK := Pic0
CK/K

is the connected component of the

identity of the Picard scheme PicCK/K ; this is an abelian variety of dimension g defined over

K. We denote its zero section by 0 ∈ JK(K) or e : SpecK−→JK .

Consider the Picard scheme PicJK/K over K defined as the contravariant functor from

K-schemes to the category of abelian groups given by

T 7→ Pic(JK × T )/ pr∗T Pic(T ), (3.4)

where prT : JK × T−→T is the base-change of the structural morphism JK−→ SpecK.

The scheme PicJK/K is a group scheme over K with projective connected components. The

connected component Pic0
JK/K

of the identity is reduced, hence an abelian variety. This is

the dual abelian variety of JK , and we shall denote it by J∨K := Pic0
JK/K

. It comes equipped

with a canonical principal polarisation λ : JK
∼−→J∨K by translating the theta divisor.

The functor described by (3.4) is isomorphic to the functor given by

T 7→ { isomorphism classes of rigidified line bundles (L, α) on JK × T },

where a rigidification of the line bundle L is an isomorphism α : OT
∼−→e∗TL, where the
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section eT : T−→JK × T is the one induced by e. Since this moduli problem is repre-

sentable by PicJK/K , there is a universal rigidified line bundle (PK , ν) on JK × PicJK/K

which satisfies the following universal property: if (L, α) is a rigidified line bundle on JK×T

along the zero section e, then there is a unique morphism g : T−→PicJK/K such that

(L, α) ' (idJK ×g)∗(PK , ν).

Definition 3.1. The restriction of the universal line bundle PK to JK × J∨K along with its

canonical rigidification ν along e is called the Poincaré bundle of JK , and is denoted PK by

slight abuse of notation.

The canonical rigidification of the Poincaré bundle yields an isomorphism

ν : OJ∨K
∼−→PK |{0}×J∨K .

Let 0 ∈ J∨K(K) denote the identity element of the abelian variety J∨K . There is a unique

rigidification

ν ′ : OJK
∼−→PK |JK×{0},

such that ν and ν ′ agree at the origin (0, 0) ∈ (JK × J∨K)(K). As a consequence, (PK , ν, ν
′)

is a birigidified line bundle on JK × J∨K with respect to the identity elements.

The Poincaré torsor

First we recall that, given a line bundle L on an arbitrary scheme X, its associated Gm-torsor

is L× = IsomX(OX , L), which is equipped with a natural free and transitive action of Gm.

Note that L× is Zariski locally trivial. In particular, it is represented by a scheme over X

which we again denote by L× by slight abuse of notation. Concretely, L× is (locally) obtained

by deleting the zero section of L. As Gm-torsors on X are classified by the Čech cohomology

group Ȟ1(X,Gm), the operation L 7→ L× describes a morphism Pic(X)−→Ȟ1(X,Gm), which

is an isomorphism inverse to the canonical isomorphism Ȟ1(X,Gm)−→H1(X,Gm) ' Pic(X);
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in particular, every Gm-torsor on X arises in the way described above, and Pic(X) classifies

isomorphism classes of Gm-torsors on X.

Definition 3.2. The Poincaré torsor P×K is the Gm-torsor on JK × J∨K associated to the

Poincaré bundle PK .

As above, we again denote by P×K the scheme represented by the Poincaré torsor and de-

note by jK : P×K−→JK×J∨K the structural morphism. The torsor P×K inherits the compatible

birigidification over JK × {0} and {0} × J∨K coming from PK .

The Poincaré biextension

In this subsection we explain the biextension structure of the Poincaré torsor that plays a

central role in the rest of this chapter. The assertion is that P×K admits a unique structure

of Gm-biextension of the couple (JK , J
∨
K), which is compatible with its canonical birigidified

Gm-torsor structure inherited from PK . For the proof of this, we refer to [79, VII.Definition

2.1, Exemple 2.9.5]. Instead of repeating the definition from SGA 7, let us briefly explain

what this means.

• Partial composition +1: First, we may view P×K as a scheme over J∨K via the structure

morphism pr2 ◦jK . As such, P×K becomes a commutative J∨K-group scheme which is an

extension of JK,J∨K := JK × J∨K by Gm,J∨K
= Gm × J∨K . In other words, P×K fits into the

following short exact sequence of J∨K-group schemes

1−→Gm,J∨K
−→P×K−→JK,J∨K−→0. (3.5)

To wit, let S be a K-scheme, y ∈ J∨K(S) be an S-point of J∨K , and x1, x2 ∈ JK(S)

be two S-points of JK . Let z1, z2 ∈ P∨K(S) be two S-points lying above (x1, y) and

(x2, y) respectively via the structure map jK . This group structure can be described

as follows. The data of the point z1 (resp. z2) is equivalent to a nowhere vanishing

section α1 ∈ (x1, y)∗PK(S) (resp. α2) of the pullback of the Poincaré bundle. Now,
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as part of the requirement of being a Gm-biextension, we have an isomorphism of line

bundles over OS

(x1, y)∗PK ⊗ (x2, y)∗PK ' (x1 + x2, y)∗PK , (3.6)

(supplied in this case by the theorem of the cube). Under this (canonical) isomorphism,

the tensor product α1⊗α2 corresponds to a nowhere zero section α3 of (x1 +x2, y)∗PK ,

thus producing a point z3 ∈ P×K (S) that lies above the point (x1+x2, y) of JK×J∨K . The

commutativity of P×K as a J∨K-group is clear, as well as the exact sequence displayed

above. We denote by +1 the resulting partial composition law on P×K , which provides

the group structure of P×K over J∨K (but not over K), in other words, it is defined on

couples of points z1, z2 ∈ P×K (S) such that

pr2(jK(z1)) = pr2(jK(z2)).

Let us also denote the group structure on the J∨K-group scheme JK,J∨K by +1 (again

slightly abusing notations), then the partial composition law +1 on P×K satisfies

z1 +1 z2 ∈ P×K (S) 7−→ (x1, y) +1 (x2, y) = (x1 + x2, y) ∈ JK,J∨K (S).

• Partial composition +2: On the other hand, we may view P×K as a JK-scheme via

the structure morphism pr1 ◦jK . As above, this makes P×K into an extension of J∨K,JK

by Gm,JK , which fits into a short exact sequence of commutative JK-group schemes

1−→Gm,JK−→P×K−→J
∨
K,JK
−→0. (3.7)

We denote by +2 the resulting partial composition law on P×K , this time defined on

couples of points z1, z2 ∈ P×K (S) that satisfy

pr1(jK(z1)) = pr1(jK(z2)).
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• Compatibility:

The commutative group scheme extensions (3.5) and (3.7) are compatible in the fol-

lowing sense. Let S be any K-scheme. Let zα, zβ, zγ, zδ ∈ P×K (S) be arbitrary S-points

such that

jK(zα) = (x1, y1), jK(zβ) = (x1, y2), jK(zγ) = (x2, y1), jK(zδ) = (x2, y2)

for some S-points x1, x2 ∈ JK(S) and y1, y2 ∈ J∨K(S). Then

(zα +2 zβ) +1 (zγ +2 zδ) = (zα +1 zγ) +2 (zβ +1 zδ). (3.8)

We summarise this compatibility in the following picture for the convenience of the

reader.

zα

zβ zδ

zγ

x1 x2

y

y2

pr1 ◦ jK

pr2 ◦ jK

JK
J∨K

zα+2zβ zγ+2zδ

zα+1zγ

zβ+1zδ

x1+x2

y1 + y2

Action of Gm

Next, we briefly describe the action of Gm on the Poincaré torsor (or more general biex-

tensions). To this end, we let eJK ∈ HomJK (JK , P
∨
K) (resp. eJ∨K ∈ HomJ∨K

(J∨K , P
×
K )) denote

the identity section of P×K as a JK (resp. J∨K)-group scheme. Restricting the short exact

sequence (3.5) of commutative J∨K-group schemes via the identity section SpecK → J∨K , we

get a short exact sequence of commutative K-group schemes

1 Gm,K P×K |JK×{0} JK 0

eJK
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which is split by the section eJK . In particular, we have P×K |JK×{0} = Gm,JK = Gm,K×JK , and

by a similar reasoning using the identity section eJ∨K , P
×
K |{0}×J∨K = Gm,J∨K

. These canonical

splittings allow for a useful description of the Gm-action on P×K in terms of the partial group

laws +2 and +1. For a (JK × J∨K)-scheme S, consider t ∈ P×K (S) and u ∈ Gm(S) and let

(x, y) be the image of t in (JK × J∨K)(S). Consider a point v = vx,u ∈ P×K (S) lying over

(x, 0), corresponding to (u, 0) under the identification P×K |JK×{0}(S) ' Gm(S)× JK(S). The

action of u on the point t is given by

u · t = v +2 t. (3.9)

The point vx,u does not depend on t, only on x and u. The change of vx,u in the parameter

x is described by the relative group law +1, namely vx1+x2,u = vx1,u +1 vx2,u. Similarly, we

have vx,u1u2 = vx,u1 +2 vx,u2 .

Clearly, instead of using the point (x, 0), one could work with (0, y) and the operation

+1. These two points of view are equivalent by the compatibility between +1 and +2. As

a consequence, the Gm-action commutes with the operations +1 and +2: given two points

a, b ∈ P×K (S) lying over points of the form (x, ∗) in JK × J∨K(S) and u, u′ ∈ Gm(S), we have

(u · a) +2 (u′ · b) = (vx,u +2 a) +2 (vx,u′ +2 b)

= (vx,u +2 vx,u′) +2 (a+2 b)

= (uu′) · (a+2 b),

(3.10)

and similarly for +1.

3.1.2 Spreading out the geometry

As will become apparent, in the method of geometric quadratic Chabauty it is crucial to

spread out the geometry over OK . Roughly speaking, one wants to work with finitely gen-

erated Z-modules, and Gm(OK) = O×K is such a module whereas Gm(K) = K× is not.
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Indeed, if r1 and r2 denote respectively the number of real embeddings and pairs of complex

embeddings of K, then

δ := rankZO×K = r1 + r2 − 1.

Models over OK

Let C denote a regular proper model of CK over OK . Let Csm denote the smooth locus of

C. By properness and regularity, respectively, we have the identifications

CK(K) = C(OK) = Csm(OK).

Let J and J∨ denote respectively the Néron models of JK and J∨K over OK . Denote by J◦

and J∨,◦ the fibrewise connected components of 0 in J and J∨ respectively. The quotient

J∨/J∨,◦ is an étale group scheme over OK with finite fibres.

Suppose that CK(K) is non-empty and let b ∈ CK(K) be a fixed rational point. Such

a choice leads to the Abel–Jacobi map jb : CK ↪→ JK which sends a point x to the linear

equivalence class of the divisor (x)− (b). The map jb extends uniquely to a morphism

jb : Csm−→J

over OK by the Néron Mapping Property, which we shall again denote by jb. Next, we wish

to extend the Poincaré bundle to SpecOK . This is supplied by Grothendieck’s theory of

biextensions.

Proposition 3.1. The Poincaré torsor P×K extends uniquely to a biextension P× of (J,J∨,◦)

by Gm. In particular, given an OK-scheme S and two points (x, y), (x, y′) ∈ J× J∨,◦(S), we

have an isomorphism

(x, y)∗P⊗ (x, y′)∗P ' (x, y + y′)∗P, (3.11)

where P is the line bundle over J× J∨,◦ corresponding to P×.
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Proof. This is [79, VIII. Theorem 7.1(b) and Remark 7.2]. Note that we have restricted to

the connected subscheme J∨,◦ in order to apply the theorem cited above.

We denote the structural morphism of this Gm-torsor by

j : P×−→J× J∨,◦.

The uniqueness of the extension follows from the connectedness of J∨,◦. Let us remark

that the commutative group scheme extension structures and their compatibilities from the

discussion in Section 3.1.1 extend to the integral version P×.

Integral points on the Poincaré torsor

The goal of this subsection is to lift certain integral points on J× J∨,◦ across the structure

map j : P×−→J×J∨,◦. Let (x, y) be an OK-point of J×J∨,◦, and (x, y)∗P× be the pull-back

of P× to OK – which is a Gm,OK -torsor over SpecOK – as shown in the diagram

(x, y)∗P× P×

SpecOK J× J∨,◦.

�
(x,y)

(3.12)

Lifting the point (x, y) toP× amounts to finding a section of the torsor (x, y)∗P× → SpecOK .

Note that, in the case K = Q, all Gm-torsors are trivial over SpecZ and admit a section

over Z, unique up to Gm(Z) = {±1}. Thus a lift of the integral point (x, y) to P× always

exists. In the case of a general number field K, it is not always possible to lift an OK-point

(x, y) of J× J∨,◦ to P× when the class number h of K is non-trivial. However, the previous

argument carries over to OK-points of the form (x, h · y).

Lemma 3.1. Any OK-point of J×J∨,◦ of the form (x, h·y) with (x, y) ∈ J×J∨,◦(OK) admits

a lift to an OK-point of the Poincaré torsor P×. This lift is unique up to multiplication by

an element of O×K.
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Proof. We repeatedly apply the isomorphisms (3.11) and obtain an isomorphism

((x, y)∗P)⊗h ' (x, h · y)∗P

of line bundles over SpecOK . In particular, we know that (x, h·y)∗P× is trivial as a Gm-torsor

over OK , since Pic(OK) has size h.

3.2 Construction of the torsor T

The goal of this section is to construct a certain Gρ−1
m -torsor T over J along with a lift of the

Abel–Jacobi map jb : Csm−→J to it. This is the torsor alluded to in the introduction, and we

recall that ρ denotes the rank of the Néron-Severi group of JK . We begin by constructing the

corresponding torsor TK over JK at the level of generic fibres, and then proceed to spread out

the geometry. Once the torsor T has been defined, we construct the lift of the Abel–Jacobi

map.

3.2.1 Trivialisation of the Poincaré torsor

Let λ : JK
∼−→J∨K be the canonical principal polarisation of Section 3.1.1. By functoriality

of Pic we have the following commutative diagram of commutative K-group schemes with

exact rows:
0 J∨K PicJK/K NSJK/K 0

0 JK PicCK/K ZK 0.

−λ−1o

π

j∗b j∗b,NS

deg

(3.13)

Here NSJK/K denotes the Néron–Severi group scheme of JK , i.e., the étale K-group scheme

of components of the Picard scheme associated to JK . Moreover, we have used the fact that

the map induced by jb on Pic0 agrees with −λ−1, which is in particular an isomorphism.

Next, let Hom(JK , J
∨
K)+ ⊂ Hom(JK , J

∨
K) denote the closed subgroup scheme of self-dual
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homomorphisms. See [63, Proposition 7.14 & §7.18] for representability. There is a map

ϕ : PicJK/K −→Hom(JK , J
∨
K)+

defined by sending the class of a line bundle L to the map ϕL, which maps a closed point

x ∈ JK to [t∗x L ⊗ L−1] where tx : JK−→JK denotes the translation by x. The kernel of ϕ

is equal to Pic0
JK/K

= J∨K and the map ϕ induces an isomorphism of K-group schemes [63,

Corollary 11.3]

ϕ̃ : NSJK/K
∼−→Hom(JK , J

∨
K)+. (3.14)

Definition 3.3. At the level of K-points, we define the group Hom(JK , J
∨
K)+

0 to be the

kernel

Hom(JK , J
∨
K)+

0 := ker
(
j∗b,NS ◦ ϕ̃−1 : Hom(JK , J

∨
K)+ → Z

)
Proposition 3.2. For all f ∈ Hom(JK , J

∨
K)+

0 , there exists a unique element cf ∈ J∨K(K)

with the property that the following Gm-torsor

j∗b (id, tcf ◦f)∗P×K

over CK is trivial. Here (id, tcf ◦f) denotes the map JK
(id,tcf ◦f)

−−−−−→ JK × J∨K. In particular,

for all n ∈ Z≥1, its nth power j∗b (id, n · ◦ tcf ◦f)∗P×K is also trivial.

Proof. At the level of K-points, the diagram (3.13) can be written as follows:

Hom(JK , J
∨
K)+

0

ker(j∗
b,K

) ker(j∗
b,K,NS

)

0 J∨K(K) Pic(JK) NSJK/K(K) 0

0 JK(K) Pic(CK) Z 0.

s1

s2

∼

−λ−1o

π

j∗
b,K

j∗
b,K,NS

deg

(3.15)
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The map π in the first short exact sequence in this diagram admits two splittings when

restricted to Hom(JK , J
∨
K)+

0 , which is viewed as a subgroup of ker(j∗
b,K,NS

) via ϕ̃−1. The first

section

s1 : Hom(JK , J
∨
K)+−→Pic(JK)

is defined by mapping a self-dual homomorphism f defined over K to the isomorphism class

of the Gm-torsor L×f := (id, f)∗P×K on JK , which is an element of Pic(JK) ⊂ Pic(JK). We

observe, by [63, Proposition 11.1], that

ϕ̃ ◦ π ◦ s1(f) = ϕLf = f + f∨ = 2f.

The second splitting is given by inverting π on ker(j∗
b,K

), in other words, by

s2 : Hom(JK , J
∨
K)+

0 ↪→ ker(j∗
b,K,NS

)
π−1

−→ ker(j∗
b,K

) ⊂ Pic(JK).

Again the image of s2 lies in Pic(JK). Now, given f ∈ Hom(JK , J
∨
K)+

0 we define

cf := 2s2(f)− s1(f) ∈ Pic(JK).

As cf ∈ ker(π) we thus have cf ∈ J∨K(K). Now we observe that, for a line bundle L on JK

corresponding to a closed point x ∈ J∨K , we have

(id, f)∗
(

(id× tx)
∗PK

)
' (id, f)∗

(
PK ⊗ pr∗1L

)
' (id, f)∗PK ⊗ L,

where pr1 is the projection JK × J∨K−→JK . Therefore, by construction, cf is the unique

element in J∨K(K) such that

s1(f) + cf = [(id, tcf ◦f)∗P×K ] ∈ ker j∗b .
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This proves the proposition.

The group NSJK/K(K) is a finitely generated free Z-module whose rank is denoted by ρ;

this is the Picard number of JK . The kernel

ker(j∗b,NS : NSJK/K(K)→ Z)

is a free Z-module of rank ρ− 1, and so is the group Hom(JK , J
∨
K)+

0 .

Notation 3.1. We fix the following notations from now on.

• Let f1, . . . , fρ−1 be a basis of Hom(JK , J
∨
K)+

0 .

• For each i = 1, . . . , ρ− 1, let ci := cfi ∈ J∨K(K) be the element corresponding to fi in

Proposition 3.2.

• For each integer n ∈ Z≥1, denote by αn,i,K the map

αn,i,K : JK
(id,n·◦ tci ◦fi)−−−−−−−−→ JK × J∨K .

Definition 3.4. By Proposition 3.2, the pull-back j∗b
(
α∗n,i,KP

×
K

)
is a trivial Gm-torsor over

CK . In particular, it admits a section over CK . This gives rise to a lift of jb, unique up to

K×, which we shall fix and denote by j̃(n,i)
b as in the diagram below:

α∗n,i,KP
×
K P×K

CK JK JK × J∨K .
�

jb

j̃
(n,i)
b

αn,i,K

(3.16)

3.2.2 Definition of T

Let us introduce and recall some notations and refer the rest to Section 3.1.2. Let n be

the product of prime ideals in OK such that C is smooth away from Spec(OK/n). Let

Φ∨ = J∨/J∨,◦ be the group scheme of connected components of J∨. It is trivial outside
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OK/n with finite étale fibres over OK/n. Let m denote the least common multiple of the

exponents of Φ∨(F̄q) over all prime ideals q of OK . Finally, recall that h denotes the class

number of K.

By the Néron Mapping Property, for each i ∈ {1, . . . , ρ− 1}, the maps


fi : JK−→J∨K

tci : J∨K−→J∨K

hm· : J∨K−→J∨K

extend uniquely to


fi : J−→J∨

tci : J∨−→J∨

hm· : J∨−→J∨.

Therefore, the morphism αhm,i,K : JK−→JK × J∨K extends uniquely to a morphism of OK-

schemes

αhm,i = (id, hm · ◦ tci ◦fi) : J−→J× J∨.

The integer m is chosen so that the image of this map lies in J× J∨,◦.

Definition 3.5. Taking the product over i ∈ {1, . . . , ρ− 1}, we obtain the OK-morphism

α = (id, (hm· ◦ tc ◦f)) := (id, (hm· ◦ tci ◦fi)
ρ−1
i=1 ) : J−→J× (J∨,◦)ρ−1

Consider the map P×−→J × J∨,◦−→J defined as the composition of the structure map

j with the first projection. Using this morphism, we form the (ρ− 1)-fold self-product

P×,ρ−1 := P× ×J . . .×J P
×.

We naturally have a morphism P×,ρ−1−→J× (J∨,◦)ρ−1, which endows P×,ρ−1 with the struc-

ture of a Gρ−1
m -torsor over J× (J∨,◦)ρ−1. This leads to the following key construction in the

article.

Definition 3.6. Retain notations from Definition 3.5. We define the Gρ−1
m -torsor T over J
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to be the pull-back of the Gρ−1
m -torsor P×,ρ−1 over J× (J∨,◦)ρ−1 by the map α:

T := P×,ρ−1 ×α J = α∗P×,ρ−1 = (id, hm · ◦ tc1 ◦f1)∗P× ×J . . .×J (id, hm · ◦ tcρ−1 ◦fρ−1)∗P×.

3.2.3 Lifting the Abel–Jacobi map

Now we return to the lifts j̃(hm,i)
b obtained in Definition 3.4. By taking the product over i

of these lifts j̃(hm,i)
b , we obtain a lift j̃b of jb to TK := T ×J JK as pictured in the following

commutative diagram:

TK P×,ρ−1
K

CK JK JK × (J∨,0K )ρ−1

�
jb

j̃b

αK

(3.17)

where αK denotes the base change of the map α to K.

The goal is to extend this diagram over OK . However, lifting the map jb : Csm−→J

to the torsor T is not generally possible: the problem is that, for primes q|n, the fibre

Csm
Fq

:= Csm×SpecOK SpecFq may contain too many components. To remedy this, we consider

one geometrically irreducible component in each such fibre at a time.

Definition 3.7. Let U ⊂ Csm be an open subscheme obtained by removing, for every q|n,

all but one irreducible component of Csm
Fq

that is further geometrically irreducible. We will

later lift the map jb to a map j̃Ub : U−→T for each such open subscheme U.

Remark 3.3. We first remark that such a subscheme U exists under the assumption that

CK admits a K-rational point. Moreover, for the purposes of determining the set of rational

points CK(K) = Csm(OK), it suffices to consider subschemes of the form U as there are

finitely many of them and each point in Csm(OK) lies in exactly one such U. Both remarks

follow from the following simple lemma.

Lemma 3.2. Let X be an irreducible variety over a field k that admits a smooth k-rational
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point. Then X is geometrically irreducible.

Proof. Let A = Γ(U,OX) be the ring of functions on a normal affine open neighborhood U

of the smooth rational point. Then A admits a map A−→k of k-algebras. Letting k′ be

the separable algebraic closure of k in the function field k(X) = Frac(A), as U is normal we

have k′ ⊂ A which forces k′ = k. This is equivalent to X being geometrically irreducible

by [80, Corollaire 4.5.10].

We are finally able to construct the desired lift of jb. The construction is analogous to

that in [62, §2] except that we pull back P× via morphisms of the form

(id, hm· ◦ tc ◦f) : J−→J× J∨,◦,

where in the second factor we incorporate an additional multiplication by h, the class number

of OK , to ensure the existence of such a lift.

Proposition 3.3. Let U be an open subscheme of Csm as in Definition 3.7. There exists a

lift j̃Ub of jb|U to T, unique up to O×,ρ−1
K , which makes the following diagram commute:

T P×,ρ−1

U Csm J J× (J∨,◦)ρ−1.

�
j̃Ub

jb α

(3.18)

Proof. The restriction of the torsor (id,m · ◦ tci ◦fi)∗P× to U gives an element of Pic(U),

whose pull-back to CK equals j∗bα∗m,i,KP
×
K and is trivial by Proposition 3.2. In other words,

the torsor (id,m · ◦ tci ◦fi)∗P×, when restricted to U, gives rise to an element in the kernel

ker(Pic(U)−→Pic(CK)).

Now note that we have an isomorphism of line bundles (corresponding to Gm,J-torsors)

(id, hm · ◦ tci ◦fi)∗P ' ((id,m · ◦ tci ◦fi)∗P)⊗h (3.19)
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using the isomorphism (3.11). By Lemma 3.3 below, we conclude that (id, hm · ◦ tci ◦fi)∗P×

becomes a trivial Gm,U-torsor when restricted to U. Therefore, T pulls back to the trivial

Gρ−1
m,U-torsor over U. In particular, the map jb|U admits a lift to T, which is unique up to

Gρ−1
m (U) = (OU(U)×)ρ−1 = (O×K)ρ−1

again by Lemma 3.3.

The following lemma is used in the proof above.

Lemma 3.3. Let U be an open subscheme of Csm as in Definition 3.7. Then OU(U) = OK

and the kernel of the restriction ker(Pic(U)−→Pic(CK)) is entirely h-torsion. In other

words, for a line bundle L over U that becomes trivial over the generic fibre CK, L⊗h is

trivial over U.

Proof. By construction, U is regular and thus locally factorial, so we do not distinguish

between the class of line bundles and Weil divisors. First let D be a vertical divisor on U;

namely, it does not intersect the generic fibre CK . We claim that hD = 0 in Pic(U). As

every irreducible vertical divisor on U is of the form Up for some prime p of OK , we may

write hD as
∑

p hnpUFp , where np = 0 for almost all p. Clearly D is the image of the divisor∑
p hnpp along the natural map Pic(OK) → Pic(U), which is 0 since Pic(OK) has size h.

Now let D be a general element of Pic(U) (which we view as a Weil divisor on U) that

lies in the kernel ker(Pic(U)−→Pic(CK)). In other words, the restriction of D to CK is a

principal divisor DK = div(f) for some f in the function field of CK . Then div(f) extends

to a principal divisor on U, which differs from D only by a vertical divisor. The lemma thus

follows.

Remark 3.4. When h = 1, the lemma simply says that the restriction Pic(U)−→Pic(CK)

is injective. This map is of course not in general injective when h 6= 1. Indeed, in this case

it suffices to take D = Up ∈ Div(U) where p is a non-principal prime ideal of OK .
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3.3 The main theorem

In this section we state a precise version of the main theoretical results of the chapter. We

also describe the strategy of the geometric method in slightly more detail.

Assumption 3.1. Throughout, we make the following assumption on the prime p.

• The curve CK has good reduction at each prime p1, . . . , ps of K that lies above p.

• Each pi satisfies e(pi/p) < p− 1.

• Finally, p does not divide |O×K,tors|.

Note that the first condition is equivalent to requiring that pi - n for each i ∈ {1, . . . , s} and

that Assumption 3.1 excludes only finitely many primes.

Notation 3.2. We further adopt the following notation:

• Let OK,p := OK⊗Zp be the p-adic completion of OK . This is isomorphic to the product

of the pi-adic completions OK,p1 × . . .×OK,ps .

• Let OK,p denote (OK ⊗ Fp)red, which is isomorphic to the product of the residue fields

Fp1 × . . .× Fps .

• For any OK-scheme X, we have natural identifications


X(OK,p) = XOK,p1

(OK,p1)× . . .×XOK,ps (OK,ps),

X(OK,p) = XFp1
(Fp1)× . . .×XFps

(Fps).

We denote the natural reduction map by

red : X(OK,p)−→X(OK,p).
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• Given a point x ∈ X(OK,p), we denote by X(OK,p)x the set red−1(x), namely the

residue disk in X(OK,p) that reduces to the point x. Likewise, we denote by X(OK)x

the pre-image of X(OK,p)x under the natural inclusion

X(OK) ↪−→ X(OK,p),

which consists of rational points in the residue disk X(OK,p)x.

Remark 3.5. The reason for working with all primes above p simultaneously (instead of

fixing a single prime) is explained in Section 0.4.2 (after the statement of Theorem C).

3.3.1 Revisiting the strategy

Let U be an open subscheme of Csm as in Definition 3.7. Let u be an element in the finite

set U(OK,p), and let

t := j̃Ub (u) ∈ T(OK,p)

be its image in T under the lift j̃Ub : U−→T of Proposition 3.3. Note that Csm(OK) is the

disjoint union of U(OK) for the finitely many choices of U’s (Remark 3.3), and each U(OK)

is the disjoint union of finitely many residue disks U(OK)u. Thus, it suffices to bound the

size of U(OK)u for each U and each point u ∈ U(OK,p).

The key idea of the approach can be represented using the following commutative dia-

gram:
U(OK)u U(OK,p)u

T(OK)t Yt T(OK,p)t

j̃Ub j̃Ub
(3.20)

where the top horizontal arrow is induced by the inclusion OK ↪→ OK,p, while

Yt := T(OK)t
p
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denotes the p-adic completion of T(OK)t in T(OK,p)t. We view U(OK)u (resp. U(OK,p)u)

as a subset of T(OK)t (resp. T(OK,p)t) via the map j̃Ub in the diagram above. In particular,

we have inclusions U(OK)u ↪→ U(OK,p)u ∩Yt. As explained in the introduction, the goal is

to bound the intersection

U(OK,p)u ∩Yt (3.21)

which takes place in the p-adic manifold T(OK,p)t.

Remark 3.6. For this intersection to have a chance to be finite, some conditions must be

imposed in the style of the original Chabauty condition r < g. We will come back to this

point in Section 3.3.3 after stating the main technical result of the paper.

3.3.2 The key technical result

In this subsection we give a description of Yt, which is a crucial step in bounding the

intersection (3.21).

Notation 3.3. We fix the following notations.

• Recall that r := rankZ JK(K) be the Mordell–Weil rank of JK over K.

• We let J(OK)0 denote the subgroup of JK(K) = J(OK) given by the kernel

J(OK)0 := ker
(
red : J(OK)−→J(OK,p)

)
.

• Let q∗ denote the exponent of Gm(OK,p), that is, the least common multiple of

qi − 1 = #Fpi − 1

for i ∈ {1, . . . , s}.

• For each i ∈ {1, . . . , s}, let ki = kpi = epifpi be the Zp rank of OK,pi . Note that the

rank of OK,p as a Zp-module is
∑

pi|p ki = d, where d is the degree of K over Q.
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By Assumption 3.1 on p, we know that for each i ∈ {1, . . . , s}, the reduction map

J(OK)−→J(Fpi) is injective on the torsion points of J(OK) by [99, Appendix]. Hence J(OK)0

is a free Z-module of rank r. The scheme T ×OK SpecOK,p is smooth over OK,p of relative

dimension g + ρ− 1. By choosing a regular system of parameters for the residue disk above

the point t ∈ T(Fp), as well as an isomorphism of Zp-modules OK,p ' Zkpp , we obtain a

homeomorphism

T(OK,p)t ' Z(g+ρ−1)kp
p .

In particular, the dimension of T(OK,p) as a locally analytic p-adic manifold is

(g + ρ− 1)
∑
p|p

kp = (g + ρ− 1)d.

The idea is to parametrise the p-adic closure Yt = T(OK)t
p
using the free Zp-module

(Gρ−1
m (OK)tf × J(OK)0)⊗ Zp.

Here the subscript “tf” stands for the torsion free quotient, i.e., the quotient by the torsion

subgroup. In Section 3.4.1, we will prove the following proposition (for the precise form, see

Proposition 3.7).

Proposition 3.4. Upon fixing a basis for the free Z-module Gρ−1
m (OK)tf × J(OK)0, there

exists a map

E ′ : Zδ(ρ−1)+r−→T(OK,p)t, (3.22)

which can be described using the partial composition laws of Section 3.1.1, and satisfies the

property

E ′(q∗Zδ(ρ−1)+r) ⊂ T(OK)t ⊂ E ′(Zδ(ρ−1)+r). (3.23)

Here q∗ is the integer defined in Notation 3.3.

We then p-adically interpolate the map E ′ to get the following result in Section 3.4.2.
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Theorem 3.2. There is a unique map

κ : (Gρ−1
m (OK)tf × J(OK)0)⊗ Zp −→T(OK,p)t

which makes the diagram

Zδ(ρ−1)+r Gρ−1
m (OK)tf × J(OK)0 T(OK,p)t Z(g+ρ−1)d

p

Zδ(ρ−1)+r
p (Gρ−1

m (OK)tf × J(OK)0)⊗ Zp T(OK,p)t Z(g+ρ−1)d
p

∼ E′ ∼

∼ ∃!κ ∼

commute, such that the composed map in the bottom row is given by a (g + ρ− 1)d-tuple of

convergent power series (κ1, . . . , κ(g+ρ−1)d) with κi ∈ Zp〈z1, . . . , zδ(ρ−1)+r〉.

Corollary 3.1. The image of the map κ is the p-adic closure Yt = T(OK)t
p
.

Proof. Since Zδ(ρ−1)+r
p is compact and κ is continuous, the image of κ is closed in T(OK,p)t.

Since κ extends E ′, the second containment of (3.23) implies that Imκ contains T(OK)t,

thus also contains Yt. On the other hand q∗Zδ(ρ−1)+r is dense in Zδ(ρ−1)+r
p since q∗ is coprime

to p. By continuity of κ, we have

Imκ = E ′
(
q∗Zδ(ρ−1)+r

)
⊂ E ′(q∗Zδ(ρ−1)+r) ⊂ Yt = T(OK)t

p

where the last containment uses the first inclusion of (3.23). This concludes the proof.

Finally, to finish the theoretical component of the geometric quadratic Chabauty method,

we prove the following result in Section 3.5.1. To state this result, we first remark that the

course of the proof of Theorem 3.2 provides us with a certain ideal

IU,u ⊂ Zp〈z1, ..., zδ(ρ−1)+r〉 =: R,

which depends on U and the point u ∈ U(OK,p). See Section 3.5.1 for its construction. The
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more precise form of Theorem 3.1, modulo the construction of the ideal I, is the following:

Theorem 3.3. If AU,u :=
(
R/IU,u

)
⊗ Fp is finite dimensional over Fp, then the number of

rational points in U(OK)u is finite and bounded by

|U(OK)u| ≤ dimFp AU,u.

As discussed in the introduction, we expect this to provide an explicit algorithm to

compute rational points on CK .

3.3.3 Chabauty conditions

We finish this section with the promised discussion on the Chabauty condition.

We retain all notations and assumptions from the previous sections, in particular As-

sumption 3.1 on the prime p. From Section 3.3.2, we know that, for each prime p above p,

the set T(OK,p) is equipped with the structure of a p-adic manifold of dimension (g+ρ−1)kp.

Therefore, T(OK,p) is a (locally analytic) p-adic manifold of dimension

(g + ρ− 1)
∑
p|p

kp = (g + ρ− 1)d.

Now, by Theorem 3.2 and Corollary 3.1, the p-adic manifold Yt = T(OK)t
p
is parametrised

by Zδ(ρ−1)+r
p via the map

Zδ(ρ−1)+r
p

κ−→Yt ↪−→ T(OK,p)t
∼−→Z(g+ρ−1)d

p ,

which is is given by a (g + ρ− 1)d-tuple of elements in R = Zp〈z1, . . . , zδ(ρ−1)+r〉. Therefore,

the dimension of the p-adic manifold Yt is at most

dimYt ≤ δ(ρ− 1) + r.
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Finally, we observe that U(OK,p) has dimension d as a p-adic manifold.

Now back to the original goal. A necessary condition for the intersection U(OK,p)u ∩Yt

in (3.21) to be finite is the following inequality on dimensions of p-adic manifolds:

codimU(OK,p) + codimYt ≥ dimT(OK,p)

where the codimensions are taken with respect to the ambient manifold T(OK,p). By the

discussion above, this is equivalent to requiring

δ(ρ− 1) + r ≤ (g + ρ− 2)d,

which in turn is equivalent to the condition

r ≤ (g − 1)d+ (ρ− 1)(r2 + 1). (3.24)

Definition 3.8. We say that a smooth, projective and geometrically connected curve CK of

genus g ≥ 2 over a number field K satisfies the geometric quadratic Chabauty condition if

the inequality (3.24) holds.

Remark 3.7. The term “geometric” distinguishes condition (3.24) from the other Chabauty

type conditions associated to the various methods discussed in Sections 0.3 and 0.4.2. We

briefly compare these conditions:

• When K = Q, the condition (3.24) becomes

r ≤ g + ρ− 2,

which is the same condition as in the geometric quadratic Chabauty method over Q of

Edixhoven and Lido [62].

• In [138], Siksek extended the classic Chabauty–Coleman method to arbitrary number
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fields using Weil restrictions; this is the Restriction of Scalars (RoS) Chabauty method.

The method is expected to be successful when

r ≤ (g − 1)d. (3.25)

Hence the geometric quadratic Chabauty method is expected to go beyond the RoS

Chabauty method.

• In their recent work [4], Balakrishnan, Besser, Bianchi and Müller extended the method

of quadratic Chabauty to number fields in the case of hyperelliptic or bielliptic curves.

In Section 0.4.2, we referred to this method as the RoS quadratic Chabauty method.

It performs under the relaxed condition (compared to (3.25))

r ≤ (g − 1)d+ r2 + 1.

The geometric Chabauty condition (3.24) agrees with this when ρ is equal to 2, and in

fact generalises this bound for ρ ≥ 2.

• In his recent work [60], Dogra proved that, under an extra condition on JK and K,

a certain “arithmetic quadratic Chabauty condition” implies that the quadratic set

CK(K ⊗ Qp)2 appearing in the method of Chabauty–Kim of Section 0.4.2 is finite.

If one assumes the finiteness of the p-primary part of the Shafarevich–Tate group for

JK , then the aforementioned Chabauty condition of Dogra agrees with the geometric

condition (3.24). See [60, Proposition 1.1 & Remark 1.3] for more details.

3.4 The parametrisation of Yt

We maintain the notations of Section 3.3. The goal of this section is to prove Theorem 3.2,

in other words, to describe the p-adic closure Yt of T(OK)t inside T(OK,p)t.
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3.4.1 Construction of the map E ′

In this subsection we construct the map E ′ of Proposition 3.4.

Notation 3.4. We begin by introducing some notation.

• Fix a basis x1, . . . , xr of J(OK)0 = ker
(
J(OK)−→J(OK,p)

)
. Recall that u is a fixed

OK,p-point of U and t = j̃Ub (u).

• Denote by t̃ any lift of t to an OK-point of the torsor T (assumed to exist, otherwise

U(OK)u = ∅ and we are done) and by xt̃ its image in J(OK).

• Let T(OK)jb(u) be the set of points of T(OK) whose image in J(OK,p) is jb(u).

For the reader’s convenience, we remark that the points defined above and the set T(OK)jb(u)

fit in the following diagrams

t t̃

u jb(u) xt̃

red

jb

j̃Ub

red

T(OK)t ⊂ T(OK)jb(u)

U(OK)u J(OK)jb(u).
jb

j̃Ub

Construction of the map D

The first step is the construction of a map

D : J(OK)0 ' Zr−→T(OK)jb(u)

in terms of the biextension laws. This is similar to the construction in [62, §4]. We carry

out this step in detail and point out differences compared to [62] along the way. As a

starting point, let us choose points Pi,j, Ri, Sj ∈ P×,ρ−1(OK) lifting the following points of
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J× (J∨,◦)ρ−1(OK) :

Pi,j 7−→
(
xi, f(hmxj)

)
=
(
xi, hmf(xj)

)
,

Ri 7−→
(
xi, (hm· ◦ tc ◦f)(xt̃)

)
,

Sj 7−→
(
xt̃, f(hmxj)

)
=
(
xt̃, hmf(xj)

)
.

Here f is given by the functions fi from Notation 3.1. Note that the points to be lifted are

of the form (∗, h · ∗), thus the existence of such lifts is guaranteed by Lemma 3.1. Also note

that unlike the situation of [62], these lifts are no longer defined up to a finite choice as they

are now parametrised by Gρ−1
m (OK).

Given n ∈ Zr, set

A(n) =
∑

2,j
nj ·2 Sj, B(n) =

∑
1,i
ni ·1 Ri, C(n) =

∑
1,i
ni ·1

(∑
2,j
nj ·2 Pi,j

)

(here ·1 and ·2 denote the iteration of the operation +1 and +2, respectively, and similarly

for
∑

1 and
∑

2), so that

A(n) 7−→
(
xt̃,
∑
i

nif(hmxi)
)

=
(
xt̃, hmf

(∑
i

nixi
))
,

B(n) 7−→
(∑

i

nixi, (hm· ◦ tc ◦f)(xt̃)
)
,

C(n) 7−→
(∑

i

nixi,
∑
i

nif(hmxi)
)

=
(∑

i

nixi, hmf
(∑

i

nixi
))
.

Next, set

D(n) =
(
C(n) +2 B(n)

)
+1

(
A(n) +2 t̃

)
.

Thus D(n) is a point lying over the point

(
xn, α(xn)

)
:=

(
xt̃ +

∑
i

nixi,
(
hm· ◦ tc ◦f

)(
xt̃ +

∑
i

nixi

))
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in J× (J∨,◦)ρ−1(OK). To see this, note that the point t̃ ∈ T(OK), when viewed as an point

in P×,ρ−1, lies over the point

(xt̃, (hm· ◦ tc ◦f)(xt̃)).

Construction of the map E

The next step is inspired by a similar construction in [62, §4], though we have to use the

Gm action on the Poincaré torsor in a more crucial way. This is one of the main technical

innovations of this work (compared to [62]). The aim is to extend the map

D : J(OK)0 ' Zr−→T(OK)jb(u)

to a map

E : Gm(OK)ρ−1
tf × J(OK)0 ' Zδ(ρ−1)+r−→T(OK)

by including the Gρ−1
m -action on fibres, that is, by the formula

E(ζ, n) = ζ ·D(n), ∀ζ ∈ Gm(OK)ρ−1
tf

. Here the subscript tf stands for “torsion-free quotient” as before. It will be, however,

important later on that this expression admits a description in terms of +1, +2 and their

iterates ·1, ·2. To make this explicit, we describe this construction as follows.

Notation 3.5. We define the following notation.

• We fix a free basis u1, . . . , uδ of O×K,tf = Gm(OK)tf , viewed as a subgroup of O×K via an

(arbitrary) splitting.

• For each (ρ − 1)-tuple uk,l = (1, . . . , 1, uk, 1, . . . , 1) ∈ Gρ−1
m (OK) where uk sits at the

l-th spot, we denote the corresponding elements in P×|J×0
(OK) above the point (xt̃, 0)

by Vk,l (in the sense of Formula (3.9) but with P× in place of P×K ), and likewise denote

the corresponding element above (xi, 0) by Wk,l,i.
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Definition 3.9. For n ∈ Zr, k ∈ {1, . . . , δ} and l ∈ {1, . . . , ρ− 1}, we define

Uk,l(n) := Vk,l +1

∑
1,i

ni ·1 Wk,l,i,

so that Uk,l(n) is the element representing multiplication by uk,l and lying above the point

(xt̃ +
∑
i

nixi, 0).

Finally, for a (ρ− 1)-tuple of δ-tuples of integers m = (mk,l) 1≤k≤δ
1≤l≤ρ−1

∈ Zδ(ρ−1), the map E is

defined by the formula

E(m,n) =
(∑

2,k,l
mk,l ·2 Uk,l(n)

)
+2 D(n).

In particular, E(m,n) defines a point in T(OK).

One easily checks that E(m,n) lies over the same point

(
xn, α(xn)

)
∈ J× J∨,◦(OK)

as D(n) does. After all, the parameters m just encode part of the Gρ−1
m -action on the fibres

as was previously indicated. Passing from OK to OK,p, the contribution of the xi’s vanishes

and the point becomes

(jb(u), (hm· ◦ tc ◦f)(jb(u))).

In other words, we have

E(m,n) ∈ T(OK)jb(u).
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Proposition 3.5. The map

O×,ρ−1
K,tors × Zδ(ρ−1)+r −→ T(OK)jb(u)

(ε,m, n) 7−→ ε · E(m,n)

(where the subscript tors stands for “torsion part”) is bijective.

Proof. This is immediate after tracking the definitions. As n ∈ Zr varies, xn = xt̃ +
∑

i nixi

runs over all the points of J(OK) that reduce to jb(u), and D(n) provides a single point

in T(OK)jb(u) lying above xn (in particular, n 7→ D(n) is injective). To get all the points

of T(OK)jb(u), one needs to move these around by the (simply transitive) Gρ−1
m (OK)-action.

Since E(m,n) = ζ(m) ·D(n) accounts for the torsion-free part of the action by the discussion

above, what is left is the torsion part, hence the factor O×,ρ−1
K,tors .

Construction of the map E ′

For the purpose of computing rational points, we wish to parametrise T(OK)t instead of all

of T(OK)jb(u). In this subsection, we modify the map E to obtain a map E ′ that additionally

lands in the correct residue disk, i.e., so that E ′(m,n) reduces to t in T(OK,p) for all (m,n) ∈

Zδ(ρ−1)+r. The starting point is the following observation, which asserts that this is already

satisfied by E on a certain finite-index subgroup of Zδ(ρ−1)+r.

Proposition 3.6. Let q∗ be the exponent of Gm(OK,p), that is, the least common multiple

of qi − 1 = #Fpi − 1 for i = 1, 2, . . . , s. Then

E(q∗m, q∗n) ∈ T(OK)t, ∀(m,n) ∈ Zδ(ρ−1)+r.

Proof. We need to show that E(q∗m, q∗n) reduces to the point t in T(OK,p). To that end,

we consider the elements

A(q∗n), B(q∗n), C(q∗n), Uk,l(q
∗n)
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lying in the fibres of the OK,p
×,ρ−1-torsor P×,ρ−1(OK,p) above the points

(jb(u), 0), (0, (hm· ◦ tc ◦f)(jb(u))), (0, 0), (jb(u), 0),

respectively. The OK,p
×,ρ−1-torsors obtained from P×,ρ−1 by taking the fibres over each of

these points in J×J∨,◦(OK,p) are all trivial since at least one coordinate is zero in each case.

See Section 3.1.1. That is, they are groups isomorphic to OK,p
×,ρ−1 whose group operation

is given by +2 in the cases of A and the Uk,l’s, by +1 in the case of B, and by either of the

two operations in the case of C (since +1 and +2 agree above the point (0, 0)). By linearity

of their definitions, we obtain

A(q∗n) = q∗ ·2 A(n) = 1, B(q∗n) = q∗ ·1 B(n) = 1, Uk,l(q
∗n) = q∗ ·2 Uk,l(n) = 1

as elements of OK,p
×,ρ−1

. Finally, for C we have

C(q∗n) = q∗ ·1
(∑

1,i
ni ·1

(∑
2,j
q∗nj ·2 Pi,j

))
= 1.

Putting these together, we obtain

D(q∗n) = (1 +2 1) +1 (1 +2 t) = t

(note the clash of additive and multiplicative notations). Therefore, we have

E(q∗m, q∗n) = q∗ ·2
(∑

2,k,l
mk,l ·2 Uk,l(q∗n)

)
+2 D(q∗n) = 1 +2 t = t .

This verifies the claim.

In fact, to get the desired map Zδ(ρ−1)+r−→T(OK)t, which agrees with E on the subgroup

q∗Zδ(ρ−1)+r, is strictly speaking not possible. However, we can still obtain a map E ′ on the

entire group Zδ(ρ−1)+r that agrees with E on the subgroup q∗Zδ(ρ−1)+r at the cost of allowing
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p-adic coefficient. We prove the following more precise version of Proposition 3.4.

Proposition 3.7. There exists a map

E ′ = E ′(m,n) : Zδ(ρ−1)+r −→ T(OK,p)t

with the following properties:

1. E ′(m,n) can be described using the partial group laws +1, +2 of P×,ρ−1(OK,p), and

its iterates ·1, ·2, after a choice of finitely many points; more precisely, it is built from

analogous terms A′(n), B′(n), C ′(n) and U ′k,l(n) as in the description of E(m,n).

2. For each (m,n) ∈ Zδ(ρ−1)+r, there is a unique (ρ−1)-tuple of roots of unity of prime-to-

p orders ξ(m,n) ∈ O×,ρ−1
K,p such that ξ(m,n) ·E(m,n) ∈ T(OK,p)t, and we additionally

have

E ′(m,n) = ξ(m,n) · E(m,n).

Proof. Note that there is a unique multiplicative lift of units

ι : OK,p
×

= F×p1
× · · · × F×ps ↪−→ O

×
K,p1
× · · · × O×K,ps = O×K,p

right inverse to the reduction map, mapping precisely onto the prime-to-p part of the roots

of unity in OK,p. Denote also by ι the induced map Gρ−1
m (OK,p)−→Gρ−1

m (OK,p).

Since the action of Gρ−1
m (OK,p) on T(OK,p)jb(u)(= fibre of T(OK,p) containing t) is simply

transitive, it follows that each ι(Gρ−1
m (OK,p))-orbit of T(OK,p)jb(u) contains a unique point

from T(OK,p)t. This shows the existence and uniqueness of ξ(m,n) in (2) by considering the

point E(m,n) viewed inside T(OK,p)jb(u) via the canonical map T(OK) ↪→ T(OK,p).

The strategy for defining E ′ is to modify the choices of the initial points in the con-

struction of E. Note that the images Pi,j, Ri, Sj in P×,ρ−1(OK,p) lie over points of the form

(0, ∗), (0, ∗) and (∗, 0) respectively. The fibres over these points are canonically isomorphic
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to Gρ−1
m (OK,p) = OK,p

×,ρ−1 by the discussion in Section 3.1.1. Thus, the neutral element 1

in these fibres makes sense, and, for example, there is a unique ξi,j ∈ Gρ−1
m (OK,p) such that

ξi,jPi,j = 1; then we set P ′i,j = ι(ξi,j)Pi,j. One obtains the points R′i, S ′j ∈ P×,ρ−1(OK,p) in a

similar fashion. Likewise, we modify the points Vk,l and Wk,l,i in the same fashion. (Alter-

natively, one can multiply the chosen basis of the torsion-free part of OK-units u1, . . . , uδ by

suitable roots of unity (of prime-to-p order) in OK,p so that the resulting units are congruent

to 1 mod pOK,p).

Using these points, one can define the terms A′(n), B′(n), C ′(n), etc. as in the definition

of E(m,n). Denote by E ′(m,n) the result of this process. A formal computation similar to

the proof of Proposition 3.6 then shows that E ′(m,n) ∈ T(OK,p)t for all (m,n) ∈ Zδ(ρ−1)+r.

This proves (1).

Finally, since E ′(m,n) was obtained by the same operations in terms of +1,+2, ·1, and ·2

as E(m,n) apart from the ι(Gρ−1
m (OK,p))-action modification of the initial points, it follows

from (an analogue of) (3.10) that E ′(m,n) also differs from E(m,n) only by ι(Gρ−1
m (OK,p))-

action modification, that is, E ′(m,n) = ξ(m,n)E(m,n) for some ξ(m,n) ∈ ι(Gρ−1
m (OK,p)).

Using the uniqueness part of (2), this proves the indicated equality in (2).

It remains to prove the following result.

Proposition 3.8. We have:

1. The following inclusions

T(OK)t ⊆ E ′(Zδ(ρ−1)+r) ⊆ T(OK,p)t

where T(OK) is viewed as a subset of T(OK,p) via the canonical map.

2. The equality ξ(q∗Zδ(ρ−1)+r) = 1; that is, E and E ′ agree on the subgroup q∗Zδ(ρ−1)+r.

Proof. Part (2) follows directly from Propositions 3.6 and 3.7 (2). Let us prove (1). Given

Q ∈ T(OK)t ⊆ T(OK)jb(u), by Proposition 3.5, there is a unique ε ∈ O×,ρ−1
K,tors and a unique
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(m,n) ∈ Zδ(ρ−1)+r such that εE(m,n) = Q. Using the fact that O×K,tors embeds, into the

prime-to-p part of O×K,p,tors, since by Assumption 3.1 the prime p does not divide |O×K,tors|,

it follows that ε may be treated as a uniquely determined element of O×,ρ−1
K,p whose order is

finite and coprime to p. By the uniqueness part of Proposition 3.7, we have ε = ξ(m,n), so

that

Q = εE(m,n) = ξ(m,n)E(m,n) = E ′(m,n).

To summarise, we have constructed the promised map

E ′ : Zδ(ρ−1)+r−→T(OK,p)t.

It is described in terms of the operations +1,+2 and its iterates ·1, ·2 on P×,ρ−1(OK,p), and

agrees with E on q∗Zδ(ρ−1)+r, with the property (anticipated in (3.23)):

E ′(q∗Zδ(ρ−1)+r) ⊆ T(OK)t ⊆ E ′(Zδ(ρ−1)+r).

3.4.2 The p-adic interpolation

The remaining part of this section aims to prove Theorem 3.2. This is done along the same

lines as [62, §3, §5.1], in a slightly more general context. We will use the following result

(whose proof will be given shortly) to deduce Theorem 3.2.

Proposition 3.9. The following statements hold:

1. Let X, Y be smooth schemes over OK of relative dimensions m and n respectively. Let

f : X−→Y be a morphism of OK-schemes and let x ∈ X(OK,p) be a point. Then there

are bijections X(OK,p)x ' Zdmp , Y (OK,p)f(x) ' Zdnp (given by local parameters followed

by restriction of scalars) such that the induced map f : X(OK,p)x−→Y (OK,p)f(x) is

given by convergent power series with Zp-coefficients.
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2. Let G−→Y be a smooth group scheme with identity section e, where Y is smooth over

OK. Let y ∈ Y (OK,p) be a point. Then the map

Z×G(OK,p)e(y)−→G(OK,p)e(y), (z, g) 7→ z · g,

extends to a map Zp × G(OK,p)e(y)−→G(OK,p)e(y), describing the Zp-module action

on fibres over Y (OK,p)y, and this map is given by convergent power series with Zp-

coefficients.

Remark 3.8. We postpone the proof of this result to the end of this section. The proof of

(1) relies on the description of local parameters at a point x using blow-ups. The proof of (2)

uses the formal logarithm and exponential maps to interpret the action z ·g as exp(z · log(g)).

Since exp and log are given by convergent power series by Proposition 3.11, one can extend

z · g to allow Zp-coefficients. The proofs are technical and quite general. For the sake of

clarity and readability, we have chosen to defer them to after the proof of Theorem 3.2.

Proof of Theorem 3.2. By Proposition 3.7 and Definition 3.9, for all (m,n) ∈ Zδ(ρ−1) × Zr,

E ′(m,n) =
(∑

2,k,l
mk,l ·2 U ′k,l(n)

)
+2

((
C ′(n) +2 B

′(n)
)

+1

(
A′(n) +2 t̃

))
, (3.26)

where

A′(n) =
∑

2,j
nj ·2 S ′j, B′(n) =

∑
1,i
ni ·1 R′i, C ′(n) =

∑
1,i
ni ·1

(∑
2,j
nj ·2 P ′i,j

)
,

and

U ′k,l(n) := V ′k,l +1

∑
1,i

ni ·1 W ′
k,l,i.

The points S ′j, R′i, P ′i,j ∈ P×,ρ−1(OK,p), as well as V ′k,l,W ′
k,l,i ∈ P×(OK,p), are defined in the

course of the proof of Proposition 3.7.

The point is that the map E ′ is built (after the choice of finitely many points) from the
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operations +1 and +2, and their iterates ·1 and ·2.

Proposition 3.9 (2) applied respectively to the group schemes P×−→J∨,◦ and P×−→J,

implies that the operations (n, g) 7→ n ·1 g and (n, g) 7→ n ·2 g for n ∈ Z extend to n ∈ Zp, and

the resulting operations are given by convergent power series with Zp-coefficients. Hence,

formula (3.26) makes sense with (m,n) ∈ Zδ(ρ−1)
p × Zrp; allowing for Zp coefficients using the

extended actions ·1 and ·2 thus gives rise via formula (3.26) to the desired map

κ : Zδ(ρ−1)+r
p −→T(OK,p)t,

which by definition agrees with E ′ when restricted to Zδ(ρ−1)+r ⊂ Zδ(ρ−1)+r
p .

By Proposition 3.9 (1), both the operations

+1 : P×,ρ−1 ×(J∨,◦)ρ−1 P×,ρ−1 −→ P×,ρ−1,

+2 : P×,ρ−1 ×J P
×,ρ−1 −→ P×,ρ−1

induce maps given by convergent power series over Zp on the appropriate residue disks (after

choosing a regular system of parameters inducing P×,ρ−1(OK,p)x ' Zd(g+g(ρ−1)+ρ−1)
p upon

restricting scalars from OK,p to Zp).

Since the composition of convergent power series with Zp-coefficients produces again con-

vergent power series with Zp-coefficients, the map κ is indeed given by a tuple of convergent

p-adic power series.

Local parameters and blow-ups

Notation 3.6. We fix a prime p ∈ {p1, . . . , ps} above p. Denote by π a uniformizer of OK,p.

Let X be a smooth scheme over OK,p of relative dimension m. Similarly as before, for a

point x ∈ X(Fp), denote by X(OK,p)x the set of all OK,p-points reducing to x modulo p. By

smoothness, the maximal ideal mx admits a regular system of parameters (π, t1, t2, . . . , tm).

The point x factors through the natural map Spec ÔX,x−→X, and X(OK,p)x bijectively
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corresponds to Spec ÔX,x(OK,p)x. The isomorphism OK [[t1, . . . , tm]] ' ÔX,x then shows that

there is a bijection of sets

t = (t1, t2, . . . , tm) : X(OK,p)x
∼−→ (mK,p)

m

x̃ 7−→ (t1(x̃), . . . , tm(x̃))

and after dividing by π, one gets

t̃ =

(
t1
π
,
t2
π
, . . . ,

tm
π

)
: X(OK,p)x

∼−→ (OK,p)m . (3.27)

Now let f : X−→Y be a morphism of schemes that are smooth over OK,p of relative dimen-

sions m and n, respectively. Denote the analogous choice of a regular system of parameters

at Y by s1, s2, . . . , sn and the corresponding bijection by

s̃ : Y (OK,p)f(x)−→(OK,p)n.

The immediate goal is the following.

Proposition 3.10. In the above setting, the composition

f ′ : (OK,p)m
t̃−1

−→ X(OK,p)x
f−→ Y (OK,p)f(x)

s̃−→ (OK,p)n

is given by a n-tuple of convergent power series with coefficients in OK,p.

(Here by convergent power series we mean elements of OK,p〈X1, X2, . . . , Xm〉, the p-

adic, or equivalently π-adic, completion of OK,p[X1, X2, . . . , Xm]). To show this, we follow

closely [62, §3] and investigate the geometry of the situation.

Proof. By shrinking X to a sufficiently small affine open neighbourhood of x, we may assume
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that t1, t2, . . . , tm are regular global functions, defining an étale map

t = (t1, t2, . . . , tm) : X−→Am
OK,p = SpecOK,p[X1, . . . , Xm],

mapping x to the origin (over Fp, i.e., the point corresponding to (π,X1, . . . , Xd)). By

possibly shrinking X further we may assume that x is in fact the only preimage of the

origin.

Note that a point x̃ : SpecOK,p−→X reduces to x if and only if the pullback of x along

x̃ is the (effective Cartier) divisor cut out by π. Consequently, the universal property of

the blowup BlxX of X at x implies that every x̃ ∈ X(OK,p)x factors uniquely through

BlxX, more precisely through the open subscheme Bl(π)
x X of BlxX where π is the generator

of the exceptional divisor. Thus, we have a natural identification between X(OK,p)x and

Bl(π)
x X(OK,p).

Up to this identification, the map t̃ can be described as follows. We consider the analogous

construction for the Fp-origin o : SpecFp−→Am
OK,p to get BloAm

OK,p and

Bl(π)
o Am

OK,p = SpecOK,p[X̃1, . . . , X̃m],

where X̃i = Xi/π in the expression above. Since blowing up commutes with flat base change,

we obtain a cartesian diagram of schemes

Bl(π)
x X BlxX X

Bl(π)
o Am

OK,p BloAm
OK,p Am

OK,p .

t̃ � � t (3.28)

The map t̃ from (3.27) is just the morphism t̃ in the above diagram evaluated at OK,p-points

(thus, in particular, the notations are compatible).

The map t̃Fp , obtained from base-changing the diagram (3.28) to Fp, can be (non-

canonically) interpreted as the tangent map at x between the respective tangent spaces.
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In particular, it is an isomorphism. Since t̃ is étale, t̃ is an isomorphism when base-changed

to OK,p/(πj) for every j. Denoting the rings of global functions of the (affine) schemes in

question by O(Bl(π)
x X) and O(Bl(π)

o Am
OK,p) respectively, we infer that their π-adic (equiva-

lently, p-adic) completions are the same, that is,

̂O(Bl(π)
x X) ' ̂O(Bl(π)

o Am
OK,p) = ̂OK,p[X̃1, . . . , X̃m] = OK,p〈X̃1, . . . , X̃m〉, (3.29)

namely the algebra of integral formal power series converging on the unit disk.

Finally, we perform the same analysis for Y , f(x) and its fixed system of parameters si.

Using again the universal property of the blowup of Y at f(x), we obtain that f also induces

a morphism

f̃ : Bl(π)
x X−→Bl

(π)
f(x)Y

which on the level of OK,p-points may be identified with f : X(OK,p)x−→Y (OK,p)f(x). Taking

the p-adic completion of the associated ring map O(Bl
(π)
f(x)Y )−→O(Bl(π)

x X) and conjugating

by the isomorphisms (3.29) for X and Y then yields a map

OK,p〈Ỹ1, . . . , Ỹn〉−→OK,p〈X̃1, . . . , X̃m〉.

This is described by specifying n-tuple of elements of OK,p〈X̃1, . . . , X̃m〉 as images of the

variables Ỹi. Since the map f ′ is obtained from the above map of rings by applying the

functor HomAlgOK,p
(−,OK,p), it follows that f ′ is described by these power series. This

proves the claim.

Remark 3.9. It will be useful later to note that OX,x naturally embeds into ̂O(Bl(π)
x X). The

maximal ideal of OX(X) corresponding to x becomes (π) in O(Bl(π)
x X), hence is mapped to

the radical in ̂O(Bl(π)
x X). There is thus an induced map

OX,x−→ ̂O(Bl(π)
x X).
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For injectivity: after taking completions at the maximal ideal, the map becomes

O[[X1, . . . , Xm]] ↪→ O[[X̃1, . . . , X̃m]]

given by Xi 7→ pX̃i, which is injective.

Remark 3.10 (Restriction of scalars). It will be beneficial to replace the power series ex-

pressions with OK,p-coefficients by convergent power series with Zp-coefficients. To that end,

we let

k = ef = rankZpOK,p

following earlier conventions, and fix a free basis e1, e2, . . . , ek of OK,p as a Zp-module. Ex-

pressing everything with respect to this basis, the description of maps OmK,p−→OnK,p in terms

of power series gives rise to a power series description of maps Zkmp −→Zknp . More precisely,

upon the introduction of formal variables Xi,j by the rule

Xi = Xi,1e1 +Xi,2e2 + · · ·+Xi,kek, (3.30)

any convergent power series f ∈ OK,p〈X1, X2, . . . Xm〉 can be written as

f = f1e1 + f2e2 + · · ·+ fkek

for a unique k-tuple of power series f1, f2, . . . , fk ∈ Zp〈Xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ k〉.

Remark 3.11. Keeping the notation from the proof of Proposition 3.10, the map

f̃Fp : (Bl(π)
x X)Fp−→(Bl

(π)
f(x)Y )Fp

can be, again, identified with the tangent map of fFp : XFp−→YFp at x. Assume that this

map is injective. By a lift of a suitable Fp-affine change of coordinates on (Bl
(π)
f(x)Y )Fp , one can

make sure that the map (f ′)# : OK,p〈Ỹ1, . . . , Ỹn〉−→OK,p〈X̃1, . . . , X̃m〉 is given by Ỹi 7→ X̃i for
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i ≤ m and by Ỹi 7→ 0 for i > m. In other words, the parameters si, ti may be chosen so that

f#(si) = ti for i ≤ m and sm+1, . . . sn generate the kernel of the map f# : OY,f(x)−→OX,x.

In that case, X(OK,p)x is embedded in Y (OK,p)f(x) and in the chosen coordinates, equal to

the vanishing locus of Ỹm+1, . . . , Ỹn. As in Remark 3.10, we can identify the embedding with

the affine embedding Zkmp −→Zknp , whose image is cut out by the k(n − m) variables Ỹi,j,

m < i ≤ n, 1 ≤ j ≤ k.

The exp-log argument

Let us now focus on a special case where Y−→ SpecOK,p is a smooth scheme of relative

dimension n and X = G is a smooth commutative group scheme over Y of relative dimension

m. (Thus, m from the previous discussion corresponds to m+n in the situation at hand. We

hope this does not cause too much confusion). Let e : Y−→G denote the identity section.

We now consider a point y ∈ Y (Fp) and the map G(OK,p)e(y)−→Y (OK,p)y.

As in the beginning of this subsection, we may replace Y by SpecOY,y and G by GOY,y .

Let us fix a system of parameters π, s1, s2, . . . , sn, inducing a bijection s̃ : Y (OK,p)y
∼−→ OnK,p.

By [142, 05D9], there is an affine open neighborhood SpecB = U ⊆ GOY,y of e(y)

such that e factors through U and such that, denoting by I the kernel of the associated map

e# : B−→OY,y, I/I2 is a freeOY,y-module of rankm. Upon fixing a sequence t1, t2, . . . , tm ∈ I

that becomes the free basis of I/I2, the sequence π, s1, s2, . . . , sn, t1, t2, . . . , tm forms a system

of parameters of GOY,y at e(y), establishing a bijection (s̃, t̃) : G(OK,p)e(y)
∼−→ On+m

K,p .

We further consider the formal OY,y-group ĜOY,y , the completion of GOY,y with respect

to the ideal of the identity section. In terms of the chosen coordinates, it is the formal

spectrum of the I-adic completion of B, which in turn is the formal power series ring

OY,y[[t1, t2, . . . , tm]]. The group operation then induces a m-dimensional commutative for-

mal group law FG(U, V ) = (F1, . . . , Fm)(U1, . . . , Um, V1, . . . , Vm) over OY,y, that is, formal

group in the sense of [85]. By [85, Theorem 1], over OY,y ⊗ Q, there are mutually inverse

isomorphisms of formal group laws
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FG,Q (Ĝa)
m
Q

log

exp

(here (Ĝa)
m denotes the m-dimensional addition law, given by the polynomials Ui + Vi

treated as power series over OY,y, and the subscript Q denotes the “formal base change” to

Q). Explicitly, fixing a basis of invariant differentials of FG (in the sense of [85, Proposition

1.1]) ω1, . . . , ωm ∈
⊕m

i=1OY,y[[t1, . . . , tm]]dti, log is given by an m-tuple of formal power series

L1, L2, . . . , Lm ∈ (OY,y ⊗Q)[[t1, . . . , tm]] characterized by the property

Li(0, . . . , 0) = 0, dLi = ωi, i = 1, 2, . . . ,m (3.31)

(and additionally, each Li equals ti in degree 1). The exponential is then given as a formal

inverse to log, i.e., by a m-tuple of power series E1, E2, . . . , Em ∈ (OY,y ⊗ Q)[[t1, . . . , tm]]

characterized by the identities

Ei(L1, L2, . . . , Lm) = ti, i = 1, 2, . . . ,m (3.32)

(and it again follows that each Ei equals ti in degrees ≤ 1).

The fibres of the map G(OK,p)e(y)−→Y (OK,p)y are naturally not only abelian groups

but, moreover, Zp-modules: given a point ỹ ∈ Y (OK,p)y, the fibre over ỹ is the kernel of the

reduction map Gỹ(OK,p)−→Gỹ(Fp) (where Gỹ denotes the OK,p-group scheme obtained from

G by base change along ỹ). This kernel is the set of OK,p-points of the associated formal

group, Ĝỹ(OK,p) = lim←−j Ĝỹ(OK,p/pjOK,p) (and the group law of Ĝỹ may be viewed as the

“formal base change” of the formal group law for ĜOY,y above). The fact that any formal

group law is of the form U + V + (higher order terms) shows that Ĝỹ(OK,p/pjOK,p) is an

abelian group annihilated by pj, verifying the claim.

The goal is to p-adically interpolate the function z 7→ z · g for g ∈ G(OK,p)e(y), or more

precisely, describe the action map Zp×G(OK,p)e(y)−→G(OK,p)e(y) coming from the Zp-action

on fibres, in terms of convergent power series.
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Proposition 3.11. The formal logarithm and exponential induce the mutually inverse maps

log and exp

G(OK,p)e(y) (OK,p)n+m (OK,p)n+m(s̃,t̃)

'

log

exp

given by convergent power series (elements of OK,p〈Ỹ1, . . . , Ỹn, X̃1, . . . , X̃m〉). For z ∈ Zp, and

g ∈ G(OK,p)e(y) (viewed as an element of (OK,p)n+m via (s̃, t̃)) we have z ·g = exp(z · log(g)).

Consequently, the action map Zp × G(OK,p)e(y)−→G(OK,p)e(y) is described by convergent

power series with coefficients in Zp.

Proof. Write Li =
∑

J 6=0 ai,Jt
J and Ei =

∑
J 6=0 bi,Jt

J for the formal power series that are

components of the formal logarithm and formal exponential, respectively. It can be deduced

from the identity (3.31) that

|J |ai,J ∈ OY,y for all J, (3.33)

and a formal computation of the exponential based on the identities (3.32) as in [83, A.4.6]

together with (3.33) shows that

(|J |!)bi,J ∈ OY,y for all J. (3.34)

The induced map log : On+m
K,p −→O

n+m
K,p is then given by the identity on the first n com-

ponents (which correspond to the base Y (OK,p)y) and by the power series

L̃i(X̃) = π−1
∑
J 6=0

ai,J(πX̃)J =
∑
J 6=0

π|J |−1

|J |
(|J |ai,J)(X̃)J , i = 1, . . . ,m (3.35)

on the remaining components. Here |J |ai,J is considered as an element of OK,p〈Ỹ1, . . . , Ỹm〉

in the sense of Remark 3.9.

Its formal inverse is then given by the analogous modification of the formal exponential,

namely, exp : On+d
K,p −→O

n+d
K,p is given by the identity on the first n components and on the
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remaining m components by the formal power series

Ẽi(X̃) = π−1
∑
J 6=0

bi,J(πX̃)J =
∑
J 6=0

π|J |−1

|J |!
((|J |!)bi,J)(X̃)J , i = 1, . . . ,m (3.36)

where (|J |!)bi,J is again considered as an element of OK,p〈Ỹ1. . . . , Ỹm〉.

To conclude that the power series (3.35), (3.36) define elements of the ring OK,p〈Ỹ , X̃〉, it

is enough to observe that the coefficients π|J |−1/(|J |!) (hence also π|J |−1/|J |) are integral and

converge to zero p-adically as |J | → ∞. This is satisfied by the imposed condition e < p− 1

on the ramification index in Assumption 3.1, since then the p-adic valuations are

vp

(
πk−1

k!

)
≥ k − 1

e
− k − 1

p− 1
=

(k − 1)(p− 1− e)
e(p− 1)

,

which is non-negative for all k ≥ 1 and tends to ∞ as k →∞.

Finally, we may interpret log and exp as given by ef(n+m) power series with coefficients

in Zp as in Remark 3.10. The action map Zp × G(OK,p)e(y)−→G(OK,p)e(y) then becomes a

p-adically continuous map Zp × Zef(n+m)
p −→Zef(n+m)

p extending the map

(z, g) 7→ z · g = exp(z · log(g))

from Z×Zef(n+m)
p to Zp×Zef(n+m)

p . The same is true about the map on Zp×Zef(n+m)
p given

by (z, g) 7→ exp(z · log(g)), so these two maps agree. In particular, the Zp-action map is

described by convergent power series with Zp-coefficients as claimed.

Proof of Proposition 3.9

Proof. As in (3.2), a point x ∈ X(OK,p) is given by an s-tuple x1 ∈ X(Fp1), . . . , xs ∈ X(Fps),

and we have X(OK,p)x =
∏s

i=1 X(OK,pi)xi . Similarly, for any map f : X−→Y of OK-

schemes, the induced map f : X(OK,p)x−→Y (OK,p)f(x) decomposes into the product of

the maps f : X(OK,p)xi−→Y (OK,p)f(xi). Part (1) thus follows from Proposition 3.10 and

219



Remark 3.10.

Similarly, we have G(OK,p)e(y) =
∏s

i=1 G(OK,pi)e(yi), and thus, G(OK,p)e(y) has Zp-module

structure on fibres over Y (OK,p)y =
∏s

i=1 Y (OK,pi)yi . By Proposition 3.11, each of the ac-

tion maps Zp × G(OK,pi)e(yi)−→G(OK,pi)e(yi) is given by convergent power series with Zp-

coefficients. The action map for G(OK,p)e(y) is then obtained by taking the product of the

above action maps and precomposing with Zp×G(OK,p)e(y)−→
∏

i(Zp×G(OK,pi)e(yi)), where

Zp is embedded into the s copies of Zp diagonally. It follows that the map has a description

in terms of convergent power series over Zp as well, proving (2).

3.5 End of proof and questions

In this section we conclude the proof of Theorem 3.1 (or rather its more precise formulation

Theorem 3.3). We formulate a precise version of Questions 3.1, and discuss expected answers.

3.5.1 Bounding the number of rational points

In this section we prove Theorem 3.3 of Section 3.3, which gives a conditional upper bound

on the size of the intersection U(OK,p)u ∩ Yt. Let p be a prime above p as usual. As in

Notation 3.6, we choose parameters xp1, . . . , xpg for J at the point xp := jUb (up) as well as

parameters tp1, . . . , t
p
ρ−1 ∈ OT,tp such that

πp, x
p
1, . . . , x

p
g, t

p
1, . . . , t

p
ρ−1

is a system of local parameters at tp for the smooth scheme T over OK,p of relative dimension

g + ρ− 1. We obtain the following identifications, as in (3.27):

x̃ : J(OK,p)xp ' (OK,p)g

(x̃, t̃) : T(OK,p)tp ' (OK,p)g+ρ−1.
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Now, the tangent map of the lifted Abel–Jacobi map j̃Ub : U(OK,p)up ↪→ T(OK,p)tp of Propo-

sition 3.3 is injective at p by smoothness. It follows, by Remark 3.11, that U(OK,p)up is a

complete intersection in T(OK,p)tp , i.e., it is cut out by g + ρ− 2 equations

f p
1 , . . . , f

p
g+ρ−2 ∈

̂O(Bl
(πp)
tp (T)) = OK,p〈x̃p1, . . . , x̃pg, t̃

p
1, . . . , t̃

p
ρ−1〉,

which generate the kernel of the surjection

(j̃Ub )#
p :

̂O(Bl
(πp)
tp (T))−→ ̂O(Bl(πp)

up (U)).

As before let kp = epfp be the Zp-rank of OK,p. Following Remark 3.10, upon choosing a

Zp-basis of OK,p and introducing new variables x̃pi,j for i = 1, . . . , g and j = 1, . . . , kp as well

as t̃pl,k for l = 1, . . . , ρ − 1 and k = 1, . . . , kp, each f p
i corresponds uniquely to a kp-tuple of

power series

f p
i,1, . . . , f

p
i,kp
∈ Zp

〈
x̃pi,j, t̃

p
l,j

〉
1≤i≤g, 1≤j≤kp
1≤l≤ρ−1

.

In conclusion, the analytic p-adic manifold U(OK,p)up ⊂ T(OK,p)tp is cut out by (g+ρ−2)kp

convergent power series in (g + ρ− 1)kp variables with coefficients in Zp.

Finally, note that U(OK,p)u inside T(OK,p)t is cut out by (g+ρ−2)
∑

p|p kp = (g+ρ−2)d

convergent power series with coefficients in Zp. By Theorem 3.2, we have

Zδ(ρ−1)+r
p

U(OK)u Yt = T(OK)t
p

U(OK,p)u T(OK,p)t Z(g+ρ−1)d
p .

(κi)
(g+ρ−1)d
i=1

κ

j̃Ub

j̃Ub

The computation of the desired intersection is accomplished via pulling all equations back

via κ.
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Definition 3.10. The elements κ∗f p
i,j (with 1 ≤ i ≤ g + ρ − 2, 1 ≤ j ≤ kp and p|p) all lie

in R = Zp〈z1, . . . , zδ(ρ−1)+r〉. Let IU,u denote the ideal in R generated by these elements and

let AU,u := R/IU,u denote the resulting quotient ring.

The intersection is algebraically expressed as the tensor product of rings, i.e., by taking

the quotient by IU,u. It follows that there is a bijection

Hom(AU,u,Zp)←→ κ−1(U(OK,p)u ∩Yt). (3.37)

Let f̄ p
i,j ∈ Fp[x̃pi,j, t̃

p
l,j] denote the reduction modulo p and κ∗f̄ p

i,j ∈ Fp[z1, . . . , zδ(ρ−1)+r]. The

ideal ĪU,u = IU,uFp[z1, . . . , zδ(ρ−1)+r] is generated by the elements κ∗f̄ p
i,j and we let

AU,u := AU,u ⊗ Fp = Fp[z1, . . . , zδ(ρ−1)+r]/ĪU,u.

We are now ready to prove Theorem 3.3, which we conveniently restate for the reader.

Theorem 3.3. If AU,u is finite, then |U(OK)u| ≤ dimFp AU,u.

Proof. For the sake of notation, we drop the subscripts (U, u) in this proof. The ring A is

p-adically complete by the same proof of [62, Theorem 4.12]. Moreover, since A is finite, A

is finitely generated as a Zp-module. Hence it follows that

Hom(A,Zp) =
∐
m

Hom(Am,Zp) =
∐

Am/m=Fp

Hom(Am,Zp),

where the union is over the maximal ideals of A. This gives the bound

|Hom(A,Zp)| ≤
∑

Am/m=Fp

rankZp Am =
∑

Am/m=Fp

dimFp Am ≤ dimFp A.

This establishes, by (3.37), that the number of points in κ−1(U(OK,p)u ∩Yt) is bounded by
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dimFp A, thus we have

|U(OK)u| ≤ |κ−1(U(OK,p)u ∩Yt) ∩ T (OK)t
p
)| ≤ dimFp A.

Remark 3.12. The geometric quadratic Chabauty condition is implicit in the assumption

of Theorem 3.3. Indeed, in order for the ring A = Fp[z1, . . . , zδ(ρ−1)+r]/〈κ∗f̄ p
i,j〉i,j,p to have a

chance to be finite, the number of relations we quotient by must be at least the number of

variables. Thus, we need δ(ρ− 1) + r ≤ (g+ ρ− 2)d which is equivalent to condition (3.24).

Corollary 3.2. Suppose that AU,u is finite for all U as in Definition 3.7 and all u ∈ U(OK,p).

Then the set of rational points CK(K) is finite and satisfies

|CK(K)| ≤
∑
U

∑
u∈U(OK,p)

dimFp AU,u.

Proof. There are finitely many U ⊂ Csm satisfying the conditions of Definition 3.7 and the

union of U(OK) covers Csm(OK) which is equal to C(K) by properness and regularity of

the model C. Moreover, each U(OK) is the disjoint union of its residue disks U(OK)u, and

the result follows.

3.5.2 Refined questions

A more precise form of Questions 3.1 from the introduction is the following:

Question 3.2. Given a subscheme U as in Definition 3.7 and u ∈ U(OK,p) mapping to

j̃Ub (u) = t ∈ T(OK,p), what conditions are necessary to guarantee the finiteness of the inter-

section Yt ∩U(OK,p)u ?

In [62, §9], Edixhoven and Lido have given a new proof of Faltings’ theorem, using their

method, in the case of higher genus curves defined over Q satisfying r < g + ρ − 1. Their

223



argument is quite elegant: it uses complex analytic methods to prove a Zariski density

statement, which can then be bridged with their p-adic geometric situation using formal

geometry. This proves the finiteness of the intersection Yt ∩U(Zp)u and in particular the

finiteness of CQ(Q).

The setting over arbitrary number fields is more complicated. Reminiscent of the failures

of Siksek’s method described in Section 0.4.2, there are examples of curves satisfying (3.24)

for which the intersection Yt∩U(OK,p)u is not finite. Examples include curves base changed

from Q which do not satisfy the quadratic Chabauty condition over Q. Based on Dogra’s

results in [60], presented in Section 0.4.2, we expect the intersection to be finite whenever

the conditions (3.24) and

Hom(JQ̄,σ1
, JQ̄,σ2

) = 0 for any two distinct embeddings σ1, σ2 : K ↪→ Q̄ (3.38)

are both satisfied. Unfortunately, the proof of this still eludes us.

The following question also demands attention:

Question 3.3. Assuming conditions (3.24) and (3.38), does there always exist a prime p

such that for each open subscheme U of Definition 3.7 and each point u ∈ U(OK,p), the ring

AU,u constructed in Definition 3.10 is finite-dimensional over Fp ?

In order to extract an explicit bound for |CQ(Q)|, Edixhoven and Lido similarly rely on

an analogous Fp-vector space being of finite dimension. They conjecture [62, Section 4] that

it is always possible in practice to choose p such that their condition is satisfied. We expect,

following Edixhoven and Lido, that for curves satisfying conditions (3.24) and (3.38), there

always exists a prime p such that the conditions of Question 3.3 are satisfied. We plan to

address this in the near future by applying the method to explicit examples of curves.
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Chapter 4

Diagonal cycles on X0(p)
3

We explore the setting of diagonal type cycles on the triple product of the modular curve

X0(p) of prime level p. See Section 1.2.2 for the definition of the latter. The main motivation

stems from the Beilinson–Bloch conjecture 1.4 in this particular setting. This conjecture

predicts the equality between the central order of vanishing of the triple product L-function

associated to three normalised newforms in S2(Γ0(p)) on the one hand, and the rank of the

(f1, f2, f3)-isotypic component of the null-homologous Chow group of X0(p)3 of codimension

two on the other hand. We refer to Sections 1.2.3 and 1.4 respectively for the definitions of

newforms and Chow groups. One of the main results asserts that the global root number of

the triple product L-function of (f1, f2, f3) twisted by the Legendre symbol χ at p is always

−1. The theory of root numbers was recalled in Section 1.1. In parallel, we construct a

canonical null-homologous cycle on X0(p)3 of codimension 2 which lies in the (−1)-eigenspace

of the Chow group for the non-trivial element of Gal(Q(
√
χ(−1)p)/Q). This leads us to

formulate refinements of the Beilinson–Bloch conjecture in a setting which has not been

considered before. Specialising to the case where f3 has rational coefficients and f1 = f2, we

formulate further refined conjectures concerned with the associated Chow–Heegner points

on the elliptic curve associated with f3. See Section 0.2.2 for the theory of Chow–Heegner

points. When the global root number of the triple product (f1, f2, f3) is +1, we prove that
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the image of the Gross–Kudla–Schoen cycle under the complex Abel–Jacobi map is torsion in

the (f1, f2, f3)-isotypic component of the second intermediate Jacobian of X0(p)3, and deduce

torsion properties of the related Chow–Heegner points, which had originally been studied by

Darmon, Rotger and Sols in the case where the root number is −1. Moreover, we prove that

the Chow–Heegner points associated to the special cycle defined over Q(
√
−p) are torsion

whenever p ≡ 3 (mod 4). Such torsion properties fit nicely with the proposed conjectures,

and are in line with the Beilinson–Bloch and Birch and Swinnerton-Dyer conjectures.

Introduction

We study the setting of the triple product of the modular curve X0(p) of prime level p. Given

three normalised newforms f1, f2, f3 ∈ S2(Γ0(p)), we denote by F = f1 ⊗ f2 ⊗ f3 their triple

tensor product. Associated to F is a motive

M(F ) := (X0(p)3, tF , 0) ∈ Chow(Q)KF

over Q with coefficients in the finite extension KF of Q obtained by adjoining the Fourier

coefficients of f1, f2 and f3. We refer to Section 1.4.2 for the definition of motives. Here

tF ∈ Corr0(X0(p)3, X0(p)3)KF is an idempotent correspondence – the F -isotypic projector

– built from the projectors that cut out the motives of the three forms f1, f2 and f3. The

associated L-function L(F, s) := L(M(F )/Q, s), defined in Section 1.1.4, is the Garrett–

Rankin triple product L-function attached to F . The analytic properties and functional

equation of this L-function have been established by Gross and Kudla [76]. The Beilinson–

Bloch conjecture 1.4 in this context predicts the equality

ords=2 L(F, s) = dimKF (tF )∗(CH2(X0(p)3)0(Q)⊗KF ). (4.1)

In [76], Gross and Kudla introduced a particular cycle ∆GKS ∈ CH2(X0(p)3)0(Q), the
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study of which was taken up by Gross and Schoen in [77]. We will therefore refer to it as the

Gross–Kudla–Schoen cycle. It arises from the diagonal embedding of X0(p) in X0(p)3 after

applying a certain projector whose effect is to make the resulting cycle null-homologous.

Guided by the Beilinson–Bloch conjecture (4.1), Gross and Kudla conjectured, in the case

when the global root number isW (F ) = −1, that L′(F, 2) is equal (up to a non-zero constant)

to the Beilinson–Bloch height of the cycle (tF )∗(∆GKS). A proof of this conjecture is expected

to appear in [154].

We are interested in a different and yet unexplored setting of the Beilinson–Bloch conjec-

ture. Namely, if χ denotes the Legendre symbol at p, and M(F )⊗ χ is the twisted motive,

then the Beilinson–Bloch conjecture also predicts the equality

ords=2 L(F ⊗ χ, s) = dimKF (tF )∗(CH2(X0(p)3)0(K)τ=−1 ⊗KF ), (4.2)

where K = Q(
√
χ(−1)p) is the quadratic field corresponding to χ, and τ ∈ Gal(K/Q)

is the non-trivial automorphism. One of the main results is Theorem 4.7 which asserts

that the global root number W (F ⊗ χ) is always equal to −1. In particular, we have

ords=2 L(F ⊗ χ, s) ≥ 1 and we thus expect by (4.2) the existence of a non-zero cycle in

(tF )∗(CH2(X0(p)3)0(K)τ=−1 ⊗KF ). In parallel, we construct a canonical cycle

Ξ := ϕ+(X(p))− ϕ−(X(p))

of codimension 2 on X0(p)3, where ϕ+, ϕ− : X(p)−→X0(p)3 are two algebraic maps whose

common domain is the modular curve X(p) of full level p. The definition of this lat-

ter curve can be found in Section 1.2.2. In Theorem 4.3, we prove that Ξ belongs to

CH2(X0(p)3)0(K)τ=−1.

Putting the above results together, it is tempting to conjecture that the torsion properties

of (tF )∗(Ξ) should be determined by the order of vanishing of L(F ⊗χ, s) at its centre. This

is formulated precisely in Conjecture 4.1 as a refinement of the Beilinson–Bloch conjecture.
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Conjecture 4.1 would follow, assuming the non-degeneracy of the Beilinson–Bloch height,

from an analogue of the Gross–Zagier formula relating L′(F ⊗ χ, 2) to the Beilinson–Bloch

height of (tF )∗(Ξ). Further refinements are proposed in Conjectures 4.2 and 4.3, which

take into account the root number of W (F ) and the predicted behaviour of (tF )∗(∆GKS).

When W (F ) = +1, we prove in Theorem 4.4 that the image of (tF )∗(∆GKS) under the

complex Abel–Jacobi map AJX0(p)3 of Section 1.5.1 is torsion in the intermediate Jacobian

J2(X0(p)3/C). When W (F ) = −1, the conjectural formula of Gross and Kudla serves to

guide us.

In [51], Darmon, Rotger and Sols studied certain Chow–Heegner points associated to

∆GKS. These are intimately related to so-called Zhang points on abelian varieties due to S.

Zhang [157]. This connection is made explicit in Daub’s thesis [53]. At the level of modular

forms, the Chow–Heegner points arise from the triple product setting by specialising to the

case where f3 = f has rational coefficients and f1 = f2 = g is not Gal(Q̄/Q) conjugate to f ,

and are denoted by

P (X0(p)3,Π[g],f ,∆GKS) ∈ Ef (Q).

Here Ef is the elliptic curve over Q associated to f by the Eichler–Shimura construction

of Section 1.2.3, and Π[g],f ∈ Corr−1(X0(p)3, Ef ) is some correspondence which depends on

the Gal(Q̄/Q) conjugacy class [g] of g, as well as on f . Note that we have the following

decomposition of the L-function

L(g, g, f, s) = L(Sym2 g ⊗ f, s)L(f, s− 1).

When the root numbers satisfy W (f) = −1 and W (Sym2 g ⊗ f) = +1 (and thus in par-

ticular W (g, g, f) = −1), Darmon, Rotger and Sols have proved, building on the work of

Yuan, Zhang and Zhang [154], that P (X0(p)3,Π[g],f ,∆GKS) has infinite order if and only if

ords=1 L(f, s) = 1 and ords=2 L(Sym2(gσ) ⊗ f, s) = 0 for all σ : Kg ↪→ C. This provides

insight into the Birch and Swinnerton-Dyer conjecture for Ef/Q.
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Meanwhile, the Birch and Swinnerton-Dyer conjecture also predicts the equality

ords=1 L(Eχ
f /Q, s) = rankZEf (K)τ=−1, (4.3)

where Eχ
f denotes the quadratic twist of Ef by the Legendre symbol χ at p. Using the cycle

Ξ, we may consider the Chow–Heegner point

P (X0(p)3,Π[g],f ,Ξ) ∈ Ef (K)τ=−1.

If p ≡ 3 (mod 4), then W (Eχ
f ) = +1, and we prove in Theorem 4.6 that the above point

is torsion by exploiting the action of the symmetric group S3 on Ξ. This is consistent with

(4.50). If p ≡ 1 (mod 4), then W (Eχ
f ) = −1 and we thus expect there to exist a point in

Ef (K)τ=−1 of infinite order. Guided by (4.50), we formulate a refined conjecture (Conjecture

4.4) which predicts exactly when P (X0(p)3,Π[g],f ,Ξ) has infinite order. We make further

refinements in Conjectures 4.5 and 4.6 by taking into account the root number of Ef and

interactions with P (X0(p)3,Π[g],f ,∆GKS) ∈ Ef (Q). When W (f) = +1, we prove in Theorem

4.5 that the point P (X0(p)3,Π[g],f ,∆GKS) is torsion, obtaining a special case of a result of

Daub [53]. When W (f) = −1, the results of Darmon, Rotger and Sols are available to us.

This fits nicely with the proposed conjectures.

We refer to Section 5.1 for a discussion of future work involving possible strategies for

addressing the conjectures proposed in this chapter.

We finish with an outline of the chapter. Section 4.1 introduces the motives attached

to a normalised newform in S2(Γ0(p)) and to the triple product of such forms. We give a

brief overview of the work of Gross and Kudla [76] concerning the Garrett–Rankin triple

product L-function. We also recall the construction of Chow–Heegner points in the setting

of the triple product of modular curves. Section 4.2 contains a systematic construction

of diagonal type cycles on X0(p)3. In particular, the cycle Ξ is defined and Theorem 4.3

is proved. Section 4.3 addresses the torsion properties of both cycles and Chow–Heegner
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points in various cases; it contains the proofs of Theorem 4.4, Theorem 4.5 and Theorem

4.6. Section 4.4 uses the explicit description of the Weil–Deligne representations of modular

forms described in Secton 4.1 to compute global root numbers in various setting, culminating

in the proof of Theorem 4.7. Section 4.5 formulates conjectures concerning the special cycle

Ξ (Conjectures 4.1, 4.2, 4.3) and its associated Chow–Heegner points (Conjectures 4.4, 4.5,

4.6, 4.7) based on the results of this chapter.

4.1 Preliminaries

We begin by recalling the definition of the motive of a normalised cuspform of weight 2 and

level Γ0(p). We then review the definition and properties of L-functions associated to triples

of weight 2 normalised cuspforms of level Γ0(p). In particular, we will recall the main results

of the work of Gross and Kudla [76] in this context. Finally, we give an overview of the

Chow–Heegner construction in the context of triple products.

4.1.1 Modular forms of weight 2

For an overview of the theory of modular forms of weight 2 and level Γ0(p), we refer to

Section 1.2.3.

Decomposition of the Hecke algebra

Let f =
∑

n≥1 an(f)qn ∈ S2(Γ0(p)) be a normalised newform of level Γ0(p). Because the

level is prime, there are no oldforms. The form f is a normalised eigenform for the Q-algebra

T0 := T0(p) generated by the Hecke operators Tn for p - n acting on S2(Γ0(p)). Let T := T(p)

denote the full commutative Hecke algebra generated by the Tn for p - n and the operator

Up. Following the discussion of newforms in Section 1.2.3 and references therein, we have

Up(f) = ap(f)f and wp(f) = −ap(f)f . Here wp denotes the Atkin–Lehner operator, which

in the case of prime level arises from the Fricke involution on X0(p) via its pullback action on
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cohomology and the identification (1.19) of S2(Γ0(p)) with the space of regular differential

1-forms H0(X0(p),Ω1
X0(p)). In particular, we have ap(f) ∈ {±1}. Note that because there

are no oldforms at prime level, we have Up = −wp in T.

The normalised eigenform f determines a surjective algebra homomorphism λf : T0−→Kf

by sending Tn to an(f). Here Kf is the finite extension of Q generated by the Fourier coef-

ficients an(f) of f . Note that the coefficients an(f) are the eigenvalues of the operators Tn

acting on f . In particular, Kf is a totally real number field as the operators Tn are Hermitian

with respect to the Petersson inner product on S2(Γ0(p)).

Let S2(Γ0(p))f denote the f -isotypic component of S2(Γ0(p)) consisting of cusp forms

g ∈ S2(Γ0(p)) such that T (g) = λf (T )g for all T ∈ T0. By the multiplicity one result [3,

Lemmas 20 and 21] of Atkin and Lehner for newforms, the space S2(Γ0(p))f is 1-dimensional

over C. By the results described in Section 1.2.3, we have the decomposition

S2(Γ0(p)) =
⊕
h

S2(Γ0(p))h,

where the sum is taken over all normalised eigenforms h ∈ S2(Γ0(p)). Since the dual space

S2(Γ0(p))∨ is a free T0,C-module of rank one by multiplicity one, we similarly obtain a

decomposition

T0,C =
⊕
h

T0,C,h,

where T0,C,h denotes the algebra of Hecke operators Tn with (n, p) = 1 acting on S2(Γ0(p))h,

which is again a C-vector space of dimension one.

Let [f ] denote the Gal(Q̄/Q) orbit of f . Form the C-vector space
⊕

g∈[f ] S2(Γ0(p))g of

dimension df := [Kf : Q], and consider the Q-subspace S2(Γ0(p))[f ] of forms with rational

coefficients. This Q-vector space is stable under the action of T0,Q, and we let T0,Q,[f ] denote

the Q-algebra generated by the Hecke operators acting on S2(Γ0(p))[f ]. We then have the
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decomposition

T0 =
⊕
[h]

T0,Q,[h] '
⊕
[h]

Kh,

where the sum is taken over all Gal(Q̄/Q) conjugacy classes of normalised eigenforms in

S2(Γ0(p)).

Remark 4.1. The exposition in this section is simplified by the fact that there are no

oldforms for prime level. For the more general case where the level is composite we refer

to [45, §1.6].

Let EndQ(J0(p)) denote the ring of endomorphisms of the Jacobian J0(p) which are

defined over Q and let End0
Q(J0(p)) := EndQ(J0(p)) ⊗ Q. Because p is prime, we have

End0
Q(J0(p)) = T0 by [125, Corollary 3.3]. In particular, we have T0 = T. In summary, we

have the decomposition

End0
Q(J0(p)) = T0 '

⊕
[h]

Kh. (4.4)

Remark 4.2. Once again, the exposition is simplified by the assumption that the level is

prime. For composite level N , the algebra End0
Q(J0(N)) is a product of matrix algebras. It

contains T0 as its center and the full Hecke algebra T as a maximal commutative subalgebra.

Moreover, End0
Q(J0(N)) is generated as a Q-algebra by T0 together with certain degeneracy

operators. See [95, Theorem 1].

We remark also that there is a natural isomorphism

End0
Q(J0(p)) ' (CH1(X0(p)2)⊗Q)/(pr∗1 CH1(X0(p))⊗Q + pr∗2 CH1(X0(p))⊗Q). (4.5)

See for instance [105, Theorem 11.5.1].

Galois representations

Let f =
∑

n≥1 an(f)qn ∈ S2(Γ0(p)) be a normalised eigenform. Recall that the Eichler–

Shimura construction of Section 1.2.3 associates to the Gal(Q̄/Q) conjugacy class of f a
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simple abelian variety A[f ] defined over Q as a quotient of J0(p). For a given prime `, the

`-adic Tate module of A[f ] carries an action of the Galois group Gal(Q̄/Q), as well as an

action of Kf = EndQ(A[f ])⊗Q, and these actions commute. Since the Tate module of A[f ]

is a free module of rank two over Kf ⊗Q`, it gives rise (after a choice of basis) to a Galois

representation

Gal(Q̄/Q)−→GL2(Kf ⊗Q`). (4.6)

Throughout this chapter, we will use the same conventions as established in Notation 1.1. We

let l denote the prime of Kf above ` determined by the corresponding fixed field embeddings.

We obtain the `-adic Galois representation associated to f

ρf,` : Gal(Q̄/Q)−→GL2(Kf,l), (4.7)

by composing the above representation (4.6) with the projection Kf ⊗Q`−→Kf,l.

Remark 4.3. The representation ρf,` depends on the embedding of Kf in C, as well as the

embedding of Kf in Q̄`, but we suppress these dependencies from the notation, as we have

fixed all embeddings from the beginning.

Proposition 4.1. Suppose that ` 6= p. The representation (4.7) satisfies the following:

• If q - p` is a prime, then ρf,` is unramified at q and the Frobenius element of Gal(Q̄q/Qq)

has characteristic polynomial X2 − aq(f)X + q.

• The determinant of ρf,` is the `-adic cyclotomic character ωcyc,` of Example 1.1.

• Let λ : Gal(Q̄p/Qp)−→K×f,l denote the unramified quadratic character determined by

λ(Φ) = ap(f), where Φ is an inverse Frobenius element at p. Then

ρf,`|Gal(Q̄p/Qp) '

λωcyc,` ∗

0 λ

 .
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Proof. See for instance [45, Theorem 3.1] and references therein.

Definition 4.1. We denote by V`(f) the contragredient of the representation ρf,` of (4.7).

The collection {V`(f)}` is a compatible family of 2-dimensional `-adic (or rather l-adic)

representations of Gal(Q̄/Q).

Motives

We refer to Section 1.4.2 for conventions on motives. The language of motives is not strictly

speaking necessary in this section, but it will be useful starting with Section 4.1.2 below.

Let f =
∑

n≥1 an(f)qn ∈ S2(Γ0(p)) be a normalised eigenform and retain the notations

introduced in the previous sections. Let V := S2(Γ0(p))∨ be the C-vector space dual to

S2(Γ0(p)). Recall from Section 1.2.3 the identification S2(Γ0(p)) ' H0(X0(p),Ω1
X0(p)), and

from Section 1.5.1 the description of the complex points of J0(p) as

J0(p)(C) =
H0(X0(p),Ω1

X0(p))
∨

ImH1(X0(p)(C),Z)
,

where Λ := ImH1(X0(p)(C),Z) is viewed as a lattice via integration of differential forms.

We thus have an identification J0(p)(C) = V/Λ as a g-dimensional complex torus, where g is

the genus of X0(p). Let Vf be the subspace of V on which T acts by λf and let πf : V−→Vf

be the orthogonal projection with respect to the Petersson scalar product. The projector

πf naturally belongs to TKf = T ⊗Q Kf , and by (4.4) and (4.5) we may view πf as an

idempotent correspondence tf ∈ Corr0(X0(p), X0(p))Kf .

Definition 4.2. The motive M(f) := (X0(p), tf , 0) ∈ Chow(Q)Kf over Q with coefficients

in Kf is the motive of f .

Remark 4.4. The Hecke operators T` for ` 6= p act on H2(X0(p),C) as multiplication by

`+ 1, the degree of the correspondence T`. By duality, T` also acts as multiplication by `+ 1

on H0(X0(p),C). The eigenvalues of the action of the Hecke algebra on H1(X0(p),C) are

encoded by the algebra homomorphisms λf : T0,C−→Kf indexed by the conjugacy classes
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of newforms in S2(Γ0(p)), where λf (T`) = a`(f). As a consequence of Deligne’s proof of

the Weil conjectures [57], we have the bound |a`(f)| ≤ 2
√
` generalising the Hasse bound

for elliptic curves. Since 2
√
` < ` + 1, the eigenvalues of T` acting on H i(X0(p),C) do not

overlap between the cases i = 1 and i ∈ {0, 2}. Since tf is the f -isotypic Hecke projector, it

follows that tf annihilates the cohomology groups of X0(p) in degree 0 and 2.

The `-adic representations of M(f) are equal to

M(f)` = (tf )∗H
∗
et(X0(p)Q̄,Q`) = H1

et(X0(p)Q̄,Q`)f = V`(f),

where V`(f) is the representation of Definition 4.1 (taking into account the fixed field em-

beddings of Notation 1.1). The de Rham realisation is

M(f)dR = (tf )∗H
∗
dR(X0(p)/C) = H1(X0(p)(C),C)f ' S2(Γ0(p))f ⊕ S2(Γ0(p))f .

It follows that the Hodge structure M(f)B = (tf )∗H
1(X0(p)(C),Q) is of type (1, 0) + (0, 1).

By multiplicity one, we have H1,0(M(f)) = Cωf , and the Hodge numbers are given by

h1,0(M(f)) = h0,1(M(f)) = 1. (4.8)

If we let V[f ] :=
⊕

g∈[f ] Vg and π[f ] :=
∑

g∈[f ] πf , then π[f ] is the orthogonal projection

V−→V[f ] with respect to the Petersson scalar product. By [45, Lemma 1.46], the abelian

variety A[f ] is isomorphic over C to the complex torus V[f ]/π[f ](Λ), with the projection map

π[f ] : V/Λ−→V[f ]/π[f ](Λ) corresponding to the natural projection J0(p)−→A[f ]. In particular,

π[f ] naturally belongs to T = End0
Q(J0(p)), and corresponds under (4.4) to the idempotent

element e[f ] ∈
⊕

[h] Kh which has 1 as [f ]-coordinate and 0 as [h]-coordinate for [h] 6= [f ].

By (4.5), we may view π[f ] as an idempotent correspondence t[f ] ∈ Corr0(X0(p), X0(p))Q. It

follows that the motive M([f ]) := (X0(p), t[f ], 0) ∈ Chow(Q)Q is equal to A[f ].

Remark 4.5. The motive M([f ]) is very convenient to work with as it is realised by the
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abelian variety A[f ]. On the other hand, the motive M(f) associated to f has coefficients

in Kf and is merely a piece of the cohomology of A[f ]; it is not physically realised by some

abelian variety quotient of A[f ], hence it is a little more delicate to work with.

Weil–Deligne representations

We drop the notation l as this prime ideal is determined completely by the fixed choices of

field embeddings made in Notation 1.1. Let q be a prime, let ` be a prime different from q

and fix an embedding ι` : Kf,l ↪→ C. Following [126, §4 Generalization], one may associate to

V`(f) a 2-dimensional complex representation σ′f,`,ι`,q = (σf,`,ι`,q, Nf,`,ι`,q) of the Weil–Deligne

groupW ′(Q̄q/Qq). See Section 1.1. It turns out, as we will see shortly, that the isomorphism

class of the Weil–Deligne representation σ′f,`,ι`,q is independent of ` and ι` and we shall simply

write σ′f,q = (σf,q, Nf,q). This is the Weil–Deligne representation of f at q.

Proposition 4.2. The Weil–Deligne representations of f satisfy the following:

• At the infinite place, we have σ′f,∞ = indC/R ϕ0,1 ⊗H0,1(M(f)).

• If q 6= p, then Nf,q = 0 and σf,q ' ξq ⊕ ξ−1
q ω−1

q for some unramified character ξq. Here

ωq is the Weil–Deligne representation of the `-adic cyclotomic character of Definition

1.2 and Example 1.1.

• Let λ be the unramified quadratic character of W (Q̄p/Qp) defined by λ(Φ) = ap(f),

where Φ denotes an inverse Frobenius element. Then σ′f,p ' λω−1
q ⊗ sp(2), so that, in

particular, Nf,q 6= 0 and σ′f,q is ramified. Here sp(2) is the special representation of

Definition 1.5.

Proof. Using Proposition 4.1, the proofs in [126, §14, §15] adapt to this setting and give

the above descriptions of the Weil–Deligne representations of f . In particular, these are

independent of the choices of a prime ` and an embedding ι` : Kf,l ↪→ C.
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L-functions

Following Section 1.1.4, we can associate an L-function

Λ(M(f)/Q, s) = L(σ′f,∞, s)
∏
q

L(σ′f,q, s)

to the motive M(f) ∈ Chow(Q)Kf of Definition 4.2, and use Proposition 4.2 to give an

explicit description of the local factors. Since h1,0(M(f)) = 1, the above Weil–Deligne

representations have already been encountered in Section 1.2, and we see that

Λ(M(f)/Q, s) = 2(2π)−sΓ(s)(1− ap(f)p−s)−1
∏
q 6=p

(1− aq(f)q−s + q1−2s)−1,

which is the completed L-function of f , namely

Λ(f, s) = 2(2π)−sΓ(s)
∑
n≥1

an(f)

ns
.

The conductor of M(f) is p and the global root number is W (M(f)/Q) = ap(f), as follows

from the proof of Proposition 1.5 suitably adapted to the present situation. Conjecture

1.9 predicts that the L-function Λ∗(M(f)/Q, s) = p
s
2 Λ(M(f)/Q, s) satisfies the functional

equation

Λ∗(M(f)/Q, s) = ap(f)Λ∗(M(f)/Q, 2− s).

This is true and can be checked using the integral representation of Λ(f, s) and the weight

2 transformation property of the modular form f .

Following Section 1.1.4, we can associate an L-function Λ(M([f ])/Q, s) to the motive

M([f ]) ∈ Chow(Q)Q, and by previous observations, we have

Λ(M([f ])/Q, s) = Λ(A[f ]/Q, s) =
∏

σ:Kf ↪→C

Λ(fσ, s).
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4.1.2 Triple products of modular forms of weight 2

Let

f1 =
∑
n≥1

an(f1)qn, f2 =
∑
n≥1

an(f2)qn, f3 =
∑
n≥1

an(f3)qn

be three normalised newforms of level Γ0(p), and let F := f1 ⊗ f2 ⊗ f3 be the newform of

weight (2, 2, 2) for Γ0(p)3 obtained from f1, f2 and f3. Let KF = Kf1 ·Kf2 ·Kf3 denote the

compositum of the Fourier coefficient fields of the forms f1, f2 and f3. Using the notations

of the previous section, define the idempotent correspondence

tF := tf1 ⊗ tf2 ⊗ tf3 = pr∗14(tf1) · pr∗25(tf2) · pr∗36(tf3) ∈ Corr0(X0(p)3, X0(p)3)⊗KF . (4.9)

Definition 4.3. The motive of the triple product F is defined to be the motive

M(F ) := M(f1)⊗M(f2)⊗M(f3) = (X0(p)3, tF , 0) ∈ Chow(Q)KF

over Q with coefficients in KF .

Remark 4.6. By Remark 4.4, when acting on the cohomology H∗(X0(p)3) of X0(p)3, the

correspondence tF annihilates all cohomology except in degree 3, in which all components

except the Künneth (1, 1, 1)-component are annihilated. As a consequence, we have

(tF )∗H
∗(X0(p)3) = (tf1)∗H

1(X0(p))⊗ (tf2)∗H
1(X0(p)1)⊗ (tf3)∗H

1(X0(p)1).

The `-adic realisations of M(F ) give rise to a compatible family of 8-dimensional `-adic

Galois representations

{V`(F ) := M(F )` = V`(f1)⊗ V`(f2)⊗ V`(f3)}`,

where the representations V`(fi) for i ∈ {1, 2, 3} are the ones of Definition 4.1. The Weil–
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Deligne representation of F at a prime q is the 8-dimensional representation given by

σ′F,q = σ′f1,q
⊗ σ′f2,q

⊗ σ′f3,q
.

Concretely, we have

(σF,q, NF,q) = (σf1,q ⊗ σf2,q ⊗ σf3,q, Nf1,q ⊗ 1⊗ 1 + 1⊗Nf2,q ⊗ 1 + 1⊗ 1⊗Nf3,q).

The de Rham realisation is given by

M(F )dR = H1(X0(p)(C),C)f1 ⊗H1(X0(p)(C),C)f2 ⊗H1(X0(p)(C),C)f3 ,

hence, using (4.8), the Hodge numbers of M(F ) are given by

h3,0(M(F )) = h0,3(M(F )) = 1 and h2,1(M(F )) = h1,2(M(F )) = 3. (4.10)

In particular, the Weil–Deligne representation of F at infinity is

σ′F,∞ = (indC/R(ϕ1,2))⊗H1,2(M(F ))⊕ (indC/R(ϕ0,3))⊗H0,3(M(F )). (4.11)

Triple product L-functions

Following Section 1.1.4, one attaches to the motive of F the L-function

Λ(M(F )/Q, s) := L(σ′F,∞, s)
∏
q

L(σ′F,q, s).

This is the Garrett–Rankin triple product L-function associated to f1, f2 and f3.

Remark 4.7. We will alternatively write Λ(F, s) or Λ(f1, f2, f3, s) for this L-function. Sim-

ilarly, we write L(F, s) or L(f1, f2, f3, s) for the finite part
∏

q L(σ′F,q, s) and also refer to this

as the triple product L-function.
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We obtain the local L-factor at the finite prime q by the formula

L(σ′F,q, s) := det(1− q−sΦ | VIq
q,NE,q

)−1,

where Vq is the underlying complex vector space of σ′F,q and V
Iq
q,NF,q

:= V
Iq
q ∩kerNF,q. Using

the description of the Weil–Deligne representations of F , one can work out the explicit

expressions for these local factors, as in [76, (1.7), (1.8)]: at primes q 6= p they are of degree

8 and at p it is of degree 3. Following Section 1.1.4 and using (4.10), the local L-factor at

infinity is given by

L(σ′F,∞, s) = LC(ϕ1,2, s)
3LC(ϕ0,3, s) = ΓC(s− 1)3ΓC(s) = 24(2π)3−4sΓ(s− 1)3Γ(s).

If we let

Λ∗(F, s) := cond(M(F )/Q)
s
2 Λ(F, s), (4.12)

then Conjecture 1.9 predicts that this L-function admits analytic continuation to the entire

complex plane and satisfies the functional equation

Λ∗(F, s) = W (F ) · Λ∗(F, 4− s), (4.13)

where W (F ) = W (f1, f2, f3) = W (M(F )/Q) is the global root number of the motive M(F ).

Remark 4.8. Using the explicit description of the Weil–Deligne representations of M(F ),

it is possible to prove that

W (F ) = ap(f1)ap(f2)ap(f3) and cond(M(F )/Q) = p5.

These results are stated for instance in [76, §1]. In Proposition 4.5 and Remark 4.26 later in

this chapter, we give a full proof of these facts.

The analytic continuation of Λ∗(F, s) and the functional equation (4.13) have been proved
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by Gross and Kudla [76, Proposition 1.1]. The centre of symmetry of the functional equation

is the point s = 2 at which L(F, s) has no pole. Moreover, L(σ′∞,F , s) has neither zero nor

pole at s = 2, so the centre is a critical point and

W (F ) = (−1)ords=2 L(F,s).

Note that the Bloch–Beilinson conjecture 1.4 predicts in this setting that

ords=2 L(F, 2) = dimKF (tF )∗(CH2(X0(p)3)(Q)0 ⊗KF ). (4.14)

The case W (F ) = +1

Define the complex period associated to F by

ΩF :=
‖ωf1‖2 · ‖ωf2‖2 · ‖ωf3‖2

4πp
, (4.15)

where ωfj := 2πifj(z)dz is the normalised eigendifferential on X0(p) associated to fj for

j ∈ {1, 2, 3}, see Section 1.2.3, and where ‖ · ‖ denotes the Petersson norm. In this section

we work under the assumption W (F ) = +1, which implies that L(F, s) vanishes to even

order at the central critical point s = 2. The Gross–Kudla formula is then an expression for

the central critical value of the form

L(F, 2) = ΩF · AF

where AF is a real algebraic number in the subfield of C generated by the coefficients of

the Dirichlet series of the triple product L-function. Gross and Kudla [76, Proposition 10.8]

give a description of the algebraic quantity AF in terms of the height of a “cycle” on the

triple product of the definite Shimura curve X1,p in the notation of [10], which we will now

describe. The curve X1,p is not the one obtained from the canonical construction of Shimura
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curves. The construction we give below is originally due to Gross [74, p. 131].

Let B be the definite quaternion algebra over Q ramified at p and ∞. Let Ẑ =
∏

l 6=∞ Zl

denote the profinite completion of Z and let Q̂ := Ẑ⊗Q. We set B̂ := B ⊗Q Q̂ and for each

place l of Q we let Bl := B ⊗ Ql. For any prime ` 6= p we identify B` with M2(Q`) and for

l = p,∞ we let Rl denote the unique maximal order of Bl. Then

R := B ∩

( ∏
`6=p,∞

M2(Z`)×Rp ×R∞

)

is a maximal order of B. One associates to the datum (B,R) a Shimura curve X1,p which is

a complete algebraic curve over Q and may be described as the double coset space

X1,p = R̂ \ (B̂× × Y ) / B×

where Y is the genus zero curve defined over Q with the property that

Y (K) = {x ∈ B ⊗K | norm(x) = trace(x) = 0}

for every Q-algebra K.

The cardinality of the double coset space R̂ \ B̂× /B× is called the class number of B (it

is independent of the choice of R) and is given by

h(B) := |R̂ \ B̂× / B×| = g + 1,

where g denotes the genus of the modular curve X0(p) given by (1.18).

Let {x0, . . . , xg} be a set of representatives of this double coset space and define, for each

i ∈ {0, 1, . . . , g}, the maximal order Ri := B ∩ x−1
i R̂xi of B, along with the finite subgroup

Γi := R×i /〈±1〉 of B×/〈±1〉 and the associated curve Yi := Y/Γi over Q of genus zero. Each

conjugacy class of maximal orders in B is represented once or twice in {R0, . . . , Rg}. The
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number of distinct conjugacy classes of maximal orders in B is called the type number of B.

We have the identification

X1,p =

g⊔
i=0

Yi,

and the group Pic(X1,p) of divisor classes is a free abelian group of rank g+ 1 isomorphic to

Pic(X1,p) = Zε0 ⊕ . . .⊕ Zεg, (4.16)

where εi corresponds to the class generated by a single point supported on Yi.

Let S denote the set of isomorphism classes of supersingular elliptic curves over F̄p. It

has cardinality g+ 1 and we may order it as S = {E0, . . . , Eg} where End(Ei) = Ri for each

i ∈ {0, 1, . . . , g}. We can then define, for i ∈ {0, 1, . . . , g}, the integer

wi := |Γi| =
# Aut(Ei)

2
. (4.17)

Note that two maximal orders Ri and Rj are conjugate if and only if Ei and Ej are conjugate

by an automorphism of F̄p, which is the case if and only if i = j or E(p)
i
∼= Ej.

Remark 4.9. Let i ∈ {0, 1, . . . , g}. If j(Ei) = 0, then wi = 3. This happens if and only

if p ≡ 5, 11 (mod 12). If j(Ei) = 1728, then wi = 2. This happens if and only if p ≡ 7, 11

(mod 12). Otherwise wi = 1. This is explained for instance in [54, §0.1].

By the Jacquet–Langlands correspondence [92], as formulated in [10, Theorem 1.2], the

newform fj, for j ∈ {1, 2, 3}, gives rise to an algebra homomorphism φfj : T1,p−→Ofj

satisfying

φfj(w
−
p ) = ap(fj) and φfj(T`) = a`(fj) for all ` 6= p.

Here T1,p is the Hecke algebra generated by the Hecke operators T` (` 6= p) and the Atkin–

Lehner involution w−p acting on X1,p. See [10, §1.5]. By multiplicity one, there corresponds
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to fj a unique line Rafj in Pic(X1,p)⊗Z R such that

w−p (afj) = ap(fj)afj and T`(afj) = a`(fj)afj for all ` 6= p.

(This is the formulation of the Jacquet–Langlands correspondence employed in [76, Propo-

sition 10.2]). We express the eigenvector afj in the basis (4.16)

afj =

g∑
i=0

λi(fj)εi,

with coefficients λi(fj) lying in the totally real field Kfj and uniquely determined up to a

scalar. As noted in [76, p. 202], we have
∑g

i=0 λi(fj) = 0 since fj is a cusp form; indeed,

cusp forms are orthogonal to the Eisenstein class aE :=
∑g

i=0
1
wi
εi with respect to the paring

〈εi, εj〉 = δijwi on Pic(X1,p). The following result is proved in [76, Proposition 10.8] and will

be referred to as the Gross–Kudla formula.

Theorem 4.1 (Gross–Kudla).

L(F, 2)

ΩF

=
(
∑

iw
2
i λi(f1)λi(f2)λi(f3))2∏3
j=1(

∑
iwiλi(fj)

2)
.

The case W (F ) = −1

Suppose in this section that W (F ) = −1, i.e., that L(F, s) vanishes to odd order at its

centre s = 2. Recall the projector tF of (4.9) and the Beilinson–Bloch conjecture (4.14).

In particular, under the assumption W (F ) = −1, we expect the F -isotypic component of

CH2(X0(p)3)0(Q)⊗KF to have dimension greater or equal to 1.

A natural element of CH2(X0(p)3)0(Q) to consider is the modified diagonal cycle, also

referred to as the Gross–Kudla–Schoen cycle. Let ∆ denote the image of X0(p) under the

diagonal embedding X0(p)−→X0(p)3, i.e.,

∆ = {(x, x, x) | x ∈ X0(p)} ⊂ X0(p)3. (4.18)
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In order to get a null-homologous cycle, we apply a certain projector to ∆, originally defined

in [77].

Definition 4.4. Let X be a smooth projective geometrically connected curve over a number

field k and let e be a k-rational point of X. For any non-empty subset T of {1, 2, 3}, let T ′

denote the complementary set. Write pT : X3−→X |T | for the natural projection map and let

qT (e) : X |T |−→X3 denote the inclusion obtained by filling in the missing coordinates using

the point e. Let PT (e) denote the graph of the morphism qT (e) ◦ pT : X3−→X3 viewed as a

codimension 3 cycle on the product X3 ×X3. Define the Gross–Kudla–Schoen projector

PGKS(e) :=
∑
T

(−1)|T
′|PT (e) ∈ CH3(X3 ×X3),

where the sum is taken over all subsets of {1, 2, 3}. This is an idempotent in the ring

of correspondences of X3 by [77, Proposition 2.3] with the property that it annihilates the

cohomology groups H i(X3(C),Z) for i ∈ {4, 5, 6} and maps H3(X3(C),Z) onto the Künneth

summand H1(X(C),Z)⊗3 by [77, Corollary 2.6].

Definition 4.5. Let e ∈ X0(p)(Q) be a rational point. The Gross–Kudla–Schoen cycle with

base point e is defined as

∆GKS(e) := PGKS(e)∗(∆) ∈ CH2(X0(p)3)0(Q).

Note that ∆GKS(e) is null-homologous as PGKS(e) annihilates H4
B(X0(p)3,Z), i.e., the target

of the cycle class map cl2B of (1.43). When e is the cusp ξ∞ of X0(p) at infinity, we shall

simply write ∆GKS := ∆GKS(ξ∞).

Gross and Kudla [76, Conjecture 13.2] conjectured the following formula:

L′(F, 2)

ΩF

= 〈(tF )∗(∆GKS), (tF )∗(∆GKS)〉BB, (4.19)

where 〈 , 〉BB : CH2(X0(p)3)0(Q) ⊗ R × CH2(X0(p)3)0(Q) ⊗ R−→R is the Beilinson–Bloch
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height pairing [76, (13.9)]. A proof due to Yuan, Zhang and Zhang has been announced

in [154] but has not yet appeared in print.

4.1.3 Triple product Chow–Heegner points

Let f be a normalised newform in S2(Γ0(p)) with rational coefficients, and let Ef be the

elliptic curve associated to f by the Eichler–Shimura construction. In particular, there is a

quotient map

πf : J0(p)−→Ef ,

induced by the idempotent correspondence tf in Corr0(X0(p), X0(p))Q of Section 4.1.1. In

this special case of rational coefficients, note that Ef = M(f) = M([f ]) = (X0(p), tf , 0).

Remark 4.10. To the best of the authors knowledge, it is unknown whether there are

finitely or infinitely many elliptic curves over Q with a prime conductor. It is a result of

Setzer [134, Theorem 2] that given a prime p distinct from 2, 3 and 17, there is an elliptic

curve of conductor p over Q with a rational 2-torsion point if and only if p = u2 + 64 for

some rational integer u. A conjecture of Hardy and Littlewood [81, Conjecture F] implies

that there are infinitely many values of u such that u2 + 64 is prime. Thus, conditionally on

this conjecture of Hardy and Littlewood, there are infinitely many primes p which occur as

the conductor of an elliptic curve over Q. This is explained in detail in the preprint [87].

Let g be a choice of auxiliary normalised newform in S2(Γ0(p)) such that g is not

Gal(Q̄/Q) conjugate to f . Recall the idempotent correspondence t[g] ∈ Corr0(X0(p), X0(p))Q

which cuts out the motive M([g]) = (X0(p), t[g], 0) = A[g]. Consider the correspondence

Π[g] := pr∗12(t[g]) · pr∗34(∆) ∈ CH2(X0(p)4)(Q)⊗Q,

where ∆ ∈ CH1(X0(p)2)(Q) is the diagonal cycle. After clearing denominators, we may and

will consider Π[g] as an element of Corr−1(X0(p)3, X0(p)), which thus induces, by (1.40), a
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map of Chow groups

Π[g],∗ : CH2(X0(p)3)0(L)−→CH1(X0(p))0(L) = J0(p)(L)

for any field extension L of Q. By composing correspondences, using (1.42), we can define

Π[g],f := Π[g] ◦ tf = pr∗12(t[g]) · pr∗34(tf ) ∈ Corr−1(X0(p)3, Ef ). (4.20)

This induces, in the terminology of Section 0.2.2, a generalised modular parametrisation

Π[g],f,∗ = πf ◦ Π[g],∗ : CH2(X0(p)3)0(L)−→Ef (L)

for any field extension L of Q.

Remark 4.11. Instead of defining the correspondence Π[g] as pr∗12(t[g]) · pr∗34(∆), one could

alternatively propose to use pr∗12(t[g]) · pr∗34(t[g]). One checks that

pr∗12(t[g]) · pr∗34(t[g]) = (pr∗12(t[g]) · pr∗34(∆)) ◦ t[g],

hence (pr∗12(t[g]) · pr∗34(t[g])) ◦ tf = (pr∗12(t[g]) · pr∗34(∆)) ◦ (t[g] ◦ tf ). But f and g are not

Gal(Q̄/Q) conjugates, hence πf ◦ π[g] = 0 in End0
Q(J0(p)). In particular, the generalised

modular parametrisation ((pr∗12(t[g]) · pr∗34(t[g])) ◦ tf )∗ : CH2(X0(p)3)0−→Ef is the zero map

in this case.

Using the three ingredients (or three pillars of the BSD strategy as they are referred to

in Section 0.2.2) – the modular parametrisation Π[g],f,∗, the cycle ∆GKS ∈ CH2(X0(p)3)0(Q),

and the conjectural formula (4.19) of Gross and Kudla (see [51, Theorem 3.5] for a precise

formulation in the present setup) – Darmon, Rotger and Sols [51, Theorem 3.7] have proved

247



the following concerning the Chow–Heegner point

P (X0(p)3,Π[g],f ,∆GKS) := Π[g],f,∗(∆GKS) = πf (Π[g],∗(∆GKS)) ∈ Ef (Q), (4.21)

by building on the work of Yuan, Zhang and Zhang:

Theorem 4.2 (Darmon–Rotger–Sols). Assume that W (f) = −1 and W (Sym2 g⊗ f) = +1.

Then P (X0(p)3,Π[g],f ,∆GKS) has infinite order in Ef (Q) if and only if

ords=1 L(f, s) = 1 and ords=2 L(Sym2(gσ)⊗ f, s) = 0, ∀σ : Kg ↪→ C.

Remark 4.12. Note that the triple product L-function attached to (g, g, f) decomposes as

L(g, g, f, s) = L(f, s− 1)L(Sym2 g ⊗ f, s),

and therefore the assumptions of the theorem imply in particular that W (g, g, f) = −1.

4.2 Cycle constructions

Let ∆(p) be the curve that fits into the Cartesian diagram

∆(p) X0(p)3

∆ X(1)3.

�

We will systematically study the cycles in CH2(X0(p)3) arising as components of ∆(p). We

will describe all such cycles as images under maps X(p)−→X0(p)3, where X(p) denotes the

(component of) the modular curve M̄p described in Section 1.2.2. We then focus on making

null-homologous variants of these cycles.
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4.2.1 Diagonal type cycles on X1(p)
3

Throughout this section we will assume that p > 3. Recall from Section 1.2.2 that M̄p denotes

the fine moduli scheme representing pairs (E,αp) consisting of a generalised elliptic curve E

together with a full level p structure αp : E[p]
∼−→(Z/pZ)2. It is a smooth proper curve over

Q, whose base change to Q(ζp) is the disjoint union of p− 1 geometrically connected smooth

proper curves Xj(p) with j ∈ {1, . . . , p − 1}. The curve Xj(p) classifies pairs (E, (P,Q)),

where (P,Q) is a basis of E[p] satisfying ep(P,Q) = ζjp .

Let xi = (ai, bi) ∈ F2
p \ {(0, 0)} for i ∈ {1, 2, 3} and consider the map

ϕ̃(x1,x2,x3) : M̄p−→X1(p)3, (E, (P,Q)) 7→ ((E, a1P+b1Q), (E, a2P+b2Q), (E, a3P+b3Q)),

defined over Q. After base changing to Q(ζp), one may restrict this map to each of the

p − 1 connected components of M̄p, yielding morphisms, for each j ∈ F×p , of geometrically

connected smooth proper curves over Q(ζp)

ϕ̃j(x1,x2,x3) : Xj(p)−→X1(p)3.

Denote by ∆̃j
(x1,x2,x3) := ϕ̃j(x1,x2,x3)(X

j(p)) the image of Xj(p) under this map. This is a

cycle of codimension 2 on X1(p)3 defined over Q(ζp) and we shall consider its image in

CH2(X1(p)3)(Q(ζp)), which we will denote again by ∆̃j
(x1,x2,x3) by slight abuse of notation.

So far we have produced a collection

C̃ :=
{

∆̃j
(x1,x2,x3) : (x1, x2, x3) ∈ (F2

p \ {(0, 0)})3, j ∈ F×p
}
⊂ CH2(X1(p)3)(Q(ζp))

which inherits from M̄p and X1(p)3 various actions of groups, which we will now define and

study.
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Action of the group SL2(Fp)

There is a natural left action of the group SL2(Fp) on M̄p, as can be seen, using the moduli

interpretation, as follows: if
(
α β
γ δ

)
∈ SL2(Fp), then

α β

γ δ

 · (E, (P,Q)) := (E, (αP + βQ, γP + δQ)).

Because the determinant is one, the Weil pairing on the basis is preserved, and thus the

connected components of M̄p⊗Q(ζp) are stable under this action. The above action naturally

induces a right action of SL2(Fp) on the set C̃ via

∆̃j
x1,x2,x3

· κ := ϕ̃j(x1,x2,x3) ◦ κ(Xj(p)),

but since SL2(Fp) acts by automorphisms this action is the trivial one. An easy calculation

reveals that

∆̃j
(x1,x2,x3) · κ = ∆̃j

(x1,x2,x3)·κ

where the right action of SL2(Fp) on the set (F2
p \ {(0, 0)})3 is defined as follows. Let

κ =
(
α β
γ δ

)
∈ SL2(Fp) and (x1, x2, x3) ∈ (F2

p \ {(0, 0)})3 with xi = (ai, bi), i = 1, 2, 3, then

write the vector (x1, x2, x3) as a 3× 2 matrix and multiply on the right by κ:

(x1, x2, x3) · κ : =


a1 b1

a2 b2

a3 b3


α β

γ δ


= ((a1α + b1γ, a1β + b1δ), (a2α + b2γ, a2β + b2δ), (a3α + b3γ, a3β + b3δ)).

It follows that the indexing set of the cycles can be taken to be

Ĩ := (F2
p \ {(0, 0)})3/SL2(Fp).
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We shall write [x1, x2, x3] for the image of (x1, x2, x3) in Ĩ. Thus we have

C̃ =
{

∆̃j
(x1,x2,x3) : [x1, x2, x3] ∈ Ĩ , j ∈ F×p

}
.

To understand the set Ĩ we introduce a determinant map

Det : Ĩ−→(Fp)3

defined as follows. If (x1, x2, x3) is a representative of a class in Ĩ with xi = (ai, bi) for

i ∈ {1, 2, 3}, then

Det([x1, x2, x3]) :=


∣∣∣∣∣∣∣
a2 b2

a3 b3

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
a3 b3

a1 b1

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
a1 b1

a2 b2

∣∣∣∣∣∣∣
 .

This map is well-defined as follows from the definition of the action of SL2(Fp).

Lemma 4.1. The map Det is surjective.

Proof. Start by observing that Det([(1, 0), (1, 0), (1, 0)]) = (0, 0, 0). Now, let (a, b, c) ∈ (Fp)3

be non-zero, and suppose that a 6= 0 so that a ∈ F×p . Then

Det([(−b,−(c+ b)a−1), (a, 1), (0, 1)]) = (a, b, c).

The cases when b 6= 0 or c 6= 0 are treated similarly.

The map Det is however not injective as we will see shortly. Consider the following three

subsets of Ĩ:

Ĩ0 := Det−1((0, 0, 0)), Ĩ1 := Ĩ \ Ĩ0, Ĩ× := Det−1((F×p )3) ⊂ Ĩ1.

Remark 4.13. Let [x1, x2, x3] ∈ Ĩ and suppose that Det([x1, x2, x3]) has two coordinates

equal to zero, say the first two. Since the first entry is zero, the vectors x2 and x3 are linearly
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dependent and since the second entry is zero, x1 and x3 are linearly dependent. Thus x1 and

x2 are linearly dependent which implies that the last entry is also zero. The same reasoning

applies whenever two coordinates are zero and shows that in that case we necessarily have

[x1, x2, x3] ∈ Ĩ0. In other words, Ĩ1 \ Ĩ× consists of those classes [x1, x2, x3] for which one and

only one coordinate of Det([x1, x2, x3]) is zero.

Lemma 4.2. The set Ĩ0 has cardinality equal to (p− 1)2. In particular, the map Det is not

injective.

Proof. Let [x1, x2, x3] ∈ Ĩ0 and let xi = (ai, bi) for i = 1, 2, 3. Up to multiplying on the right

by the matrix ( 0 1
−1 0 ) we may assume without loss of generality that a1 6= 0. Multiplying on

the right by
(
a−1

1 0
0 a1

)
we obtain the vector ((1, a1b1), (a−1

1 a2, a1b2), (a−1
1 a3, a1b3)). Multiplying

on the right by the matrix
(

1 −a1b1
0 1

)
we obtain the vector

((1, 0), (a−1
1 a2,−a2b1 + a1b2), (a−1

1 a3,−a3b1 + a1b3)) = ((1, 0), (a−1
1 a2, 0), (a−1

1 a3, 0))

where we used the fact that [x1, x2, x3] ∈ I0. We conclude that

[x1, x2, x3] = [(1, 0), (a−1
1 a2, 0), (a−1

1 a3, 0)].

This proves that any [x1, x2, x3] ∈ Ĩ0 admits a representative of the form ((1, 0), (n, 0), (m, 0))

where n,m ∈ F×p . Moreover, if [(1, 0), (n, 0), (m, 0)] = [(1, 0), (n′, 0), (m′, 0)], then there exists

κ =
(
α β
γ δ

)
∈ SL2(Fp) such that

((1, 0), (n, 0), (m, 0)) · κ = ((α, β), (nα, nβ), (mα,mβ)) = ((1, 0), (n′, 0), (m′, 0))

which implies that α = 1, β = 0 and thus n = n′ and m = m′. We conclude that any

[x1, x2, x3] ∈ Ĩ0 admits a unique representative of the form ((1, 0), (n, 0), (m, 0)) where n and

m belong to F×p . Thus Ĩ0 is in bijection with F×p × F×p and the lemma is proved.

Lemma 4.3. When restricted to Ĩ1, the map Det is injective. In particular, the set Ĩ1 has
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cardinality (p+ 2)(p− 1)2, and the set Ĩ× is in bijection with (F×p )3 of cardinality (p− 1)3.

Proof. Let [x1, x2, x3] ∈ Ĩ1 with xi = (ai, bi), for i = 1, 2, 3. Then at least one entry of

Det([x1, x2, x3]) is non-zero. Let us assume that
∣∣ a1 b1
a2 b2

∣∣ = n 6= 0 in Fp. The other cases are

treated similarly. Then κ :=
(
a1 b1
a2 b2

)−1
( n 0

0 1 ) ∈ SL2(Fp) and by multiplying on the right by

κ, we obtain [x1, x2, x3] = [(n, 0), (0, 1), (a′3, b
′
3)] where a′3 = −

∣∣ a2 b2
a3 b3

∣∣ and b′3 = −n−1
∣∣ a3 b3
a1 b1

∣∣ .
Hence [x1, x2, x3] ∈ Ĩ1 is completely determined by Det([x1, x2, x3]).

It is natural to express the collection C̃ of cycles as the disjoint union of the two sets C̃0

and C̃1 consisting of cycles indexed by Ĩ0 and Ĩ1, respectively. We will also use the notation

C̃× to denote the collection of cycles indexed by Ĩ×. In view of the preceding two lemmas,

we will adopt the following simplified notations. If [x1, x2, x3] ∈ Ĩ0 corresponds to the class

[(1, 0), (n, 0), (m, 0)] then we write ∆̃j
(n,m) := ∆̃j

(x1,x2,x3) where j ∈ F×p . If [x1, x2, x3] ∈ Ĩ1 with

Det([x1, x2, x3]) = (a, b, c), then we write ∆̃j
a,b,c := ∆̃j

(x1,x2,x3) where j ∈ F×p . We then have

the descriptions


C̃0 =

{
∆̃j

(n,m) : n,m, j ∈ F×p
}

C̃1 =
{

∆̃j
a,b,c : a, b, c ∈ Fp, j ∈ F×p , (a, b, c) 6= (0, 0, 0)

}
.

Lemma 4.4. For all j ∈ F×p , the following holds:

i) ∆̃j
(n,m) = ∆̃1

(n,m) for all n,m ∈ F×p .

ii) ∆̃j
a,b,c = ∆̃1

ja,jb,jc for all a, b, c ∈ Fp with (a, b, c) 6= (0, 0, 0).

Proof. Observe that if [x1, x2, x3] ∈ Ĩ with xi = (ai, bi) for i = 1, 2, 3, then

∆̃j
(x1,x2,x3) = {(E, aiP + biQ)i=1,2,3 : ep(P,Q) = ζjp}

= {(E, jai(j−1P ) + biQ)i=1,2,3 : ep(P,Q) = ζjp}

= {(E, jaiP ′ + biQ)i=1,2,3 : ep(P
′, Q) = ζp}

= ∆̃1
((ja1,b1),(ja2,b2),(ja3,b3)),
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by bilinearity of the Weil pairing.

If [x1, x2, x3] ∈ Ĩ0 is represented by ((1, 0), (n, 0), (m, 0)) then

[(ja1, b1), (ja2, b2), (ja3, b3)] = [(j, 0), (jn, 0), (jm, 0)] = [(1, 0), (n, 0), (m, 0)] = [x1, x2, x3].

If [x1, x2, x3] ∈ Ĩ1 has determinant (a, b, c) then (ja1, b1), (ja2, b2), (ja3, b3) has determi-

nant (ja, jb, jc).

We conclude that it suffices to consider cycles coming only from the component X1(p).

From now on we shall write X(p) for X1(p) and ∆̃(x1,x2,x3) for ∆̃1
(x1,x2,x3). To summarise, we

have C̃ = C̃0 t C̃1 with


C̃0 =

{
∆̃(n,m) : n,m ∈ F×p

}
C̃1 =

{
∆̃a,b,c : a, b, c ∈ Fp, (a, b, c) 6= (0, 0, 0)

}
.

Action of the diamond operators

The modular curve X1(p) carries a natural left action of the group F×p via the so-called

diamond operators. If d ∈ F×p , then in terms of the modular description one defines

〈d〉 · (E,P ) = (E, dP ).

This action naturally extends to the closed curve and is defined over Q. We get an induced

action of (F×p )3 on the triple product X1(p)3 described by

〈d1, d2, d3〉 · ((E1, P1), (E2, P2), (E3, P3)) = ((E1, d1P1), (E2, d2P2), (E3, d3P3)).

This in turn induces a left action of (F×p )3 on the collection of cycles C̃ via

〈d1, d2, d3〉 · ∆̃(x1,x2,x3) := 〈d1, d2, d3〉 ◦ ϕ̃(x1,x2,x3)(X(p)),
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and this action preserves the subsets C̃0 and C̃1. Let [x1, x2, x3] ∈ Ĩ with xi = (ai, bi) for

i = 1, 2, 3. If d1, d2, d3 ∈ F×p , then

〈d1, d2, d3〉 ◦ ϕ̃(x1,x2,x3) = ϕ̃((d1a1,d1b1),(d2a2,d2b2),(d3a3,d3b3)) = ϕ̃(d1x1,d2x2,d3x3). (4.22)

Lemma 4.5. Let d1, d2, d3 ∈ F×p .

i) 〈d1, d2, d3〉 · ∆̃(n,m) = ∆̃(d−1
1 d2n,d

−1
1 d3m) for all n,m ∈ F×p .

ii) 〈d1, d2, d3〉 · ∆̃a,b,c = ∆̃d2d3a,d1d3b,d1d2c for all a, b, c ∈ Fp with (a, b, c) 6= (0, 0, 0).

Proof. From (4.22) we see that 〈d1, d2, d3〉 · ∆̃(n,m) = ∆̃((d1,0),(d2n,0),(d3m,0)) and i) follows after

observing that [(d1, 0), (d2n, 0), (d3m, 0)] = [(1, 0), (d−1
1 d2n, 0), (d−1

1 d3m, 0)].

Let [x1, x2, x3] ∈ Ĩ1 with determinant (a, b, c). Then ii) follows from the fact that the

determinant of [d1x1, d2x2, d3x3] is (d2d3a, d1d3b, d1d2c).

The following three corollaries describe the action of the diamond operators on the sets

C̃0, C̃1 \ C̃× and C̃× respectively and are easy consequences of the above lemma.

Corollary 4.1. The action of (F×p )3 on C̃0 via diamond operators is transitive and the sta-

biliser of any element is given by the set of triples (d, d, d) for d ∈ F×p .

Corollary 4.2. Concerning the action of the diamond operators on C̃1 \ C̃×, the following

holds:

i) orb�(∆̃0,1,1) = Det−1(0× F×p × F×p ) and stab�(0, 1, 1) = {(d−1, d, d) : d ∈ F×p }.

ii) orb�(∆̃1,0,1) = Det−1(F×p × 0× F×p ) and stab�(1, 0, 1) = {(d, d−1, d) : d ∈ F×p }.

iii) orb�(∆̃1,1,0) = Det−1(F×p × F×p × 0) and stab�(1, 1, 0) = {(d, d, d−1) : d ∈ F×p }.

Corollary 4.3. We have

orb�(∆̃1,1,1) =
{

∆̃a,b,c | a, b, c ∈ F×p , abc ∈ (F×p )(2)
}
.
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Here (F×p )(2) denotes the set of quadratic residues modulo p and thus the orbit of ∆̃1,1,1 has

size (p−1)3

2
. The stabiliser of ∆̃1,1,1 for this action is given by {〈1, 1, 1〉, 〈−1,−1,−1〉}. As a

consequence, there are 2 orbits for the action of the diamond operators on C̃×:

C̃× = orb�(∆̃1,1,1) t orb�(∆̃1,1,a),

where a ∈ F×p is a choice of a non-quadratic residue modulo p.

Action of the Galois group Gal(Q(ζp)/Q)

As already mentioned, the cycles in the collection C̃ are defined over the cyclotomic field

Q(ζp). We identify Gal(Q(ζp)/Q) with F×p so that the element of the Galois group σi indexed

by i ∈ F×p raises ζp to the i-th power. We now investigate the action of this Galois group on

the cycles in C̃.

Recall that the curve M̄p is defined over Q. When base changed to Q(ζp), the Galois group

of Q(ζp) permutes the p−1 connected components Xj(p) of this curve transitively. This can

be seen from the moduli description of these components and the Galois equivariance of the

Weil pairing. Using this, we can define a right action of Gal(Q(ζp)/Q) on C̃ by

∆̃σi
(x1,x2,x3) := ϕ̃(x1,x2,x3)(σi(X(p))).

The element σi maps the component X(p) to X i(p), and thus we have

∆̃σi
(x1,x2,x3) = ϕ̃(x1,x2,x3)(X

i(p)) = ∆̃i
(x1,x2,x3).

The following result describes the action of the Galois group on the cycles and is a direct

consequence of Lemma 4.4.

Lemma 4.6. For all i ∈ F×p , the following holds:

i) ∆̃σi
(n,m) = ∆̃(n,m) for all n,m ∈ F×p . In particular, the cycles in C̃0 are defined over Q.
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ii) ∆̃σi
a,b,c = ∆̃ia,ib,ic for all a, b, c ∈ Fp with (a, b, c) 6= (0, 0, 0). In particular, the cycles in

C̃1 are defined over Q(ζp) and over no smaller field.

4.2.2 Diagonal type cycles on X0(p)
3

Recall from Section 1.2.2 that there is a natural degree (p− 1)/2 covering of curves

π : X1(p)−→X0(p)

defined over Q. In terms of the (open) moduli description, this map is given by sending

(E,P ) to (E, 〈P 〉). It gives rise to a map on triple products π3 : X1(p)3−→X0(p)3 of degree

(p− 1)3/8 which in turn induces a push-forward map on Chow groups

(π3)∗ : CH2(X1(p)3)−→CH2(X0(p)3).

Let us define, for (x1, x2, x3) ∈ ((Fp × Fp) \ {(0, 0)})3, the map

ϕ(x1,x2,x3) := π3 ◦ ϕ̃(x1,x2,x3) : X(p)−→X0(p)3,

as well as the cycle

∆(x1,x2,x3) := ϕ(x1,x2,x3)(X(p)) ∈ CH2(X0(p)3).

We then have (π3)∗(∆̃(x1,x2,x3)) = (p−1)3

8
∆(x1,x2,x3).

The cycles ∆(x1,x2,x3) are invariant under the action of the diamond operators on the

triples (x1, x2, x3). Thus we obtain a collection C of cycles indexed by the double coset space

I := (F×p )3 \ ((Fp × Fp) \ {(0, 0)})3/SL2(Fp) = (F×p )3 \ I.

This new index set has cardinality equal to 6 as follows from Corollaries 4.1, 4.2 and 4.3. As
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a consequence, the construction produces 6 codimension 2 cycles on X0(p)3 described as the

schematic closures of:

1) ∆ := ∆(1,1) = {((E, 〈P 〉), (E, 〈P 〉), (E, 〈P 〉))}

2) ∆1 := ∆0,1,1 = {((E, 〈Q〉), (E, 〈P 〉), (E, 〈P 〉))}

3) ∆2 := ∆1,0,1 = {((E, 〈P 〉), (E, 〈Q〉), (E, 〈P 〉))}

4) ∆3 := ∆1,1,0 = {((E, 〈P 〉), (E, 〈P 〉), (E, 〈Q〉))}

5) ∆+ := ∆1,1,1 = {((E, 〈P 〉), (E, 〈Q〉), (E, 〈P +Q〉))}

6) ∆− := ∆1,1,a = {((E, 〈P 〉), (E, 〈Q〉), (E, 〈aP +Q〉))} (a is a non-quadratic residue).

Remark 4.14. The cycle ∆ is the image of X0(p) under the diagonal embedding of X0(p)

into X0(p)3 as described in (4.18). It is the diagonal cycle which underlies the definition of

the Gross–Kudla–Schoen cycle of Definition 4.5.

Fields of definition

Lemma 4.7. The cycles ∆,∆1,∆2 and ∆3 on X0(p)3 are defined over Q.

Proof. The statement for ∆ follows directly from Lemma 4.6 (i) and the fact that the map

π is defined over Q, or alternatively from Remark 4.14.

Consider the cycle ∆1. A similar reasoning applies to the cycles ∆2 and ∆3. By Lemma

4.6 (ii) combined with Corollary 4.2, we see that ∆̃σ
0,1,1 belongs to the diamond orbit of ∆̃0,1,1

for all σ ∈ Gal(Q(ζp)/Q). As a consequence, after applying π3 we obtain ∆σ
1 = ∆1 and this

cycle on X0(p)3 is thus defined over Q.

Denote by C× the collection of codimension 2 cycles onX0(p)3 indexed by I× = (F×p )3\Ĩ×;

it consists of two cycles, namely ∆+ = ∆1,1,1 and ∆− = ∆1,1,a, by Corollary 4.3. Note that

in the case where p ≡ 3 (mod 4), one may take a = −1.
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Lemma 4.8. The two cycles in C× are defined over the quadratic field

K := Q
(√

p?
)
⊂ Q(ζp),

where p? := χ(−1)p and χ =
(
·
p

)
denotes the Legendre symbol modulo p. The non-trivial

element of Gal(K/Q) interchanges ∆+ and ∆−.

Proof. Let G(χ) denote the Gauss sum associated to χ given by the expression

G(χ) :=

p−1∑
n=0

ζn
2

p .

The equality G(χ)2 = p? goes back to Gauss and implies that K is the quadratic subfield

of the cyclotomic field Q(ζp). Let τ denote the non-trivial element of Gal(K/Q) and let σi

denote the element of Gal(Q(ζp)/Q) that corresponds to i ∈ F×p as in Section 4.2.1. We then

have

σi(G(χ)) =

p−1∑
n=0

ζ in
2

p = G(χ) ⇐⇒ i ∈ (F×p )(2),

and as a consequence Gal(Q(ζp)/K) ' (F×p )(2) and Gal(K/Q) ' F×p /(F×p )(2). Thus τ acts as

σa where a ∈ F×p is not a square. It follows from Lemma 4.6 and Corollary 4.3 that both

cycles in C× are fixed by Gal(Q(ζp)/K) and moreover that

∆τ
+ = ∆τ

1,1,1 = ∆a,a,a = ∆1,1,a = ∆−.

Remark 4.15. Note that p? = p or −p depending on whether p ≡ 1 (mod 4) or p ≡ 3

(mod 4). If DK denotes the discriminant of K, then DK = p?. In fact, K is the unique

quadratic extension of Q ramified only at p. Let χK denote the primitive quadratic Dirichlet

character modulo p associated toK, namely χK is the Kronecker symbol
(
p?

·

)
. This character
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enjoys the property that for any odd prime q we have

χK(q) =


0 if q is ramified in K

1 if q splits in K

−1 if q is inert in K.

(4.23)

In particular, χK = χ is the Legendre symbol at p.

The action of the symmetric group S3

Consider the action of the symmetric group S3 on X0(p)3 and X1(p)3 by permutation of the

coordinates. This induces a left action of S3 on the set of cycles C̃ and C respectively; given

σ ∈ S3,

σ ·∆(x1,x2,x3) := σ ◦ ϕx1,x2,x3(X(p)) = ∆(xσ(1),xσ(2),xσ(3)),

and a similar definition applies to the cycles in C̃.

Note that the action of S3 on C̃ preserves the subset C̃0, as well as the subsets

C̃1 \ C̃× = orb�(∆̃0,1,1) t orb�(∆̃1,0,1) t orb�(∆̃1,1,0)

and

C̃× = orb�(∆̃1,1,1) t orb�(∆̃1,1,a).

As a consequence, the action of S3 on C fixes the cycle ∆ and permutes the cycles

∆1,∆2,∆3 transitively, as is obvious from their descriptions above. Let [x1, x2, x3] ∈ Ĩ× with

determinant (a, b, c) ∈ (F×p )3. For all σ ∈ S3,

ασ :=
3∏
i=1

Det([xσ(1), xσ(2), xσ(3)])i = sign(σ)abc,

where sign(σ) is the sign of the permutation σ. The following lemma now follows directly
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from Corollary 4.3.

Lemma 4.9. If p ≡ 1 (mod 4), then the action of S3 fixes ∆+ and ∆−. If p ≡ 3 (mod 4),

then any transposition in S3 permutes ∆+ and ∆−.

Intrinsic description

We have described 6 diagonal type cycles on X0(p)3 arising as images of certain maps

X(p)−→X0(p)3. We now give a more intrinsic description of the cycles ∆+ and ∆−.

Consider the curve ∆(p) defined in the beginning of Section 4.2 by the Cartesian diagram

∆(p) X0(p)3

∆ X(1)3.

�

Here X(1) is the modular curve of level 1 (i.e., the j-line) and ∆ is the image of X(1) under

the diagonal embedding X(1)−→X(1)3. By the interpretation of X0(p) as a coarse moduli

space given in Section 1.2.2, ∆(p) is the schematic closure of the set

{((E ′, C1), (E ′, C2), (E ′, C3)) : E ′ ∈ X(1), Ci is a subgroup of E ′ of order p}

taken modulo isomorphisms of elliptic curves with Γ0(p)-structure.

Remark 4.16. In what follows, by slight abuse of notation, we shall write C = C ′ for two

order p subgroups of an elliptic curve E ′ if and only if there is an automorphism α of E ′ such

that α(C) = C ′, i.e., the points (E ′, C) and (E ′, C ′) are equal in X0(p). Similarly, we write

C 6= C ′ if and only if there is no such automorphism, i.e., the points (E ′, C) and (E ′, C ′) are

not equal in X0(p).

Using the conventions of Remark 4.16, the irreducible components of the scheme ∆(p)

over Q can be naturally organised into S3-orbits as follows:
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• One component described by the condition C1 = C2 = C3. This component is of course

the diagonal ∆.

• Three components described by the conditions C1 = C2 6= C3, C1 = C3 6= C2 and

C2 = C3 6= C1, respectively. These correspond respectively to the cycles ∆1,∆2 and

∆3 described above.

• One component described by the condition that C1, C2 and C3 are pairwise distinct.

We shall denote this component by ∆⊥. Note that

∆⊥ = ∆+ + ∆− ∈ CH2(X0(p)3)(Q̄).

Given an elliptic curve E ′, a triple (C1, C2, C3) of distinct cyclic subgroups of order p in

E ′ admits an invariant

o(E ′;C1, C2, C3) ∈ (µ⊗3
p − {1})/(F×p )(2),

described for instance in [48, p. 39]. It is defined, using the Weil pairing ep, by choosing

generators P1, P2, P3 of C1, C2, C3 and setting

o(E ′;C1, C2, C3) = ep(P2, P3)⊗ ep(P3, P1)⊗ ep(P1, P2) ∈ µ⊗3
p − {1}.

This only depends on the choice of generators up to multiplication by a non-zero quadratic

residue. If [x1, x2, x3] ∈ Ĩ× with Det([x1, x2, x3]) = (a, b, c), then for (E ′, (P,Q)) ∈ X(p),

o(ϕ̃x1,x2,x3(E ′, (P,Q))) = ζap ⊗ ζbp ⊗ ζcp.

In terms of this invariant, we then have the more intrinsic definitions

∆+ = {(E ′, C1), (E ′, C2), (E ′, C3) : o(E ′;C1, C2, C3) = ζap ⊗ ζbp ⊗ ζcp, abc ∈ (F×p )(2)},
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∆− = {(E ′, C1), (E ′, C2), (E ′, C3) : o(E ′;C1, C2, C3) = ζap ⊗ ζbp ⊗ ζcp, abc 6∈ (F×p )(2)}.

It is clear from this description that ∆+ and ∆− are indeed defined over the quadratic

extension K = Q(
√
p?).

4.2.3 Homological triviality

Recall from Definition 4.4 the definition of the Gross–Schoen projector, with base point a

rational point e ∈ X0(p)(Q), given by

PGKS(e) :=
∑

T⊂{1,2,3}

(−1)|T
′|PT (e) ∈ CH3(X0(p)3 ×X0(p)3).

This idempotent correspondence acts on cohomology and annihilates H4
B(X0(p)3,Z), the

target of the Betti cycle class map cl2B of (1.43). Hence, for any cycle Z ∈ CH2(X0(p)3), the

cycle PGKS(e)∗(Z) is null-homologous and belongs to CH2(X0(p)3)0. In particular, applying

this projector to the diagonal ∆ gives the Gross–Kudla–Schoen cycle of Definition 4.5

∆GKS(e) = PGKS(e)∗(∆) ∈ CH2(X0(p)3)0(Q).

Theorem 4.3. The cycles ∆+ and ∆− have the same image in cohomology. In particular,

their difference Ξ := ∆+ −∆− belongs to CH2(X0(p)3)0(K).

We record the following key lemma from which Theorem 4.3 follows as a corollary.

Lemma 4.10. Let i < j ∈ {1, 2, 3} and denote by prij : X0(p)3−→X0(p)2 the natural

projection to the product of the i-th and j-th components. There exist elements [x1, x2, x3]

and [y1, y2, y3] of Ĩ× satisfying

3∏
k=1

Det([x1, x2, x3])k ∈ (F×p )(2) and
3∏

k=1

Det([y1, y2, y3])k 6∈ (F×p )(2),

and such that we have an equality prij ◦ϕ(x1,x2,x3) = prij ◦ϕ(y1,y2,y3) of maps X(p)−→X0(p)2.
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Proof. Fix some a 6∈ (F×p )(2).

If i = 1 and j = 2, then we may take

(x1, x2, x3) = ((1, 0), (0, 1), (−1,−1)) and (y1, y2, y3) = ((1, 0), (0, 1), (−a,−1)).

If i = 1 and j = 3, then we may take

(x1, x2, x3) = ((−1, 0), (1,−1), (0, 1)) and (y1, y2, y3) = ((−1, 0), (a,−1), (0, 1)).

If i = 2 and j = 3, then we may take

(x1, x2, x3) = ((−1,−1), (1, 0), (0, 1)) and (y1, y2, y3) = ((−1,−a), (1, 0), (0, 1)).

Remark 4.17. The maps ϕ(x1,x2,x3) and ϕ(y1,y2,y3) associated with the specific choices made

in the above proof will be denoted ϕ+(ij) and ϕ−(ij) = ϕ−(ij; a), respectively.

Proof of Proposition 4.3. Observe that

PGKS(e)∗(Ξ) = Ξ−P12(e)∗(Ξ)−P13(e)∗(Ξ)−P23(e)∗(Ξ) +P1(e)∗(Ξ) +P2(e)∗(Ξ) +P3(e)∗(Ξ).

Let i < j ∈ {1, 2, 3} and consider Pij(e)∗(Ξ). Let k ∈ {1, 2, 3} be the remaining element

distinct from i and j. The correspondence Pij(e) is the graph of the function

qij(e) ◦ prij : X0(p)3−→X0(p)3,

which replaces the k-th coordinate by the element e, and Pij(e)∗(Ξ) is the image of Ξ under

qij(e) ◦ prij. Choose [x1, x2, x3] and [y1, y2, y3] of Ĩ× satisfying the properties of Lemma 4.10
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for the fixed i and j. The first condition ensures that

ϕ(x1,x2,x3)(X(p)) = ∆+ and ϕ(y1,y2,y3)(X(p)) = ∆−,

while the second condition implies that

Pij(e)∗(∆+) = qij(e) ◦ prij ◦ϕ(x1,x2,x3)(X(p)) = qij(e) ◦ prij ◦ϕ(y1,y2,y3)(X(p)) = Pij(e)∗(∆−).

As a consequence, we have Pij(e)∗(Ξ) = 0.

Let i ∈ {1, 2, 3} and consider Pi(e)∗(Ξ). Let j, k ∈ {1, 2, 3} such that {i, j, k} = {1, 2, 3}.

The correspondence Pi(e) is the graph of the map qi(e) ◦ pri : X0(p)3−→X0(p)3, which

replaces the j-th and k-th coordinates by the element e, and Pi(e)∗(Ξ) is the image of Ξ

under qi(e) ◦ pri. This map can be written as the composition

qi(e) ◦ pri = (qik(e) ◦ prik) ◦ (qij(e) ◦ prij),

hence in terms of correspondences we have Pi(e) = Pik(e)◦Pij(e). It follows from the previous

paragraph that Pi(e)∗(Ξ) = 0.

We conclude that Ξ = PGKS(e)∗(Ξ) is null-homologous.

Remark 4.18. A perhaps more direct way to see that the cycle Ξ is null-homologous is to

consider its image under the de Rham cycle class map (1.46), namely

cldR(Ξ) = cldR(∆+)− cldR(∆−) ∈ H4
dR(X0(p)3/C),

where we recall (1.47) that

∫
X0(p)(C)3

cldR(∆±) ∧ α =

∫
∆±

α, for all α ∈ H2
dR(X0(p)3/C).

By the Künneth decomposition of H2
dR(X0(p)3/C), any component of α can at most involve
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de Rham classes coming from 2 of the three components of X0(p)3; indeed, the components

are either of the form pr∗i (β) for some β ∈ H2
dR(X0(p)/C) and i ∈ {1, 2, 3}, or of the form

pr∗j(γ) ∧ pr∗k(δ) for some γ, δ ∈ H1
dR(X0(p)/C) and j < k ∈ {1, 2, 3}. Using the notations of

Remark 4.17, observe that

∫
∆±

pr∗i (β) =

∫
X(p)

(pri ◦ϕ±(ij))∗(β)∫
∆±

pr∗j(γ) ∧ pr∗k(δ) =

∫
X(p)

(prjk ◦ϕ±(jk))∗(γ ∧ δ).

Since

pri ◦ϕ+(ij) = pri ◦ϕ−(ij) : X(p)−→X0(p)

prjk ◦ϕ+(jk) = prjk ◦ϕ−(jk) : X(p)−→X0(p)2,

this implies that cldR(∆+) = cldR(∆−) in H4
dR(X0(p)3/C).

Remark 4.19. We have constructed a canonical null-homologous codimension 2 cycle Ξ

on X0(p)3 which does not depend on any choice of rational base point as opposed to the

Gross–Kudla–Schoen cycle ∆GKS(e). If τ denotes the non-trivial element of Gal(K/Q), then

Ξ := ∆+ −∆− ∈ CH2(X0(p)3)0(K)τ=−1.

4.3 Torsion properties

In this section, we prove three torsion results concerning respectively the Gross–Kudla–

Schoen cycle (more precisely its Abel–Jacobi image), its associated Chow–Heegner points,

and finally the Chow–Heegner points associated to the cycle Ξ.
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4.3.1 The Abel–Jacobi image of the Gross–Kudla–Schoen cycle

Let f1, f2 and f3 be three newforms in S2(Γ0(p)) and let F = f1 ⊗ f2 ⊗ f3. In this section,

we work under the following assumption on the sign of the functional equation (4.13):

Assumption 4.1. W (F ) = +1.

The L-function L(F, s) then vanishes to even order at the central critical point s = 2, and

we have at our disposal the Gross–Kudla formula of Theorem 4.1, which gives an expression

for L(F, 2). Under Assumption 4.1, the Beilinson–Bloch conjecture (4.14) predicts that the

algebraic rank of the F -isotypic component of CH2(X0(p)3)0(Q) is even. Comparing with the

situation of Heegner points on modular curves described in Section 0.2.1, it seems reasonable

to expect that the F -isotypic component of ∆GKS(e) is torsion. While this seems difficult to

prove directly in the Chow group, we can prove the corresponding statement for the image

of the cycle under the complex Abel–Jacobi map

AJX0(p)3 : CH2(X0(p)3)0(C)−→J2(X0(p)3/C) :=
Fil2 H3

dR(X0(p)3/C)∨

ImH3(X0(p)3(C),Z)
, (4.24)

whose definition is given in Sections 0.2.3 and 1.5.1.

We will be solely interested in the piece of the Abel–Jacobi map that survives after

applying the idempotent correspondence tF of (4.9): functoriality of Abel–Jacobi maps allows

us to view AJX0(p)3 as a map

(tF )∗CH2(X0(p)3)0(C)−→(t∗F )∨(J2(X0(p)3/C)) =
Fil2(tF )∗H3

dR(X0(p)3/C)∨

Im(tF )∗H3(X0(p)3(C),Z)
. (4.25)

The aim of this section is to prove the following statement.

Theorem 4.4. Let f1, f2 and f3 ∈ S2(Γ0(p)) be three normalised cuspforms, denote by

F = f1 ⊗ f2 ⊗ f3 their triple product and suppose that F satisfies Assumption 4.1. Then

AJX0(p)3((tF )∗(∆GKS(e))) is torsion in J2(X0(p)3/C) for any base point e ∈ X0(p)(Q).
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Remark 4.20. The complex Abel–Jacobi map AJX0(p)3 in codimension 2 is injective when

restricted to torsion, as follows from the comparison in Proposition 1.20 with Bloch’s map

together with Proposition 1.17. Beilinson and Bloch have independently conjectured that in

general the complex Abel–Jacobi maps for smooth proper varieties over number fields are

injective up to torsion. See [94, Conjecture 9.12]. However, this remains an open problem,

as kernels of Abel–Jacobi maps are in general poorly understood. In particular, Theorem

4.4 above does not imply that (tF )∗(∆GKS(e)) is torsion in the Chow group, although we

believe this should be the case. The author is grateful to Benedict Gross for pointing out a

mistake in the original version of Theorem 4.4.

Remark 4.21. Similar arguments to the ones presented in the proof of Theorem 4.4 below

can be used to prove that the image of (tF )∗(∆GKS(e)) under the `-adic étale Abel–Jacobi

map (1.75)

AJet : CH2(X0(p)3)0(Q)−→H1(Q, H3
et(X0(p)3

Q̄,Q`(2))) (4.26)

is torsion when the global root number is W (F ) = +1. When restricted to torsion, the

map (4.26) is injective as follows from the comparison in Proposition 1.21 with the Bloch

map and Proposition 1.17. It is conjectured by Beilinson and Bloch that for any smooth

proper variety over a number field and for any prime `, the `-adic Abel–Jacobi maps (1.75)

are injective up to torsion. See for instance [94, Conjecture 9.15] or [121, Conjecture (2.1)].

Again, this is not known, and we cannot say anything about the torsion properties of the

cycle (tF )∗(∆GKS(e)) in the Chow group.

The rest of this section constitutes the proof of Theorem 4.4. We distinguish different

situations depending on the genus g of X0(p), which we recall is given by formula (1.18).

The genus zero case

The curve X0(p) has genus zero exactly when p ∈ {2, 3, 5, 7, 13}. In this case the space of

cusp forms S2(Γ0(p)) is trivial so there is no triple product L-function to consider in the first
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place. By [77, Proposition 4.1], we have ∆GKS(e) = 0 in CH2(X0(p)3)0(Q) since the cycle

class map is injective in this case.

The genus one case

Suppose that g = 1, i.e., p ∈ {11, 17, 19}. In this case, X0(p) is an elliptic curve over Q of

Mordell–Weil rank 0 corresponding to a unique normalised eigenform f in S2(Γ0(p)). Given

e ∈ X0(p)(Q), consider

We = {(x1, x2, x3) ∈ X0(p)3 | xi = e for some i}

and denote by i : We−→X0(p)3 the natural inclusion. Following [77, Proposition 4.5, Corol-

lary 4.7], we have 6Z = 0 for any Z ∈ CH2(X0(p)3)0(Q) satisfying i∗(Z) = 0. Since we

indeed have i∗(∆GKS(e)) = 0, we obtain 6∆GKS(e) = 0.

Let us analyse the order of vanishing of the triple product L-function in this setting. We

have f1 = f2 = f3 = f and by [76, (11.8)] the L-function decomposes as

L(F, s) = L(Sym3 f, s)L(f, s− 1)2.

By Theorem 4.1, we have

L(F, 2) = 0 ⇐⇒
1∑
i=0

w2
i λi(f)3 = 0.

Notice that W (F ) = ap(f)3 = +1 by Assumption 4.1 and thus ap(f) = +1 so that the sign

of the functional equation of L(f, s) centred at s = 1 is equal to +1. Since
∑1

i=0 λi(f) = 0

by [76, p. 202], we observe that λ0(f)3 = −λ1(f)3, hence we deduce the equality

1∑
i=0

w2
i λi(f)3 = (w2

0 − w2
1)λ0(f)3.
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Using Remark 4.9, we see that:

• If p = 11, then w0 = 3 and w1 = 4, so that
∑1

i=0 w
2
i λi(f)3 = 5λ0(f)3.

• If p = 17, then w0 = 3 and w1 = 1, so that
∑1

i=0 w
2
i λi(f)3 = 8λ0(f)3.

• If p = 19, then w0 = 2 and w1 = 1, so that
∑1

i=0 w
2
i λi(f)3 = 3λ0(f)3.

In each case we obtain L(F, 2) 6= 0 since λ0(f) 6= 0 (cf. [76, Table 12.5]), that is,

ords=2(L(F, s)) = 0. Thus, the fact that ∆GKS(e) is torsion in the Chow group is consistent

with conjecture (4.14).

The higher genus case

Suppose that g ≥ 2. The Atkin–Lehner involution wp of X0(p) is defined, following the

moduli description, by mapping a p-isogeny φ : E−→E ′ of elliptic curves to its dual isogeny

φ′ : E ′−→E. On covering spaces, it is given by τ 7→ − 1
pτ
, where τ belongs to the complex

upper half-plane. This involution is defined over Q and therefore maps Q-rational points of

X0(p) to Q-rational points. It will be convenient to sometimes view wp as a correspondence

by taking its graph; by slight abuse of notation we will write wp ∈ Corr0(X0(p), X0(p)). In

light of the discussion in Section 4.1.1, the operator wp naturally belongs to the Hecke algebra

T = T0, and commutes with the Hecke operators. We recall that any Hecke eigenform is also

an eigenform for wp, with corresponding eigenvalue given by the negative of the p-th Fourier

coefficient.

The modular forms fj for j = 1, 2, 3 are thus eigenforms for the operator wp with eigen-

values given by −ap(fj) respectively. In particular, λfj(wp) = −ap(fj), where λfj : T−→Kfj

is the algebra homomorphism corresponding to fj. The local root number at p is

Wp(F ) := −ap(f1)ap(f2)ap(f3) = −W (F ).

See for instance Proposition 4.5 later in this chapter. We have an involution up := wp×wp×wp
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of X0(p)3. By taking its graph, it may be viewed as a correspondence, and we write again

up ∈ Corr0(X0(p)3, X0(p)3) by slight abuse of notation. Note that, as correspondences,

up = wp ⊗ wp ⊗ wp := pr∗14(wp) · pr∗25(wp) · pr∗36(wp) ∈ Corr0(X0(p)3, X0(p)3).

The map up induces an involution on cohomology via pull-back, hence an involution on the

space of cuspidal forms of weight (2, 2, 2), and we see that

F |up = Wp(F ) · F = −W (F ) · F. (4.27)

Lemma 4.11. We have (up)∗(∆GKS(e)) = ∆GKS(wp(e)), for all points e on X0(p).

Proof. Remark that the induced map (up)∗ : CH2(X0(p)3)−→CH2(X0(p)3) on Chow groups

simply maps a cycle to its image under up. Since up is an automorphisms of X0(p)3, we

note that up(∆) = ∆. However, for any proper subset T ⊂ {1, 2, 3} we have the equality

up(PT (e)∗(∆)) = PT (wp(e))∗(∆) and the result follows.

Proposition 4.3. Let f1, f2 and f3 ∈ S2(Γ0(p)) be three normalised cuspforms, denote by

F = f1 ⊗ f2 ⊗ f3 their triple product and suppose that F satisfies Assumption 4.1. We have

AJX0(p)3((tF )∗(∆GKS(e))) = −AJX0(p)3((tF )∗(∆GKS(wp(e)))), for all points e on X0(p).

Proof. By functoriality of Abel–Jacobi maps with respect to correspondences, we have

AJX0(p)3((up)∗(tF )∗(∆GKS(e))) = (u∗p)
∨AJX0(p)3((tF )∗(∆GKS(e))). (4.28)

Since wp commutes with tfj as correspondences for each j ∈ {1, 2, 3} by (4.5) and (4.4), we

see that

tF ◦ up = (tf1 ◦ wp)⊗ (tf2 ◦ wp)⊗ (tf3 ◦ wp) = (wp ◦ tf1)⊗ (wp ◦ tf2)⊗ (wp ◦ tf3) = up ◦ tF ,
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as elements in Corr0(X0(p)3, X0(p)3). In particular, using Lemma 4.11, we obtain

(up)∗(tF )∗(∆GKS(e)) = (tF )∗(up)∗(∆GKS(e)) = (tF )∗(∆GKS(wp(e))).

Thus the left hand side of (4.28) is equal to AJX0(p)3((tF )∗(∆GKS(wp(e)))).

On the other hand, AJX0(p)3((tF )∗(∆GKS(e))) lies in (t∗F )∨(J2(X0(p)3/C)) by (4.25), that

is, in the F -isotypic Hecke component of the intermediate Jacobian. The Hecke algebra T⊗3

acts via correspondences on the latter by multiplication by the Hecke eigenvalues of F . More

precisely, for any α ∈ Fil2 H3
dR(X0(p)3/C), we have the following equality

(u∗p)
∨AJX0(p)3((tF )∗(∆GKS(e)))(α) = AJX0(p)3(∆GKS(e))(u∗p(t

∗
F (α))).

The operator up ∈ T⊗3 acts via pull-back on the F -isotypic component (tF )∗H3
dR(X0(p)3/C)

as multiplication by −W (F ) by (4.27). In particular, we have u∗p(t∗F (α)) = −W (F )t∗F (α).

By Assumption 4.1, the right hand side of (4.28) is therefore given by

(u∗p)
∨AJX0(p)3((tF )∗(∆GKS(e))) = −AJX0(p)3((tF )∗(∆GKS(e))),

and the result follows.

Mazur has proved in [113, Theorem 1] that if g ≥ 2 and p 6∈ {37, 43, 67, 163}, then

X0(p)(Q) = {ξ∞, ξ0}, where ξ∞ and ξ0 denote the two cusps of X0(p). Moreover, X0(37)

has two non-cuspidal Q-rational points, while for p belonging to {43, 67, 163}, X0(p) has a

unique non-cuspidal Q-rational point.

Corollary 4.4. Let f1, f2 and f3 ∈ S2(Γ0(p)) be three normalised cuspforms, denote by

F = f1 ⊗ f2 ⊗ f3 their triple product and suppose that F satisfies Assumption 4.1. If p

belongs to {43, 67, 163} and e is the unique non-cuspidal Q-rational point of X0(p), then

2 AJX0(p)3((tF )∗(∆GKS(e))) = 0.
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Proof. The involution wp maps Q-rational points to Q-rational points and permutes the

two cusps ξ∞ to ξ0. It therefore fixes the non-cuspidal point e and the result follows from

Proposition 4.3.

Corollary 4.5. Let f1, f2 and f3 ∈ S2(Γ0(p)) be three normalised cuspforms, denote by

F = f1 ⊗ f2 ⊗ f3 their triple product and suppose that F satisfies Assumption 4.1. If g ≥ 2,

then 2nAJX0(p)3((tF )∗(∆GKS(ξ∞))) = 0, where n is the numerator of (p − 1)/12. The same

is true for the base point ξ0.

Proof. By [77, Proposition 3.6], the cycle ∆GKS(ξ∞)−∆GKS(ξ0) in CH2(X0(p)3)0(Q) depends

only on the class of the divisor (ξ∞)−(ξ0) in CH1(X0(p))0(Q) = J0(p)(Q). However, by [112,

Theorem 1], the degree zero divisor (ξ∞) − (ξ0) is torsion of order n in the Jacobian J0(p).

As a consequence, n(∆GKS(ξ∞)−∆GKS(ξ0)) = 0 in CH2(X0(p)3)0(Q), and in particular

n(AJX0(p)3((tF )∗(∆GKS(ξ∞)))− AJX0(p)3((tF )∗(∆GKS(ξ0)))) = 0 ∈ J2(X0(p)3/C).

Recall that wp permutes the two cusps ξ∞ and ξ0. By Proposition 4.3, we therefore have

AJX0(p)3((tF )∗(∆GKS(ξ∞))) = −AJX0(p)3((tF )∗(∆GKS(ξ0))),

and the result follows.

To complete the proof of Theorem 4.4, the only remaining case is when p = 37 and

the chosen base point is a non-cuspidal Q-rational point. The curve X0(37) has been ex-

tensively studied by Mazur and Swinnerton-Dyer in [114, §5]. It has genus 2 and is thus

hyperelliptic, with hyperelliptic involution S. In particular, for all points e on X0(37), we

have 6∆GKS(e) = 0 in the Griffiths group Gr2(X0(37)3) by [77, Corollary 4.9]. See Section

1.4.4 for the definition of algebraic equivalence and the Griffiths group. The involution S is

distinct from the Atkin–Lehner involution w37, as the quotient X+
0 (37) = X0(37)/w37 has

genus 1. Since S commutes with every automorphism of X0(37) by [114, p. 27], it commutes
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in particular with w37, and we can define another involution T = S ◦ w37 = w37 ◦ S. Let

γ0 = T (ξ0) and γ∞ = T (ξ∞) be the images of the two cusps by T . By [114, Proposition 2],

we have

X0(37)(Q) = {ξ0, ξ∞, γ0, γ∞} and w37(γ0) = γ∞. (4.29)

The involution S has 6 fixed points, none of which are rational over Q. By [77, Proposition

4.8], 6∆GKS(e) = 0 in CH2(X0(37)3) if e is a fixed point of S. By [114, p. 29], the two fixed

points α1 and α2 of w37 are Galois conjugates defined over Q(
√

37). We have the following

result:

Corollary 4.6. Let f1, f2 and f3 ∈ S2(Γ0(37)) be three normalised cuspforms, denote by

F = f1⊗f2⊗f3 their triple product and suppose that F satisfies Assumption 4.1. The images

under the complex Abel–Jacobi map AJX0(37)3 of the cycles (tF )∗∆GKS(α1) and (tF )∗∆GKS(α2)

in CH2(X0(37)3)0(Q(
√

37)) are 2-torsion in the intermediate Jacobian J2(X0(37)3/C).

Proof. This is an immediate consequence of Proposition 4.3, given that α1 and α2 are the

fixed points of w37.

We complete the proof of Theorem 4.4.

Corollary 4.7. Let f1, f2 and f3 ∈ S2(Γ0(37)) be three normalised cuspforms, denote by

F = f1 ⊗ f2 ⊗ f3 their triple product and suppose that F satisfies Assumption 4.1. Then

6 AJX0(37)3((tF )∗(∆GKS(γ0))) = 6 AJX0(37)3((tF )∗(∆GKS(γ∞))) = 0.

Proof. By (4.29), the Atkin–Lehner involution w37 interchanges γ0 and γ∞. By Proposition

4.3, we have AJX0(37)3((tF )∗(∆GKS(γ0))) = −AJX0(37)3((tF )∗(∆GKS(γ∞))). The element

2 AJX0(37)3((tF )∗(∆GKS(γ0))) = AJX0(37)3((tF )∗(∆GKS(γ0)−∆GKS(γ∞))) ∈ J2(X0(37)3/C)

depends only on the class of (γ0) − (γ∞) in J0(37)(Q). But this class is the image of the

class of (ξ0)− (ξ∞) by the involution of J0(37) obtained from T by push-forward. The latter
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class has order equal to the numerator of (37 − 1)/2 = 3 by [112, Theorem 1]. The result

follows.

4.3.2 Chow–Heegner points attached to ∆GKS

Let f ∈ S2(Γ0(p)) be a normalised newform with rational Fourier coefficients and let g be

an auxiliary normalised newform in S2(Γ0(p)) which is not Gal(Q̄/Q) conjugate to f . Recall

the Chow–Heegner point defined in (4.21), namely

P (X0(p)3,Π[g],f ,∆GKS(e)) := (Π[g] ◦ tf )∗(∆GKS(e)) ∈ Ef (Q),

where Π[g] = pr∗12(t[g]) · pr∗34(∆) ∈ CH2(X0(p)4)(Q), and ∆ ∈ CH1(X0(p)2) is the diagonal

cycle. Note by [53, Example 3.1.7] that the definition of this point is independent of the

choice of t[g] ∈ CH1(X0(p)2)(Q)⊗Q mapping to the idempotent e[g] via the map (4.5). See

Section 4.1.1.

Theorem 4.5. If Ef admits split multiplicative reduction at p, then the Chow–Heegner point

P (X0(p)3,Π[g],f ,∆GKS(e)) is torsion in Ef (Q) for all e ∈ X0(p)(Q).

Proof. Recall from 4.1.1 that t[g] =
∑

h∈[g] th, and thus

t[g] ⊗ t[g] ⊗ tf =
∑

h1,h2∈[g]

th1 ⊗ th2 ⊗ tf .

By Remark 4.8, for any h1, h2 ∈ [g], the global root number of the triple product L-function

L(h1, h2, f, s) is given by W (h1, h2, f) = ap(h1)ap(h2)ap(f). The p-th Fourier coefficient of a

normalised newform is the negative of the eigenvalue of the form with respect to the Atkin–

Lehner involution wp, hence it belongs to {±1}. In particular, since this coefficient belongs

to Q, it is fixed by the action of Gal(Q̄/Q), and thus ap(g) = ap(h1) = ap(h2) ∈ {±1}. It

follows that W (h1, h2, f) = ap(f) = ap(Ef ). By (1.13), ap(Ef ) = 1 since Ef admits split

multiplicative reduction at p, and thus the triple (h1, h2, f) satisfies Assumption 4.1. By
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Theorem 4.4, for any e ∈ X0(p)(Q), AJX0(p)3((th1 ⊗ th2 ⊗ tf )∗(∆GKS(e))) is torsion in the

intermediate Jacobian J2(X0(p)3/C). It follows that AJX0(p)3((t[g] ⊗ t[g] ⊗ tf )∗(∆GKS(e))) is

torsion in J2(X0(p)3/C). Define

Π := pr∗12(∆) · pr∗34(∆) ∈ CH2(X0(p)4).

Viewing t[g] ⊗ t[g] ⊗ tf as an element of Corr0(X0(p)3, X0(p)3)Q and Π as an element of

Corr−1(X0(p)3, X0(p)), we may compute their composition using (1.42) to obtain

(t[g] ⊗ t[g] ⊗ tf ) ◦ Π = pr∗12(t[g] ◦ t[g]) · pr∗34(tf ) = pr∗12(t[g]) · pr∗34(tf ) = Π[g],f , (4.30)

as elements of Corr−1(X0(p)3, X0(p))Q. Note that we used here the fact that t[g] is an idem-

potent correspondence, i.e., t[g] ◦ t[g] = t[g]. A similar calculation is carried out in [51, §3].

We deduce the equality of points in Ef (Q)

Π∗(t[g] ⊗ t[g] ⊗ tf )∗(∆GKS(e)) = P (X0(p)3,Π[g],f ,∆GKS(e)). (4.31)

By functoriality of Abel–Jacobi maps with respect to correspondences, we have a com-

mutative diagram

CH2(X0(p)3)0(C) J2(X0(p)3/C)

Ef (C) J1(Ef/C),

AJX0(p)3

Π[g],f,∗ (Π∗
[g],f

)∨

∼
AJEf

where AJEf is the Abel–Jacobi isomorphism of the elliptic curve Ef described in Section

1.5.1. In particular, we have the equalities

AJEf (P (X0(p)3,Π[g],f ,∆GKS(e))) = (Π∗[g],f )
∨(AJX0(p)3(∆GKS(e)))

= (Π∗)∨((t[g] ⊗ t[g] ⊗ tf )∗)∨AJX0(p)3(∆GKS(e))

= (Π∗)∨AJX0(p)3((t[g] ⊗ t[g] ⊗ tf )∗(∆GKS(e))).
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In the second equality we used (4.30) and in the third equality we used the functoriality of

AJX0(p)3 with respect to the correspondence t[g] ⊗ t[g] ⊗ tf .

Since AJX0(p)3((t[g]⊗ t[g]⊗ tf )∗(∆GKS(e))) is torsion, the result follows from the fact that

AJEf is an isomorphism.

Remark 4.22. This is a special case of [53, Theorem 3.3.8]. In his thesis, Daub proves more

generally for composite level N that if the local root number Wp(g, g, f) = −1 for some p |N ,

then the resulting Chow–Heegner points are torsion. His proof identifies these points with

certain rational points known as Zhang points.

4.3.3 Chow–Heegner points attached to Ξ

Recall from Theorem 4.3 the special cycle Ξ ∈ CH2(X0(p)3)0(K)τ=−1, where K = Q(
√
p?).

Let f ∈ S2(Γ0(p)) be a normalised newform with rational coefficients and with associated el-

liptic curve Ef . Let g be an auxiliary normalised newform in S2(Γ0(p)) which is not Gal(Q̄/Q)

conjugate to f . Using the correspondence Π[g],f = Π[g] ◦ tf ∈ Corr−1(X0(p)3, X0(p)), we may

form the Chow–Heegner point

P (X0(p)3,Π[g],f ,Ξ) = (Π[g],f )∗(Ξ) ∈ Ef (Q(
√
p?))τ=−1.

Note that when p ≡ 3 (mod 4), which is the situation we are concerned with in this section,

the extension K = Q(
√
−p) is imaginary quadratic.

Theorem 4.6. Let f and g be two normalised newforms in S2(Γ0(p)) as above. If we assume

p ≡ 3 (mod 4), then the Chow–Heegner point P (X0(p)3,Π[g],f ,Ξ) is torsion in Ef (Q(
√
−p)).

Proof. Consider the permutation (12) ∈ S3 and its induced map

s12 : X0(p)3−→X0(p)3, (x1, x2, x3) 7→ (x2, x1, x3).

By taking its graph we will view it as a correspondence, which will, by slight abuse of
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notation, be denoted s12 ∈ Corr0(X0(p)3, X0(p)3). It induces an involution (s12)∗ = (s12)∗ of

CH2(X0(p)3) by mapping a cycle to its image under s12.

Given Z1, Z2, Z3 ∈ Corr0(X0(p), X0(p)), one verifies the following equalities of correspon-

dences
Z1 ⊗ Z2 ⊗ Z3 ◦ s12 = pr∗15(Z1) · pr∗24(Z2) · pr∗36(Z3)

s12 ◦ Z1 ⊗ Z2 ⊗ Z3 = pr∗15(Z2) · pr∗24(Z1) · pr∗36(Z3).

(4.32)

Thus, Z1⊗Z2⊗Z3 commutes with s12 in the ring of correspondences Corr0(X0(p)3, X0(p)3)

whenever Z1 = Z2. In particular, we have

t[g] ⊗ t[g] ⊗ tf ◦ s12 = s12 ◦ t[g] ⊗ t[g] ⊗ tf . (4.33)

As in the proof of Theorem 4.5, we consider

Π := pr∗12(∆) · pr∗34(∆) ∈ Corr−1(X0(p)3, X0(p)).

We compute that

(t[g] ⊗ t[g] ⊗ tf ◦ s12) ◦ Π = pr∗12(t[g]) · pr∗34(tf ) = t[g] ⊗ t[g] ⊗ tf ◦ Π. (4.34)

By Lemma 4.9, because we assume p ≡ 3 (mod 4), we have (s12)∗(Ξ) = −Ξ. By (4.33), we

have

(s12)∗(t[g] ⊗ t[g] ⊗ tf )∗(Ξ) = (t[g] ⊗ t[g] ⊗ tf )∗((s12)∗(Ξ)) = −(t[g] ⊗ t[g] ⊗ tf )∗(Ξ).

Applying Π∗ to both sides yields

Π∗(s12)∗(t[g] ⊗ t[g] ⊗ tf )∗(Ξ) = −Π∗(t[g] ⊗ t[g] ⊗ tf )∗(Ξ) = −P (X0(p)3,Π[g],f ,Ξ).
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On the other hand, using (4.34), we see that

Π∗(s12)∗(t[g] ⊗ t[g] ⊗ tf )∗(Ξ) = Π∗(t[g] ⊗ t[g] ⊗ tf )∗(Ξ) = P (X0(p)3,Π[g],f ,Ξ).

Taken together, we obtain 2P (X0(p)3,Π[g],f ,Ξ) = 0 in Ef (Q(
√
−p)).

4.4 Global root number calculations

Consider the unique quadratic extension K = Q(
√
p?) of Q ramified only at p introduced

in Lemma 4.8. Its associated quadratic Dirichlet character χ = χK is the Kronecker sym-

bol
(
p?

·

)
, which is equal to the Legendre symbol at p by Quadratic Reciprocity, as noted

previously in Remark 4.15. Following the recipe in Tate’s thesis [144], one may lift χ to a

unitary Hecke character χA : A×Q/Q×−→C× by setting χA(g) =
∏

v χv(gv) where v runs over

all places of Q and

χ∞(g∞) =


1 if χ(−1) = 1

1 if χ(−1) = −1, g∞ > 0

−1 if χ(−1) = −1, g∞ < 0

χ`(g`) =


χ(`)ord`(g`) if ` 6= p

χ(j)−1 if gp ∈ pk(j + pZp).

The collection of `-adic characters {χ` : Q×` −→C×}` is characterised by the following:

• For ` 6= p, χ` is unramified with χ`(`) =
(
`
p

)
.

• χp is tamely ramified, χp(p) = 1 and χp|Z×p =
(
·
p

)
.

In this section, we set out to compute global root numbers in the following two situations:

1) The twist by the character χ of an elliptic curve over Q with conductor p.

2) The twist by the character χ of the triple product of normalised newforms in S2(Γ0(p)).
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In view of the functional equations of the associated completed L-functions, this gives infor-

mation about the parity of their orders of vanishing at the centre, which in turn can be used

to predict, guided by the Beilinson–Bloch and Birch and Swinnerton-Dyer conjectures, the

behaviour of certain cycles and points.

4.4.1 The ramified twist of an elliptic curve

Let E be an elliptic curve over Q with conductor p. We compute the global root numbers

associated to the twist E(p) of E by the quadratic character χ.

Over K = Q(
√
p?), the two elliptic curve E and E(p) are isomorphic. The compatible

family of 2-dimensional `-adic representations associated to E(p) is given by {ρE,` ⊗ χ}`. It

follows that the Weil–Deligne representation of E(p) at a prime ` is given by

σ′E(p),` = σ′E,` ⊗ χ` = (σE,` ⊗ χ`, NE,`). (4.35)

Exactly as in Section 1.2.1, we can associate to E(p) a completed L-function

Λ(E(p)/Q, s) :=
∏
v

L(σ′E(p),v, s) = 2(2π)−sΓ(s)L(E(p)/Q, s).

From (4.35) we see that Λ(E(p)/Q, s) = Λ(E/Q, χ, s) and L(E(p)/Q, s) = L(E/Q, χ, s) are

the usual twists of L-functions by characters.

Remark 4.23. Notice that twisting by the finite order character χ does not affect the Hodge

structure of E and thus both the local L-factors, ε-factors and root numbers at infinity remain

unchanged under the action of twisting.

If we set Λ∗(E(p)/Q, s) := cond(E(p)/Q)
s
2 Λ(E(p)/Q, s), then this function is conjectured

(Conjecture 1.9) to admit analytic continuation to the entire complex plane and satisfy the
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functional equation

Λ∗(E(p)/Q, s) = W (E(p)/Q)Λ∗(E(p)/Q, 2− s) (4.36)

where W (E(p)/Q) =
∏

vW (σ′
E(p),v

) ∈ {±1} is the global root number. In the case at hand,

this conjecture is known due to the extension of the modularity theorem of Taylor and Wiles

by Breuil, Conrad, Diamond and Taylor [31].

Proposition 4.4. The local root numbers are given by the following:


W (σ′

E(p),`
) = 1 for ` 6= p

W (σ′
E(p),p

) =
(
−1
p

)
W (σ′

E(p),∞) = −1.

In particular, the global root number is

W (E(p)/Q) = −
(
−1

p

)
.

Remark 4.24. The result in this proposition is not new; it is for instance proved by Pacetti

[123, Theorem 3.2]. The proof given here follows the same method. Note also that the

elliptic curve E(p) has additive but potentially multiplicative reduction. Indeed, by twisting

this curve by χ we recover the elliptic curve E which has multiplicative reduction at p.

By [126, §19 Proposition (ii)], the local root number of E(p) at p is χ(−1) =
(
−1
p

)
, which is

consistent with Proposition 4.4.

Proof. By Remark 4.23 and Proposition 1.5, the root number at infinity of E(p) is −1 and

we may focus on the finite primes. For any prime `, we choose an additive character ψ` with

n(ψ`) = 0 as well as the Haar measure dx` normalised such that
∫
Z`
dx` = 1.

Consider first the case of a prime ` distinct from p. In this case, both the Weil–Deligne

representation at ` of E and the character χ` are unramified. By Proposition 1.3, we see
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that the Weil–Deligne representation of E(p) at ` is given by

σ′E(p),` = σE,` ⊗ χ` ' χ`ξ` ⊕ χ`ξ−1
` ω−1

`

for some unramified character ξ`. Since all the characters involved are unramified, by Theo-

rem 1.1 i) and (1.7), we find that

ε′(σ′E(p),`, ψ`,dx`) = ε(σE,` ⊗ χ`, ψ`,dx`) = 1

given the choice of character ψ` and Haar measure, and thus W (σ′
E(p),`

) = 1.

We now focus on the situation at p. In this case both σ′E,p and χp are ramified. Let λp

be an unramified character of W (Q̄p/Qp) such that λ2
p = 1 and the twist Eλp of E by λp has

split multiplicative reduction at p. By Proposition 1.4 we have

σ′E(p),p = χpλpω
−1
p ⊗ sp(2).

If V denotes the complex vector space associated to σ′
E(p),p

, then V = C(χpλpω
−1
p )⊗C2 and

V Ip = C(χpλpω
−1
p )Ip ⊗ C2. But C(χpλpω

−1
p )Ip = 0 since χp is ramified, and consequently

V Ip = 0. It follows that δ(σ′
E(p),p

) = 1 and ε′(σ′
E(p),p

, ψp,dxp) = ε(σE(p),p, ψp,dxp). By Def-

inition 1.5, σE(p),p = χpλpω
−1
p ⊕ χpλp, and thus, by successively applying Theorem 1.1 i),

Proposition 1.1 and Corollary 1.1, we obtain

ε(σE(p),p, ψp,dxp) = ε(χpλpω
−1
p , ψp,dxp)ε(χpλp, ψp,dxp)

= ε(χp, ψp,dxp)
2λ2

pω
−1
p (pa(χp))

= χp(−1)p2

=

(
−1

p

)
p2,

since a(χp) = 1. We conclude that W (σ′
E(p),p

) =
(
−1
p

)
.
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Remark 4.25. Going through the proof, we see that if ` 6= p, then σ′
E(p),`

is unramified and

thus a(σ′
E(p),`

) = 0. At p we saw that dimV Ip/V
Ip
N,p = 0 and the Weil representation σE,p⊗χp

is ramified because χp is tamely ramified, i.e., a(χp) = 1. Thus

a(σ′E(p),p) = a(σE,p ⊗ χp) = a(χpλpω
−1
p ) + a(χpλp) = 2a(χp) = 2.

In conclusion, we find that

cond(E(p)/Q) =
∏
`

`
a(σ′

E(p),`
)

= p2.

In particular, the completed L-function takes the shape

Λ∗(E(p)/Q, s) = ps2(2π)−sΓ(s)L(E/Q, χ, s).

4.4.2 The triple product root number

Let f1, f2, f3 be three normalised newforms in S2(Γ0(p)) and let F = f1 ⊗ f2 ⊗ f3. We are

interested in computing the global root number of the triple product L-function Λ(F, s) of

Section 4.1.2, as announced in Remark 4.8. A formula for this root number is stated in [76].

The proof serves as a stepping stone to calculate the twisted root number in the next section.

Proposition 4.5. The local root numbers are given by the following:


W (σ′F,q) = 1 for q 6= p

W (σ′F,p) = −ap(f1)ap(f2)ap(f3)

W (σ′E,∞) = −1.

In particular, the global root number is

W (F ) = ap(f1)ap(f2)ap(f3).
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Proof. For any prime `, we choose an additive character ψ` with n(ψ`) = 0 as well as the

Haar measure dx` normalised such that
∫
Z`
dx` = 1.

Let q be a prime distinct from p. By Proposition 4.2 we have, for i ∈ {1, 2, 3},

σ′fi,q = σfi,q = ξi,q ⊕ ξ−1
i,q ω

−1
q

for some unramified characters ξi,q. We therefore obtain

σ′F,q = σF,q = ξ1,qξ2,qξ3,q ⊕ ξ1,qξ
−1
2,q ξ3,qω

−1
q ⊕ ξ−1

1,q ξ2,qξ3,qω
−1
q ⊕ ξ−1

1,q ξ
−1
2,q ξ3,qω

−2
q

⊕ ξ1,qξ2,qξ
−1
3,qω

−1
q ⊕ ξ1,qξ

−1
2,q ξ

−1
3,qω

−2
q ⊕ ξ−1

1,q ξ2,qξ
−1
3,qω

−2
q ⊕ ξ−1

1,q ξ
−1
2,q ξ

−1
3,qω

−3
q .

Since all characters involved are unramified, Theorem 1.1 i) and (1.7) imply, given the choice

of ψq and dxq, that

ε′(σ′F,q, ψq,dxq) = 1,

and in particular W (σ′F,q) = 1.

We turn to the Weil–Deligne representation at p. For each i ∈ {1, 2, 3}, let λi be the

unramified quadratic character of W (Q̄p/Qp) defined by λi(Φ) = ap(fi), where Φ denotes

an inverse Frobenius element. We will sometimes view it as a character of Q×p via the

identification (1.1). Let λ = λ1λ2λ3 denote the product of these characters. By Proposition

4.2, the Weil–Deligne representation of F at p is given by

σ′F,p = λω−3
p ⊗ sp(2)⊗3.

For simplicity in this proof, we shall drop the subscript p and write ω = ωp, ψp = ψ and

dxp = dx. If (e0, e1) denotes the standard basis of C2, then sp(2) is the representation (σ,N)

284



defined in Definition 1.5 by the matrices

σ :=

1 0

0 ω

 and N :=

0 0

1 0

 .

Let us denote by Vi = C2 the complex vector space associated to σ′fi,p and by {e(i)
0 , e

(i)
1 }

its standard basis for each i ∈ {1, 2, 3}. Then V = V1 ⊗C V2 ⊗C V3 = C8 is the space of σ′F,p

and an ordered basis for it is given by

B := (e
(1)
0 ⊗ e

(2)
0 ⊗ e

(3)
0 , e

(1)
0 ⊗ e

(2)
0 ⊗ e

(3)
1 , e

(1)
0 ⊗ e

(2)
1 ⊗ e

(3)
0 , e

(1)
0 ⊗ e

(2)
1 ⊗ e

(3)
1 ,

e
(1)
1 ⊗ e

(2)
0 ⊗ e

(3)
0 , e

(1)
1 ⊗ e

(2)
0 ⊗ e

(3)
1 , e

(1)
1 ⊗ e

(2)
1 ⊗ e

(3)
0 , e

(1)
1 ⊗ e

(2)
1 ⊗ e

(3)
1 ).

(4.37)

With respect to the basis B, the representation

sp(2)⊗3 = (σ⊗3, N⊗3 := N ⊗ 1⊗ 1 + 1⊗N ⊗ 1 + 1⊗ 1⊗N)

is given by the matrices

σ⊗3 =



1 0 0 0 0 0 0 0

0 ω 0 0 0 0 0 0

0 0 ω 0 0 0 0 0

0 0 0 ω2 0 0 0 0

0 0 0 0 ω 0 0 0

0 0 0 0 0 ω2 0 0

0 0 0 0 0 0 ω2 0

0 0 0 0 0 0 0 ω3



and N⊗3 =



0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 1 0



.

We conclude that

σF,p ' λω−3 ⊕ λω−2 ⊕ λω−2 ⊕ λω−1 ⊕ λω−2 ⊕ λω−1 ⊕ λω−1 ⊕ λ. (4.38)
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In particular, the Weil representation σF,p is unramified but the Weil–Deligne representation

σ′F,p is not, as NF,p = N⊗3 6= 0.

We start by computing the factor δ(σ′F,p) defined in (1.4). Since σF,p is unramified, we

have V Ip = V and V Ip ∩ ker(NF,p) = ker(NF,p). The reduced row echelon form of NF,p is

given by the matrix 

1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 1 0 −1 0 0 0

0 0 0 1 0 1 1 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


and thus

ker(NF,p) = {(0, 0, 0, x4, 0, x6,−x4 − x6, x8) ∈ C8 | x4, x6, x8 ∈ C}

is of dimension 3. As a subspace of V , a basis for V/ ker(NF,p) can be taken to be

(e
(1)
0 ⊗ e

(2)
0 ⊗ e

(3)
0 , e

(1)
0 ⊗ e

(2)
0 ⊗ e

(3)
1 , e

(1)
0 ⊗ e

(2)
1 ⊗ e

(3)
0 , e

(1)
0 ⊗ e

(2)
1 ⊗ e

(3)
1 , e

(1)
1 ⊗ e

(2)
0 ⊗ e

(3)
0 ),

that is, the 5 first basis elements in B. With respect to this basis, the action of σF,p on

V Ip/(V Ip ∩ ker(NF,p)) is given by the matrix



λω−3 0 0 0 0

0 λω−2 0 0 0

0 0 λω−2 0 0

0 0 0 λω−1 0

0 0 0 0 λω−2


.
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Recall from Definition 1.2 that ω(Φ) = p−1. We deduce that

δ(σ′F,p) = −p10λ5(Φ). (4.39)

Since λ(Φ) ∈ {±1}, we see that λ5(Φ) = λ(Φ), and we obtain

δ(σ′F,p) = −p10ap(f1)ap(f2)ap(f3).

We now compute the epsilon factor of the Weil representation σF,p. By Theorem 1.1 i)

and the isomorphism (4.38), we see that

ε(σF,p, ψ,dx) = ε(λω−3, ψ,dx)ε(λω−2, ψ,dx)3ε(λω−1, ψ,dx)3ε(λ, ψ,dx).

Since all characters involved are unramified, (1.7) implies, given the choice of ψq and dxq,

that ε(σF,p, ψ,dx) = 1. We conclude that

ε′(σ′F,p, ψ,dx) = −p10ap(f1)ap(f2)ap(f3),

and in particular

W (σ′F,p) = −ap(f1)ap(f2)ap(f3).

Finally, we take care of the infinite place. Recall from (4.11) that

σ′F,∞ = (indC/R ϕ1,2 ⊗H1,2(E))⊕ (indC/R ϕ0,3 ⊗H0,3(E)) : W (C/R)−→GL8(C),

where the relevant Hodge numbers are given by (4.10). By Theorem 1.1 i), we have

ε(σ′F,∞, ψR,dxR) = ε(indC/R ϕ1,2, ψR,dxR)3ε(indC/R ϕ0,3, ψR,dxR).
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By Theorem 1.1 ii) we have, for p, q ∈ Z,

ε(indC/R ϕp,q, ψR,dxR) = ε(ϕp,q, ψC,dxC)
ε(indC/R 1C, ψR,dxR)

ε(1C, ψC,dxC)
.

Recall from the proof of Proposition 1.5 that

ε(indC/R 1C, ψR,dxR)

ε(1C, ψC,dxC)
= i.

We deduce from (1.5) that

ε(σ′F,∞, ψR,dxR) = (i2−1 · i)3(i3−0 · i) = (−1) · 1 = −1.

Remark 4.26. We extract the conductor cond(W (F )/Q) from the proof, as promised in

Remark 4.8. When q is distinct from p, we saw that σ′F,q is unramified, hence a(σ′F,q) = 0.

At the prime p we established that dimV Ip/V
Ip
NF,p

= 5. Moreover, the Weil representation

σF,p is unramified, so a(σF,p) = 0. We deduce that a(σ′F,p) = 5 and

cond(W (F )/Q) =
∏
`

`a(σ′F,p) = p5.

In particular, the completed L-function takes the shape

Λ∗(F, s) = 24p
5
2
s(2π)−sΓ(s)L(F, s).

4.4.3 The ramified quadratic twist of triple products

Let χ denote the quadratic character of conductor p associated to the quadratic extension

K = Q(
√
p?) of Q. Recall from the beginning of Section 4.4 that associated to it is the

collection of `-adic characters {χ` : Q×` −→C×}` characterised by the following:
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• For ` 6= p, χ` is unramified with χ`(`) =
(
`
p

)
.

• χp is tamely ramified, χp(p) = 1 and χp|Z×p =
(
·
p

)
.

Let f1, f2, f3 be three normalised newforms in S2(Γ0(p)), and let F = f1 ⊗ f2 ⊗ f3. Let

M(F )(p) denote the motive M(F ) ⊗ χ ∈ Chow(Q)KF obtained from M(F ) by twisting by

χ. We will write F (p) = f1 ⊗ f2 ⊗ f3 ⊗ χ. The compatible family of 8-dimensional `-adic

representations associated to M(F )(p) is given by

{V`(f1)⊗ V`(f2)⊗ V`(f3)⊗ χ}`. (4.40)

It follows that the Weil–Deligne representation of M(F )(p) at q is given by

σ′F (p),q = σ′F,q ⊗ χq = (σF,q ⊗ χq, NF,q).

Exactly as in Section 4.1.2, we can associate to M(F )(p) a completed L-function

Λ(M(F )(p)/Q, s) :=
∏
v

L(σ′F (p),v, s) = 24(2π)3−4sΓ(s− 1)3Γ(s)L(M(F )(p)/Q, s).

We will often write Λ(F (p), s) = Λ(M(F )(p)/Q, s) and L(F (p), s) = L(M(F )(p)/Q, s). From

(4.40), we see that Λ(F (p), s) = Λ(F, χ, s) and L(F (p), s) = L(F, χ, s) are the usual twists of

L-functions by characters.

Remark 4.27. Twisting by the finite order character χ does not affect the Hodge structure

of M(F ) and thus both the local L-factors, ε-factors and root numbers at infinity remain

unchanged under the action of twisting by χ.

If we set Λ∗(F (p), s) := cond(M(F )(p)/Q)
s
2 Λ(F (p), s), then this function is conjectured

(Conjecture 1.9) to admit analytic continuation to the entire complex plane and satisfy the

functional equation

Λ∗(F (p), s) = W (F (p))Λ∗(F (p), 4− s), (4.41)
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where W (F (p)) =
∏

vW (σ′
F (p),v

) ∈ {±1} is the global root number of M(F )(p).

Remark 4.28. Notice that F (p) is equal to the tensor product of the three normalised

newforms f1, f2 and f
(p)
3 , where f (p)

3 = f3 ⊗ χ. The L-function Λ∗(F (p)/Q, s) is the triple

product L-function associated to the triple (f1, f2, f
(p)
3 ). The first two forms have level

Γ0(p) while the form f
(p)
3 has level Γ0(p2) by Remark 4.25 adapted to the case of modular

forms. Hence the analytic properties and functional equation of Λ∗(F (p)/Q, s) fall outside

the scope of [76] where the case of three forms of the same square-free level is treated.

However, as explained in [82], the analytic properties and functional equation in this case

follow from [124].

Theorem 4.7. The local root numbers are given by the following:


W (σ′

F (p),q
) = 1 for q 6= p

W (σ′
F (p),p

) = 1

W (σ′
F (p),∞) = −1.

In particular, the global root number is

W (F (p)) = −1.

Proof. By Remark 4.27 and Proposition 4.5, the root number at infinity of F (p) is −1 and

we therefore focus on the finite places. For any prime `, we choose an additive character ψ`

with n(ψ`) = 0 as well as the Haar measure dx` normalised such that
∫
Z`
dx` = 1.

At a prime q distinct from p, the representation σ′
F (p),q

is unramified, hence equal to the

underlying Weil representation which decomposes as a sum of unramified characters. Just

as in the proof of Proposition 4.5 we obtain ε′(σ′
F (p),q

, ψq,dxq) = 1 and W (σ′
F (p),q

) = 1.

For each i ∈ {1, 2, 3}, let λi be the unramified quadratic character of W (Q̄p/Qp) defined

by λi(Φ) = ap(fi), where Φ denotes an inverse Frobenius element. We will sometimes view it
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as a character of Q×p via the identification (1.1). Let λ = λ1λ2λ3 denote the product of these

characters. By Proposition 4.2, the Weil–Deligne representation of M(F )(p) at p is given by

σ′F,p ⊗ χp = χpλω
−3
p ⊗ sp(2)⊗3.

Let V denote the complex vector space associated to it. The character χp is tamely ramified,

i.e., a(χp) = 1. Suppose, by contradiction, that V Ip 6= 0. Then there is a non-zero vector

v ∈ V which is fixed by the action of the inertia Ip. But σF (p),p(g)(v) = χp(g)v for all g ∈ Ip

since σF,p is unramified. As v ∈ V Ip , we must have χp(g)v = v which implies that χp(g) = 1

since v 6= 0. Since this holds for all g ∈ Ip, it contradicts the fact that χp is ramified. Hence

V Ip = 0 and as a consequence δ(σ′F,p ⊗ χp) = 1.

With respect to the basis B of C8 from (4.37) in the proof of Proposition 4.5, we know

that the Weil representation σF,p decomposes as a sum of unramified characters (4.38) so

that

σF,p⊗χp ' χpλω
−3
p ⊕χpλω−2

p ⊕χpλω−2
p ⊕χpλω−1

p ⊕χpλω−2
p ⊕χpλω−1

p ⊕χpλω−1
p ⊕χpλ (4.42)

and by Theorem 1.1 i) and Proposition 1.1, we obtain

ε(σF,p ⊗ χp, ψp,dxp) = λ8ω−12
p (p(n(ψ) dim(χp)+a(χp)))ε(χp, ψ,dx)8 = p12ε(χp, ψp,dxp)

8,

since a(χp) = 1 and λ is a quadratic character. By Corollary 1.1, we see that

ε(σF,p ⊗ χp, ψp,dxp) = p12(pχp(−1))4 = p16.

In conclusion, we have proved that W (σ′
F (p),p

) = 1.

Remark 4.29. We proceed to extract the conductor cond(M(F )(p)/Q) from the proof.

When q is distinct from p, we saw that σ′
F (p),q

is unramified, hence a(σ′
F (p),q

) = 0. At the
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prime p we established that dimV Ip/V
Ip
NF,p

= 0. We therefore have

a(σ′F (p),p) = a(χpλω
−3
p ) + 3a(χpλω

−2
p ) + 3a(χpλω

−1
p ) + a(χpλ) = 8a(χp) = 8.

We conclude that

cond(M(F )(p)/Q) =
∏
`

`
a(σ′

F (p),p
)

= p8.

In particular, the completed L-function takes the shape

Λ∗(F (p)/Q, s) = p4s(2π)−sΓ(s)L(F, χ, s).

4.5 Questions and conjectures

In Section 4.2, we constructed 6 cycles of codimension 2 on X0(p)3. Understanding the

torsion or non-torsion properties of these cycles is a key motivation for us, as this could lead

to new instances of the Beilinson–Bloch conjecture (4.14), with applications towards the

Birch and Swinnerton-Dyer conjecture 1.2 via the theory of Chow–Heegner points. Based on

the results so far, we formulate in this section refinements of these conjectures in a setting

that has not been considered before.

4.5.1 Conjectures about cycles

Let f1, f2, f3 be three normalised eigenforms in S2(Γ0(p)) and let F = f1 ⊗ f2 ⊗ f3 denote

their triple product. Recall that χ denotes the Legendre symbol at p, which is the character

attached to the quadratic extension K = Q(
√
p?), where p? = χ(−1)p. If we denote by

L(F/K, s) := L(M(F )/K, s) the L-function attached to the motive M(F ) base changed to

K, then we have the equality of L-functions

L(F/K, s) = L(F, s)L(F (p), s), (4.43)
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where, in the notations of Section 4.4.3, F (p) = f1⊗ f2⊗ f3⊗χ is the twisted triple product.

The Beilinson–Bloch conjecture in the triple product situation base-changed to K predicts

that

ords=2 L(F/K, s) = dimKF (tF )∗(CH2(X0(p)3)0(K)⊗KF ). (4.44)

Let τ denote the non-trivial element of Gal(K/Q) and note that we have a decomposition

CH2(X0(p)3)0(K) = CH2(X0(p)3)0(Q)⊕ CH2(X0(p)3)0(K)τ=−1 (4.45)

into eigenspaces for τ , after identifying CH2(X0(p)3)0(Q) with CH2(X0(p)3)0(K)τ=1. In light

of the decompositions (4.43) and (4.45), and conjectures (4.14) and (4.44), we are lead to

expect the following equality

ords=2 L(F (p), s) = dimKF (tF )∗(CH2(X0(p)3)0(K)τ=−1 ⊗KF ). (4.46)

Theorem 4.7 asserts that W (F (p)) = −1, i.e., the L-function L(F (p), s) vanishes to odd

order at its centre s = 2. In particular, we always have ords=2 L(F (p), s) ≥ 1, and thus

we expect the dimension of (tF )∗(CH2(X0(p)3)0(K)τ=−1 ⊗ KF ) to be at least one. The

construction of cycles in Section 4.2.2 provides a special cycle Ξ of codimension 2 on X0(p)3.

It is null-homologous by Theorem 4.3, and by Lemma 4.8 we have

Ξ ∈ CH2(X0(p)3)0(K)τ=−1.

Strikingly, this is precisely the piece of the Chow group that the global root number cal-

culations suggest should contain a non-torsion element. Moreover, the construction of Ξ is

canonical and depends on no choice of base-point as opposed to the Gross–Kudla–Schoen

cycle. It exhibits no apparent geometric reason to be torsion. Finally, the construction of Ξ

relies on the properties of the curves X0(p) as a solution to a moduli problem; the construc-

tion is arithmetic by nature and is not available for generic curves, as opposed to the diagonal
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construction of ∆GKS. All in all, the cycle Ξ seems to be an interesting object, which promises

to contain rich arithmetic information about triple products of modular forms. Guided by

conjecture (4.46), we are thus confident in formulating the following conjecture.

Conjecture 4.1. Let f1, f2, f3 be three normalised newforms in S2(Γ0(p)) and denote by

F = f1 ⊗ f2 ⊗ f3 the associated triple product. The cycle

(tF )∗(Ξ) ∈ CH2(X0(p)3)0(Q(
√
p?))τ=−1 ⊗KF

is non-zero if and only if ords=2 L(F (p), s) = 1.

Remark 4.30. Note that Conjecture 4.1 implies that

ords=2 L(F (p), s) = 1 =⇒ dimKF (tF )∗(CH2(X0(p)3)0(Q(
√
p?))τ=−1 ⊗KF ) ≥ 1,

and thus offers insight into a particular case of the Beilinson–Bloch conjecture that has never

been considered before.

We specialise further by distinguishing between two situations depending on the root

number of F .

Conjecture 4.2. Let f1, f2, f3 be three normalised newforms in S2(Γ0(p)) and denote by

F = f1 ⊗ f2 ⊗ f3 the associated triple product. If we assume that W (F ) = +1, then

ords=2 L(F/Q(
√
p?), s) = 1 if and only if

(tF )∗(CH2(X0(p)3)0(Q(
√
p?))⊗KF ) = KF · (tF )∗(Ξ).

Remark 4.31. Since we assume W (F ) = +1, we have ords=2 L(F/K, s) = 1 if and only if

ords=2 L(F, s) = 0 and ords=2 L(F (p), s) = 1. Hence Conjecture 4.2 is implied by Conjectures

4.1 and (4.14). Note that Theorem 4.4 implies in this setting that the Abel–Jacobi image of

(tF )∗(∆GKS(e)) is torsion. This suggests, but does not prove, that (tF )∗(∆GKS(e)) is zero in
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(tF )∗(CH2(X0(p)3)0(Q) ⊗ KF ). See Remark 4.20. In particular, Theorem 4.4 and Remark

4.21 can be seen as lending support to conjecture (4.14) and thus also to Conjecture 4.2.

Conjecture 4.3. Let f1, f2, f3 be three normalised newforms in S2(Γ0(p)) and denote by

F = f1 ⊗ f2 ⊗ f3 the associated triple product. If we assume that W (F ) = −1, then

ords=2 L(F/Q(
√
p?), s) = 2 if and only if

(tF )∗(CH2(X0(p)3)0(Q(
√
p?))⊗KF ) = KF · (tF )∗(∆GKS)⊕KF · (tF )∗(Ξ).

Remark 4.32. Since we assume W (F ) = −1, we have

W (F/K) = W (F ) ·W (F (p)) = (−1) · (−1) = +1,

so that ords=2 L(F/K, s) is even. But L(F/K, 2) = 0 and thus ords=2 L(F/K, s) ≥ 2.

Note that ords=2 L(F/K, s) = 2 if and only if ords=2 L(F, s) = ords=2 L(F (p), s) = 1. The

conjectural formula (4.19) implies that (tF )∗(∆GKS) is non-zero in CH2(X0(p)3)0(Q)⊗KF if

ords=2 L(F, s) = 1. The converse holds if the Beilinson–Bloch pairing is non-degenerate (as

conjectured in [29]). Hence Conjecture 4.3 is implied by Conjectures 4.1, (4.14) and (4.19).

4.5.2 Conjectures about points

Let us specialise to the setting where two of the newforms are the same, and the third one has

rational coefficients. Let f be a normalised newform in S2(Γ0(p)) with rational coefficients

and let g be another normalised newform in S2(Γ0(p)) which is not Gal(Q̄/Q) conjugate

to f . We let Ef and A[g] denote the elliptic curve and abelian variety over Q which are

respectively associated to f and [g] by the Eichler–Shimura construction of Section 1.2.3.

As in Section 4.4.1, we denote by E(p)
f the quadratic twist of Ef by the Legendre symbol

χ. We have the following equality of L-functions

L(Ef/K, s) = L(Ef/Q, s)L(E
(p)
f /Q, s),
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where as usual K = Q(
√
p?). The elliptic curve Ef admits multiplicative reduction at p, and

thus, by Proposition 4.5 and Proposition 1.5, we have

W (g, g, f) = ap(g)2ap(f) = ap(f) = ap(Ef ) = W (Ef/Q). (4.47)

By Proposition 4.4, we have W (E
(p)
f /Q) = −χ(−1). In particular, we obtain

W (Ef/K) = W (Ef/Q)W (E
(p)
f /Q) = −ap(Ef )χ(−1) =


−ap(Ef ) if p ≡ 1 (mod 4)

ap(Ef ) if p ≡ 3 (mod 4).

Let τ ∈ Gal(K/Q) denote the non-trivial element and observe that we have a decompo-

sition

Ef (K) = Ef (Q)⊕ Ef (K)τ=−1,

after identifying Ef (Q) = Ef (K)τ=1. The Birch and Swinnerton-Dyer conjecture 1.2 predicts

the equalities

ords=1 L(Ef/Q, s) = rankZEf (Q) (4.48)

ords=1 L(Ef/K, s) = rankZEf (K). (4.49)

In particular, it predicts that

ords=1 L(E
(p)
f /Q, s) = rankZEf (K)τ=−1. (4.50)

Recall the Chow–Heegner construction in the context of the triple product of the modular

curve X0(p) outlined in Section 4.1.3. In particular, we introduced a generalised modular

parametrisation

Π[g],f,∗ = πf ◦ Π[g],∗ : CH2(X0(p)3)0−→Ef .
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By applying it to the special cycle Ξ ∈ CH2(X0(p)3)0(K)τ=−1, we obtain a Chow–Heegner

point

P (X0(p)3,Π[g],f ,Ξ) = πf (Π[g],∗(Ξ)) ∈ Ef (K)τ=−1.

Given Conjecture 4.1 and the equality of correspondences (4.30), it is natural to conjecture

that P (X0(p)3,Π[g],f ,Ξ) has infinite order in Ef (K)τ=−1 whenever the order of vanishing

of the L-function L(E
(p)
f /Q, s) respects the Birch and Swinnerton-Dyer conjecture and the

conditions of Conjecture 4.1 are satisfied. Recall that

W (E
(p)
f /Q) = −χ(−1) =


−1 if p ≡ 1 (mod 4)

+1 if p ≡ 3 (mod 4).

If F = g ⊗ g ⊗ f , then note that we have the following decompositions of triple product

L-functions

L(F, s) = L(Sym2(g)⊗ f, s)L(f, s− 1) (4.51)

L(F (p), s) = L(Sym2(g)⊗ f (p), s)L(f (p), s− 1). (4.52)

Conjecture 4.4. Let f and g be newforms in S2(Γ0(p)) as above. If p ≡ 1 (mod 4), then

P (X0(p)3,Π[g],f ,Ξ) ∈ Ef (Q(
√
p))τ=−1 has infinite order if and only if ords=1 L(E

(p)
f /Q, s) = 1

and L(Sym2(gσ)⊗ f (p), 2) 6= 0 for all σ : Kg ↪→ C.

Remark 4.33. If p ≡ 3 (mod 4), then W (E
(p)
f /Q) = +1 and by the work of Bhargava and

Shankar [19], we generically expect ords=1 L(E
(p)
f , s) = 0, hence (4.50) predicts that the point

P (X0(p)3,Π[g],f ,Ξ) ∈ Ef (Q(
√
−p))τ=−1 is torsion in this case. This was proved in Theorem

4.6 by exploiting Lemma 4.9.

As in the previous section, we now specialise further to two situations depending on the

global root number of Ef .
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Conjecture 4.5. Let f, g ∈ S2(Γ0(p)) be newforms as above and assume p ≡ 1 (mod 4). If

Ef admits split multiplicative reduction at p, then we have ords=1 L(Ef/Q(
√
p), s) = 1 and

L(Sym2(gσ)⊗ f (p), 2) 6= 0 for all σ : Kg ↪→ C if and only if

Ef (Q(
√
p))⊗Q = Q · P (X0(p)3,Π[g],f ,Ξ).

Remark 4.34. Since Ef admits split multiplicative reduction at p, we have ap(Ef ) = 1 and

W (Ef (Q)) = 1. Since p ≡ 1 (mod 4), we have W (E
(p)
f /Q) = −1. In particular, we have

ords=1 L(Ef/Q(
√
p), s) = 1 if and only if

ords=1 L(Ef/Q, s) = 0 and ords=1 L(E
(p)
f /Q, s) = 1.

By Theorem 4.5, the points P (X0(p)3,Π[g],f ,∆GKS(e)) ∈ Ef (Q) are all torsion. More gen-

erally, by the work of Gross, Zagier and Kolyvagin [75, 78, 103], we know (6) that all points

in E(Q) are torsion. Hence Conjecture 4.5 is implied by Conjectures 4.4 and (4.50). Note

that if h is another normalised newform in S2(Γ0(p)), not Gal(Q̄/Q) conjugate to g or f ,

but satisfying the condition L(Sym2(hσ)⊗ f (p), 2) 6= 0 for all σ : Kh ↪→ C, then Conjecture

4.5 implies that P (X0(p)3,Π[g],f ,Ξ) and P (X0(p)3,Π[h],f ,Ξ) are linearly dependent, i.e., one

is a multiple of the other.

Conjecture 4.6. Let f, g ∈ S2(Γ0(p)) be newforms as above and assume p ≡ 1 (mod 4).

If Ef admits non-split multiplicative reduction at p, then ords=1 L(Ef/Q(
√
p), s) = 2 and

L(Sym2(gσ)⊗ f (p), 2) 6= 0 6= L(Sym2(gσ)⊗ f, 2) for all σ : Kg ↪→ C if and only if

Ef (Q(
√
p))⊗Q = Q · P (X0(p)3,Π[g],f ,∆GKS)⊕Q · P (X0(p)3,Π[g],f ,Ξ).

Remark 4.35. Since Ef admits non-split multiplicative reduction at p, ap(Ef ) = −1,

hence W (Ef/Q) = −1. Since p ≡ 1 (mod 4), we have W (E
(p)
f /Q) = −1, and thus

W (Ef/Q(
√
p)) = +1 with L(Ef/Q(

√
p), 1) = 0. Hence ords=1 L(Ef/Q(

√
p), s) = 2 if and
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only if ords=1 L(Ef/Q, s) = ords=1 L(E
(p)
f /Q, s) = 1. Moreover, we have

W (g, g, f) = ap(Ef ) = −1 = W (g, g, f (p)),

hence by (4.51) and (4.52), W (Sym2(gσ) ⊗ f) = W (Sym2(gσ) ⊗ f (p)) = 1. As explained in

Section 4.1.3, Theorem 4.2 of Darmon, Rotger and Sols implies, under the conditions of Con-

jecture 4.6, that the point P (X0(p)3,Π[g],f ,∆GKS) ∈ Ef (Q) has infinite order. It follows from

the work of Gross, Zagier and Kolyvagin (6), that Ef (Q)⊗Q = Q · P (X0(p)3,Π[g],f ,∆GKS).

As a consequence, Conjecture 4.6 follows from Conjectures 4.4 and (4.50).

A reformulation of Conjecture 4.4

Let us assume that p ≡ 1 (mod 4). Let Ef be given in short Weierstrass form by the equation

Ef : y2 = x3 + ax+ b, a, b ∈ Q.

An equation for the quadratic twist is then given by

E
(p)
f : py2 = x3 + ax+ b ' y2 = x3 + ap2x+ bp3,

the isomorphism being afforded by the change of variables (x′ = px, y′ = p2y). The curve Ef

and its twist are isomorphic over Q(
√
p) (but not over Q); an isomorphism is provided by

ϕ : Ef
∼−→E(p)

f ; (x, y) 7→ (px, p
√
py) .

Observe that for any (x, y) ∈ E(Q̄) and any τ̃ ∈ Gal(Q̄/Q) lifting τ , we have

ϕ((x, y))τ̃ = (pxτ̃ ,−p√pyτ̃ ) = −ϕ((x, y)τ̃ ).
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Hence ϕ maps E(Q(
√
p))τ=−1 to E(p)(Q(

√
p))τ=1 = E(p)(Q). Define the point

P (p)(X0(p)3,Π[g],f ,Ξ) := ϕ(P (X0(p)3,Π[g],f ,Ξ)) ∈ E(p)(Q).

We can then reformulate Conjecture 4.4 equivalently as follows.

Conjecture 4.7. Let f and g be newforms in S2(Γ0(p)) as above. If p ≡ 1 (mod 4), then

P (p)(X0(p)3,Π[g],f ,Ξ) ∈ E(p)
f (Q) has infinite order if and only if ords=1 L(E

(p)
f /Q, s) = 1 and

L(Sym2(gσ)⊗ f (p), 2) 6= 0 for all σ : Kg ↪→ C.

Following the notation of Section 1.2.3, let T(p2) denote the full Q-algebra generated

by the Hecke operators Tn with p - n and Up acting on S2(Γ0(p2)), and let T0(p2) denote

the subalgebra generated by the operators Tn with p - n. Generalising Section 4.1.1 by

following [44, §3.1], we have the following decompositions of the Hecke algebras

T0(p2) '
∏
h

Kh ⊂ T(p2) '
∏
h

Lh,

where h runs over all conjugacy classes of newforms in S2(Γ0(p)) and S2(Γ0(p2)), Kh is the

Hecke coefficient field of h, and Lh is Kh if h has level p2, and otherwise Lh is a commutative

Artinian Kh-algebra of dimension 2.

By Remark 4.2, we have

End0
Q(J0(p2)) := EndQ(J0(p2))⊗Q = 〈T0(p2), δ1, δp〉 '

∏
h level p2

Kh×
∏

h level p

M2(Kh), (4.53)

where δ1 and δp are degeneracy operators defined in [95]. Note that the natural isomorphism

(4.5) holds with the curve X0(p) replaced by X0(p2). See [105, Theorem 11.5.1].

Let t[g] ∈ T0(p2) '
∏

hKh denote the idempotent with 1 in the Kg component and 0

elsewhere. We view it also as an idempotent of End0
Q(J0(p2)) via (4.53), so that

End0
Q(J0(p2))[g] := t[g] · End0

Q(J0(p2)) = M2(Kg).
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Given a self-correspondence T of X0(p2), we may view it as an element of End0
Q(J0(p2))

and let T[g] := t[g] · T ∈ End0
Q(J0(p2))[g]. We view T[g] as a self-correspondence of X0(p2) via

(4.5), and define ΠT[g]
:= pr∗12(T[g]) · pr∗34(∆) in CH2(X0(p2)4)(Q)⊗Q.

The elliptic curve E
(p)
f has conductor p2 by Remark 4.25, and f (p) is a newform in

S2(Γ0(p2)). We let tf (p) ∈ T0(p2) denote the idempotent with 1 in the Kf (p) component

and 0 elsewhere, and define ΠT[g],f
(p) := ΠT[g]

◦ tf (p) . After clearing denominators, this corre-

spondence induces by push-forward a generalised modular parametrisation

ΠT[g],f
(p),∗ : CH2(X0(p2)3)0(Q)−→E(p)

f (Q).

Letting ∆p2

GKS(ξ0) ∈ CH2(X0(p2)3)0(Q) denote the Gross–Kudla–Schoen cycle in the triple

product X0(p2)3 based at the rational cusp ξ0 ∈ X0(p2)(Q), we may form the Chow–Heegner

point P (X0(p2)3,ΠT[g],f
(p) ,∆

p2

GKS(ξ0)) := ΠT[g],f
(p),∗(∆

p2

GKS(ξ0)) ∈ E(p)
f (Q). Define

S[g],f := 〈P (X0(p2)3,ΠT[g],f
(p) ,∆

p2

GKS(ξ0)) : T[g] ∈ End0
Q(J0(p2))[g]〉 ⊂ E

(p)
f (Q).

We have the decomposition of the triple product L-function

L(g, g, f (p), s) = L(Sym2 g ⊗ f (p), s)L(f (p), s− 1),

hence a corresponding decomposition of global root numbers

W (g, g, f (p)) = W (Sym2 g ⊗ f (p))W (f (p)).

Since p ≡ 1 (mod 4), we haveW (f (p)) = −1 by Proposition 4.4. We have W (g, g, f (p)) = −1

by Theorem 4.7, and thus W (Sym2 g ⊗ f (p)) = +1. By [51, Theorem 3.7], the subgroup

S[g],f ⊂ E
(p)
f (Q) has positive rank if and only if ords=1 L(E

(p)
f /Q, s) = 1 and L(Sym2(gσ) ⊗

f (p), 2) 6= 0 for all σ : Kg ↪→ C. Given the Birch and Swinnerton-Dyer conjecture and
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Conjecture 4.7, it appears natural to conjecture the following.

Conjecture 4.8. If p ≡ 1 (mod 4), then P (p)(X0(p)3,Π[g],f ,Ξ) ∈ S[g],f ⊂ E
(p)
f (Q) if and

only if ords=1 L(E
(p)
f /Q, s) = 1 and L(Sym2(gσ)⊗ f (p), 2) 6= 0 for all σ : Kg ↪→ C.

The above conjecture predicts a relation between Chow–Heegner points arising from the

cycle Ξ in the triple product X0(p)3 and Chow–Heegner points arising from the Gross–

Kudla–Schoen cycle in the triple product X0(p2)3. Proving such a relation would yield a

proof of Conjecture 4.7, and thus of Conjecture 4.4, contingent on the validity of the proof

of Yuan–Zhang–Zhang [154] of the Gross–Kudla formula. We do not currently see how to

carry out such an explicit comparison between the two sorts of Chow–Heegner points.

Remark 4.36. Taking avantage of the fact that the character χ is quadratic, we have the

equality of L-functions L(g, g, f (p), s) = L(g(p), g(p), f (p), s), where g(p) denotes the quadratic

twist of g by χ, which is a newform of level p2. Let t[g(p)] ∈ T0(p2) denote the correspond-

ing idempotent in the Hecke algebra. Note that Lg(p) = Kg and End0
Q(J0(p2))[g(p)] = Kg.

Analogues of the above constructions give correspondences Πt
[g(p)]

·T,f (p) ∈ CH2(X0(p2)3)(Q)

for any self-correspondence T of X0(p2), and points P (X0(p3),Πt
[g(p)]

·T,f (p) ,∆
p2

GKS(ξ0)) in

E
(p)
f (Q). Defining S[g(p)],f (p) ⊂ E

(p)
f (Q) similarly to above, the results of Darmon, Rot-

ger and Sols apply, and S[g(p)],f (p) has positive rank if and only if ords=1 L(E
(p)
f /Q, s) is

1 and L(Sym2(gσ) ⊗ f (p), 2) 6= 0 for all σ : Kg ↪→ C. These Chow–Heegner points

should therefore be related to the Chow–Heegner points P (X0(p2)3,Πt[g]·T,f (p) ,∆
p2

GKS(ξ0)) and

P (p)(X0(p)3,Π[g],f ,Ξ).

Remark 4.37. One can inquire about the relationship between the Gross–Kudla–Schoen

cycle ∆p2

GKS in X0(p2)3 and the cycle Ξ in X0(p)3. The curve X0(p2) comes equipped with two

degeneracy maps X0(p2)−→X0(p) defined over Q, which we denote π1 and π2. In terms of the

moduli description, π1 maps the pair (E,C), where E is an elliptic curve and C a subgroup

of E of order p2, to (E, pC), while π2 maps (E,C) to (E/(pC), C/(pC)). On complex

points, the projection π1 corresponds to the natural inclusion of Γ0(p2) in Γ0(p). These
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maps induce push-forward maps πi,j,k,∗ : CH2(X0(p2)3)0−→CH2(X0(p)3)0, where πi,j,k is the

map πi× πj × πk : X0(p2)3−→X0(p)3 with i, j, k ∈ {1, 2}. Note that, for any e ∈ X0(p2)(Q),

(π1,1,1)∗(∆
p2

GKS(e)) = ∆GKS(π1(e)) and (π2,2,2)∗(∆
p2

GKS(e)) = ∆GKS(π2(e)). However, if i 6= j

or i 6= k, then (πi,j,k)∗(∆
p2

GKS(e)) is not in ∆(p) = ∆ ×X(1)3 X0(p)3, so does not relate to

the diagonal type cycles constructed in Section 4.2. Nevertheless, these cycles could be of

independent interest. We currently do not see how to directly relate the cycles ∆p2

GKS and Ξ.
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Chapter 5

Future directions

We conclude this thesis by outlining a few projects that will be addressed in future work of

the author.

5.1 Diagonal cycles

Recall that Chapter 4 ended in Section 4.5 by raising questions and conjectures about

the cycles and points constructed. Recall from Theorem 4.3 the cycle Ξ := ∆+ − ∆− in

CH2(X0(p)3)0(Q(
√
p?)), where p? =

(
−1
p

)
p. The associated Chow–Heegner point is

P (X0(p)3,Π[g],f ,Ξ) ∈ E(Q(
√
p?)),

where E = Ef is the elliptic curve defined over Q of conductor p associated with a normalised

newform f ∈ S2(Γ0(p)), and g is an auxiliary normalised newform not conjugate to f .

5.1.1 The complex Abel–Jacobi map

Recall from Section 0.2.3 the Abel–Jacobi isomorphism

AJE : E(C)
∼−→J1(E)(C) :=

H0(E(C),Ω1
E)∨

ImH1(E(C),Z)
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defined, using as base point the origin OE ∈ E(C), by the integration formula

AJE(P )(ω) =

∫ P

OE

ω, for all ω ∈ H0(E(C),Ω1).

There is a higher dimensional analogue

AJX0(p)3 : CH2(X0(p)3)0(C)−→J2(X0(p)3/C) :=
Fil2 H3

dR(X0(p)3/C)∨

ImH3(X0(p)3(C),Z)
, (5.1)

defined by the integration formula

AJX0(p)3(Z)(α) =

∫
∂−1(Z)

α, for all α ∈ Fil2 H3
dR(X0(p)3/C).

The functoriality properties of these complex Abel–Jacobi maps with respect to correspon-

dences imply, for all ω ∈ H0(E(C),Ω1), the formula

AJE(P (X0(p)3,Π[g],f ,Ξ))(ω) = AJX0(p)3(Ξ)(Π∗[g],f,dR(ω)).

A possible strategy for proving Conjecture 4.4 could involve computing the image of the

point P (X0(p)3,Π[g],f ,Ξ) under the Abel–Jacobi isomorphism AJE. By the above formula,

this requires computing the higher dimensional Abel–Jacobi image AJX0(p)3(Ξ). Darmon,

Rotger and Sols [51, Theorem 2.5] have successfully computed AJX0(p)3(∆GKS). We hope to

compute AJX0(p)3(Ξ) using the description of ∆+ and ∆− as images of maps X(p)−→X0(p)3

and thereby address Conjectures 4.1 and 4.4.
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5.1.2 The p-adic Abel–Jacobi map

It would be interesting to compute the image of the cycle Ξ under the p-adic (syntomic)

Abel–Jacobi map

AJp : CH2(X0(p)3)0(F )−→(Fil2(H3
dR(X0(p)3/F )))∨,

where F is a finite extension of Qp. The definition of this map relies on the p-adic étale

Abel–Jacobi map of Section 1.5.3

AJet : CH2(X0(p))0(F )−→H1
st(F,H

3
et(X0(p)3

/F̄ ,Zp(2))) = Ext1
Repst

(Qp, H
3
et(X0(p)3

/F̄ ,Qp)(2)),

and the theory of filtered Frobenius monodromy modules.

Remark 5.1. By [120, Theorem 3.1] the image of (1.75) lands in the semistable subgroup,

and since X0(p)3 admits a semistable model described in [77], we can identify the latter

by [119, Proposition 1.26] with the above group of extension classes.

More precisely, using the Dieudonné functor Dst,F , we obtain an identification

Ext1
Repst(GF )(Qp, H

3
et(X0(p)3

/F̄ ,Qp)(2))
∼−→Ext1

MFad
F (ϕ,N)

(F0, H
3
dR(X0(p)3/F )[−2]),

whereMFad
F (ϕ,N) denotes the category of admissible filtered Frobenius monodromy modules

over F . The latter extension group can be shown to be isomorphic to (Fil2(H3
dR(X0(p)3/F )))∨.

The p-adic syntomic Abel–Jacobi map is defined as the composition of AJet with the above

identifications.

This is the type of map that was used by Darmon and Rotger [48–50] to relate diagonal cy-

cles to special values of p-adic L-functions. The difference in the present setting is that X0(p)3

admits semistable reduction at p and there are no crystalline classes in Fil2(H3
dR(X0(p)3)).

Consequently, this computation falls outside the scope of the methods developed by Besser,
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Loeffler and Zerbes [18] which are utilised in the work of Darmon and Rotger. However, we

believe that one can use the p-adic geometry of X0(p) as a Mumford curve combined with

techniques from Iovita and Spiess [91] and Masdeu [111] to compute AJp(Ξ).

One hope is to relate this to the Gross–Kudla formula (4.1) for triples f1, f2, f3 of modular

forms withW (f1, f2, f3) = +1, thus shedding light on Conjecture 4.2. If f1, f2, f3 correspond

to elliptic curves E1, E2, E3 with split multiplicative reduction at p, then such a relation

would also provide a link to the central value of the third derivative of the cyclotomic p-adic

triple product L-function of Hsieh and Yamana [88] at s = 2:

L(3)
p (F, 2) =

3

4p
· Lp(F ) · L(F, 2)

ΩF

,

where F = f1 ⊗ f2 ⊗ f3, ΩF is the period (4.15), and Lp(F ) = Lp(f1) · Lp(f2) · Lp(f3) is the

product of L-invariants.

5.1.3 Connections with Stark–Heegner points

Suppose that p ≡ 1 (mod 4). In this case, the Chow–Heegner point P (X0(p)3,Π[g],f ,Ξ) in

E(Q(
√
p)) is defined over the totally real quadratic field Q(

√
p). If it turns out that this point

is non-trivial in certain cases (as predicted by Conjectures 4.4, 4.5, 4.6, 4.7), then it would be

interesting to compare this rational point with other constructions, namely Heegner points,

Zhang points or Stark–Heegner points. The latter are p-adic points constructed originally

by Darmon [43] using Tate’s p-adic uniformisation of elliptic curves, which is available when

the reduction type of the curve at p is multiplicative. These points are conjectured to be

global points defined over ring class fields of real quadratic fields and to play a role in the

theory of real multiplication of Darmon and Vonk [52] similar to the role played by Heegner

points in the theory of complex multiplication.
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5.2 Non-hyperelliptic curves with torsion Ceresa class

Let X be a smooth projective curve over Q and consider its Jacobian J , which is an abelian

variety of dimension the genus g of X. Fix an embedding j : X ↪→ J via an Abel–Jacobi

map and consider the Ceresa cycle

C := j(X)− [−1] ◦ j(X) ∈ CHg−1(J)0(Q).

If X is hyperellliptic, then C is trivial. Recently, the first example of a non-hyperelliptic

curve with torsion Ceresa class was found by Bisogno, Li, Litt and Srinivasan [25]. The

Ceresa class is a term for the image of C under the `-adic étale Abel–Jacobi map (1.75)

AJet : CHg−1(J)0(Q)−→H1(Q, H2g−3
et (JQ̄,Q`(g − 1)).

We believe other examples of such curves are available in the setting of modular abelian

varieties. More precisely, the idea would be to look for a non-hyperelliptic genus 3 curve X

whose Jacobian splits into the product of three elliptic curves over Q such that the global

root number of the associated L-function is +1. This would put us in a setting close to the

one of Section 4.3. The modularity of the elliptic curves would imply that there is a non-

constant map to J from a triple product of modular curves. We hope to exploit Theorem

4.4 and Remark 4.21 together with the close connection between the Gross–Kudla–Schoen

cycle and the Ceresa cycle established by Colombo and van Geemen [40] to show that the

latter’s cohomology class is torsion.

5.3 Geometric quadratic Chabauty

Together with my collaborators Čoupek, Xiao and Yao, we plan to continue our work on the

geometric quadratic Chabauty method.
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5.3.1 Finiteness criteria

We would like to investigate Question 3.2. We refer to the discussion in Section 3.5.2 for

the details; this involves understanding certain unlikely intersections in higher dimensional

varieties as in the work of Dogra [60], and combining this with the finiteness arguments of

Edixhoven and Lido [62, §9].

5.3.2 Applications

We would like to understand the sharpness of the bound provided by Corollary 3.2 by

applying the method to specific examples of curves. The goal would be to come up with

examples of nice curves and hopefully be able to determine their set of rational points using

geometric quadratic Chabauty. We further expect such examples to shed light on Question

3.3 raised in Section 3.5.2.
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