

“C’est le temps que tu as perdu pour ta rose
qui fait ta rose si importante”

“It is the time you have devoted to your rose
that makes your rose so important”

- Antoine de Saint-Exupéry

To Daniel,
my best friend and my love,
who is always there for me.

Abstract

Groups where the discrete logarithm problem (DLP) is believed to be intractable have
proved to be inestimable building blocks for cryptographic applications. They are at the
heart of numerous protocols such as key agreements, public-key cryptosystems, digital sig-
natures, identification schemes, publicly verifiable secret sharings, hash functions and bit
commitments. The search for new groups with intractable DLP is therefore of great im-
portance. The study of such a candidate, the so-called generalized Jacobians, is the object
of this dissertation. The motivation for this work came from the observation that several
practical discrete logarithm-based cryptosystems, such as ElGamal, the Elliptic and Hy-
perelliptic Curve Cryptosystems, XTR, the Lucas-based cryptosystem LUC as well as the
torus-based cryptosystem CEILIDH can all naturally be reinterpreted in terms of general-
ized Jacobians. We next provide, from a cryptographic point of view, a global description
of this family of algebraic groups that highlights their potential for applications. Our main
contribution is then to introduce a new public-key cryptosystem based on the simplest non-
trivial generalized Jacobian of an elliptic curve. This work thus provides the first concrete
example of a semi-abelian variety suitable for DL-based cryptography.

Les groupes où le problème du logarithme discret est réputé difficile se sont avérés d’une
importance capitale dans le développement d’applications cryptographiques. Ils sont au
coeur de plusieurs protocoles tels les échanges de clés, les cryptosystèmes à clé publique,
les signatures numériques, les procédés d’identification, les partages de secret publiquement
vérifiables, les fonctions de hachage et les mises en gage de bits. La recherche de nouveaux
groupes où le logarithme discret est difficile est donc d’une grande importance. L’étude
de l’un de ces candidats, les Jacobiennes généralisées, fait l’objet de cette dissertation.
Notre motivation vient de l’observation que plusieurs cryptosystèmes basés sur le logarithme
discret, tels que ElGamal, les cryptosystèmes sur les courbes elliptiques et hyperelliptiques,
XTR, le cryptosystème LUC utilisant les fonctions de Lucas ainsi que le cryptosystème
CEILIDH reposant sur les tores algébriques, peuvent tous être naturellement réinterprétés
en termes de Jacobiennes généralisées. En utilisant une approche cryptographique, nous
présentons ensuite une description globale de cette famille de groupes algébriques mettant en
lumière leur potentiel cryptographique. Notre principale contribution est alors de proposer
un nouveau cryptosystème à clé publique basé sur la plus simple Jacobienne généralisée
nontriviale d’une courbe elliptique. Nos recherches présentent donc le tout premier exemple
d’une variété semi-abélienne pouvant concrètement être utilisée en cryptographie.

Preface: The Making of...

“Lo que vale, cuesta”
“Whatever is worthwhile, costs”

- Spanish saying

I learned in high school that one should write last what is to be read first. These lines, in

other words. Well, it may have taken me an extremely long time to really understand why, but

at least I think I know now. Indeed, I wrote so many lines in the past few months and still, I

feel that I have more to say (peculiar, but true). You know, things that could not ‘fit’ anywhere

else, things that were simply too personal for the somehow rigid framework of a thesis. So here

I am, tired but happy, taking some time to give myself the liberty to freely transgress all rules

pertaining to formal scientific writing for a page or two (so yes, you have my blessing to skip

this part, as it is absolutely not needed for the sequel).

Obviously, this document contains the final product of my doctoral thesis, all bright and

shiny. The one thing that is missing though is how on earth did this old dream become tangible:

‘The making of’.

When you liked a movie enough to take the time to listen to the extra features on a DVD, it

seems that all Making Of have points in common: they first unveil the work of tons of people

that work behind the cameras, away from the spotlights. It is also a good opportunity to show

just how delicate it was to film a particular action sequence or that it took no less than forty

takes to perfectly capture the emotion of the script. In a nutshell, they rarely say: ‘It was a

piece of cake! All fun and games!’ But since these documentaries are promotions for the movie

aimed at increasing the ticket sales, it’s another story to decide if they faithfully relate what

really happened behind the scene...

In the present case, I (unfortunately) do not expect to become a zillionnaire any time soon

by selling this thesis on eBay. I can thus ensure you that the following events really happened

and that the names of the people and places have not been changed.

iii

iv

This thesis was written using the typesetting system LATEX, while sipping a cup of Earl

Grey in my cheap but comfy Montreal appartment, wearing a color-faded T-shirt1 , joggings and

slippers (just like Kathleen Turner in the opening scene of Romancing the Stone, only much

prettier). David Usher playing in background, and my lovely cats, Timide and Juliette, deeply

asleep in their respective boxes2...

“So this is the story of a girl who really likes cryptography, teaching, swing dancing,

laughing, home improvement, and gelato3 . In the past few months, she was however

hibernating and had (virtually) no time for her friends since she recently discovered

something else that she likes: writing...”

Now, that was a real surprise. I mean, I knew I loved to be in front of the class, but I

had never thought that my teaching experience could ease the writing so much. Well I guess

that explains the tone of this document: motivation for the problems and detailed explanations,

surrounded by ‘whatever works’ to make it enjoyable (or so I hope).

I know, I know, this is not what you want to hear. Okay, all right, I’ll tell you. But at one

condition: if you ever meet someone who is trying to find a good topic for a thesis, take a minute

to tell him/her about the true story of the girl who liked gelato. Deal? Now listen carefully.

The most difficult part of this thesis was without a doubt to find a good problem to work

on. Something original, ideally about elliptic curve cryptography, not too ambitious, and most

importantly, something that nobody had done before. Hum... Was that too much to ask for?

At first, I was reading tons of papers and was overwhelmed by all these publications that

seemed to be printed at the speed of light. I felt like I was running beside a train going at 100

mph and could not figure how to jump aboard. And when I tried to tackle several problems,

most of the time going in circle, asking myself: Is this really a dead end or is there a path to

follow that I don’t see yet? Is it wise to backtrack and try something else? Or am I simply giving

up too soon?

To come to the rescue, I have been lucky enough to have, not only one, but two incredible

supervisors to help me out: Henri Darmon and Claude Crépeau. They were key actors in the

cast and crew of people who helped me create what you are about to read.

1Like the purple and green one that says “Camp Mathématique 1994” (that I am simply unable to throw
away).

2 I dare to reveal these top secret details only because people naturally tend to think that all cryptographers
work on supercomputers in a room that needs five access codes to get in...

3Not necessarily in this order.

v

So I wish to thank Claude Crépeau, who had enough faith in me for suggesting to become my

co-supervisor. Even if he has so many students under his supervision, he was constantly there

for me: always a phone call away when I needed help or advice, day, night, and even weekends.

I also wish to thank him for letting me choose a topic that was kind of far from his speciality.

I also want to thank Henri Darmon, for his constant positive attitude and for all the en-

couragements he gave throughout the process. A true living encyclopedia, but all the while so

humble, Henri is able to patiently explain the basic concepts with the same enjoyment as the

deepest ones.

I am proud, honored and extremely grateful to have been able to work with such amazingly

talented researchers, but most of all, who are also extremely kind human beings. Claude, Henri,

je vous adore!

Huge thanks also go to the people from the Centre for Applied Cryptographic Research

(CACR) at the University of Waterloo, especially Edlyn Teske and Alfred Menezes, with whom

I had the pleasure to work for the last months: I have discovered in Waterloo a truly dedicated

team of researchers; I learn a lot with you, and I am grateful that I could be within such a team.

To maman and papa, Denise and André, thank you for your unconditional love. Maman,

thank you for letting me try my (sometimes messy) scientific experiments: from the moth balls

that magically moved by themselves in a solution of vinegar and p’tite vache4 to the one time

when a glass bottle filled with water exploded in the freezer in the middle of the night. Papa,

thank you for guiding me into discovering this world: I remember playing with you in the sand

with a magnet and be amazed by the iron filings that are naturally present in the soil. And

most of all, thank you for teaching me that “if something deserves to be done, then it deserves

to be well done”. Thanks also to my little sister Julie who has been my very first (and utterly

patient) student, and who already knew, in grade 5, about the square root of -1. Maman, papa,

Juju: ensemble, nous formons une famille exceptionnelle.

There are so many other people that I would like to thank. To all of you who closely or

remotely contributed to the realization of this work, thank you for your time, your understanding

and your generosity. A special thought goes to Tanja Lange who insisted that I attended the

2004 ECC Summer School: it was a truly memorable experience. Geneviève, I wish to thank

you for your friendship, your homemade cookies that could say without a word “I am behind

you”, and for your wise Japanese advices. Now it is my turn to say Gambatta koudasai! to

you. I also wish to thank theMagma team for their gracious developer’s license, so that I could

explore generalized Jacobians on the computer at will.

4This is how kids call sodium bicarbonate in Quebec, because of the cow drawing that used to appear on the
box.

Finally, I wish to express my deepest gratitude to Daniel Lavoie. Dan, you were beside me

at every moment, helping and supporting me in every way you possibly could (and sometimes

even more). From cooking to proofreading this thesis; from fixing my (numerous!) computer

problems to driving 1300 km every weekend to see me in Waterloo; and above all, for holding

me tight, for your reassuring words and your one of a kind sense of humour, I wish to thank

you. Merci Daniel. Je t’aime.

Isabelle Déchène
Montréal, Québec
September 2005

Contents

Preface iii

1 Introduction 1
1.1 The Context . 1
1.2 Motivation . 2
1.3 Our Work . 4
1.4 Guided Tour of this Dissertation . 7

2 The Discrete Logarithm 9
2.1 The Holy Grail of Cryptography . 10
2.2 Limitations of Secret-key Cryptography . 11
2.3 Key Agreement . 12

2.3.1 A Simple Model . 12
2.3.2 Discrete Exponentiations and Logarithms 13
2.3.3 Diffie-Hellman Key Exchange Protocol . 16

2.4 Public-key Cryptosystems . 19
2.4.1 A Simple Model . 20
2.4.2 Pohlig-Hellman Secret-key Cryptosystem and RSA 21
2.4.3 ElGamal Encryption . 23

2.5 Digital Signatures . 25
2.5.1 Digital Signatures from a Public-key Cryptosystem 25
2.5.2 ElGamal Signature . 27
2.5.3 Generalized ElGamal Signature . 30

2.6 Groups suitable for DL-based Cryptography . 31
2.7 Solving the Discrete Logarithm Problem . 33

2.7.1 The Baby, the Giant and the Kangaroos 33
2.7.2 Specific algorithms . 36

2.8 Versatility of Discrete Logarithms . 37
2.8.1 Coin-Flipping, Bit Commitments... and Computer Games 37
2.8.2 Secret Sharing... and National Security 38
2.8.3 Identification Schemes... and Your Banking Card 39

vii

viii CONTENTS

3 Algebraic Curves 41
3.1 The Zariski Topology . 42
3.2 Plane Curves and Cryptography: A Sneak Peek 51

3.2.1 Pell Equation: A Case Study for Torus-based Cryptography 53
The Geometric Group Law . 55
Group Order . 62
Group Structure . 63
The Discrete Logarithm Problem . 64

3.2.2 Elliptic Curves . 66
Weierstraß Equations . 67
The Group Law . 70
Hasse, Deuring, Schoof, and Friends . 77

3.2.3 Hyperelliptic Curves . 78
3.3 Divisors . 80

3.3.1 Basic Concepts . 80
3.3.2 Discrete Valuations . 82
3.3.3 Principal Divisors . 83
3.3.4 The Riemann-Roch Theorem . 85
3.3.5 The Abel-Jacobi Theorem . 86

Abel’s Theorem . 88
Jacobi’s Theorem . 89

3.4 The Picard Group . 91
3.4.1 Cryptographic Motivation . 91
3.4.2 Construction of the Picard Group . 92
3.4.3 The Jacobian . 94

4 Generalized Jacobians and Cryptography 97
4.1 Motivation . 98
4.2 Equivalence relation induced from a modulus . 103
4.3 Generalized Jacobian Varieties . 106

4.3.1 Link Between Ordinary and Generalized Jacobians 108
4.3.2 Fundamental Exact Sequence . 109

4.4 Group Extensions . 111
4.5 The Algebraic Group Lm . 112

4.5.1 A Concrete (and Easy) Example . 116
4.6 Cryptosystems Falling in the Spectrum of Generalized Jacobians 117

5 A Concrete Cryptosystem 123
5.1 Initial Setup . 124
5.2 Explicit Bijection between Pic 0m(E) and Gm ×E 125
5.3 The Group Law Algorithm . 129

5.3.1 Group Law for B-unrelated Moduli . 129
5.3.2 Group Law for B-related Moduli . 133
5.3.3 Toy Example . 135
5.3.4 Properties of the Group Law . 137

5.4 Efficiency . 139

CONTENTS ix

5.4.1 Additions in the Group . 139
5.4.2 Scalar Multiplications . 141
5.4.3 Choosing a Suitable Modulus . 143
5.4.4 Group Order and Generators . 146

5.5 The Discrete Logarithm Problem . 148
5.5.1 A Natural Solution . 148
5.5.2 Reductions among DLPs . 151
5.5.3 Precomputations and Parallelization . 155

The Classical Occupancy Problem . 159
On the Amount of Balls Falling into each Box 176

6 Conclusion and Further Work 181
6.1 Summary of Results . 181
6.2 Further Work . 182

Bibliography 187

Index 198

x CONTENTS

List of Figures

1.1 Relation between DL-based cryptosystems and generalized Jacobians 4
1.2 The generalized Jacobians in perspective . 5

2.1 Simple Model for a Key Agreement . 12
2.2 Discrete Logarithm Problem . 13
2.3 Diffie-Hellman Key Exchange Protocol . 17
2.4 Computational Diffie-Hellman Problem . 17
2.5 Man-in-the-middle attack . 18
2.6 Diffie-Hellman Key Predistribution . 19
2.7 Simple Model for a Public-key Cryptosystem . 20
2.8 Public-key Cryptography . 21
2.9 Towards a Discrete Logarithm Based PKC . 23
2.10 ElGamal Public-key Cryptosystem . 24
2.11 ElGamal Signature Scheme . 29
2.12 Generalized ElGamal Signature Scheme . 31

3.1 Lemniscate of Jakob Bernoulli over the real numbers 50
3.2 Pell conic over the real numbers . 54
3.3 Chord-and-tangent rule on Pell conic . 56
3.4 Projection of the Pell conic on the y-axis . 62
3.5 Chord-and-tangent rule on an elliptic curve . 71
3.6 Visual interpretation of Deuring’s result . 78
3.7 An example of a hyperelliptic curve of genus 2 over the reals 80
3.8 Visual interpretation of the group law on a hyperelliptic curve of genus two . . . 81
3.9 The chord-and-tangent rule and its interpretation in terms of divisors 87

4.1 Similarities between usual and generalized Jacobians 99
4.2 Group law on a generalized Jacobian . 100
4.3 Illustrative example with l = 7, k = 5 and n0 = 2 102
4.4 A stronger requirement on the function f . 104
4.5 Relation between DL-based cryptosystems and generalized Jacobians 118

5.1 A ringwire puzzle . 124
5.2 Unveiling the 2-cocycle cm . 131
5.3 Natural solution to a DLP on the generalized Jacobian 149

xi

xii LIST OF FIGURES

5.4 Simple Model for a Public-key Cryptosystem with Two Safes 151
5.5 Constructing A0 from A . 152
5.6 Constructing A2 from A1 . 153
5.7 Converting an instance of the DLP in hBi into one in F∗qr × hBi 153
5.8 Converting an instance of the DLP in F∗qr into two instances in F∗qr × hBi 154
5.9 A sequential solution to the DLP in F∗qr × hBi 155
5.10 An alternate solution to the DLP in F∗qr × hBi 158
5.11 A first look at the relative size of Γ . 160
5.12 The Classical Occupancy Problem . 161
5.13 Comparing the relative size of Γ and ∆ . 161
5.14 Probability function for the occupancy distribution with B = 10 and C = 20. . . . 163
5.15 On the convergence of E[Y] for three particular values of l 164
5.16 Relative size of Γ for r = 1, 218 < q < 220 and sample size two thousand 167
5.17 Relative size of Γ for r = 1, h = 2 and sample size two thousand 168
5.18 On the convergence of Var[Y] for three particular values of l 170
5.19 Relative size of Γ for r = 2, 218 < q < 220 and sample size two thousand 172
5.20 Relative size of Γ for r = 2, h = 2 and sample size two thousand 174
5.21 Binomial distribution corresponding to B = 10 and C = 20 177

Chapter 1

Introduction

«People are going to steal from you. You can’t stop them.
But everybody has their own little personal security things - things that they think
will foil the crooks, you know? In your own mind, right? ...You go to the beach,

go in the water, put your wallet in the sneaker. Who’s gonna know?
What criminal mind could penetrate this fortress of security?

“I tied a bow. They can’t get through that”. “I put the wallet down by the toe
of the sneaker. They never look there. They check the heel, they move on”.»

- Jerry Seinfeld

Nowadays, everyone is using security measures in their everyday lives: from the lock on the

door to the car alarm or the account password, chances are that even before 9 am, most people

will already have used several security mechanisms without even thinking about it. Some of

them have the mandate to protect the confidentiality of information: this is where cryptography

comes into play. Luckily, the implementation of cryptographic protocols are (usually) so “user-

friendly” that virtually anyone can easily protect their personal data1. Cryptography then

provides the necessary tools to avoid ad hoc methods (such as those often seen at the beach...).

1.1 The Context

For many, a day at work starts with the coffee-and-email ritual. Sadly, the initial excitement of

the “You’ve got mail” has now faded drastically, thanks to the 22 new messages in your Inbox

since 5pm yesterday. One of them perhaps contains your forgotten password while another, ap-

parently sent by your bank, asks you to validate your personal data. In a world with 167,000,000
1Such an example is the freeware version of PGP (i.e. Pretty Good Privacy) available at http://www.pgpi.org.

PGP is a public-key encryption program developed by Phil Zimmermann in the 1990s that now allows to encrypt
email messages, transform a PC into a secure phone or encrypt the entire content of a hard drive.

1

2 CHAPTER 1. INTRODUCTION

users of Yahoo! Mail alone,

Who should we trust?

Happily, public-key cryptography is there to help protect us. Indeed, it was especially de-

signed to be used by a large number of participants having access to an insecure communication

channel (e.g. the Internet) in the presence of malicious parties. Loosely speaking, it allows the

participants to:

• Encrypt messages that only the intended recipient can decrypt

• Affix a so-called digital signature to a message so that anyone can check whether it is an
authentic signature or a forgery

The protocols used to achieve these tasks often rely on difficult computational problems,

many of them inspired by number theory. Factoring integers and extracting discrete logarithms

(DL) in a group are without a doubt the most famous hard problems used in public-key cryp-

tography.

In a nutshell, this thesis aims at introducing generalized Jacobians (a family of groups known

by mathematicians for over fifty years) as a new candidate for DL-based cryptography.

1.2 Motivation

The sine qua non security requirement on groups used for DL-based cryptography demands that

the following computational problem be intractable:

Discrete Logarithm Problem (DLP)

Let G be a finite cyclic group generated by an element g.

Given h ∈ G, determine the smallest non-negative integer k such that gk = h.

This integer is called the discrete logarithm of h (to the base g) and is denoted logg h.

Now, groups where the discrete logarithm problem is believed to be intractable are not

only used to encrypt and signed messages [ElG85a, ElG85b]. They are also at the heart of

various other protocols such as key agreements [DH76b], identification schemes [Sch91, Oka93],

publicly verifiable secret sharings [Sta96], pseudo-random bit generators [Gen05], hash functions

[CvHP92], and bit commitments [BCC88]. They are therefore inestimable building blocks for

cryptographic applications.

1.2. MOTIVATION 3

Nevertheless, after nearly thirty years of research, only a handful of groups currently ap-

pear to be practical candidates for DL-based cryptography. This list includes the multiplicative

group of a finite field, the invertible elements of Zn with n a composite number, elliptic curves,
Jacobians of hyperelliptic curves, algebraic tori as well as the ideal class group of an imaginary

quadratic field. Another concern will always be the possibility that an efficient (classical) algo-

rithm for solving the DLP in some (or all) of the above groups be discovered. The search for

new groups with intractable DLP is therefore of great importance.

In 1985, the landmark idea of Koblitz [Kob87] and Miller [Mil86b] of using elliptic curves in

public-key cryptography would, to say the least, change the perception of many on the tools of

number theory that can be of practical use to cryptographers. In 1988, Koblitz [Kob89] gener-

alized this idea by considering Jacobians of hyperelliptic curves, which then led to the broader

study of abelian varieties in cryptography. Nearly fifteen years later, Rubin and Silverberg

[RS03] discovered that another family of algebraic groups, namely the algebraic tori2 , also are

of great cryptographic interest.

Now on one hand, Jacobians of curves (of small genus) gained the favor of many over the

years, mostly because of the smaller key size needed. This attractive characteristic is in fact

possible since we can easily generate curves for which there are no known subexponential-

time algorithms for solving the corresponding discrete logarithm problem. On the other hand,

rational algebraic tori over a finite field offer the convenient advantage of possessing a compact

representation of their elements, which then decreases the amount of information needed to be

exchanged.

In a nutshell, cryptographers like Jacobians of curves for their security and care about alge-

braic tori for their efficiency. Thus as far as we can tell, it appears that these two sub-families

of algebraic groups somehow possess complementary cryptographic advantages. From a mathe-

matical point of view, however, the overall picture looks quite different. Indeed, using a minimal

background in algebraic geometry, they can both be seen as two realizations of a single concept:

generalized Jacobians.

As a result, several existing DL-based cryptosystems, such as the ElGamal, the Elliptic and

Hyperelliptic Curve Cryptosystems, XTR, the Lucas-based cryptosystem LUC as well as the

torus-based cryptosystem CEILIDH all possess an underlying structure that can be naturally

reinterpreted in terms of generalized Jacobians3. Figure 1.1 provides a simplified view of the

2Recall that an algebraic group defined over Fq which is isomorphic to (Gm)d over some finite extension field
is called an algebraic torus of dimension d over Fq . As usual, Gm ∼=

©
x ∈ A1

¯̄
x 6= 0

ª
denotes the multiplicative

group.
3The interpretation of XTR and LUC in terms of tori is due to Rubin and Silverberg [RS03, Section 7].

4 CHAPTER 1. INTRODUCTION

interrelation between the cryptosystems and their underlying structures. With this new unified

approach, we could then assert that generalized Jacobians are a rich source of groups suitable

for DL-based cryptography.

Figure 1.1: Relation between DL-based cryptosystems and generalized Jacobians

This observation then raised the following question at the heart of our research4:

Is it possible to use a generalized Jacobian that is neither a usual Jacobian

nor an algebraic torus for DL-based cryptography?

An affirmative answer would then widen the class of algebraic groups that are of interest in

public-key cryptography.

1.3 Our Work

In a word, the main contribution of this thesis is to confidently answer yes to the above fun-

damental question. This existence result was established by considering the simplest nontrivial

generalized Jacobians of elliptic curves.

Before going any further, we present a brief overview of the construction of generalized

Jacobian varieties [Ros52, Ros54, Ser88]. Let C be a smooth algebraic curve defined over an

algebraically closed field K and m =
P
P∈CmP (P) ∈ Div(C) be an effective divisor5, thereafter

called a modulus. Two divisors D and D0 of disjoint support with m are said to be m-equivalent,

and we write D ∼m D0, if there exists an f in the function field of C such that div(f) = D−D0

and ordP (1−f) ≥ mP for each P in the support of m. Let Pic
0
m(C) be the group of m-equivalence

classes of degree zero divisors having disjoint support with m. Then, there exists a commutative

4Afterall, generalized Jacobians had previously been used in coding theory [Gop88, Chapter 4], so their poten-
tial for practical applications had already been demonstrated (making them an even more attractive candidate).

5That is, each mP is a nonnegative integer and only finitely many of them are nonzero.

1.3. OUR WORK 5

algebraic group Jm, called the generalized Jacobian of C with respect to m, which is isomorphic

to Pic0m(C).

The explicit family of generalized Jacobians that we considered can now be simply described

as follows. Let E be a smooth elliptic curve defined over the finite field Fq with q elements
and let B ∈ E(Fq) be a point of prime order l. Let also m = (M) + (N), where M and N

are distinct points of E(Fqr) such that M,N /∈ hBi, and r ≥ 1 is a chosen integer. Finally, let
Jm be the generalized Jacobian of E with respect to m. Figure 1.2 illustrates the relationship

between various structures of algebraic geometry in order to put these generalized Jacobians in

perspective.

Figure 1.2: The generalized Jacobians in perspective

These test groups are in fact semi-abelian varieties which are extensions (of algebraic groups)

of an elliptic curve by the multiplicative group Gm. Recall that a commutative algebraic group
S is called a semi-abelian variety if there exists a short exact sequence of algebraic groups6

1→ T → S → A→ 1,

where T is an algebraic torus and A is an abelian variety.

In order to put these groups to the test, there are several efficiency and security aspects to

consider. Indeed, recall that there are four main requirements for a group G to be suitable for

DL-based cryptography. Namely,

• The elements of G can be easily represented in a compact form,
6For information about extensions of algebraic groups, please refer to [Ser88, Chapter VII].

6 CHAPTER 1. INTRODUCTION

• The group operation can be performed efficiently,
• The DLP in G is believed to be intractable, and
• The group order can be efficiently computed.

In order to obtain a compact and convenient representation for the elements of Jm and a

group law algorithm using this representation, we first obtained an explicit bijection ψ of sets

between Pic0m(E) and Gm ×E. Thus in this particular case, an element of Jm can be viewed as
a pair (k, P), where k ∈ Gm and P ∈ E. The known addition on Pic0m(E) could then be used
to endow, via ψ, the set Gm × E with the desired group structure. More explicitly, let (k1, P1)

and (k2, P2) be elements of Jm such that P1, P2, ± (P1 + P2) /∈ {M,N}. Then,

(k1, P1) + (k2, P2) = (k1k2 · cm(P1, P2), P1 + P2) ,

where cm : E ×E → Gm is the 2-cocycle given by

cm(P1, P2) =
`P1,P2(M)

`P1+P2,O(M)
· `P1+P2,O(N)
`P1,P2(N)

,

and `P,Q denotes the equation of the straight line passing through P and Q (tangent at the

curve if P = Q).

As a consequence, F∗qr × hBi is a finite subgroup of Jm of order (qr − 1) · l for which the
elements are compactly represented and the group law is efficiently computable. In addition,

we also described how to choose a suitable modulus, speed-up scalar multiplications and select

parameters such that F∗qr × hBi is a cyclic group.
As for security, as soon as F∗qr × hBi is a cyclic subgroup of Jm, we obtain the following

reductions among discrete logarithm problems:

The DLP in F∗qr × hBi is at least as hard as the DLP in hBi ⊆ E (Fq)
and at least as hard as the DLP in F∗qr .

Furthermore, extracting a discrete logarithm in F∗qr × hBi can always be performed by se-
quentially computing a discrete logarithm in E followed by one in F∗qr . Moreover, it is possible
to proceed in parallel when l - (qr − 1), while this is still an open question in the case of curves
suitable for pairing-based cryptography.

Finally, we have also investigated several scenarios involving precomputations in order to

further study the DLP in F∗qr × hBi. To this end, we empirically compared generalized Jaco-
bians with the Classical Occupancy Problem. This preliminary study suggests that none of the

proposed scenarios is faster than the known methods described above.

1.4. GUIDED TOUR OF THIS DISSERTATION 7

Thus from a practical point of view, these results imply that even though generalized Ja-

cobians are newcomers in cryptography, we already know that solving their DLP cannot be

easier than solving discrete logarithms in two of the most studied groups used in DL-based

cryptography today.

1.4 Guided Tour of this Dissertation

Cryptographers come from various horizons, like engineering, computer science, physics and

mathematics. As a result, their background knowledge greatly vary, which certainly contributes

to the richness of this community. On a more down to earth consideration, it also inevitably

implies that an accessible text in this domain should include a broader treatment of the under-

lying nuts and bolts. For this reason, we (tried to) rise to the challenge of writing a thesis that

was as self-contained as possible. These lines were thus written with more than one targeted

public in mind.

Chapter 2 is intended as a solid introduction to the numerous uses of discrete logarithms,

written for scientists making their first steps in the universe of cryptography. From the classical

Diffie-Hellman key-exchange to the elegant coin-flipping by telephone, this chapter covers the

essentials of DL-based cryptography while relating its short but fascinating historical develop-

ment7.

Follows Chapter 3 on algebraic curves, which aims at allowing cryptographers having little

or no background in algebraic geometry to learn more about the tools cryptographers “borrow”

from algebraic geometry. More specifically, the first underlying objective is to concisely present

the notions and results needed to understand the arithmetic of algebraic curves (and thus set the

table for generalized Jacobians). The second wishes to give a flavor of the methodology followed

to test the suitability of a group for DL-based cryptography. This goal is notably achieved by

studying the simple hands-on example of the Pell equation8.

Hence both Chapter 2 and 3 may be read independently from the rest of the text. We

believe that Chapter 2 is accessible to motivated undergraduates, while Chapter 3 should be

within reach of master’s students in both mathematics and computer science.

Generalized Jacobians are finally presented in Chapter 4. In order to follow an approach by

exploration, the emphasis is put on the cryptographic potential of these structures. The key

ingredient in the construction of both usual and generalized Jacobians is the equivalence relation

7For instance, it seems that few people know that the secret-key cryptosystem of Pohlig-Hellman [PH78],
which was proposed shortly before RSA [RSA78], can actually be seen as its direct ancestor.

8To the best of our knowledge, it is the first time that the Pell equation is used as an introduction to torus-
based cryptography.

8 CHAPTER 1. INTRODUCTION

(on the divisors of the curve) one considers. Linear equivalence give rise to usual Jacobians, while

m-equivalence characterize generalized Jacobians. Understanding the similarities and differences

between them will help us choose the specific candidates we will put forward in Chapter 5. Lastly,

our coup de coeur in this chapter is the concluding section presenting several cryptosystems

falling in the spectrum of generalized Jacobians.

The (exciting) program of Chapter 5 is to introduce the first practical public-key cryptosys-

tem based on a generalized Jacobian that is neither a torus nor a usual Jacobian. Starting from

the abstract definition of generalized Jacobians in terms of divisor classes, we successively prove

that all the basic requirements for a group to be suitable for DL-based cryptography are fulfilled.

This therefore shows that generalized Jacobians are worth exploring towards the realization of

new public-key cryptosystems.

Finally, we conclude with a quick summary in Chapter 6, which is of course followed by an

extensive list of open problems for further work.

Chapter 2

The Discrete Logarithm and its
Cryptographic Significance

“We stand today on the brink of a revolution in cryptography.”

- Diffie & Hellman

This opening chapter aims at providing the cryptographic motivation towards the hunt for

finite groups for which the group law is efficiently computable and its discrete logarithm problem

seems intractable. It is really just a glimpse into the universe of cryptology and by no means a

review of the literature of discrete logarithms in cryptography. Instead, we have selected classical

protocols that, to our eyes, suffice to demonstrate what a powerful tool discrete exponentiation

is for cryptographers. Here and there, we also tried to include a historical perspective in order

to link seemingly unrelated problems (and hopefully keep awake readers who already saw this

material an exponential number of times).

Everybody has an idea of what a cryptosystem is. Kids usually associate secret messages

with spies1 , while adults are glad they exist so that they can safely shop online. So before we

even skim over the subject, it might not be a bad idea to simply set things straight and recall

the definition of a cryptosystem we will be working with:

Definition 2.1 A cryptosystem is a quintuple (P, C,K, E,D), where P, C and K are finite sets
whose elements are respectively called plaintexts (or clear texts), ciphertexts and keys. Each key

k ∈ K is associated with an encryption rule ek : P → C in E and a decryption rule dk : C → P
in D such that dk(ek(m)) = m for all m ∈ P.

1 ‘Are you a spy?’ is indeed the #1 question elementary school children ask me when I hold my workshop on
secret messages.

9

10 CHAPTER 2. THE DISCRETE LOGARITHM

2.1 The Holy Grail of Cryptography

Throughout this chapter, (G, ◦) (or simply G), will denote a group. That is, a nonempty set G
together with a binary operation ◦ : G×G→ G satisfying

• a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ G (associativity property)
• There is an e ∈ G such that e ◦ a = a ◦ e = a for all a ∈ G (existence of the identity)
• For each a ∈ G, there is a a0 ∈ G satisfying2 a ◦ a0 = e (existence of an inverse)

Exactly, just how much algebraic background does one need in order to build an unbreakable

cryptosystem? The integral of Hungerford’s book [Hun74]? Not quite. In fact, the above three

seemingly innocent properties suffice to ensure perfect secrecy.

Here is how it works. First, Alice and Bob take their favorite finite group G, say with n

elements, and secretly agree on a (randomly chosen) element k ∈ G which will serve as the key.
Then, Alice chooses the message m ∈ G she wishes to encrypt and sets the ciphertext to be

c = m ◦ k, which she then sends to Bob over an insecure channel.
An opponent, Eve, can then try to make deductions from the value c she eavesdropped. In

other words, she wishes to know if there is any information about the message or the key leaking

from the ciphertext.

Now, to the equally probable keys k1, k2, ..., kn respectively correspond the potential mes-

sages m1 := c ◦ k−11 , m2 := c ◦ k−12 , ..., mn := c ◦ k−1n . Since G is a group, these n messages

are distinct and so each element of G appears exactly once in this list. In other words, there

are precisely n pairs (m1, k1), (m2, k2), ..., (mn, kn) of message/key that yields c as ciphertext.

Therefore, given a ciphertext c and a uniform distribution on the keys, it is impossible for Eve

to develop a bias towards or against any of the messages. That means that the knowledge of c

is in fact useless to Eve, which is the best that one can hope for in a cryptosystem.

Also notice that a key should never be used systematically. For if c = m ◦ k and c0 = m0 ◦ k,
then Eve could eavesdrop c and c0, compute c0 ◦ c−1 which equals m0 ◦m−1. From the n2 pairs

of possible messages (m,m0), Eve can now narrow her search only to the n pairs satisfying

m0 ◦m−1 = c0 ◦ c−1. As a result, a key should always be used only once.
This so-called One-time Pad was developed during World War I and was described by Gilbert

Vernam in [Ver19, Ver26] using the letters of the English alphabet and the addition provided by

the Vigenère square [Ker83]. Vernam claims that “If [...] we employ a key composed of letters

selected absolutely at random, a cipher system is produced which is absolutely unbreakable”.

However, a formal proof could only be provided once Claude Shannon introduced the concept

of perfect secrecy at the end of the 1940’s [Sha48, Sha49].

2Notice that these three properties imply that a0 ◦ a = e as well.

2.2. LIMITATIONS OF SECRET-KEY CRYPTOGRAPHY 11

But despite its great elegance and simplicity, serious drawbacks arose in practice. For in-

stance, the key needed to be as long as the message and since the keys were disposable, a huge

amount of random (or nearly random) data needed to be generated. Some other difficulties, as

we will see in the next section, were common to all secret-key cryptosystems as well.

From this point on, we will drop the cumbersome notation (G, ◦) and will simply write G as
a multiplicative group (that is, a ◦ b will now be written as ab or a · b).

2.2 Limitations of Secret-key Cryptography

With any symmetric cryptographic system, no matter how efficient, there are certain prob-

lems that seem to be inevitable. In the late 60s, the idea that each of us would have a personal

computer connected to the Internet and that we could find an ATM around every corner (respec-

tively the so-called ‘computer controlled communication network’ and ‘remote cash dispensers’

of Diffie and Hellman[DH76b, p. 644]) was already in the foreseeable future of many. It was just

a question of time before the need for secure communications would be required by ordinary citi-

zens. From the government and the military to Alice and Bob, the typical user of cryptographic

techniques would drastically change. However, secret-key cryptography was well-suited for a

small number of participants only. Indeed, if the number of parties with no prior acquaintance

was rather large, many partially or unanswered questions were left to be solved:

• Key distribution. The key must be known only by Alice and Bob. If they have access to
a secure channel, then this problem is readily solved. But what if they don’t?

• Amount of keys. A set of N persons want to be able to communicate two-by-two in a

secure fashion. Then each of the
¡
N
2

¢
distinct pairs of individuals have to share a key. So,

a total of roughly N2 keys must be shared and each person has to securely store N − 1
keys. Can this be improved?

• Authentication and nonrepudiation (threat of dispute). Say Bob agreed to lend money
to Eve. In return, Eve sends back the encrypted message: “I, Eve, hereby confirm that

I owe 1000$ to Bob”. Of course, Eve may wish to deny having sent such a message.

But with secret-key systems, the key is also known by Bob, which means that he could

have produced the message himself. How to ensure that Eve cannot deny having sent this

message?

12 CHAPTER 2. THE DISCRETE LOGARITHM

Certainly, it was conceivable that cryptographic protocols that would solve each of these

problems separately could be designed, but who would have thought that a single concept could

simultaneously solve them all...

2.3 Key Agreement

For now, let’s solely address the key distribution problem. Suppose that Alice and Bob only

have access to an insecure channel and that they have no prior acquaintance (so that they do

not already share a key), but are however able to mutually identify each other. They therefore

want to agree on a key only by discussing over a public channel. Of course, by listening to this

conversation, Eve must not be able to recover the key (and in an ideal world, not even a iota of

information about it).

2.3.1 A Simple Model

But to realize such a scheme, what tools are we exactly looking for? Perhaps an easy visualization

of this protocol could help. Assume that Alice has identical copies of a padlock PA for which

only she knows the secret combination a. Similarly, Bob possesses padlocks PB for which he is

the only one to know the corresponding combination b. Alice then gives a closed padlock PA to

Bob and he also sends a closed PB to Alice:

Simple Model for a Key Agreement

Alice Bob

Secret a
PA−→ Secret b

Build PAPB
PB←− Build PBPA

PA PB

Eve

Now, Alice can interlock PA and PB since she can close a PA around the PB received from

Bob. Of course, Bob can also close a PB around PA and the resulting interlock owned by Alice

and Bob will be identical. Moreover, Eve only has access to the two closed padlocks PA and

PB . Hence, it seems that the only way she could produce the interlock is to be able to open at

2.3. KEY AGREEMENT 13

least one of PA or PB. So, in this setting, the interlock shared by Alice and Bob plays the role

of the secret key.

Needless to say, padlocks are objects that are easy to close, but hard to open for anyone

who does not know the secret combination. So the tool we are looking for has to be a trapdoor

one-way function: easy to compute in one direction and hard to invert3 unless you possess a

sensitive piece of information, called the trapdoor. Of course, the trapdoor must always remain

secret. Now comes the true challenge: finding such a function explicitly. In the next section, we

make a brief digression in order to discuss one possible candidate and we will return to the key

agreement problem in Section 2.3.3.

2.3.2 Discrete Exponentiations and Logarithms

It’s no secret: cryptographic devices evolve with technology. So, after the widespread use of

rotor machines4 from the 30s to the 50s and their crucial role during World War II, they began to

be replaced by cryptosystems based on shift registers. And with every novel approach, numerous

interrogations arise. “Given a possible state S of the register, how many shifts k were performed

from the initial configuration I?” is such a natural question. The process of recovering k from S

is called ‘solving a discrete logarithm problem’. This problem can also be stated in an arbitrary

group:

Discrete Logarithm Problem (DLP)
Let G be a finite cyclic group generated by an element g. Given h ∈ G, determine the smallest
non-negative integer k such that gk = h. This integer is called the discrete logarithm of h (to
the base g) and is denoted logg h.

Hence, since the 1950s, discrete logarithms (DL) played a role in cryptography. As for the

inverse operation, the (discrete) exponentiation

gk :=g · g · ... · g| {z }
k times

can be computed much faster than the k−1multiplications that the definition suggests. Actually,
Indian mathematicians of circa 200 B.C. already had discovered a process that is still in use

today. Their method is described in the Sanskrit book Chandah-sûtra of Acharya Pingala

3 In an average-case sense. For exact definitions, please refer to [Gol01, Section 2.2].
4Like Enigma (German), Typex (British) or SIGABA (American).

14 CHAPTER 2. THE DISCRETE LOGARITHM

and curiously, no trace of this rule was found outside of India for the next thousand years5.

Incidentally, the oldest known description of the binary numbers is also attributed to Pingala.

Using today’s terminology, their rule guarantees to compute gk by performing at most 2 log2 k

group operations. This is easy to see. Let (bmbm−1...b1b0)2 be the binary representation of k

(with bm = 1) so that k = 2mbm+2m−1bm−1+ ...+2b1+b0. Start with g = gbm and successively

compute

gbm
S q u a r e & M u lt ip ly

; (gbm)2 · gbm−1 S q u a r e & M u lt ip ly
; (g2bm+bm−1)2 · gbm−2 S q u a re & M u lt ip ly

;

(g2
2bm+2bm−1+bm−2)2 · gbm−3 S q u a r e & M u lt ip ly

; ...
S q u a r e & M u lt ip ly

; (g2
m−1bm+2

m−2bm−1+...+b1)2 · gb0 .

As wanted, the last expression computed, g2
mbm+2

m−1bm−1+...+2b1+b0 , equals gk. This technique

is nowadays often referred to as the (left-to-right) binary method or ‘square-and-multiply’ 6. It

hence provides an efficient algorithm 7 to perform discrete exponentiations in an arbitrary group

G.

On the other hand, extracting discrete logarithms can be really easy in some groups and

intractable in others. For example, in the additive group Z/nZ = {0, 1, 2, ..., n− 1} of integers
modulo n, we have for g = 1 and any h ∈ Z/nZ,

h =1 + ...+ 1| {z }
h times

= h · g,

so that the discrete logarithm logg h = h is not hidden at all. But we also have that

Any two cyclic groups with the same number of elements are isomorphic.

For if C andD are two cyclic groups of order n generated by c and d respectively, the isomorphism

between them is given by

ϕ : C → D
c 7→ d
c2 7→ d2

...
cn 7→ dn

(2.1)

5A fascinating historical account is depicted by Donald Knuth in [Knu81, Section 4.6.3], where references are
given as well.

6 If the group is written additively (as in the case of elliptic curves), it is sometimes also called the ‘double-
and-add’ method.

7Of course, it can be modified and improved in various ways, using signed representations, non-adjacent forms
(NAF) or sliding windows for instance. See [Gor98] and [MvOV96, Sections 14.6, 14.7] for details as well as
[BSS99, Section IV.2] for a comparison of several methods for elliptic curves.

2.3. KEY AGREEMENT 15

This implies that for each positive integer n, all cyclic groups of order n are isomorphic to

(Z/nZ,+). In particular,

Every cyclic group is isomorphic to one for which solving the DLP is trivial

In algebra, we often regard two isomorphic groups as being ‘the same’ since they carry the same

structure. However, one must really be cautious when it comes to computational problems, as

two isomorphic groups can behave quite differently. For example, the cost of the group operation

in two isomorphic groups can greatly vary8. So the complexity of computational problems, like

the DLP, crucially depends on the specific representation of the elements as well as the group

law algorithm.

Then why don’t we use the above isomorphism (2.1) to ‘transport’ our problem to another

group where it is easier to solve? Obviously, in order to have advantage to proceed this way

in practice, the algorithm that computes this isomorphism must be faster than computing the

discrete logarithm directly.

A really tempting instance is to try to compute an isomorphism ϕ from a given group G = hgi
of order n (in which we want to solve DLPs) to the additive group Z/nZ. Let a := ϕ(g), and

so gcd(a, n) = 1 (since a has to generate (Z/nZ,+)). Now, ϕ(gk) = ka, which means that if

we can solve DLPs in G, then we also know how to compute ϕ. Conversely, k = ϕ(gk) · a−1 so
that if we can evaluate ϕ, then with the simple help of the extended Euclidean algorithm (to

compute a−1), we can compute DLPs as well. Hence, we have that

The DLP in G is polynomial-time equivalent to explicitely computing the isomorphism ϕ.

So in this case, computing the isomorphism is not an easier way to proceed. However, this

approach can sometimes work. This is in fact the successful idea behind the MOV9 attack

[MOV93]: to reduce the DLP for supersingular elliptic curves to the one in the multiplicative

group of a finite field.

If we now go back to 1976, it was then known that the DLP in F∗p appeared to be a really
difficult problem (where F∗p is the multiplicative group of the finite field Fp with a large prime
number p of elements). In fact, the best known algorithms required roughly

√
p operations. One

such algorithm is due to Shanks [Sha71] (despite the fact that Diffie and Hellman are only citing

Donald Knuth’s Art of Computer Programming [Knu73, Exercise 5.25 with solution p.591] as

reference). Another was the Pohlig-Hellman method [PH78] which was already submitted when

the invited paper [DH76b] appeared, but was in fact only officially published in 1978. Thus,

8 Just think about the relative cost of a multiplication in F∗q compared to an addition in Z/(q − 1)Z.
9Menezes-Okamoto-Vanstone

16 CHAPTER 2. THE DISCRETE LOGARITHM

only exponential-time algorithms were known back then. In 1979, however, a subexponential-

time algorithm was discovered by Adleman [Adl79]. Since then, the methods were of course

diversified, improved and polished, but up to this date, no polynomial-time algorithm for solving

this problem on a conventional computer is known (see Section 2.7 for details).

2.3.3 Diffie-Hellman Key Exchange Protocol

Recall that following the intuition given by the padlock analogy, we might be able to find a

way to exchange a key over a public channel with the help of a trapdoor one-way function. On

the other hand, we know that discrete exponentiations can be computed efficiently and that

discrete logarithms seem to be hard for suitably chosen groups. These are so far the properties

of a one-way function. We now need to determine the trapdoor, which has to enable its bearer

to easily compute a particular instance of the DLP. But if Alice first chooses the value of the

discrete logarithm, she can then easily use exponentiation in order to build the instance of the

DLP that will be hard to solve for anybody but her. Thus, an easy strategy to create a trapdoor

is to begin by choosing the answer, and then build a tricky question from it (just like creating

a crossword puzzle). So Alice would do the following:

1. Pick the secret exponent a (Alice first chooses her secret combination)
2. Compute h := ga in private (She closes her padlock)
3. Make her challenge h public (She challenges anybody to open it)

Bob also performs steps 1-3 with his secret b. One last thing that needs to be done is to find

how to ‘interlock’ ga and gb such that:

1. The interlock computed by Alice and Bob must agree (they want to share the same key).

2. It must be (computationally) unfeasible for Eve to recover the interlock.

Knowing a is the only advantage that Alice has over Eve: she then has to use it when com-

puting the interlock. Hence, Alice needs to combine a and gb in a nontrivial fashion. Similarly,

Bob has to combine b and ga. Two easy candidates for the interlock are ga+b = gb+a and

gab = gba. The first choice is instantly ruled out since ga+b = ga · gb can also be computed by
Eve. As for the second choice, can one easily compute gab from ga and gb? The obvious strategy

for Eve would be to recover a from ga and then compute (gb)a. So we really want the DLP in

G to be as hard as possible. What else can Eve do? Nothing obvious, at least. We will come

back to this question shortly. But first, let’s write down properly what we have so far.

From the above discussion, Alice and Bob can publicly agree on a key by first choosing a

cyclic group G with generator g and then by exchanging ga and gb. And throughout this process,

2.3. KEY AGREEMENT 17

only the values of a and b need to be secret. As soon as the key k = gab has been computed by

both parties, Alice and Bob are free to use it with any secret-key cryptosystem they like.

Diffie-Hellman Key Exchange Protocol (DHKE)

Alice Bob

Private a
ga−→ Private b

k = (gb)a
gb←− k = (ga)b

Once written in such a compact form, this really clever idea often seemed like ‘the obvious

thing to do’. But when venturing in new territories, it was everything but obvious. In May 1975,

Whitfield Diffie had the revolutionary idea of splitting the key into a public and a private part.

The conference paper ‘Multiuser Cryptographic Techniques’ [DH76a] was written with Martin

Hellman in December that year, and still no concrete realization of the scheme was known. In

the spring of 1976, Pohlig and Hellman were putting the final touch to their paper [PH78],

where they used discrete exponentiation to build a secret-key cryptosystem. And in May 1976,

Hellman realized how to use exponentiation to build the key exchange. This was just before

the submission of the New Directions in Cryptography10 and right on time for their first official

public disclosure of their results at the National Computer Conference on June 8th. So a whole

year had passed between the spark of genius and the explicit algorithm...

Now, the security of this elegant protocol relies on the difficulty of solving the ‘Computational

Diffie-Hellman Problem’.

Computational Diffie-Hellman Problem (CDHP)
Let G be a finite cyclic group generated by an element g. Given G, g, ga and gb, determine gab.

As noticed above, this problem is no harder than the discrete logarithm problem. That is,

CDHP≤PDLP. On the other hand, suppose that we can solve the CDHP. Then does this yields
a method to solve the DLP? In general, this is an open question: we simply do not know if these

two problems are polynomially equivalent. However, at CRYPTO ’94, Ueli Maurer [Mau94] gave

strong evidence of this equivalence11, which was then refined with the collaboration of Stefan

Wolf [MW96] at CRYPTO ’9612. Antoine Joux and Kim Nguyen subsequently used their work

10Whose manuscript was received on June 3rd.
11 using a modified version of Lenstra’s elliptic curve method for factoring integers [Len87].
12A journal version of this work is also available [MW99].

18 CHAPTER 2. THE DISCRETE LOGARITHM

in order to give concrete examples of certain elliptic curve groups where the two problems are

provably equivalent [JN03].

We now briefly return to the possible attacks that Eve might try under the assumption that

she cannot solve discrete logs. In the vast majority of the cases, we do not know whether the

CDHP and the DLP are equivalent or not. This implies that under our assumption, no one

has been able to devise an efficient algorithm to solve the CDHP13, not even Eve. Hence for

a passive adversary which merely listens to the conversation, the only known efficient attacks

require solving discrete logarithms.

In the case where Eve is an active adversary and can ‘manipulate’ the data transmitted

between Alice and Bob, the situation is quite different. One possible game that Eve can play is

the so-called man-in-the-middle attack. This is similar to the trick where in a completely dark

room, Alice and Bob think that they are shaking each other hands, while in reality they are

both shaking Eve’s hands who is standing between them. Hence, Eve’s strategy is to intercept

the data and replace it with her own.

Man-in-the-middle attack

Alice Eve Bob

Private a
ga−→ Private a0

ga
0

−→
gb
0

←− Private b0
gb←− Private b

k0 = (gb
0
)a k0 = (ga)b

0
k00 = (gb)a

0
k00 = (ga

0
)b

In doing so, Eve now shares k0 with Alice and k00 with Bob. However, Alice and Bob no

longer share k. Eve can then send encrypted messages to Alice using k0 and chances are that

Alice will believe that the message really came from Bob. And with the help of k00, Eve can

also impersonate Alice to Bob. When agreeing on a key, Alice and Bob should then be able to

verify that the data they received truly came from the other party. In such an authenticated key

agreement scheme, Eve will therefore no longer be able to perform a man-in-the-middle attack.

For instance, digital signatures were used in the Station-to-station Protocol (STS) of Diffie,

van Oorschot and Wiener [DvOW92] in order to modify the classical Diffie-Hellman and achieve

authentication. The MTI key agreements protocols of Matsumoto, Takashima and Imai [MTI86]

are modifications of the original scheme as well. Their technique exploits the idea of an implicit

key authentication which does not rely on digital signatures.

13 Since otherwise, this would show that the two problems are not equivalent!

2.4. PUBLIC-KEY CRYPTOSYSTEMS 19

There is yet another way to ensure that Eve cannot act as a man-in-the-middle. Recall

that the ‘partial keys’ ga and gb can be made public without any problem. Suppose we have

a trusted (read only) public directory containing the name and corresponding partial key for

each participant. Then, we can think of this directory as a predistribution of the keys since now,

Alice can compute the key (gb)a without the help of Bob. Of course, this is no longer a true

interactive key agreement since the key shared by Alice and Bob can no longer be changed at

will.

Diffie-Hellman Key Predistribution

Alice Bob
Private a Private b
Message m

k = (gb)a
ek(m)−→ k = (ga)b

dk(ek(m)) = m

Public Directory
Name Key
Alice ga

Bob gb

This predistribution scheme was also described in the landmark paper [DH76b] and this

slightly different way of regarding this protocol really highlights the public-key nature of this

algorithm.

We have here described the key-exchange in a group G, which seems to be a prerequisite

to build such a scheme. However, at CRYPTO ’89, Buchmann and Williams [BW90] described

the first version of the DH key-exchange that did not need an underlying group structure. This

surprising result was achieved by using real quadratic fields and is described in much details in

the Journal of Cryptology version [BSW94], with co-author Renate Scheidler.

2.4 Public-key Cryptosystems

Following Auguste Kerckhoffs’ second ‘desideratum de la cryptographie militaire’ [Ker83]:

“Il faut qu’il (le cryptosystème) n’exige pas le secret, et qu’il
puisse sans inconvénient tomber entre les mains de l’ennemi”.

That is, the cryptosystem must not be required to be secret, and it must be able to fall into

the hands of the enemy without inconvenience. Therefore, all the security must reside in the

key. So for a really long time, people thought that keeping the key entirely secret was a sine qua

non condition to ensure secrecy. Whitfield Diffie didn’t think that way. His audacious idea of

splitting the key into two parts such that revealing the first part did not compromise the second

truly deserved the title of anew direction in cryptography [DH76b].

20 CHAPTER 2. THE DISCRETE LOGARITHM

2.4.1 A Simple Model

As with key agreements, an interesting analogy with padlocks can be made. Just as before, Bob

has identical copies of a padlock PB for which he is the only one to know the secret combination

b. Bob then puts several copies of his open padlock at the disposal of anyone who would like to

send him secured messages. Notice that the fact that open padlocks are publicly available does

not compromise b. Now, if Alice wants to send a message m to Bob, she first gets Bob’s open

padlock PB from a reliable source14 . She then places m in a safe, locks it with PB and sends it

to Bob. Finally, Bob is the only one who can recover m since he is the unique person to know b.

Simple Model for a Public-key Cryptosystem

Alice
Private a
Get Bob’s open padlock PB
Put message m in safe,
then close PB −→

Bob
Private b
Open the safe
using b
and recover m

Public Supply
Name Padlocks

Alice ...

Bob ...

This simplified view thus suggests that each user should now have a private key k, which is

kept secret, and a public key K which is known to everyone. It must then be computationally

infeasible to recover k fromK. If Alice wishes to send a messagem to Bob, she then simply looks

up Bob’s public key KB from a trustable source and then encrypts m with the public encryption

function eKB (m). In turn, Bob can recover the plaintext by applying the decryption function

dkB(eKB(m)) = m. Thus, each user must be able to create a pair of keys (k,K) such that

dk(eK(m)) = m for all possible messages. Of course, this has to be done by either computing

K from k or by choosing them simultaneously15 . Because of this dual key system, public-key

systems are often referred to as ‘asymmetric cryptographic systems’, in opposition to symmetric

key systems where the same key is used to encrypt and decrypt messages.

So now, Alice and Bob no longer have to share the same key. In fact, since the cryptosystem

itself is publicly known, KB is the only other piece of information that is needed in order to send

messages to Bob. This implies that a newcomer can send encrypted messages to Bob without

even creating keys for himself. This property certainly contrasts with secret-key cryptography

and with the predistribution scheme of the previous section.

Another property of asymmetric systems is that once Alice has encrypted her message for

14Since otherwise, Eve might try to give her own padlock to Alice and make her believe that it is in fact Bob’s
padlock.
15 Since we assumed that it is not possible to compute k from K.

2.4. PUBLIC-KEY CRYPTOSYSTEMS 21

Public-key Cryptography (PKC)

Alice Bob

Private kA Private kB

Message m
eKB

(m)
−→ dkB (eKB

(m)) = m

Public Directory
Name Public Key
Alice KA
Bob KB

Bob, she is no longer able to recover the plaintext from it. Hence, if she wants to keep a copy of

the message, she should either keep a copy of the plaintext, or for more security, store eKA(m)

(instead of eKB(m)).

2.4.2 Pohlig-Hellman Secret-key Cryptosystem and RSA

Although the concept of public-key cryptography was crystal clear in the minds of their inventors,

they were unfortunately unable to find a concrete scheme to include in their 1976 papers. In

[DH76a], they declared with a shrug

“At present, we have neither a proof that public-key
systems exist, nor a demonstration system”

But as we now see, they were in fact really, really close to a positive answer. The manuscript

of the Pohlig-Hellman paper [PH78] was submitted only two weeks after [DH76b]16 had been.

We often think of [PH78] as being an algorithm for computing discrete logs, but the paper also

contained a secret-key cryptosystem based on discrete logarithms in F∗p. The key comprised the
two elements d and e between 1 and p− 1 such that

de ≡ 1(modφ(p)).

The encryption and decryption rules on a message m and corresponding ciphertext c were

performed as follows:

c = memod p and m = cdmod p.

This is already similar to a PKC since the key is split in two parts. However, if the value of e

is revealed, then

d = e−1(modφ(p))

16Notice that even if the article of Pohlig and Hellman was submitted in June 1976, it was only officially
published in January 1978.

22 CHAPTER 2. THE DISCRETE LOGARITHM

is easy to recover since φ(p) = p − 1 is trivial to compute from the public value p. Hence, the

prime p has to be replaced by a composite integer n such that computing Euler’s totient function

from n is computationally unfeasible. Recall that

φ(n) =
¡
pα11 − pα1−11

¢
·
¡
pα22 − pα2−12

¢
· ... ·

¡
pαNN − pαN−1N

¢
, (2.2)

where pα11 p
α2
2 ...p

αN
N is the prime factorization of n, the pi’s are distinct and each αi > 0. From

(2.2), we see that computing φ is easy if the factorization of n is known.

But what if the factorisation of n is not known?

The answer to this simple question was indeed the bridge between secret and public-key

cryptography. In the simplest case where n = pq is the product of two distinct primes p < q, we

have that

φ(n) = (p− 1)(q − 1) = (p− 1)
µ
n

p
− 1
¶
=
(p− 1)(n− p)

p
=
−p2 + np+ p− n

p
,

and so p2 − (n− φ(n) + 1)p+ n = 0. Thus, if both n and φ(n) are known, then

p =
(n− φ(n) + 1)−

p
(n− φ(n) + 1)2 − 4n
2

and q =
(n− φ(n) + 1) +

p
(n− φ(n) + 1)2 − 4n
2

.

Hence, if Eve is able to compute φ(n) from the public value n, then she is able to factor n as

well.

Enters Donald Knuth, who was at Stanford just like Diffie, Hellman and Pohlig at the time.

Knuth raised the idea that since multiplication was an easy task but factorization appeared hard,

it could be a good candidate for a one-way function at the heart of a public-key cryptosystem

[Lev01, p.83].

So under the assumption that factorisation of n = pq is computationally out of reach, Eve

is unable to calculate φ(n) and there is therefore no obvious way to compute the decryption

exponent d, even if e is publicly known.

However, the MIT group composed of Rivest, Shamir and Adleman was the first to put

the pieces of the puzzle together. In their paper, they even acknowledge the great similarity

between the two cryptosystems: “Pohlig and Hellman study a scheme related to ours, where

exponentiation is done modulo a prime number” [RSA78, p.123]. For a concise treatment of

exponentiation ciphers where Pohlig-Hellman and RSA are seen as two realizations of the same

principle, see [Den82, Section 2.7].

In conclusion, the Stanford group not only invented public-key cryptography: they also set

the table for its first concrete implementation.

2.4. PUBLIC-KEY CRYPTOSYSTEMS 23

2.4.3 ElGamal Encryption

We keep the notation of the previous section. We have just seen how the Pohlig-Hellman secret-

key cryptosystem can be modified in order to yield the public-key system RSA. Now, the security

of the Pohlig-Hellman scheme relies on the discrete logarithm problem in F∗p. For if Eve knows a
plaintext-ciphertext pair (m, c), she must solve c = memod p (that is, compute logm c) in order

to recover the secret value e. But when we convert this scheme into a PKC by replacing p by n

and publishing e, the value of logm c is now known to everyone, so that the resulting protocol

is no longer based on discrete logarithms. In fact, a necessary condition for RSA to be secure is

that it must be computationally infeasible to factor n (otherwise, φ(n) can be obtained and the

private key d, computed). The goal of this section is then to describe a public-key cryptosystem

whose security depends on the intractability of the DLP.

As usual, G is a finite cyclic group of order n generated by g. In order to be able to perform

the computations, we want G and g to be publicly known and of course, we assume that the DLP

in G is intractable. Now, a natural choice for Alice would be to secretly choose an exponent a as

her private key, compute ga and make it her public key. We now are in the following situation:

Towards a Discrete Logarithm Based PKC

Alice Bob
Private a Private b
Encrypt m using gb c−→ Decrypt c using b
to get ciphertext c and recover m

Public Directory
Name Public Key
Alice ga

Bob gb

The big question is how to encrypt m using gb. We might try the same strategy as in the

previous section: start with an existing private-key system and try to convert it into a public-key

one. Plus, we already know that the Diffie-Hellman key agreement uses discrete exponentiations

and that once the key is exchanged, we can use any secret-key cryptosystem we like:

Alice Bob

Private a
ga−→ Private b

k = (gb)a
gb←− k = (ga)b

Encrypt m using k c−→ Decrypt c using k
to get ciphertext c and recover m

First, we need to get rid of the step where Bob sends gb to Alice. This is easy since gb is

Bob’s public key and so Alice can retrieve this value directly from the directory:

24 CHAPTER 2. THE DISCRETE LOGARITHM

Alice Bob

Private a
ga−→ Private b

k = (gb)a k = (ga)b

Encrypt m using k c−→ Decrypt c using k
to get ciphertext c and recover m

Public Directory
Name Public Key
Alice ga

Bob gb

Next, the key employed should not depend on Alice’s private key, but only on gb. One

possibility would be to use another secret element, say r, instead:

Alice Bob
Private a Private b

Secret r
gr−→

k = (gb)r k = (gr)b

Encrypt m using k c−→ Decrypt c using k
to get ciphertext c and recover m

Public Directory
Name Public Key
Alice ga

Bob gb

Alice is free to choose any value of r, so she could certainly randomly pick a new one for

every encryption. That way, a fresh new key k would be used each time. So Alice could try to

use k as a one-time pad:

Alice Bob
Private a Private b

Randomly pick r
gr−→

k = (gb)r k = (gr)b

c = m · k c−→ c · k−1 = m

Public Directory
Name Public Key
Alice ga

Bob gb

As a bonus, we even get that this encryption function is truly economical since only one

group operation is needed once k is known. Moreover, even though Alice and Bob share the

same k, we are really in presence of a PKC: Alice computes c = m · (gb)r with the help of Bob’s
public key, and Bob performs c · (gr)−b = m with his private b. We are then ready to write

down the final version:

ElGamal Public-key Cryptosystem

Alice Bob
Private a, 1 ≤ a ≤ n− 1 Private b, 1 ≤ b ≤ n− 1
Randomly pick r, 1 ≤ r ≤ n− 1 gr−→
c = m · (gb)r c−→ c · (gr)−b = m

Public Directory
Name Public Key
Alice ga

Bob gb

Finally, we turn our attention to the security aspect. Since the value of c is known by Eve,

2.5. DIGITAL SIGNATURES 25

she will be able to deduce the plaintext m if and only if she can compute grb. Therefore, her

task is to compute grb from gr and gb. In other words, she has to solve an instance of the

computational Diffie-Hellman problem (p.17) in G.

This cryptosystem was presented at CRYPTO ’84 by Taher ElGamal [ElG85a, ElG85b], who

was also at Stanford at the time17. This simple and elegant scheme is easy to remember since

it can be thought of as ‘a key-exchange followed by a one-time pad’. And even if these two

primitives were known by cryptographers in 1976, ElGamal was the first to make the connection

and to propose this randomized encryption method. This aspect is certainly an advantage of

this cryptosystem. Notice that with deterministic encryption, Eve could tell with certainty if

an observed ciphertext c is the encryption of a specific message m0 (by means of the public

encryption rule). This is no longer true here since each message now corresponds to many

possible ciphertexts (depending on the choice of r).

2.5 Digital Signatures

In the previous sections, we have seen how the Diffie-Hellman key agreement provides a solution

to the key distribution problem. As well, the predistribution scheme and public-key cryptosys-

tems have the property that each of the N users now has only one key to keep secret, instead

of the (N − 1) needed in a conventional secret-key setting. However, we still have to solve the
authentication and nonrepudiation problem. This is the object of this section.

2.5.1 Digital Signatures from a Public-key Cryptosystem

According to Diffie and Hellman, “Any public-key cryptosystem can be transformed into a one-

way authentication system18” [DH76b, pp.645, 650]. Loosely speaking, the idea is to turn the

cryptosystem ‘on its head’. This is done as follows.

First recall that with any public-key cryptosystem, Bob can send an encrypted message to

Alice with the help of her public key. Alice then uses her secret key in order to invert the process

and recover the plaintext. That way, anyone can send enciphered messages to Alice but she is

the only one who can decipher them.

With digital signatures, the situation is somewhat reversed. We now need the signer of the

message, Alice, to be the unique individual able to produce the corresponding signature. That

is, the signature cannot be forged. And just like a paper-and-pencil signature, anyone should be

17 In addition to the cryptosystem, his paper also contains a digital signature scheme that will be presented in
Section 2.5.2.
18 a.k.a. digital signature.

26 CHAPTER 2. THE DISCRETE LOGARITHM

able to verify its validity19 . As a result, it makes perfect sense to use the private key to produce

the signature and the corresponding public key to check its authenticity. Also notice that the

signature must be message dependant. Otherwise, Eve could simply copy and paste Alice’s

signature and append it to the message of her choice. So, unlike a classical signature, Alice’s

digital signature on two distinct messages will look completely different (but can nevertheless

be verified by anybody).

So for a given public-key cryptosystem with set of possible plaintexts P and ciphertexts C,
the encryption eA : P → C and decryption rule dA : C → P of Alice are such that

E n c ry p t io n D e c ry p t io n

P eA−→ C dA−→ P
m 7−→ eA(m) 7−→ dA(eA(m)) = m

for any message m ∈ P. Now, to produce the digital signature, we wish to use both the secret
key and the message. But how? An easy solution would be to compute dA(m), but this can

only be done if P ⊆ C. If it is the case, we can set the signature on message m to be dA(m). To

verify its validity using the public key, we could then compute eA(dA(m)), which is possible if

C ⊆ P. Hence, if P = C, both dA(m) and eA(dA(m)) make sense. The last step is to verify that
eA(dA(m)) = m for any m ∈ P.
But with any public-key cryptosystem, the encryption rule eA is one-to-one (for if eA(m) =

eA(m
0), then m = dA(eA(m)) = dA(eA(m

0)) = m0). Hence, eA has to be onto here as well since

P = C is a finite set. Now, if eA(dA(m)) = m0, then dA(m) = dA(m0) and there are c, c0 ∈ P
such that m = eA(c) and m0 = eA(c

0). So, c = dA(eA(c)) = dA(eA(c
0)) = c0, which finally

implies that m = m0.

Hence, as long as P = C, we have that eA(dA(m)) = m for any m ∈ P and so the signature
generation and verification can be performed as follows:

S ig n a tu r e G e n e r a t io n S ig n a tu r e Ve r ifi c a t io n

P dA→ P eA→ P
m 7→ dA(m) 7→ eA(dA(m)) = m

.

So given a message m, Alice can compute the corresponding signature dA(m) which she then

transmits to Bob together with m. Bob then accepts Alice’s signature iff eA(dA(m)) = m.

Hence, it is possible to easily produce digital signatures from a public-key cryptosystem as

soon as P = C. The famous example of course being the RSA signature scheme [RSA78].
19 In some other specific applications, it is desirable to require that the collaboration of the signer be required in

order to validate signatures. These so-called undeniable signatures were introduced by Chaum and van Antwerpen
at Crypto 89 [CA89] and once more, the DLP is at the heart of their scheme.

2.5. DIGITAL SIGNATURES 27

But what happens when P 6= C? In the original definition of a public-key cryptosystem

[DH76b, p.648], it is assumed that P = C, so that explains the claim that any PKC could be

turned into a signature scheme. Now, if P 6= C, the above construction does not work so we
might have to work a little harder, as we will see in the next section.

2.5.2 ElGamal Signature

We now want to concretely see how one could build digital signatures from the ElGamal cryp-

tosystem. Here we have that P = G and C = G × G. For simplicity, we will first work in the
original setting of ElGamal, where G = F∗p for a prime p and let g be a generator of G. It will
then be an easy task to generalize for an arbitrary group.

The first thing to try is to naively use the private key to produce the signature:

Alice Bob

Pick a random k ∈ G m, k−→
Compute j := m · (gk)a j−→ Check if j = m · (ga)k

This obviously doesn’t work since Alice could have computed j as m · (ga)k without knowing
a. Hence, we must force Alice to really use a when producing her signature. Bob could then

secretly pick k, transmit gk to Alice and challenge her to compute j.

Alice Bob
gk←− Pick a random k ∈ Z, 0 < k < ord(g)

Compute j := m · (gk)a m, j−→ Check if j = m · (ga)k

For sure, Bob will be convinced that the message came from Alice. However, Bob could have

produced this signature by himself simply by computing j as m · (ga)k, so this approach is not
good either. Instead of choosing k arbitrarily, we might be able to force Alice to compute k

using her private key. For example, to solve m = gak, assuming that we know that m = gl,

we need to solve the congruence l ≡ ak(mod ord(g)), which can be done as soon as a is known
and invertible (i.e. gcd(a, ord(g)) = 1). However, if it isn’t, then finding k requires to compute

the discrete logarithm loggam. Of course, in practice, recovering l from m requires to compute

loggm. So instead of computing l, we could choose it first and since we need it to depend on

the message, the canonical choice is to consider an equation of the form gm = gak:

Alice Bob

Solve m ≡ ak(mod ord(g)) for k m, k−→ Check if gm = (ga)k

But once Bob knows m and k, he could solve m ≡ ak(modord(g)) for a and hence learn Alice’s
private key. Thus, the signing equation gm = gak is too simple. So from Bob’s point of view,

28 CHAPTER 2. THE DISCRETE LOGARITHM

we need more than one unknown since otherwise, a can uniquely be determined. We can then

try to add an extra variable t and modify the signing equation to, say, gm = gak · gt. As we just
said, the value of t should be unknown to Bob, so Alice would transmit gt to Bob instead:

Alice Bob

Pick a random t ∈ Z, 0 < t < ord(g) m, gt−→
Solve m ≡ ak + t(mod ord(g)) for k k−→ Check if gm = (ga)k · gt

But Alice can cheat once more: she could first pick k and compute the value of gt by performing

(ga)−k · gm. This tells us that we should require that Alice gives us ‘a proof’ that she knows
the value of t without revealing its actual value (recall that if Bob learns t (and k), he can then

compute a). Hence, we could disclose only a part of t, just like in the key exchange protocol.

So we write t = rs and by revealing only gr and s, Bob could compute gt without knowing the

value of t:

Alice Bob

Pick random r, s ∈ Z, 0 < r, s < ord(g) m, gr , s−→
Solve m ≡ ak + rs(mod ord(g)) for k k−→ Check if gm = (ga)k · (gr)s

On the other hand, Alice can still pick k first, compute (ga)−k · gm to deduce the value of

gt, but this time, she has to transmit s as well. Hence, she has to find gr and s such that

(gr)s = gt. An easy way out is to set s = 1, or any other value for which s-roots in G are

efficiently computable20 . She then sets gr = gt/s and was therefore able to forge a signature on

the message of her choice. Since we cannot prevent Alice from first picking m, k and get the

corresponding value of (gr)s, we really have to ensure that she won’t be able to choose the s

she wants and then get gr. The weakness that was exploited here is that the left-hand side of

(ga)−k · gm = (gr)s is independent of gr, so that s was allowed to be chosen first. The only

parameter of the left-hand side on which we have some freedom is k. The easiest thing is then

to set k := gr and since the value of gr was already transmitted, it even decreases the amount

of data sent to Bob. The (honest) Alice would then have to derive the corresponding value of s

in the last step.

The signature on message m is then the pair (gr, s). With this last improvement, first notice

that recovering a from the signing equation requires to solve an instance of the DLP. Next, we

examine if a signature could be forged. If r (or gr) is chosen first, then computing s requires to

solve a DLP. Conversely, if s is fixed first, the equation

20For instance, square roots are easy to compute in F∗p (see [Per86] for example), so taking s to be any small
power of 2 would do.

2.5. DIGITAL SIGNATURES 29

ElGamal Signature Scheme

Alice Bob
Secretly pick a random r ∈ Z, 0 < r < ord(g) m−→
such that gcd(r, ord(g)) = 1

gr−→
Solve m ≡ agr + rs(mod ord(g)) for s s−→ Check if gm = (ga)g

r · (gr)s

gm = (ga)x · xs (2.3)

must be solved in G for the unknown x. So far, nobody was able to provide an efficient method

to solve this kind of equations, so ElGamal’s original challenge [ElG85a, p.470] still holds: “The

reader is encouraged to find a polynomial-time algorithm for solving (2.3)”. Another possible

approach to forge a signature would be to devise a process that simultaneously determine gr

and s. But here again, no one was able to find a feasible way to perform this task. In fact,

twenty years have now passed since this signature scheme was first proposed and yet, no attack

was successful at breaking it.

Notice that the ElGamal signature still keeps the same secret and public key for all users,

which is quite practical. But since P 6= C, the signature-verification procedure is now really

different from decryption-encryption. We saw why it didn’t seem possible to stick really close

to the PKC and we have complexified the verification equation step by step until we were no

longer able to break it. However, using this trial and error procedure, we explored only one path,

which means that there might be different verification equations that are secure and efficient

as well. There are several others in fact. In the handbook [MvOV96, Notes 11.70—11.71], five

alternatives are presented. For example, the equation gs = (ga)g
r ·(gr)m with the corresponding

signature (gr, s) has the advantage that the computation of s do not require to perform any

inversion in G. So there is some freedom on the specific verification equation used, but the

underlying idea really is the same. Of course, one must be extra cautious when playing with

this equation since even a tiny modification could change the computational assumptions, and

hence alter the security of the system.

One well-known variant of ElGamal is the Schnorr signature scheme [Sch91], which has

the advantage of providing shorter signatures while seemingly maintaining the same level of

security. And the most famous variant of ElGamal’s signature is certainly the Digital Signature

Algorithm (DSA) [NIoST00], which was the very first digital signature scheme to be approved

by a government.

30 CHAPTER 2. THE DISCRETE LOGARITHM

In practice, of course, the message can be quite long. So instead of producing the signature

for m, what we sign is actually the message digest h(m), where h : {0, 1}∗ → Z/pZ is a public
cryptographic hash function. This has many advantages. Namely, it allows to have a fixed

length for the signature, instead of having a signature twice as long as the message in the case

of ElGamal. Also, in the original scheme [ElG85a, Section IV, Attack 6], given a message m

and its corresponding signature (gr, s), it is possible to produce another message u together

with a valid signature (v, w). Luckily, this attack does not allow to choose u. And since h is a

one-way function, it will then be impracticable to determine a message whose digest equals u.

So with the help of the hash function, this particular attack cannot succeed. Thus, the use of

cryptographic hash functions is not limited to the efficiency aspect, but has a role to play in the

security of the scheme as well. It should therefore always be used in practice.

2.5.3 Generalized ElGamal Signature

So far, we have described the original ElGamal signature where the underlying group is F∗p for
a prime p. We now wish to extend this scheme to an arbitrary group G where the discrete log

problem is believed to be intractable. Hence, we now consider g and m as elements of G. As

discussed above, we want to sign the hash of the message, so technically, we need a hash function

from G to Z/nZ, where n is the order of g. In practice, it will be easier to proceed in two steps:
first provide a public message embedding f from G to {0, 1}∗ and then use a well-studied hash
function h as follows:

G
f−→ {0, 1}∗ h−→ Z/nZ

If we assume that h is strongly collision resistant, then the composition hG := h ◦ f will enjoy
this property as well. For if we find a collision on hG, say x and x0 in G such that hG(x) = hG(x0)

and x 6= x0, then f(x) 6= f(x0) (since f is one-to-one) and hence we would have found a collision
on h as h(f(x)) = h(f(x0)).

Now, if we look at the original scheme with hash function and we try to use it ‘as is’ in

the group G, the only part that might not make sense is to encounter gr as an exponent, since

this is in fact an element of G instead of being an integer. But as pointed out previously, the

important point is that the exponent of ga should depend on gr in order to avoid that the value

of s be chosen first, which would allow a forged signature. In the case of the original algorithm,

the canonical choice was to take gr itself whereas here, the natural choice is to consider hG(gr).

Notice that this value can be computed directly from gr by Bob, so that the data sent by Alice

is unchanged. We hence obtain the following generalized scheme:

2.6. GROUPS SUITABLE FOR DL-BASED CRYPTOGRAPHY 31

Generalized ElGamal Signature Scheme

Alice Bob
Secretly pick a random r ∈ Z, 0 < r < ord(g) m−→
such that gcd(r, ord(g)) = 1

gr−→
Solve h(m) ≡ ah(gr) + rs(mod ord(g)) for s s−→ Check if gh(m) = (ga)h(g

r) · (gr)s

As with the original ElGamal signature, nobody has been able to mount a successful attack

on this generalized version, assuming that the DLP in G is computationally infeasible.

2.6 Groups suitable for DL-based Cryptography

We have now seen, in quite some details, three fundamental cryptographic primitives based on

discrete logarithms in a group G: the Diffie-Hellman key exchange, the ElGamal public-key

cryptosystem and the ElGamal signature scheme. In Section 2.8, we will give an overview of

some of the numerous other applications of discrete logarithms in cryptography. In order to get

the most out of these protocols, solid candidates for the group G are needed. Evidently, a good

prospect has to ally efficiency and security. That is, we need the elements to be easily handled

by a computer, the group operation in G to be relatively inexpensive to compute and of course,

the DLP in G to be presumably intractable. In addition, our life will be made a lot easier if

there is also an efficient algorithm to compute the cardinality of G.

Different applications, different needs: depending on the computing resources available, the

short, medium or long term security needed or the nature of the information at stake, the

choice of the group will inevitably vary. It is indeed the context that will determine what

balance between efficiency and security is required. For instance, from smart cards to PCs to

supercomputers, totally different criteria have to be filled. So in a nutshell: the longer the list

of known suitable groups is, the better.

We now want to give a brief overview of the principal members on this list. Initially, Diffie

and Hellman [DH76b] worked in the multiplicative group F∗p of a finite field with a prime number
p of elements. It was then natural to consider finite fields F∗2n of characteristic 2 as well and to
generalize to any Galois field F∗pn , where p is prime and n is a positive integer.
In 1985, Neal Koblitz [Kob87] and Victor Miller [Mil86b] independently proposed to use

the group of points on an elliptic curve over a finite field. A remarkable fact concerning these

groups is that we can efficiently generate elliptic curves for which the only known algorithms

to compute their discrete logarithms are exponential-time. As a result, the key length can be

32 CHAPTER 2. THE DISCRETE LOGARITHM

much shorter than in a system where subexponential-time algorithms are known. Just to give

an idea, the effort required to factor a 1024-bit RSA modulus or to extract a discrete logarithm

in F∗q , where q is a 1024-bit prime, is roughly the same as to solve a DLP in a (suitably chosen)
elliptic curve over Fp, where p is a 160-bit prime only. Hence, elliptic curves are a good example
where the efficiency/security ratio pays off: the group operation may be more expensive, but

since shorter keys are needed, the overall cost makes it a competitive choice.

Elliptic curves are a sub-family of the hyperelliptic curves. In 1988, Neal Koblitz generalized

his idea to create the hyperelliptic cryptosystems [Kob89]. To be more accurate, the underlying

group where the discrete logarithm is presumably hard is the Jacobian of a hyperelliptic curve

over a finite field. The Ph.D. thesis of Tanja Lange [Lan01] was devoted to efficiently perform

the arithmetic in these groups. For security reasons, it is recommended in practice to use

hyperelliptic curves of low genus g. Up to this date, taking g to be 1, 2 or 3 is advised (the case

g = 1 corresponding to elliptic curves). See Section 2.7.2 for more details.

Also in 1988, Kevin McCurly suggested to use Z∗n, the group of invertible elements of Zn
where n is composite, in a modified version of the ElGamal cryptosystem [McC88]. It has been

shown that breaking his scheme is at least as difficult as factoring n. Moreover, Håstad, Schrift

and Shamir showed that when n is a Blum integer21, then all bits of the discrete logarithm

are individually hard and moreover, that the lower half of the bits, just like the upper half,

are simultaneously hard22 [HSS93]. So, as Schrift and Shamir puts it, ‘The discrete log is very

discreet’ [SS90].

One more proposal was done that year: the ideal class group of an imaginary quadratic field

Q(
√
D). That is, an element of this group is an equivalence class of ideals of the number ring of

Q(
√
D) (where D is a squarefree negative integer). The idea of using this structure in cryptogra-

phy is due to Johannes Buchmann and Hugh Williams [BW88]. However, a subexponential-time

algorithm to compute this DLP was devised by Kevin McCurley the following year [McC89].

At CRYPTO ’89, Buchmann and Williams then proposed to use real quadratic fields instead

[BW90, BSW94]: this was the first time a key-exchange was based on a structure which was not

a group (see p.19).

At CRYPTO 2003, Karl Rubin and Alice Silverberg introduced the concept of torus-based

cryptography. They described the cryptosystem CEILIDH23 for which the underlying group

is an algebraic torus over a finite field. A Scots Gaelic word, ceilidh is a traditional Scottish

21A Blum integer is a product n = pq of two distinct prime numbers p and q satisfying p ≡ q ≡ 3(mod 4).
22Under the assumption that factoring large Blum integers is an intractable problem.
23Pronounced ‘kayley’.

2.7. SOLVING THE DISCRETE LOGARITHM PROBLEM 33

gathering and was chosen because of the acronym ‘Compact, Efficient, Improves on LUC24 and

Improves onDiffie-Hellman’25 . It has the advantage that the group elements can be represented

in a really compact form and so it decreases the amount of information exchanged between Alice

and Bob. Further details on this topic will be given in Section 4.6.

That concludes our brief survey of groups suitable for DL-based cryptography. The goal of

this thesis is now to add one more entry to this list, namely, the generalized Jacobians of an

algebraic curve defined over a finite field.

2.7 Solving the Discrete Logarithm Problem

Designing protocols whose security depends on the intractability of the discrete logarithm prob-

lem or searching for groups where this problem seems intractable is useless if we do not take the

time to develop and refine methods to solve it. Using the state-of-the-art in these techniques

will allow us to select the size of the group needed to meet the desired security parameter.

In this section, we wish to present a snapshot of some of the methods in use today. For each

of them, we list its main characteristics as well as the principle behind it. By definition, such

a description is neither complete nor rigorous. However, details can be found in the surveys of

McCurley [McC90], Odlyzko[Odl00] and Teske [Tes01].

There are two types of algorithms that can be distinguished: the generic and the specific

ones. The generic methods will work in nearly any cyclic group (see below) whereas specific

methods are ‘custom-made’ since they take full advantage of the representation of the group.

It is therefore not surprising that specific algorithms generally perform better in practice than

generic ones.

As usual, G is here a finite cyclic group of order n generated by g. So given h ∈ G, we wish
to determine the smallest non-negative integer k such that gk = h.

2.7.1 The Baby, the Giant and the Kangaroos

In this section, we plan to tell the tale of generic algorithms using the colorful images that have

now become classics of the literature.. For generic algorithms, we really want to assume the

minimum about G. That is, only the following facts can be used:

1. Each element of G is encoded as a unique binary string
2. We have access to a black box oracle for the group law and the inverse of elements

24LUC is a public key cryptosystem based on Lucas functions and which was described in [LS93].
25 It was also named in the memory of Alice Silverberg’s cat Ceilidh, to which the paper is dedicated.

34 CHAPTER 2. THE DISCRETE LOGARITHM

These properties imply that the identity can be identified and that we are able to decide if two

elements are equal or not (that is, we can perform ‘equality checks’).

At EUROCRYPT ’97, Victor Shoup showed that any generic algorithm solving26 the DLP

in G must perform Ω(
√
p) group operations, where p is the largest prime dividing n [Sho97b].

As a result, the performance of the generic algorithms presented below should really be seen in

the light of Shoup’s lower bound.

The principal generic algorithms are the rho and kangaroo methods, both due to Pollard, as

well as Shanks’ baby-step giant-step algorithm. And if the factorization of n is known, then one

can also use the Pohlig-Hellman algorithm.

BABY-STEP GIANT-STEP. The baby-step giant-step (BSGS) method is due to Daniel

Shanks [Sha71]. It was originally designed to compute the ideal class number of a quadratic

number field. Proposed in 1971, it was hence known prior to the Diffie-Hellman key-exchange

protocol. The BSGS is a deterministic generic algorithm which is in fact a time-memory trade-

off of an exhaustive search. The idea behind this method is that if we set m = d
√
ne, then

h = gk = gim+j for some i, j such that 0 ≤ i, j < m. Thus, h(g−m)i = gj and so it suffices to
compute two sorted lists, one with all gj (the baby-steps) and one with all h(g−m)i (the giant-

steps). To get logg h, we simply find a match between the two lists. Note that the BSGS has

a large memory requirement (needing the storage of O(
√
n) group elements) and has running

time O(
√
n) group operations.

POHLIG-HELLMAN. As mentioned earlier, the Pohlig-Hellman27 generic algorithm was

part of the same paper as their secret-key cryptosystem [PH78]. This method requires that the

factorisation of n be known. So let n = pα11 p
α2
2 ...p

αN
N , where the pi’s are distinct primes and

each αi > 0. Since this process requires to perform O
³PN

i=1 αi
¡
log2 n+

√
pi log2 pi

¢´
group

operations to extract a logarithm (once the factorisation of n is known)28, Pohlig-Hellman will

be rather efficient if n has only small prime factors. In practice, it is thus advised to choose

a group order having at least one large prime dividing it. Here is how it works: first compute

ki := kmod p
αi
i for each i and then use the Chinese remainder theorem to recover k. Now, to

compute each ki, write it in base pi as ki = l0 + l1pi + ...+ lαi−1p
αi−1
i . Start by determining l0

from the identity hn/pi = (gn/pi)l0 , then find l1 using hn/p
2
i = gnl0/p

2
i · (gn/pi)l1 and so on until

lαi−1 is known.

26with probability bounded away from zero
27This algorithm was also independently discovered by R. Silver and by R. Schroeppel and H. Block, but S.

Pohlig and M. Hellman were the first to publish it.
28 See [PH78, Section IV] for a precise account of what can be simultaneously achieved in terms of running

time, memory and precomputations.

2.7. SOLVING THE DISCRETE LOGARITHM PROBLEM 35

POLLARD’S RHO. The ρ-method was developed by Pollard [Pol78] in 1978. It is a proba-

bilistic algorithm based on the birthday paradox which has expected running time O(
√
n) group

operations. It is preferred to BSGS in practice since it requires a negligible amount of storage.

It can in fact be implemented in such a way that only a constant number of group elements

have to be stored. The strategy here is to recursively define a sequence {xi}i≥0 of elements of
G of the form xi = gaihbi such that x0 ∈ G with known a0, b0 (e.g. x0 = 1) and xi+1 is a

function of xi only. Since G is finite, then this sequence will eventually be periodic (so that a

schematic representation of this sequence looks like the letter ρ). Then find29 any two elements

xi and xj of this sequence that are equal and such that bi 6≡ bj(modn). Finally, k can be easily
determined from gai(gk)bi = gaj (gk)bj . In 1999, van Oorschot and Wiener [vOW99] developed

a parallelized version where each of the N processors utilizes the same recurrence relation, but

with a different starting point. The search for a match is carried out through all computed values

of the processors at once (and not merely within each sequence), yielding a linear30 speed-up.

KANGAROO METHOD. The λ method, also referred to as the ‘Kangaroo method’, is also

due to Pollard and was published in the same article as the ρmethod [Pol78]. It is a space efficient

randomized algorithm as well, but is especially suited when we already know an interval [a, b] in

which the discrete logarithm k lies. In fact, it is expected to require O(
√
b− a) group operations

and storage of O(log2(b− a)) group elements to extract a discrete log. The goal of this ‘game’
is now to make the paths of the tame and the wild kangaroos collide. First, the tame kangaroo

starts at position gb and performs a set of jumps of the form gdi and then stops at position

gb+d1+...+dN , where the travelled distances di are known. Then, the wild kangaroo starts at

position h (or hgδ where δ is chosen to be small) and also executes a number of jumps of known

distances until the wild kangaroo meets the tame one31, i.e. gb+d1+...+dN = hgδ+d
0
1+...+d

0
M . If

it doesn’t happen, we simply try again starting the wild kangaroo at a different initial position.

Since we kept track of the travelling distances, it is then easy to compute k. The kangaroo

method has also been parallelized with a linear speed-up by van Oorschot and Wiener [vOW99]

and further analysis and improvements were done by Pollard [Pol00] himself and Edlyn Teske

[Tes01].

29Using for example Brent’s algorithm [Bre80].
30That is, a speed-up by a factor of N .
31Each jump is completely determined from the current position. So if the wild kangaroo steps on a spot where

the tame kangaroo once was, then from that point on, their two paths will coincide (and look like a λ).

36 CHAPTER 2. THE DISCRETE LOGARITHM

2.7.2 Specific algorithms

“Les structures sont les armes du mathématicien” once said Bourbaki32. Well, apparently, they

are the weapons of the cryptanalyst too. In order to develop targeted methods to solve the DLP

in G, one has advantage to thoroughly exploit its structure.

INDEX-CALCULUS ALGORITHM. The idea behind the index-calculus method seems

to date back to the 1920s. Kevin McCurley [McC90] indeed attributes it to Kraitchik and

Cunningham. In the context of public-key cryptography, Adleman [Adl79] first described and

analyzed the algorithm for F∗p while Hellman and Reyneri [HR83] worked in Fpm . And with its
numerous improvements over the years, the index-calculus has become one of the most powerful

techniques known to solve DLPs. Index-calculus works as follows. First choose a relatively small

subset S = {s1, s2, ..., sN} ⊆ G that can serve as a ‘factor base’ (that is, we want to be able

to write a significant proportion of the elements in G as sα11 · sα22 · ... · sαNN). We then want to

build a database containing the discrete logarithms li := logg si (1 ≤ i ≤ N). To do so, we

first need to build a system of linear equations with unknowns l1, l2, ..., lN . The equations

are collected as follows. Pick a random exponent r. If we can find α1, α2, ..., αN satisfying

gr = sα11 ·sα22 · ... ·sαNN , then r ≡ α1l1+α2l2+ ...+αN lN (modn) is added to the list of equations.

We repeat this process until this system has a unique solution (so at least N equations are

needed). Solving this system will yield the values of l1 up to lN . Now, to compute logg h, we

pick random exponents t until we can find β1, β2, ..., βN such that hgt = s
β1
1 · sβ22 · ... · sβNN .

Finally, logg h+ t ≡ β1l1 + β2l2 + ...+ βN lN (modn). In practice, the index-calculus in F∗p and
F∗2m have expected running time33 L[p, 1/2] and L[2m, 1/3] respectively (using Coppersmith’s

improvement [Cop84] for characteristic 2). Fortunately, the power of the index-calculus method

does not seem to apply to large enough subgroups of F∗p of prime order34 or to suitably chosen
elliptic curves35 . However, index-calculus can be applied to hyperelliptic curves and with the

latest developments [Gau00, The03], it already performs better than the generic ρ-method for

genus greater than 2.

We conclude this section by insisting on the fact that the above description is just the tip

of the iceberg. Indeed, many other specific algorithms and refinements are known, such as the

Gaussian integer method [COS86], the number field sieve [Gor93] or the function field sieve

[Adl94]. In addition, several other tools, including the structured Gaussian elimination [Odl85],
32That is, “Structures are the weapons of the mathematician”. Created in the 1930s, ‘Nicolas Bourbaki’ is in

fact a pseudonym used by a group of (mainly French) mathematicians.
33Recall that L[n,α] := O

³
e(c+o(1))(lnn)

α(ln lnn)1−α
´
, where c is a positive constant.

34Used in the Digital Signature Algorithm (DSA).
35 See [Mil86c] for a discussion of why the index-calculus method cannot be readily applied to elliptic curves.

2.8. VERSATILITY OF DISCRETE LOGARITHMS 37

the Weil [MOV93] and Tate [FMR99] pairings as well as the Weil descent [GHS02], are either

at the heart of an attack or are employed to improve existing ones. Moreover, the difficulty of

computing individual bits or groups of bits of a discrete logarithm is also an important issue

which is addressed in [MvOV96, Section 3.9]. Lastly, Peter Shor designed polynomial-time Las

Vegas algorithms for both discrete logarithms in F∗p and integer factorization on a (hypothetical)
quantum computer [Sho94, Sho97a, BL95]. At CRYPTO ’95, Dan Boneh and Richard Lipton

[BL95] used a similar method to show that the discrete logarithm problem in any finite group

(where the group operation can be computed efficiently) can be solved in random quantum

polynomial-time. It should therefore be kept in mind that we are everything but immune against

the practical realization of polynomial-time attacks towards the discrete logarithm problem.

2.8 Versatility of Discrete Logarithms

We conclude this chapter with a selection of different applications of discrete logarithms in

cryptography. Since our science aims at securing information, there is so much more to it than

key-exchange, encryption and signatures. To reflect this reality, we chose from a wide range of

applications three independent occurrences that will hopefully demonstrate what an ubiquitous

and polyvalent tool discrete logarithms are for cryptographers.

2.8.1 Coin-Flipping, Bit Commitments... and Computer Games

Before betting even a single penny at the roulette of an online casino, Bob should be convinced

that the winning number can’t be changed after he placed his bet. But how to make sure that

they are playing fairly? In 1981, Manuel Blum and Silvio Micali described an algorithm that

could answer this question and many more. Blum [Blu82] humoristically called his own work

‘a protocol for solving impossible problems’. To describe this technique, the coin-flipping by

telephone, nothing surpasses his own words:

“They (Alice and Bob) have just divorced, live in different cities, want to decide who

gets the car. Bob would not like to tell Alice HEADS and hear Alice (at the other

end of the line) say “Here goes... I’m flipping the coin... You lost!” ”

A fair coin-flipping can be achieved using what is called a bit commitment scheme. The

action of ‘committing to a bit’ can be described as follows: Alice first picks a bit b, either 0 or

1. She places it in a safe (whose combination is only known to her), closes it and gives it to

38 CHAPTER 2. THE DISCRETE LOGARITHM

Bob. Once the safe is in Bob’s hands, Alice cannot change her mind: she is therefore bound to

b. Moreover, the value of b is concealed from Bob until Alice opens the safe for him36.

Now, if Alice and Bob wants to virtually flip a coin, Alice begins by committing to a bit b.

Bob then tries to guess what b is and publicly announces his guess b0 to Alice. She then unveils

b by opening her safe. Bob wins if b = b0, and looses otherwise. Moreover, if Alice ever refuses

to open the safe, Bob could then conclude that his guess was right.

Once more, groups where the discrete logarithm problem is believed to be intractable can

serve as a tool to build tangible bit commitment and coin-flipping schemes. Not surprisingly,

the coin-flipping protocol originally proposed by Blum and Micali was indeed relying on the

intractability of the discrete logarithm problem. In [BCC88, Sections 6.1.2 and 6.2.2], Bras-

sard, Chaum and Crépeau describe two realizations of a bit commitment based on the discrete

logarithm, one unconditionally secure for Alice and another which is unconditionally secure for

Bob.

2.8.2 Secret Sharing... and National Security

When taking decisions concerning national security, an agreement among several executives is

required. The well-known (and extreme) instance being the launch of a nuclear missile. In

Russia, at least two of the President, the Defense Minister and the Defense Ministry have to

give their consent before any action can be taken37. This ‘two-man rule’ in fact applies in a

variety of contexts, from opening the vault of a bank to shutting down a central server.

Hence, we need a way to ensure that only precise subsets of people are authorized to take a

decision. To achieve this goal, a secret s could be shared among all participants in such a way

that a coalition can recover s if and only if they form an authorized subset. In such a secret

sharing scheme, each participant Pi receives a piece of information si (called a share) from a

dealer.

Notice that this method could also be used by a single individual who wishes to safeguard a

sensitive piece of information I: the data could be split into n parts (say such that a minimum

of n/2 shares are required to recover I) and each piece placed at a different (secret) physical

location.

A secret sharing is said to be perfect if pooling the shares of any unauthorized subset of

participants yields absolutely no information about s. For a toy example38, the following magic

36Notice the difference with a public-key cryptosystem (c.f. Section 2.4) where Bob was the one able to open
the safe.
37 See the Time Magazine of May 4,1992 on page 13.
38Please take note that magic squares are used here as an illustrative example only: they are easy to understand,

but are not practical secret sharing schemes per se.

2.8. VERSATILITY OF DISCRETE LOGARITHMS 39

square
11 16 9
10 12 14
15 8 13

with positive integer entries as shares, and where s = 36 is the sum of any line, column or

diagonal, is not a perfect secret sharing since, for instance, the person having share 16 knows

that s ≥ 18.
The concept of secret sharing was independently proposed by Adi Shamir [Sha79] and George

R. Blakley [Bla79] in 1979. However, in its original formulation, the malicious Eve could provide

a dummy share and hence prevent the reconstruction of s when desired. As well, a corrupted

dealer could really do anything he likes depending on the bribes he received. In order to cir-

cumvent these difficulties, Chor, Goldwasser, Micali and Awerbuch [CGMA85] introduced the

concept of a verifiable secret sharing (VSS) in 1985. In such a scheme, each participant can

verify that the share they received is authentic and moreover, no one can successfully submit

an invalid share when comes the time to recover s. However, it would be even better if anyone

(and not only the participants) could verify that the shares have been distributed correctly.

Markus Stadler[Sta96] introduced this notion at EUROCRYPT ’96 and called such a scheme a

publicly verifiable secret sharing (PVSS). He proposed a protocol using ‘double exponentiations’,

i.e. exponentiations of the form g(k
n) and consequently, ‘double discrete logarithms’.

2.8.3 Identification Schemes... and Your Banking Card

An identification scheme is a protocol that will allow Alice to prove her identity to Bob in such

a way that while Bob is convinced that he is really talking to Alice, he won’t in turn be able to

usurp her identity. Therefore, solely providing a login and password to access email, typing a

PIN to withdraw money (with a banking card with a magnetic stripe only39) or telling a credit

card number by telephone is by no mean considered an identification scheme.

So instead of giving away all the secret information, an identification scheme usually takes

the form of a challenge-and-response protocol. That is, Bob sends to Alice a (random) challenge

which can only be answered correctly if Alice’s secret information SA is know. Alice computes

her answer using SA and sends only her answer to Bob, keeping SA secret. Finally, he verifies if

the answer is correct or not. Since a new challenge is issued each time, Bob (or an eavesdropper)

will have a negligible probability to impersonate Alice.

Such a scheme can be realized with the help of a group where the DLP is believed to be

intractable. For instance, Tatsuaki Okamoto [Oka93] presented at CRYPTO ’92 a provably

39Yes, in North America, we are still using them.

40 CHAPTER 2. THE DISCRETE LOGARITHM

secure modification of the Schnorr identification scheme [Sch91]. Indeed, an elegant yet subtle

proof shows that the Okamoto identification scheme is as secure as the discrete logarithm problem

in F∗p. In addition, the resulting scheme is still almost as efficient as the original version proposed
by Schnorr.

Finally, even if we just saw concrete examples where the discrete logarithm problem was

playing a central role, it might still not be enough to convince a sceptical friend that the DLP is

present in our everyday lives. Well, let’s just say that SSH (Secure Shell), SSL (Secure Socket

Layer), PGP (Phil Zimmermann’s Pretty-Good-Privacy) or OpenPGP all rely on the discrete

logarithm problem at some level. So unless your friend still believes that computers are not part

of our lives yet, that should be a massive argument.

Chapter 3

Algebraic Curves

“Think geometrically, prove algebraically.”

- Silverman & Tate

Not surprisingly, abstract algebra and geometry are the two underlying branches of algebraic

geometry. Loosely speaking, algebraic-geometers study, among other things, the sets of solutions

of systems of algebraic equations. So algebraic geometry offers us the neccessary geometric tools

to fuel our intuition, but uses the power of algebra to provide demonstrations.

In this chapter, we intend to study the necessary background on algebraic curves needed

to understand generalized Jacobians. The first section on the Zariski topology will provide the

basics of algebraic geometry required to define projective varieties and algebraic curves. The

second section on plane curves and cryptography already gets more specific and considers three

families of curves: Pell conics, elliptic and hyperelliptic curves.

There is a particular goal we wished to achieve by choosing to present each of these families.

First, Pell equation makes the perfect introductory example of an algebraic curve suitable for

DL-based cryptography. Indeed, this well-known equation is simple enough that within a few

pages, it is possible to explain its cryptographic potential in detail. At the same time, we make

the parallel with algebraic tori, so that the reader has at least one concrete example at hand.

Next come elliptic curves: we provide the fundamental properties that make them so attrac-

tive to cryptographers. Since Chapter 5 introduces a new cryptosystem based on the generalized

Jacobian of an elliptic curve, it is the case we treat with the most details.

We then briefly touch upon hyperelliptic curves and introduce them as a motivation for the

presentation of the theory of divisors that leads to the Picard group and the Jacobian.

41

42 CHAPTER 3. ALGEBRAIC CURVES

Our treatment of divisors will of course emphasize the role played by principal divisors. We

then present the Riemann-Roch theorem, whose power we demonstrate in the proof on the

Abel-Jacobi theorem. This last result will be playing a key role in the generalized Jacobians we

consider in Chapter 5.

Lastly, we recall the construction of the Picard group and provide a motivation for its use in

cryptography. This will naturally lead us to the existence theorem for the Jacobian.

As a result, we believe that the content of this chapter, with the material it covers and the

level of details it provides, can play the role of a self-contained introduction to the algebraic

geometry underlying curve-based cryptography, as well as being a relatively brief reference for

those already familiar with this material.

3.1 The Zariski Topology

Considered by many as one of the most influential mathematicians of his field in the twentieth

century, Oscar Zariski studied in Italy1 with Francesco Severi, who was the first to explicitly

mention generalized Jacobians in the mid-1950s . Among the students of Zariski was Maxwell

Rosenlicht, whose role in the study of generalized Jacobians is prominent, as we will see in

Chapter 4.

Throughout this chapter, K will denote a perfect field. That is, every algebraic extension of

K is separable. For the cryptographic applications we have in mind, notice thatK will ultimately

be a finite field and hence this framework is general enough for curve-based cryptography. Let

also K be a fixed algebraic closure of K.

We all learned cartesian product in elementary school: we now see how the same underlying

idea is used in the case of affine spaces.

Definition 3.1 The affine n-space over K, denoted An
¡
K
¢
(or simply by An when K is un-

derstood) is the set of all n-tuples of elements of K:

An
¡
K
¢
=
©
(x1, . . . , xn)|xi ∈ K for 1 ≤ i ≤ n

ª
.

Similarly, let

An (K) = { (x1, . . . , xn)|xi ∈ K for 1 ≤ i ≤ n} .

The elements of An (K) are called the K-rational points of An. Also let 0 = (0, . . . , 0) ∈ An (K).

1He thus embraced the Italian school of algebraic geometry, whose style was renowned to be very intuitive.

3.1. THE ZARISKI TOPOLOGY 43

When seeing the chord-and-tangent rule on an elliptic curve for the first time, one without

the appropriate background could think that ‘adding a point at infinity’ seems like an artificial

procedure while it is, in fact, a very natural construction. In order to see why, we need to first

consider an equivalence relation on the nonzero points of An+1. Given points P = (x0, . . . , xn)
and Q in An+1

²
{0}, we will write P ∼ Q if there exist a constant λ ∈ K∗ such that

Q = (λx0, . . . ,λxn) .

Clearly, this defines an equivalence relation on the points of An+1
²
{0}. The equivalence class

of the point P is denoted by [x0 : . . . : xn].

Definition 3.2 The projective n-space over K, denoted Pn
¡
K
¢
(or simply by Pn when K is

understood) is the set of these equivalence classes. In other words,

Pn
¡
K
¢
=
©
[x0 : . . . : xn]|xi ∈ K for 0 ≤ i ≤ n and are not all zero

ª
.

Similarly,

Pn (K) = { [x0 : . . . : xn]|xi ∈ K for 0 ≤ i ≤ n and are not all zero} ,

and the elements of Pn (K) are called the K-rational points of Pn.

We can now easily see why the ‘points at infinity’ arise in a natural fashion for projective

spaces. Consider for instance

P1 =
©
[x0 : x1]|x0, xi ∈ K

ª
,

and let P = [x0 : x1] ∈ P1 be given. If x1 6= 0, then

[x0 : x1] =

∙
x0
x1
: 1

¸
.

Now if x1 = 0, then x0 6= 0, from which follows that

[x0 : x1] = [1 : 0] .

Thus, P1 is the union of two different types of points:

P1 =
©
[λ : 1]|λ ∈ K

ª
∪ {[1 : 0]} .

Since the set
©
[λ : 1]|λ ∈ K

ª
is in bijection with A1, we can think of P1 as being ‘A1 together

with the extra point [1 : 0]’. For this reason, [1 : 0] is called a point at infinity.

44 CHAPTER 3. ALGEBRAIC CURVES

Example 3.3 This material makes the ideal introduction to see how easy it is to work with

these concepts using Magma. Basic and fundamental instructions are shown below.

> K:=GF(11); // Finite field (Galois field) with 11 elements
> K;
Finite field of size 11
> A2<x,y> := AffineSpace(K,2);
> A2;
Affine Space of dimension 2
Variables : x, y
> p := A2![1,2];
> p[1]; // 1st coordinate of the point p
1
> q:=A2![2,4];
> p eq q;
false
> P1<X,Y>:=ProjectiveSpace(K,1);
> Points(P1); // Notice the point at infinity
{@ (0 : 1), (1 : 1), (2 : 1), (3 : 1), (4 : 1), (5 : 1),

(6 : 1), (7 : 1), (8 : 1), (9 : 1), (10 : 1), (1 : 0) @}
> P2<X,Y,Z>:=ProjectiveSpace(K,2);
> P2;
Projective Space of dimension 2
Variables : X, Y, Z
> P:=P2![1,9,4];
> P;
(3 : 5 : 1)
> Q:=P2![6,10,2];
> P eq Q;
true
> P2![0,0,0]; // At least one of X,Y or Z must be nonzero!

>> P2![0,0,0]; // At least one of X,Y or Z must be nonzero!
^

Runtime error in ’!’: Illegal coercion
> quit; // To exit Magma

Take note that this example will be continued as we add more notions.

Our first goal is to turn Pn into a topological space. That is, we need to identify what the
open sets of Pn are. But first, a few recalls.

Definition 3.4 A topology on a set X is a collection T of subsets of X satisfying the following

three properties:

3.1. THE ZARISKI TOPOLOGY 45

1. φ,X ∈ T ,
2. For any subcollection S of T , ∪U∈SU ∈ T ,
3. For any U1, ..., Un ∈ T , U1 ∩ ... ∩ Un ∈ T .

A set X endowed with a topology T is called a topological space. The elements of T are

called the open sets. A set is said to be closed if its complement is open.

Before we can define the closed sets of our topology, we need a few more definitions.

Definition 3.5 A polynomial f (X0, . . . ,Xn) ∈ K [X0, . . . ,Xn] is said to be homogeneous of
degree d if

f (λX0, ...,λXn) = λd · f (X0, ...,Xn)

for every constant λ ∈ K.

Example 3.6 The polynomial f(X,Y,Z) = X3+Y +1 is not homogeneous, while g(X,Y,Z) =

X3 + Y Z2 + Z3 is.

Given P = [x0 : . . . : xn] ∈ Pn and a homogeneous polynomial f (X0, . . . ,Xn) ∈ K [X0, . . . ,Xn]
of degree d such that f(P) = 0, we have, for any λ ∈ K,

f (λx0, . . . ,λxn) = λd · f (x0, . . . , xn) = λd · f (P) = 0.

Thus, f (P) = 0 if and only if f(Q) = 0 for every point Q such that P ∼ Q. It then makes
sense to consider the zeros of f as elements of Pn. And if we wish to consider more than one
polynomial, then we can look for the points which are simultaneously zeros of all of them. This

motivates the following definitions.

Definition 3.7 An ideal of K [X0, . . . ,Xn] is called an homogeneous ideal if it can be generated

by homogeneous polynomials.

Definition 3.8 To each subset Y of Pn, we associate the ideal I (Y) ⊆ K [X0, . . . ,Xn] gener-
ated by the set©

f ∈ K [X0, . . . ,Xn] |f is homogeneous and f (P) = 0 for all P ∈ Y
ª
.

I (Y) is simply called the homogeneous ideal of Y in K [X0, . . . ,Xn].

Conversely, we can also associate a subset of Pn to any set of homogeneous polynomials:

46 CHAPTER 3. ALGEBRAIC CURVES

Definition 3.9 Let T ⊆ K [X0, . . . ,Xn] be a set of homogeneous polynomials. Then the set

Z(T) = {P ∈ Pn| f(P) = 0 for all f ∈ T} .

is called the zero set of T .

Intuitively, we are interested in solutions of one or more polynomial equations. Thus, we

wish to look at the subsets of Pn which coincides with zero sets.

Definition 3.10 A subset Y of Pn is called an algebraic set (or a projective algebraic set) if
there is a set T ⊆ K [X0, . . . ,Xn] of homogeneous polynomials such that Y = Z(T).

Definition 3.11 A projective algebraic set is said to be defined over K if its homogeneous ideal

can be generated by homogeneous polynomials in K [X0, . . . ,Xn].

Definition 3.12 Let V be a projective algebraic set defined over K. The set V (K) = V ∩Pn (K)
is called the set of K-rational points of V .

The algebraic sets turn out to have the properties of closed sets. For more information on

the proof, we refer to [Har77, Proposition I.1.1].

Lemma 3.13 The empty set and the whole space are algebraic sets. The union of a finite

number of algebraic sets is an algebraic set. The intersection of any family of algebraic sets is

an algebraic set.

We therefore have a topology on Pn:

Definition 3.14 A subset of Pn is said to be open if its complement is an algebraic set. The
topology determined by these open sets is called the Zarisky topology on Pn.

Remark that all the singletons of Pn are closed sets. Indeed, let P = [x0 : . . . : xn] ∈ Pn be
given, say with xk 6= 0. Then it suffices to consider the following homogeneous polynomials:

f0 (X0, . . . ,Xn) = xkX0 − x0Xk
f1 (X0, . . . ,Xn) = xkX1 − x1Xk

...

fn (X0, . . . ,Xn) = xkXn − xnXk.

3.1. THE ZARISKI TOPOLOGY 47

Let T = {f0, f1, . . . , fn} and notice that P ∈ Z(T). Conversely, let P 0 = [x00 : . . . : x0n] ∈ Z(T)
be given. Then x0k 6= 0 since otherwise, x00 = x01 = . . . = x0n = 0 (which is forbidden in the

projective space). It then follows that

x00 =
x0k
xk
· x0, x01 =

x0k
xk
· x1, . . . , x0n =

x0k
xk
· xn.

Thus, P 0 = P (as equivalence classes) and we conclude that Z(T) = {P}. Notice that it also
follows by Lemma 3.13 that any finite subset of Pn is closed as well.
Moreover, Pn equipped with the Zarisky topology fulfills the T1 separation axiom2: given

two distinct points P1 and P2, there are open sets U1 and U2 such that P1 ∈ U1 but P2 /∈ U1,
and P2 ∈ U2 but P1 /∈ U2. Indeed, simply let U1 = Pn \{P2} and U2 = Pn \{P1} .
We only need a few more recalls from topology before we can introduce projective varieties.

Definition 3.15 Let X be a topological space and Y be a subset of X. Then a subset of X is

said to be closed in Y if it is the intersection of Y with a closed set of X.

Definition 3.16 A nonempty subset Y of a topological space X is said to be irreducible if it

cannot be written as a union Y = Y1 ∪ Y2, where Y1 and Y2 are proper subsets closed in Y .

Notice that this definition implies that the empty set is not considered to be irreducible.

Definition 3.17 Let X be a topological space with topology T . If Y is a subset of X, the

collection

TY = {Y ∩ U |U ∈ T }

is a topology on Y , called the induced topology (or the subspace topology).

Definition 3.18 An irreducible algebraic set of Pn, with the induced topology, is called a pro-
jective variety or a projective algebraic variety.

Definition 3.19 The dimension of a topological space X is the supremum of all integers d

such that there exists a chain

Z0 $ Z1 $. . . $ Zd

of closed irreducible subsets of X.

Definition 3.20 The dimension of a projective variety is its dimension as a topological space.

2However, Pn with the Zariski topology is not Hausdorff (T2). Recall that a topological space is Hausdorff if
given any two distinct points P1 and P2, there are disjoint open sets U1 and U2 such that P1 ∈ U1 and P2 ∈ U2.
See [Ful69, p.133].

48 CHAPTER 3. ALGEBRAIC CURVES

And finally:

Definition 3.21 An algebraic curve (or simply a curve) is a projective variety of dimension

one.

Thus, the only closed irreducible subsets of a curve must be points.

Remark 3.22 For us, a curve will always be projective and irreducible.

If the polynomial is reducible, say f = gh, then f = 0 as soon as g = 0 or h = 0. Thus, a

necessary condition to have an irreducible set is that the polynomial itself be irreducible. More

precisely, we have the following very useful result:

Proposition 3.23 A projective variety of Pn has dimension n− 1 if and only if it is the zero
set of a single irreducible homogeneous polynomial of positive degree.

Example 3.24 The variety L ⊆ P2 defined by

L : aX + bY + cZ = 0

has dimension one if and only if at least one of a, b or c is nonzero.

Definition 3.25 A line in P2 is an algebraic set given by a linear equation aX+ bY + cZ = 0,
with a, b, c ∈ K not all zero.

We now continue the Magma example started earlier. This time, we learn how to define an

algebraic curve.

Example 3.26 In this example, we play with homogeneous polynomials and basic curves.

> K:=GF(11);
> P2<X,Y,Z>:=ProjectiveSpace(K,2);
> Dimension(P2);
2
> P:=P2![1,9,4];
> f1:=X+2*Y+5*Z;
> Evaluate(f1,P);
7
> IsHomogeneous(P2,f1);
true
> L1 := Curve(P2,f1);
> L1;

3.1. THE ZARISKI TOPOLOGY 49

Curve over GF(11) defined by
X + 2*Y + 5*Z
> IsProjective(L1);
true
> IsIrreducible(L1);
true
> Dimension(L1);
1
> R:=P2![0,3,1];
> R in L1;
true (0 : 3 : 1)
> Points(L1); // Notice that L1 contains 11+1 points in P2(K)
{@ (6 : 0 : 1), (4 : 1 : 1), (2 : 2 : 1), (0 : 3 : 1),

(9 : 4 : 1), (7 : 5 : 1), (5 : 6 : 1), (3 : 7 : 1),
(1 : 8 : 1), (10: 9 : 1), (8 : 10: 1), (9 : 1 : 0) @}

> f2:=6*X+Y+6*Z;
> L2 := Curve(P2,f2);
> V:=Intersection(L1,L2);
> Points(V); // The parallel lines L1 and L2 intersect at infinity!
{@ (9 : 1 : 0) @}

Straight lines are the most basic examples of algebraic curves. Nonetheless, they play a

central role in many nontrivial situations. Indeed, we will see in this chapter how the group law

on Pell equation and on elliptic curves can be described geometrically in terms of lines. We will

also see how useful they are when we work with divisors in Section 3.3. Finally, they will also

be at the heart of the explicit group law for the generalized Jacobians we consider in Chapter

5. So let’s just say that while progressing through this work, chances are that lines in P2 will
become our new best friends.

Before we go any further, there is another family of curves that we wish to introduce: the

lemniscates of Bernoulli. Surprisingly enough, they are at the origin of the study of elliptic

curves. Indeed, from the treatment given by Michael Rosen in [Ros81], we see that the in-

trinsinc and fascinating connection with elliptic curves involves some of the greatest names in

mathematics history.

A lemniscate is defined as the locus of points such that the product of the distances to two

foci F1 and F2 is a constant c, the classical example being F1 =
¡
−
√
2
±
2, 0
¢
, F2 =

¡√
2
±
2, 0
¢

and c = 1/2. This lemniscate is depicted over the reals in Figure 3.1.

The lemniscate has been introduced in 1680 by the French astronomer Giovanni Dominico

50 CHAPTER 3. ALGEBRAIC CURVES

Figure 3.1: Lemniscate of Jakob Bernoulli over the real numbers

Cassini in order to illustrate the movement of the earth relative to the sun3. Some fifteen

years later, Jakob Bernoulli independently studied various properties of this curve, and named

it ‘lemniscus’, the Latin for ‘suspended ribbon’.

Abel, Gauss, Euler and many more... Great mathematicians who all contributed to better

understand the various properties of the lemniscate. In particular, their work on its arc lenght

ultimately led to the study of elliptic curves.

To conclude this section, we briefly look at maps between projective varieties. This will

allow us to formally define the concept of isomorphic varieties (to say the least). But before we

do so, we recall the notion of a function field. So let V , W ⊆ Pn be projective varieties and
K (X0, . . . ,Xn) denote the quotient field of K [X0, . . . ,Xn] [Hun74, p.144].

Definition 3.27 The function field of V , denoted K (V), is the field whose elements are ra-

tional functions f /g , where f , g ∈ K [X0, . . . ,Xn] are homogeneous polynomials of the same
degree such that g (P) 6= 0 for at least one P ∈ V . Two such functions f1 /g1 and f2 /g2 will be
identified4 if f1 (P) · g2 (P) = f2 (P) · g1 (P) for every P ∈ V .

Definition 3.28 A map ϕ : V → W is said to be rational if there are f0, . . . fn ∈ K (V)
satisfying:

For every P ∈ V , ϕ (P) = [f0(P) : . . . : fn(P)] ∈W as soon as all fi are defined at P .

In this case, we adopt the notation ϕ = [f0, . . . , fn].

3 Incidentally, NASA has named Cassini its pilotless spaceship targeted at Saturn. More details can be found
at http://saturn.jpl.nasa.gov/home/index.cfm.

4That is, considered equal in K (V).

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 51

Definition 3.29 A rational map ϕ = [f0, . . . , fn] from V to W is said to be defined (or

regular) at P ∈ V if there is an f ∈ K (V) such that f · f0 (P) , . . . , f · fn (P) are defined but
not all zero at P .

Definition 3.30 A morphism is a rational map ϕ : V →W that is defined at every P ∈ V .

Definition 3.31 The projective varieties V and W are said to be isomorphic if there are

morphisms ϕ : V → W and ψ : W → V such that ψ ◦ ϕ and ϕ ◦ ψ are the identity maps (on

V and W respectively). In this case, we write V ' W and say that ϕ is an isomorphism (of

projective varieties).

3.2 Plane Curves and Cryptography: A Sneak Peek

Now that we have formally defined what an algebraic curve is, we can without further waiting

jump right away and try give a flavor of why they are so useful in cryptography. This section is

therefore just a glimpse into the cryptographic applications of algebraic curves. It also provides

examples and motivation to keep in mind for the theory of divisors that will come next.

We follow an approach by examples and we will try as much as possible to do things ex-

plicitely, sometimes even including small Magma examples. We chose to touch upon three

examples: Pell equation, elliptic curves and hyperelliptic curves. These families of curves will

hopefully highlight the various challenges one faces in curve-based cryptography.

Throughout this section, C will denote a plane curve.

Definition 3.32 An algebraic curve C in P2 is called a (projective) plane curve if it is the set
of solutions in P2 to f(X,Y,Z) = 0, where f is a nonconstant homogeneous polynomial.

Two other concepts are to be introduced at this point. Notice that they are not presented

in the greater generality since we will only need to use them in the context of plane curves.

Definition 3.33 A point P = [x : y : z] ∈ P2 with z = 0 is said to be a point at infinity.

Next we introduce the notion of a singularity.

Definition 3.34 A point P = [x : y : z] ∈ C is said to be singular if the partial derivatives fX ,
fY and fZ all vanishes at P :

∂f

∂X
(P) =

∂f

∂Y
(P) =

∂f

∂Z
(P) = 0.

Otherwise, P is called a smooth (or nonsingular) point of C. The curve C is said to be smooth

(or nonsingular) if all the points P ∈ C are smooth.

52 CHAPTER 3. ALGEBRAIC CURVES

Remark 3.35 This intuitive notion of smoothness of a point on a curve in P2 we just consid-
ered can in fact be extended and formalized for an arbitrary variety V , in terms of the local ring

of P on V (that is, the ring of germs of regular functions on V near P) [Har77, p. 16, 32]. We

shall however only need the above definition in the sequel.

Example 3.36 Consider the lemniscate C ⊆ P2 defined by

f (X,Y,Z) =
¡
X2 + Y 2

¢2 − ¡X2 − Y 2
¢
Z2,

whose graph over the reals ressembles the symbol at infinity ‘∞’, as shown in Figure 3.1.
Say we are working over a field K such that Char(K) 6= 2. A point P = [XP : YP : ZP] ∈ C

will be singular if and only if

∂f

∂X
(P) = 2XP

¡
2
¡
X2
P + Y

2
P

¢
− Z2P

¢
= 0,

∂f

∂Y
(P) = 2YP

¡
2
¡
X2
P + Y

2
P

¢
+ Z2P

¢
= 0, and

∂f

∂Z
(P) = −2ZP

¡
X2
P − Y 2P

¢
= 0.

If ZP = 0, then the equation f (XP , YP , ZP) = 0 implies that X2
P + Y

2
P = 0. Hence,

P = [XP : YP : 0] is singular iff X2
P + Y

2
P = 0.

If ZP 6= 0, then we get from the third equation that X2
P − Y 2P = 0. So since we must have

f (XP , YP , ZP) = 0, it follows that X2
P + Y

2
P = 0 as well. Thus, XP = 0 and we get that

P = [0 : 0 : 1] is the only singular point with ZP 6= 0. Let’s now see how this can also be done
using Magma.

> K:=GF(13);
> P2<X,Y,Z>:=ProjectiveSpace(K,2);
> f:=(X^2+Y^2)^2-(X^2-Y^2)*Z^2;
> Lemniscate := Curve(P2,f);
> IsIrreducible(Lemniscate);
true

> Dimension(Lemniscate);
1

> Points(Lemniscate);
{@ (0 : 0 : 1), (1 : 0 : 1), (12: 0 : 1), (0 : 5 : 1),

(4 : 5 : 1), (9 : 5 : 1), (1 : 6 : 1), (12: 6 : 1),
(1 : 7 : 1), (12: 7 : 1), (0 : 8 : 1), (4 : 8 : 1),
(9 : 8 : 1), (5 : 1 : 0), (8 : 1 : 0) @}

> IsSingular(Lemniscate);

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 53

true
> P:=P2![1,0,1];
> IsSingular(Lemniscate,P);
false

> TangentLine(Lemniscate,P);
Curve over GF(13) defined by X + 12*Z

> S:=P2![0,0,1];
> S in Lemniscate;
true (0 : 0 : 1)

> IsSingular(Lemniscate,S);
true

> IsCusp(Lemniscate,S);
false

> IsNode(Lemniscate,S);
true

> TangentLine(Lemniscate,S);
>> TangentLine(Lemniscate,S);

^
Runtime error in ’TangentLine’: Argument 2 must be nonsingular point
of argument 1

> L1:=Curve(P2,X-Y);
> L2:=Curve(P2,X+Y);
> IsTangent(Lemniscate,L1,S);
true

> IsTangent(Lemniscate,L2,S);
true

> SingularPoints(Lemniscate);
{@ (0 : 0 : 1), (5 : 1 : 0), (8 : 1 : 0) @}

> IsNode(Lemniscate,P2![5,1,0]);
true

> IsNode(Lemniscate,P2![8,1,0]);
true

The lemniscate thus has a singularity at [0 : 0 : 1]. For obvious reasons, this type of singularity

is called a node. Remark that there are two distinct tangent lines at the origin and that in our

example, the two points at infinity were also singular points.

Remark 3.37 There are various types of singularities of plane curves, like nodes, cusps, triple

point or tacnode. See [Har77, Figure 4, p.36] for details.

3.2.1 Pell Equation: A Case Study for Torus-based Cryptography

It is now time to study concrete curves with cryptographic applications in mind. The Pell

equation has the tremendous advantage of being simple enough to be fully and concisely treated

54 CHAPTER 3. ALGEBRAIC CURVES

from first principles. It also makes the perfect example of how one shows that a particular group

is relevant for cryptographic purposes. And most importantly, the Pell equation naturally leads

to the study of algebraic tori.

The Pell equation over a field K is of the form

x2 −Dy2 = 1,

where D ∈ K is not a square. The associated curve C, the so-called Pell conic, is thus a

hyperbola with asymptotes

y = ± x√
D
.

Figure 3.2 illustrates the Pell conic over the real numbers.

Figure 3.2: Pell conic over the real numbers

From a historical point of view, Pell equation certainly is one of the most broadly spread

mathematical misunderstandings. Indeed, Pell himself had little to do with “his equation”: the

confusion comes from the fact that Euler falsely attributed to Pell a method that had actually

been found by another English mathematician, William Brouncker, in response to a challenge

from Fermat. Besides, Brouncker’s method itself might be considered as a re-discovery, since

it is now known that Indians mathematicians of the 10th century A.D. (such as Jayadeva) had

already developped such methods5. For a detailed historical approach to Pell Equation, see

[Len02].

5Actually, one can find traces of such equations back to Ancient Greek, as seen in The Cattle Problem, a
mathematical problem posed in the form of a poem commonly attributed to Archimedes. It is however not
known whether they knew how to resolve these problems.

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 55

Now that we know a little about the history of these curves, we can officially start our

cryptographic explorations. The first remark in order is that the projective equationX2−DY 2 =
Z2 associated to the Pell equation does not contain any point of the form P = [x : y : z] ∈ P2 (K)
with z = 0. Indeed, x2 −Dy2 = z2 yields the equation x2 = Dy2. If y = 0, then x = y = z = 0,
which violates the fact that at least one coordinate must be nonzero. If y 6= 0, then D = (x/y)2,

which is also impossible since D is not a square. For this reason, we will here sometimes work

directly with the equation x2 −Dy2 = 1.
Before we describe the geometric group law on this conic, we present a tinyMagma example.

Example 3.38 Consider the Pell conic C defined by the equation

x2 − 5y2 = 1

over F13. Using exhaustive search, we readily get that the points of C (F13) are

(1, 0) (4, 4) (3, 5) (5, 6) (5, 7) (3, 8) (4, 9)
(12, 0) (9, 4) (10, 5) (8, 6) (8, 7) (10, 8) (9, 9)

We now quickly show how one can also obtain these results using Magma.

> K:=GF(13);
> P2<X,Y,Z>:=ProjectiveSpace(K,2);
> D:=5;
> f:=X^2-D*Y^2-Z^2;
> Pell:= Conic(P2,f);
> IsIrreducible(Pell);
true

> Dimension(Pell);
1

> Points(Pell);
{@ (1 : 0 : 1), (12: 0 : 1), (4 : 4 : 1), (9 : 4 : 1),

(3 : 5 : 1), (10: 5 : 1), (5 : 6 : 1), (8 : 6 : 1),
(5 : 7 : 1), (8 : 7 : 1), (3 : 8 : 1), (10: 8 : 1),
(4 : 9 : 1), (9 : 9 : 1) @}

The Geometric Group Law

In this section, we will follow the advice of Silverman and Tate as we will try to first think

geometrically and then to prove algebraically. We begin by introducing the somehow forgotten

chord-and-tangent rule on the Pell conic, which is depicted in Figure 3.3. A good account on

this topic can also be found in Higher descent on Pell conics III: The first 2-descent [Lem03].

56 CHAPTER 3. ALGEBRAIC CURVES

Figure 3.3: Chord-and-tangent rule on Pell conic

Let P = (x1, y1) and Q = (x2, y2) be two points of C (K) and denote by `P,Q the line passing

through P and Q if P 6= Q, and tangent to the curve at P if P = Q. The identity element of

this group law will be the point O = (1, 0). Next consider the parallel line `0 = `P+Q,O to `P,Q
that passes through O = (1, 0). As we will see, this line intersects C at precisely6 one other

point R. Finally, let P +Q = R.

Let’s now compute the coordinates of R, and we of course begin with the easy cases. First,

we can verify that P +O = P and O+Q = Q, and so we can now assume that P , Q 6= O. Also,
if x1 = x2 and y1 = −y2, then `P,Q is a vertical line, from which follows that P +Q = O.
Otherwise, the equation of the line `P,Q passing through P and Q is

y =mx+ b,

where

m =

⎧⎪⎪⎨⎪⎪⎩
y2 − y1
x2 − x1

if x1 6= x2,

x1
Dy1

if P = Q and y1 6= 0.

Remark that one way of obtaining this value of m when P = Q and y1 6= 0 is to use implicit
differentiation of x2 −Dy2 = 1. Also notice that m ∈ K as soon as P , Q ∈ C (K).
By construction, the first point of intersection of `0 with the hyperbola is O = (1, 0). Now,

the equation of `0 is given by y = m (x− 1), and so we are looking for a point R = (x3, y3)

satisfying

x23 −Dy23 = 1 and y3 =m (x3 − 1) .
6Counting multiplicities.

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 57

Thus,

1 = x23 −Dy23 = x23 −Dm2 (x3 − 1)2 = x23 −Dm2(x23 − 2x3 + 1),

and so

(1−Dm2)x23 + 2Dm
2x3 −Dm2 − 1 = 0. (3.1)

But we already know that 1 is a solution of (3.1) since O = (1, 0) is a point of intersection of C
with `0. Indeed,

(1−Dm2)x23 + 2Dm
2x3 −Dm2 − 1 = (x3 − 1)

¡¡
1−Dm2

¢
x3 +Dm

2 + 1
¢
.

In addition, we have 1−Dm2 6= 0 (since otherwise, Dm2 = 1 with m 6= 0, and so D = (1/m)
2,

a contradiction). Thus,

x3 = −
Dm2 + 1

1−Dm2
=
Dm2 + 1

Dm2 − 1
and

y3 =m (x3 − 1) =m
µ
Dm2 + 1

Dm2 − 1 − 1
¶
=

2m

Dm2 − 1 .

Finally,

R =

µ
Dm2 + 1

Dm2 − 1 ,
2m

Dm2 − 1

¶
,

and we indeed have R ∈ C (K).

Example 3.39 We return to the previous example. The multiples of P = (3, 5) are shown in

the following table.

P = (3, 5) 6P = (10, 5) 11P = (8, 7)
2P = (4, 4) 7P = (12, 0) 12P = (4, 9)
3P = (8, 6) 8P = (10, 8) 13P = (3, 8)
4P = (5, 6) 9P = (9, 9) 14P = (1, 0)
5P = (9, 4) 10P = (5, 7)

Hence, C (F13) is a cyclic group of order 14 = 13 + 1; we will see in the next section that

this principle always apply.

Let’s now see how that could be computed with Magma. Since the beginning of our series of

examples, we used Magma on a command mode. Fortunately, Magma also allows us to run a

program previously typed in any text editor, as illustrated in the following example.

K:=GF(13);
P2<X,Y,Z>:=ProjectiveSpace(K,2);
D:=5;
f:=X^2-D*Y^2-Z^2;

58 CHAPTER 3. ALGEBRAIC CURVES

Pell:= Conic(P2,f);
O:=P2![1,0,1]; // Identity element
P:=P2![3,5,1]; // Chosen Base Point
Inverse := func< P | P2![P[1],-P[2],P[3]] >; // Computes -P
print ‘‘-P =’’,Inverse(P);
Add:=function(P,Q) // Computes P+Q

if (P[1] ne Q[1]) then m:=(P[2]-Q[2])/(P[1]-Q[1]);
elif (P[2] eq -Q[2]) then return O; // Case P =-Q
else m:= P[1]/(D*P[2]); // Case P = Q and P+Q != O

end if;
Z3:= D*m^2-1; // To store numerators and denominators separately

// to avoid inversions
X3:= Z3+2; // To save computations since X3:= D*m^2+1
Y3:= 2*m;
return P2![X3,Y3,Z3];

end function;
n:=0;
Q:=P;
repeat // Loop that prints the multiples of P until O is encountered

n:=n+1;
print n,‘‘ * P =’’,Q;
Q:=Add(P,Q);

until Q eq P; // The last entry printed is Ord(P) * P = (1 : 0 : 1)
print ‘‘Ord(P) =’’,n;
Subtract := func< P,Q | Add(P,Inverse(Q)) >; //Computes P-Q
print ‘‘((P+P)+P)-P =’’, Subtract(Add(Add(P,P),P),P);

Take note that once a ‘return’ is encountered, the last part of the function is not evaluated.

We obtain the following output when the above program is run.

> load ‘‘C:/MAGMA/Pell.mag’’;
Loading ‘‘C:/MAGMA/Pell.mag’’
-P = (3 : 8 : 1)
1 * P = (3 : 5 : 1)
2 * P = (4 : 4 : 1)
3 * P = (8 : 6 : 1)
4 * P = (5 : 6 : 1)
5 * P = (9 : 4 : 1)
6 * P = (10 : 5 : 1)
7 * P = (12 : 0 : 1)
8 * P = (10 : 8 : 1)
9 * P = (9 : 9 : 1)
10 * P = (5 : 7 : 1)
11 * P = (8 : 7 : 1)

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 59

12 * P = (4 : 9 : 1)
13 * P = (3 : 8 : 1)
14 * P = (1 : 0 : 1)
Ord(P) = 14
((P+P)+P)-P = (4 : 4 : 1)

Lastly, notice that our program could have also included interactive inputs in order to change

the basepoint P at will.

Everyone who is familiar with the chord-and-tangent rule on an elliptic curve will have

noticed the similarities between these two geometric group laws. However, in the case of Pell

equation, the formulæ can be greatly simplified7.

Indeed, first remark that if P = Q and y1 6= 0, then

Dm2 ± 1 = D · x21
D2y21

± 1 = x21
Dy21

± 1 = x21 ±Dy21
Dy21

.

Hence,

x3 =
Dm2 + 1

Dm2 − 1 =
x21 +Dy

2
1

x21 −Dy21
=
x21 +Dy

2
1

1
= x21 +Dy

2
1 = x1x2 +Dy1y2

and

y3 = m (x3 − 1) =m
¡
x21 +Dy

2
1 − 1

¢
=m

¡
x21 +Dy

2
1 − (x21 −Dy21)

¢
= 2mDy21 = 2

x1
Dy1

Dy21 = 2x1y1 = x1y2 + x2y1.

Thus,

R = (x1x2 +Dy1y2, x1y2 + x2y1) as soon as P = Q and y1 6= 0.

Moreover, if P = O = (1, 0), then

R = O +Q = Q = (x2, y2) = (x1x2 +Dy1y2, x1y2 + x2y1)

as well and by symmetry, it also holds for the case Q = O. That’s not all. If x1 = x2 and

y1 = −y2, then

R = O = (1, 0) =
¡
x21 −Dy21, x1y2 − x1y2

¢
= (x1x2 +Dy1y2, x1y2 + x2y1) .

In order to show that R always equals (x1x2 +Dy1y2, x1y2 + x2y1), it only remains to treat

the case where P , Q 6= O, P 6= Q and x1 6= x2. First, subtracting x22 − Dy22 = 1 from

7The original motivation was to find points with integer coordinates, and not merely with rational coordinates.
For more details, see [Lem03].

60 CHAPTER 3. ALGEBRAIC CURVES

x21 − Dy21 = 1 yields x21 − x22 + D
¡
y22 − y21

¢
= 0. That is, D

¡
y22 − y21

¢
= x22 − x21. Thus,

D (y2 − y1) (y2 + y1) = (x2 − x1) (x2 + x1). Two cases then arise: y2 + y1 = 0 and y2 + y1 6= 0.
If y2 + y1 = 0, then (x2 − x1) (x2 + x1) = 0 with x1 6= x2. Thus, x2 + x1 = 0 and so

P = (−x2,−y2). It then follows that m = y1/x1 and

x3 =
Dm2 + 1

Dm2 − 1 =
¡
Dy21 + x

2
1

¢±
x21

(Dy21 − x21)/x21
=
2x21 − 1
−1 = 1− 2x21 = −x21 −Dy21 = x1x2 +Dy1y2

and

y3 =m (x3 − 1) =
y1
x1

¡
1− 2x21 − 1

¢
= −2x1y1 = x1y2 + x2y1,

which shows that R = (x1x2 +Dy1y2, x1y2 + x2y1) in this case as well.

If y2 + y1 6= 0, then D (y2 − y1) (y2 + y1) = (x2 − x1) (x2 + x1) implies that

Dm = D · y2 − y1
x2 − x1

=
x2 + x1
y2 + y1

and

Dm2 ± 1 = (x1 + x2) (y2 − y1)
(y1 + y2) (x2 − x1)

± 1 = (x1 + x2) (y2 − y1)± (x2 − x1) (y1 + y2)
(x2 − x1) (y1 + y2)

.

Therefore,

x3 =
Dm2 + 1

Dm2 − 1 =
(x1 + x2) (y2 − y1) + (x2 − x1) (y1 + y2)
(x1 + x2) (y2 − y1)− (x2 − x1) (y1 + y2)

.

The numerator of this last expression can be rewritten as

(x1 + x2) (y2 − y1) + (x2 − x1) (y1 + y2) = 2 (x2y2 − x1y1) ,

while the denominator can be expressed as

(x1 + x2) (y2 − y1)− (x2 − x1) (y1 + y2) = 2 (x1y2 − x2y1) .

As a result,

x3 =
x2y2 − x1y1
x1y2 − x2y1

.

Now, notice that

(x1x2 +Dy1y2) (x1y2 − x2y1) = x21x2y2 − x22x1y1 +Dy22 · x1y1 −Dy21 · x2y2
= x21x2y2 − x22x1y1 +

¡
x22 − 1

¢
x1y1 −

¡
x21 − 1

¢
x2y2

= x21x2y2 − x22x1y1 − x1y1 + x2y2 − x21x2y2 + x22x1y1
= x2y2 − x1y1.

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 61

Finally, this implies that

x3 =
x2y2 − x1y1
x1y2 − x2y1

=
(x1x2 +Dy1y2) (x1y2 − x2y1)

x1y2 − x2y1
= x1x2 +Dy1y2.

On the other hand,

y3 =m(x3 − 1) =
(y2 − y1) (x1x2 +Dy1y2 − 1)

x2 − x1
.

In order to simplify this last expression, we can rewrite its numerator as follows:

(y2 − y1) (x1x2 +Dy1y2 − 1) = x1x2y2 + y1 ·Dy22 − y2 − x1x2y1 − y2 ·Dy21 + y1
= x1x2y2 + y1

¡
x22 − 1

¢
− y2 − x1x2y1 − y2

¡
x21 − 1

¢
+ y1

= x1x2y2 + x
2
2y1 − y1 − y2 − x1x2y1 − x21y2 + y2 + y1

= x2 (x1y2 + x2y1)− x1 (x1y2 + x2y1)

= (x2 − x1) (x1y2 + x2y1) .

And we get that

y3 =
(y2 − y1) (x1x2 +Dy1y2 − 1)

x2 − x1
=
(x2 − x1) (x1y2 + x2y1)

x2 − x1
= x1y2 + x2y1.

We can then at last conclude that R = (x1x2 +Dy1y2, x1y2 + x2y1).

We have therefore shown, using only simple (but tedious!) algebraic manipulations, that we

always have

P +Q = (x1x2 +Dy1y2, x1y2 + x2y1) .

Using this compact expression, it is now a simple matter to show that the chord-and-tangent

rule on the Pell conic indeed defines a group law.

Lemma 3.40 Let K be a field and C be the Pell conic

x2 −Dy2 = 1,

where D ∈ K is not a square. Then, C (K) with the chord-and-tangent rule as binary operation

is an abelian group with identity O = (1, 0). This group operation can be performed as follows.
Let P = (x1, y1) and Q = (x2, y2) in C (K) be given. Then,

P +Q = (x1x2 +Dy1y2, x1y2 + x2y1) and − P = (x1,−y1) .

The cost of computing this group law is then four general multiplications in K, plus a

multiplication by a constant (which will be abbreviated by 4M+C).

Remark 3.41 Notice that there is no longer a large difference between addition and doubling

with the simplified formulæ; such “unified formulæ” present interesting cryptographic properties,

notably because they contribute to protect against side-channel attacks.

62 CHAPTER 3. ALGEBRAIC CURVES

Group Order

Now that we know that C (Fq) is a group, the next step is to determine its cardinality. Even
without knowing it, we have parametrized the points on the curve. The natural way to proceed

is thus to use the parametrization we first obtained with the chord-and-tangent rule. Indeed, we

can do a projection of this conic on the y-axis, as illustrated in Figure 3.4 over the reals (notice

that 1/
√
D /∈ Q).

Figure 3.4: Projection of the Pell conic on the y-axis

So let P = (x, y) ∈ C (Fq) be a point different from O = (1, 0). If we simply apply the

original addition formula that we obtained, we have that

P +O = P , and thus that (x, y) =
µ
Dm2 + 1

Dm2 − 1 ,
2m

Dm2 − 1

¶
,

where m is the slope of the straight line `P,O passing through P and O. So for each m ∈ Fq, we
can associate a point of C (Fq), and conversely, P = (x, y) ∈ C (Fq)\ {O} implies that m ∈ Fq
since

m =

(
0 if P = (−1, 0) ,
y

x− 1 if x 6= 1.

We thus have a mapping

ϕ : C (Fq) −→ P1 (Fq)

P = (x, y) 7−→
½
[1 : 0] if P = O
[y : x− 1] otherwise.

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 63

which can be seen to be a projection of the Pell conic on the y-axis8 . It is a routine exercise to

verify that ϕ is a well-defined bijection of sets with inverse

ψ : P1 (Fq) −→ C (Fq)

[m : 1] 7−→
µ
Dm2 + 1

Dm2 − 1 ,
2m

Dm2 − 1

¶
[1 : 0] 7−→ (1, 0)

Thus, #C (Fq) = q + 1. Moreover, notice that both ϕ and ψ can be computed efficiently. So if

Alice wants to send a point P on this curve to Bob, then she can do so by simply sending an

element of Fq ∪ {∞} instead of transmitting the pair (x, y) ∈ Fq × Fq.

Alice Bob

Compress P by computing P 0 = ϕ (P)
P 0
−→ Recover P by evaluating ψ (P 0)

It is true that in this case we don’t save that much since Alice could have sent x together

with one bit to specify which square root Bob should take for y. However, this idea can be

generalized and applied to subgroups of Fp6 for which elements can be represented using only
two elements of Fp instead of six: this is the cryptosystem CEILIDH. This idea of reducing the

amount of information that needs to be exchanged is the main selling feature of torus-based

cryptography.

Group Structure

Now that we know that we are working with a group of order q + 1, we may wonder what its

group structure is. To do so, the easiest way is to exploit the fact that the simplified group law

we obtained seems quite familiar. Indeed, since D is not a square, then
√
D /∈ Fq. Thus, the

polynomial f (x) = x2−D =
³
x−
√
D
´³
x+
√
D
´
is irreducible over Fq. As a result, we know

that (see [Hun74, Theorem V.1.6])

Fq
³√
D
´
∼= Fq [x]/ (f) ∼= Fq2 .

So given x1 + y1
√
D, x2 + y2

√
D ∈ Fq

³√
D
´
, we have

³
x1 + y1

√
D
´³
x2 + y2

√
D
´
= (x1x2 +Dy1y2) + (x1y2 + x2y1)

√
D,

8This is in fact the same idea as the parametrization of the circle. See [ST92, Section I.1].

64 CHAPTER 3. ALGEBRAIC CURVES

which coincides with the group law for Pell equation obtained in Lemma 3.40 . We therefore

have the following one-to-one group homomorphism

ϕ : C (Fq) −→ F∗q2
P = (x1, y1) 7−→ x1 + y1

√
D.

Thus, C (Fq) is isomorphic to a subgroup of F∗q2 of order q+1. But F
∗
q2 is a cyclic group of order

q2 − 1 = (q − 1) (q + 1), and therefore contains a unique9 subgroup of order q + 1, namely¿³
x0 + y0

√
D
´q−1À

,

where x0 + y0
√
D is a generator of F∗q2 . There is therefore a natural way to view the Fq-points

on Pell conic as a subgroup of F∗q2 . So we know that C (Fq) always
10 is a cyclic group of order

q + 1.

This is where it becomes truly interesting: this subgroup of F∗q2 in fact coincides
11 with the

1-dimensional algebraic torus T2 (Fq) used by Rubin and Silverberg as one of the two explicit
cryptosystems described in their CRYPTO 2003 paper12 [RS03]. More generally, we have that

the ϕ (n)-dimensional torus Tn (Fq) can be identified with the unique cyclic subgroup of F∗qn
containing Φn (q) elements, where ϕ is the Euler function and Φn is the n-th cyclotomic poly-

nomial [RS03, Lemma 7]. In certain cases (e.g. if n ≥ 2 is divisible by at most two primes), the
existence of a rational parametrization allows to compactly represent the elements of Tn (Fq)
using only ϕ (n) elements of Fq (instead of n).

The Discrete Logarithm Problem

A cucial question that we have not yet addressed is the overall difficulty of the discrete logarithm

problem in C (Fq). Without a doubt, we should approach this problem by thinking of C (Fq)
as ‘a subgroup of F∗q2 ’ since the discrete logarithm problem in finite fields has been intensively

studied since the birth of public-key cryptography. The first (and obvious) remark in order is

that any algorithm that can extract DLPs in all of F∗q2 , index-calculus for instance, can also be
used to solve DLPs in C (Fq). Nevertheless, it is still possible that DLPs in C (Fq) be faster to
solve than in F∗q2 . From a cryptanalysis point of view, the two main differences between C (Fq)
and F∗q2 are their sizes (#C (Fq) being roughly the squareroot of #F

∗
q2) and the fact that any

element of C (Fq) can be easily and compactly represented using only one element of Fq ∪ {∞}.
9Recall that if G is a cyclic group of order n and k | n, then G has exactly one subgroup of order k [Hun74,

Ex 6, p.37].
10 In comparison, there are many possible scenarios with elliptic curves, as we will see in the next section.
11 I want to thank Alfred Menezes for pointing this out to me.
12Even if they never mentionned Pell equation in the paper!

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 65

The first index-calculus algorithm13 especially targeted at algebraic tori was presented at

CRYPTO 2005 [GV05]: Robert Granger14 and Frederik Vercauteren had the idea of exploiting

the compact representation of the elements in Tn (Fq) to carefully choose a new factor base (also
called a decomposition base in that context) that would speed up the attack. Here is how they

describe their algorithm:

“[It] exploits the compact representation of elements of rational tori.

The very existence of such an algorithm shows that the lower communication

cost offered by these tori, may also be exploited by the cryptanalyst.”

Section 4 of the paper is devoted to explicitly describe the attack on T2 (Fqm) when q is an
odd prime power. The complexity analysis and implementation of the algorithm reveal that it

is already faster than Pollard’s Rho method (see Section 2.7.1) as soon as m ≥ 5. It therefore
does not yet represent a practical threat for T2 (Fp) when p > 2 is prime.

However, at the moment these lines were written down, Granger and Vercauteren were testing

the algorithm using a prototype implemetation inMagma. The running times they obtained

should then only be considered as upper bounds of what will actually be achieved with an

optimized code. Further developments are thus soon to be expected...

To sum up, we have shown in this section that the Pell conic in fact fulfills the main require-

ments for a group G to be suitable for cryptographic applications. That is,

• The elements of G can be easily represented in a compact form,

• The group operation can be performed efficiently,

• The discrete logarithm problem in G is believed to be intractable, and

• The group order can be efficiently computed.

Moreover, notice that we have achieved this goal ‘from scratch’,using elementary techniques

throughout. It is hoped that this case study will give a flavor of what should be expected in the

sequel, as we will need to show that these conditions are also met for a generalized Jacobian of

an elliptic curve in Chapter 5.

13For a general description of the principles behind index-calculus attacks, please refer to Section 2.7.2.
14 I wish to thank Robert for taking the time to patiently answer my numerous questions on this subject around

a cup of coffee.

66 CHAPTER 3. ALGEBRAIC CURVES

3.2.2 Elliptic Curves

“The theory of elliptic curves is rich, varied, and amazingly vast” once wrote Joseph Silverman

[Sil86, p.2]. Indeed, the fascination for the esthetic beauty of these curves allowed to develop the

tools that would later turn out to play a key role in many applications, the most famous being the

proof of Fermat’s Last Theorem (FLT) [Wil95, TW95]. Their versatility is astonishing: in public-

key cryptography alone, they are used for primality testing [AM93], factoring large integers

[Len87], digital signatures (ECDSA) [NIoST00] and of course for encryption [Mil86b, Kob87].

The industry is now also falling under their charm: the shorter keys required for elliptic curve

cryptosystems is an attractive selling feature, especially for small cryptographic devices, like

smart cards, Personal Digital Assistants (PDAs) or cell phones [Mic02]. Moreover, government

agencies also rely on elliptic curves to protect sensitive information:

“National Security Agency (NSA) selected Elliptic Curve Cryptography (ECC) as

the exclusive key agreement and digital signature standard to secure sensitive but

unclassified data within the U.S. government”15

The goal of this section will nonetheless be very modest, as we simply wish to recall the

milestones that make elliptic curves such a unique candidate for DL-based cryptography. First,

there are many equivalent ways of defining elliptic curves (see [Ols73, p.173]), but perhaps the

most natural for the applications we have in mind is the following:

Definition 3.42 An elliptic curve is an algebraic curve of genus one together with a distin-

guished point O ∈ E. Moreover, we say that this elliptic curve is defined over K if O ∈ E (K)
and E is defined over K as an algebraic curve.

Remark 3.43 So strictly speaking, an elliptic curve is a pair (E,O). We shall however often
say ‘let E be an elliptic curve’ as soon as it is clear from the context which distinguished point

we consider.

Remark 3.44 By definition, notice that if (E,O) is an elliptic curve defined over K, then
E (K) is never empty as O ∈ E (K).

Remark 3.45 Notice that this definition does not require that the curve E be smooth.

Of course, this definition does not say much if one is not familiar with the notion of genus.

For now, let’s just say that the genus of a curve is a nonnegative integer that somehow gives a
15From Certicom press release, June 9, 2005. Available at
http://www.certicom.com/index.php?action=company,press_archive&view=494.

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 67

measure of its complexity. For instance, P1 and the Pell conic both have genus zero [Sil86, Ex.
II.5.6] and are thus among the simplest curves that we can study. The formal definition of the

genus is part of the Riemann-Roch theorem and requires familiarity with divisors (and so will

have to wait until Section 3.3.4).

Weierstraß Equations

That being said, the very first step towards a concrete cryptographic application would be to

see what the equation of an elliptic curve may look like. To do so, let’s first consider the famous

Weierstraß equations.

Definition 3.46 A polynomial equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (3.2)

with coefficients16 a1, a3, a2, a4, a6 in K is called a Weierstraß equation.

Now, let P = [X : Y : Z] ∈ P2 satisfying (3.2) be given. If Z = 0, then we must have

P = [0 : 1 : 0]. Otherwise, let x = X/Z, y = Y/Z. Thus, P = [X : Y : Z] = [x : y : 1] and the

equation (3.2) becomes

y2 + a1xy + a3y = x
3 + a2x

2 + a4x+ a6. (3.3)

So for simplicity, we often write a Weierstraß equations using (3.3) instead of (3.2). We shall

also follow this convention from time to time, remembering to add the point at infinity [0 : 1 : 0]

to the set of solutions of (3.3).

The following theorem, whose proof can be found in [Sil86, Prop. III.3.1], also relies on

the Riemann-Roch theorem (see Theorem 3.79): it establishes the well-known link between

Weierstraß equations and elliptic curves.

Theorem 3.47 Any smooth curve given by a Weierstraß equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with coefficients in K is an elliptic curve defined over K with distinguished point [0 : 1 : 0].

Conversely, if (E,O) is an elliptic curve defined over K, then there is an isomorphism ϕ

from E onto a curve given by a Weierstraß equation with coefficients in K, and such that

ϕ (O) = [0 : 1 : 0].
16To remember these subscripts, notice that for each monomial aiXjY kZl of (3.2), we have i+ 2j + 3k = 6.

68 CHAPTER 3. ALGEBRAIC CURVES

Example 3.48 The Fermat curve F3 given by A3 + B3 = C3 is an elliptic curve over the

rational numbers Q with O = [1 : −1 : 0]. It is isomorphic to the elliptic curve E given by the

Weierstraß equation

Y 2Z = X3 − 432 · Z3.

Indeed, the map
ϕ : F3 −→ E

[A : B : C] 7−→ [12C : 36 (A−B) : A+B]
is easily seen to be an isomorphism with inverse

ψ : E −→ F3
[X : Y : Z] 7−→ [36Z + Y : 36Z − Y : 6X] .

Surprisingly, this seemingly innocent observation can be used to prove the following special case

of Fermat’s Last Theorem17 :

If A,B,C ∈ Z satisfy A3 +B3 = C3, then A ·B · C = 0.

This statement was already conjectured circa 900 A.D. by Arab mathematicians, while the very

first proof was (as far as we know) provided by Fermat himself.

As we will shortly see, Weierstraß equations are really convenient in practice since, among

other things, the corresponding group law algorithm can be efficiently implemented. Neverthe-

less, other defining equations for elliptic curves are of cryptographic interest as well. For instance,

the Hessian [JQ01] and Jacobi [LS01, BJ03] families18 can be used as (one level of) protection

against side-channel analysis. In a nutshell, an attacker monitors side-channel leakage (like run-

ning time, power consumption or electromagnetic (EM) emanations) during the execution of a

crypto-algorithm in the hope of recovering secret data (a private key, perhaps). It is thus some-

how flattering that such physical attacks could have pure algebro-geometric countermeasures

[End of digression19!].

From a given Weierstraß equation, it is possible (but tedious) to explicitely write down the

conditions that will ensure the smoothness of the curve directly from Definition 3.34. It is then

convenient to define the following quantity before we state the smoothness condition.

Definition 3.49 The discriminant of the Weierstraß equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.
17 See [Was03, p.36] for details.
18 See [Hus86, Chapter 4] and [Con99, Chapter 1] for a general description of these families.
19For further details regarding this fascinating duel between cryptanalysts and cryptographers, see [BSS05,

Chapter IV, V].

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 69

is the quantity ∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6, where

b2 = a
2
1 + 4a2,

b4 = 2a4 + a1a3,
b6 = a

2
3 + 4a6, and

b8 = a
2
1a6 + 4a2a6 − a1a3a4 + a2a23 − a24.

(3.4)

Lemma 3.50 Let E be an elliptic curve given by Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z +

a4XZ
2 + a6Z

3. Then, E is smooth if and only if ∆ 6= 0.

The proof of the above result can be found in [Sil86, Prop. III.1.4(a)]. Thus, one way to

generate a smooth elliptic curve would be to randomly pick the ai’s until ∆ 6= 0. The above

equations (as well as the group law algorithm) can however be simplified depending on the

characteristic of K and on the j-invariant of E.

Definition 3.52 Let E be a smooth elliptic curve given by the Weierstraß equation Y 2Z +

a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3. The j-invariant of E is defined as

jE =

¡
b22 − 24b4

¢3
∆

,

where ∆ is the discriminant of the Weierstraß equation and b2, b4 are as in (3.4).

So let E be a smooth elliptic curve defined over a field K. Let’s first consider the case

Char (K) = 2. Using a linear change of variables20, it follows that E is isomorphic to a curve

given by a Weierstraß equation (with coefficients in K) of the form:½
y2 + xy = x3 + ax2 + b if jE 6= 0,
y2 + cy = x3 + dx+ e if jE = 0.

The discriminants of these two equations respectively equal b and c4 (and thus, c, b 6= 0).
Now, if Char (K) 6= 2, 3, then one can also use a linear change of variables21 in order to get

a curve given by

y2 = x3 + ax+ b, (3.5)

where a, b ∈ K and which will be isomorphic to E. Furthermore, the discriminant of (3.5) equals

−16
¡
4a3 + 27b2

¢
.

20 See [Men93, Section 2.5] for explicit formulæ.
21 See [Sil86, Section III.1] or [Men93, Section 2.4].

70 CHAPTER 3. ALGEBRAIC CURVES

The Group Law

In 1835, Carl Gustav Jakob Jacobi (Jacobi pour les intimes) had the wonderful idea of consid-

ering a group law on cubic curves [Jac35] . Exactly 150 years elapsed before Miller and Koblitz

independently put forward the use of these groups in cryptography [Mil86b, Kob87].

Interestingly enough, the Vigenère cipher, also called Le Chiffre Indéchiffrable22 , was still

considered secure in 1835. In fact, we had to wait until 1854, three years after the death of

Jacobi, before the British scientist Charles Babbage23 finally found the weakness that allowed

to break it24 .

So who knows, maybe a century from now, we will still find new applications (that are

currently beyond our wildest dreams) to mathematical ideas born in Y2K...

We now proceed to describe Jacobi’s idea, the so-called chord-and-tangent rule on a smooth

elliptic curve E given by the Weierstraß equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (3.6)

with coefficients in K and distinguised point O = [0 : 1 : 0]. We will here follow the advice of

Silverman and Tate, starting with a geometrical description of the method, which can then be

easily translated into equations.

Just as with the Pell conic, the group law on the elliptic curve E can be described in terms of

straight lines. So let P , Q ∈ E be given. The point P +Q ∈ E is obtained as follows. First draw
the line `P,Q passing through P and Q. In the case where P = Q, `P,P simply is the tangent

line to E at P , as depicted (over the reals) in Figure 3.5. Now consider the points of P2 which
lies both on `P,Q and E. Since `P,Q has degree 1 and E has degree 3, Bézout’s theorem25 tells

us that there are exactly 3 such points (counting intersection multiplicities). But we already

know two of them: P and Q. Thus let R be the third such point of intersection (notice that

it is possible that it coincides with P or Q). Now, draw the line `R,O passing through R and

O. Apply Bézout’s theorem once again to get that the intersection of E with `R,O consists of

precisely 3 points: R, O, and S, say. We then define the sum of P and Q to be equal to S, as

illustrated in Figure 3.5.

Remark 3.53 Since P +Q = S, we therefore have that (P +Q) + R = S + R. So let’s now

evaluate S + R. By construction, the line `R,S intersects E at R, S and O. Now, the line at
22That is, ‘the unbreakable cipher ’.
23Mr. Babbage also devised the blueprint of the modern computer, invented the speedometer, was the first to

realize that the year’s weather influenced the width of a tree ring, and much, much more [Sin99, Chapter 2].
24The historical perspective of this quest is revealed in [Sin99, Chapter 2].
25 See [Ful69, Section 5.3] or [Har77, Corollary I.7.8].

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 71

infinity `O,O given by Z = 0 intersects E at O with multiplicity 3 since equation (3.6) reduces

to X3 = 0 when Z = 0. Thus, S +R = O, and so (P +Q) +R = O. As a result:

The three points of intersection of a line with E sum up to O. (3.7)

Figure 3.5: Chord-and-tangent rule on an elliptic curve

If there was a Hall of Fame of the most popular figures inspired by number theory, the chord-

and-tangent rule would be there for sure: from T-shirt designs26 to book covers [ST92, Was03],

it is omnipresent. But beyond this pretty picture, a powerful and deep theory is hidden.

But we are not there yet. Indeed, from the description of the chord-and-tangent rule, it is

not even obvious that this in fact defines a group law. In particular, everyone who ever tried

to visualize the associativity property (which involves 8 straight lines) or work out by hand the

details using the corresponding equations27 realizes (after a few pages) just how tedious it may

become. However, if we are willing to wait until we introduce divisors in Section 3.3, then it

will suddendly appear so clear why it actually forms an abelian group. But for now, let’s just

state the desired result [Sil86, Prop. III.2.2].

Theorem 3.54 Let E be a smooth elliptic curve given by a Weierstraß equation with coeffi-

cients in K and distinguised point O = [0 : 1 : 0]. Then, E with the chord-and-tangent rule

as binary operation forms an abelian group with identity O = [0 : 1 : 0]. Furthermore, if E is

defined over K, then E (K) is a subgroup of E.

We now proceed to obtain easy to implement explicit formulæ for this group operation. Let’s

26Curious? See http://www.crm.umontreal.ca/act/theme/theme_1998-1999_fr.html.
27 See Section 2.4 of [Was03] for full details (12 pages).

72 CHAPTER 3. ALGEBRAIC CURVES

treat the easy cases first. Since O is the identity element, we know that O+O = O, P +O = P
and O + P = P for any P ∈ E.
In the case where P , Q 6= O, we can assume without loss of generality that P = [XP : YP : 1]

and Q = [XQ : YQ : 1]. The line `P,Q is given by an equation of the form

aX + bY + cZ = 0, (3.8)

with a, b, c not all zero. We now want to get the coordinates of the third point R that

simultaneously satisfy (3.6) and (3.8).

First, O = [0 : 1 : 0] is the only point on E with Z = 0, so we can start by checking whether
it satisfies (3.8) or not (notice that this will be the case if and only if b = 0). If so, then R = O,
which implies by (3.7) that P +Q = O.
Otherwise, b 6= 0 and we can assume without loss of generality that R = [XR : YR : 1]. When

Z = 1, equations (3.6) and (3.8) become½
Y 2 + a1XY + a3Y = X

3 + a2X
2 + a4X + a6,

Y =mX + b,
(3.9)

where m = −a/b and b = −c/b are respectively the slope and Y -intercept of `P,Q and⎧⎨⎩ a = YQ − YP
b = XP −XQ
c = XQYP −XPYQ

if P 6= Q and

⎧⎨⎩ a = 3X2
P + 2a2XP + a4 − a1YP

b = − (2YP + a1XP + a3)
c = −X3

P + a4XP + 2a6 − a3YP
if P = Q.

It is a high school exercise to get these values of a, b and c when P 6= Q, while implicit

differentiation of (Y + a1X + a3)Y = X3 + a2X
2 + a4X + a6 is used to get the slope of the

tangent line to E at P : from (Y 0 + a1)Y + (Y + a1X + a3)Y
0 = 3X2+2a2X + a4, we get that

(2Y + a1X + a3)Y
0 = 3X2 + 2a2X + a4 − a1Y .

Now, substituting Y =mX + b in (3.3) yields a cubic equation in X looking like this:

X3 +
¡
a2 − a1m−m2

¢
X2 + (a4 − 2mb− a1b− a3m)X +

¡
a6 − b2 − a3b

¢
= 0. (3.10)

SinceXP , XQ andXR all satisfy this equation, the left-hand side of (3.10) must equal (X −XP)·
(X −XQ) · (X −XR) and can thus be rewritten as

X3 − (XP +XQ +XR)X2 + (XPXQ +XPXR +XQXR)X −XPXQXR. (3.11)

Equating the coefficient of X2 in (3.10) and (3.11) yields

XR =m
2 + a1m− a2 −XP −XQ and YR =mXR + b.

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 73

It only remains to find the coordinates of S = [XS : YS : ZS]. First notice that S 6= O since

otherwise,

O = (P +Q) +R = S +R = O +R = R

by Remark 3.53. So without loss of generality, ZS = 1. Since the equation of the line `R,O is

X −XRZ = 0, we therefore have XS = XR. Moreover,

Y 2R+a1XRYR+a3YR = X
3
R+a2X

2
R+a4XR+a6 = X

3
S+a2X

2
S+a4XS+a6 = Y

2
S +a1XSYS+a3YS

since both R and S are on E. As a result,

(YR + YS + a1XR + a3) (YR − YS) = 0,

and thus

YS = − (YR + a1XR + a3) = − (m+ a1)XR − b− a3.

In accordance with Theorem 3.54, remark that if E is defined over K and P , Q ∈ E (K), then
the above explicit formulæ show that S ∈ E (K) as well.
Lastly, we derive equations for the (additive) inverse of P = [XP : YP : 1]. We are thus

looking for a point P 0 = [XP 0 : YP 0 : 1] such that P + P 0 = O. From Remark 3.53, the third

point of intersection of `P,P 0 with E is then O. The equation of `P,P 0 is therefore given by

X −XPZ = 0, which implies that XP 0 = XP and YP 0 = − (YP + a1XP + a3). And here again,
if E is defined over K and P ∈ E (K), notice that P 0 ∈ E (K) as well.
For future reference, let’s compactly summarize these results.

Theorem 3.55 Let E be a smooth elliptic curve given by the Weierstraß equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with coefficients in K and distinguised point O = [0 : 1 : 0]. Let P = [XP : YP : 1] , Q =

[XP : YP : 1] ∈ E be given. Then, the inverse of P is

−P = [XP : −YP − a1XP − a3 : 1] .

So if Q = −P , then P +Q = O. Otherwise, P +Q = [XS : YS : 1], where

XS =m
2 + a1m− a2 −XP −XQ, YS = − (m+ a1)XS − b− a3

and

m =
YQ − YP
XQ −XP

and b =
XQYP −XPYQ
XQ −XP

if P 6= Q, and

m =
3X2

P + 2a2XP + a4 − a1YP
2YP + a1XP + a3

and b =
−X3

P + a4XP + 2a6 − a3YP
2YP + a1XP + a3

when P = Q.

74 CHAPTER 3. ALGEBRAIC CURVES

Remark 3.56 We have here expressed the points to add in the form [X : Y : 1], the so-called

affine coordinates. Take note that various other representations for the points of E are also

possible, like the homogeneous projective coordinates, Jacobian coordinates, Chudnovsky Jacobian

coordinates, modified Jacobian coordinates, mixed coordinates, etc. The choice of a coordinate

system for a specific implementation will depend on several factors, like the relative cost of

a finite field inversion to that of a multiplication. For a detailed account of these coordinate

systems, we refer to [CF05, Section 13.2-13.3].

Before we go any further, let’s see some of the basic built-in Magma commands for elliptic

curves.

Example 3.57 As shown in the following self-explanatory example, it is really easy to work

with elliptic curves in Magma. In fact, this is the software we used for our prototype imple-

mentation of generalized Jacobians of Chapter 5.

> K:=GF(7);
> E:=EllipticCurve([K|1,4]);
> E; // Gives the details on the elliptic curve
Elliptic Curve defined by y^2 = x^3 + x + 4 over GF(7)
> Discriminant(E);
3
> #E; // Number of points in E(K)
10
> Points(E); // Lists the points of E(K)
{@ (0 : 1 : 0), (0 : 2 : 1), (0 : 5 : 1), (2 : 0 : 1), (4 : 3 : 1),

(4 : 4 : 1), (5 : 1 : 1), (5 : 6 : 1), (6 : 3 : 1), (6 : 4 : 1) @}
> IsCyclic(AbelianGroup(E)); // Outputs ‘true’ iff E(K) is a cyclic group
true
> E!0; // Point at infinity
(0 : 1 : 0)
> P:=E![5,1,1]; // Sets P equal to the point [5:1:1] in E(K)
> P[1]; // Outputs the X-coordinate of P
5
> P+P;
(6 : 3 : 1)
> 2*P;
(6 : 3 : 1)
> -P; // Computes the inverse of P
(5 : 6 : 1)
> Order(P); // Computes the order of P
10
> for i in [1..Order(P)] do // Computes the multiples of P

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 75

for> print(i*P);
for> end for;
(5 : 1 : 1)
(6 : 3 : 1)
(0 : 2 : 1)
(4 : 3 : 1)
(2 : 0 : 1)
(4 : 4 : 1)
(0 : 5 : 1)
(6 : 4 : 1)
(5 : 6 : 1)
(0 : 1 : 0)
> Q:=Random(E); // Q is a pseudo-randomly chosen point in E(K)
> Q;
(4 : 4 : 1)
> Log(P,Q); // Computes the discrete log of Q to the base P
6
> 6*P eq Q; // Checks the correctness of the answer
true

It is therefore a child’s play to explore discrete logarithms with the help of Magma.

So we now know that an elliptic curve naturally possesses an abelian group structure. Is

that all one can say? In fact, we can also emphasize that the formulæ used to compute inverses

and sums of points really are ‘nice’ functions. This idea can be formalized as follows.

Definition 3.58 Let A be a nonsingular projective variety. Suppose that A is also an abelian

group with identity O ∈ A and that the addition law ⊕ : A×A→ A and inverse map ª : A→ A

are morphisms. Then, (A,O,⊕,ª) is said to be an abelian variety.

Remark 3.59 In most cases, we simply say ‘A is an abelian variety’ when the underlying

group structure is understood.

The following result establishes the fundamental equivalence between nonsingular elliptic

curves and abelian varieties of dimension one. The proof of this result can be found in the

excellent article An elementary proof that elliptic curves are abelian varieties of Loren D. Olson

[Ols73, Theorem 9 and Corollary 11].

Theorem 3.60 A nonsingular elliptic curve is an abelian variety of dimension one. Con-

versely, an abelian variety of dimension one is a nonsingular elliptic curve.

76 CHAPTER 3. ALGEBRAIC CURVES

There are various techniques that one can use to check that the explicit equations of Theorem

3.55 indeed define morphisms. One way to proceed is to use the so-called ‘translation maps’,

as used by Silverman in the proof of [Sil86, Theorem III.3.6]. A less elegant (but equally

informative) approach is to roll up our sleeves and play with explicit equations, as outlined in

[Sil86, Remark III.3.6.1].

Indeed, this direct technique allows us to modify the classical equations of the group law in

order to get ‘unified point addition formulæ’. Informally, a unified formula enjoys the property

that the corresponding group law algorithm for computing P +Q does not contain conditional

statements that treats the case P = Q separately. Unified formulæ are therefore interesting

countermeasures against side-channel attacks. Recently, Éric Brier, Marc Joye and the author

proposed the following family of unified formulæ [rBDJ]:

Theorem 3.61 Let E be a smooth elliptic curve given by the Weierstraß equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with coefficients in a field K and let P = [XP : YP : 1], Q = [XQ : YQ : 1] ∈ E(K) be given such
that Q 6= −P . Moreover, let f ∈ K [X1, Y1;X2, Y2] be a given polynomial and define

g(X1, Y1;X2, Y2) = X
2
1 +X1X2 +X

2
2 − a1Y1 + a2(X1 +X2) + a4 + (Y1 − Y2)f(X1, Y1;X2, Y2),

h(X1, Y1;X2, Y2) = Y1 + Y2 + a1X2 + a3 + (X1 −X2)f(X1, Y1;X2, Y2).

If h (XP , YP ;XQ, YQ) or h (XQ, YQ;XP , YP) is nonzero, then

m =

⎧⎪⎪⎨⎪⎪⎩
g (XP , YP ;XQ, YQ)

h (XP , YP ;XQ, YQ)
if h (XP , YP ;XQ, YQ) 6= 0,

g (XQ, YQ;XP , YP)

h (XQ, YQ;XP , YP)
if h (XQ, YQ;XP , YP) 6= 0

(3.12)

is well-defined and P +Q = [XP+Q : YP+Q : 1], where

XP+Q =m
2+a1m−a2−XP −XQ and YP+Q = (XP −XP+Q)m−YP −a1XP+Q−a3. (3.13)

Moreover, the following condition is sufficient for f to be defined:

If f (XP , YP ;XQ, YQ) + f (XQ, YQ;XP , YP) = a1, then XP = XQ. (3.14)

In fact, there are infinitely many f satisfying (3.14) for all P , Q ∈ E(K), Q 6= −P .

Example 3.62 If Char (K) 6= 2, 3, then we saw that E can be taken to have an equation of

the form Y 2Z = X3+ aXZ2+ bZ3. Thus, f = 1 satisfies (3.14) for all P , Q ∈ E(K) such that

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 77

Q 6= −P and the corresponding value of m is given by

m =

⎧⎪⎪⎨⎪⎪⎩
(XP +XQ)

2 −XPXQ + YP − YQ + a
YP + YQ +XP −XQ

if YP + YQ 6= XQ −XP ,

(XP +XQ)
2 −XPXQ − YP + YQ + a

YP + YQ −XP +XQ
otherwise.

Alternatively, a fresh value of f could also be chosen each time two points are added. As a result,

the side-channel information leaking when computing P +Q would also depend on the choice of

f . For further details on the choice of f , we refer to [rBDJ].

Hasse, Deuring, Schoof, and Friends

If we want to use an elliptic curve E defined over a finite field Fq for cryptographic applications,
we first would like to know how many bits q should have in order for #E (Fq) to be of a
convenient size. That is, large enough to counter attacks based on generic algorithms for the

DLP (like the Pollard Rho method), and at the same time not disproportionately large since we

want the computations to be performed efficiently.

In 1921, Emil Artin conjectured in his thesis [Art21] that #E (Fq) should be of the order
of magnitude of q + 1 and could never be less than q + 1− 2√q nor greater than q + 1 + 2√q.
His intuition was indeed right, and a decade later, Helmut Hasse [Has33] was able to provide a

formal proof28 [Sil86, Theorem V.1.1].

Theorem 3.63 (Hasse) Let E be an elliptic curve defined over Fq. Then,

q + 1− 2√q ≤ #E (Fq) ≤ q + 1 + 2
√
q.

But even if q is chosen to have, say, 160 bits and we are guaranteed that E (Fq) has minimal
cardinality q + 1 − 2√q, we still need to make sure that #E (Fq) has at least one large prime
factor to resist the Pohlig-Hellman attack.

In fact, there is a deterministic polynomial-time algorithm29, initially due to René Schoof,

to compute the exact value of #E (Fq) [Sch85]. Subsequently, Neal Koblitz specifically treated
the case of characteristic two [Kob90]. In short, over the past twenty years, Schoof’s idea was

improved by several authors, including the work of Elkies and Atkin. The resulting method is

now often referred to as the Schoof-Elkies-Atkin or SEA algorithm 30 . For an up to date account

28This result was generalized by André Weil in 1948 for curves of higher genus. See [Wei48] for the original
exposition.
29The original algorithm was described for Char (Fq) 6= 2, 3 and required O

¡
log9 q

¢
bit operations.

30One can easily get a sense of the efficiency of this algorithm using Magma since it already contains an
implementation of this method.

78 CHAPTER 3. ALGEBRAIC CURVES

of the point counting techniques for elliptic and hyperelliptic curves, we refer to Chapter 17 of

[CF05].

Thus say we first fix the value of q and then randomly choose an elliptic curve E over Fq until
#E (Fq) is of the form h · l, where l is a large prime and h is a small integer31 called the cofactor.
These are indeed requirements that are found in the standards for elliptic curve cryptography

[IEE99, NIoST00, CR00]. It is in fact a highly nontrivial task to show that this simple method

is a relatively efficient procedure to generate such curves. The proof relies in part on a result of

Max Deuring [Deu41] that establishes the close connection between Kronecker class numbers and

the problem of counting, up to isomorphism, the number Nq,n of elliptic curves E over Fq such
that #E (Fq) = n, where n is a given integer in the Hasse interval

¡
q + 1− 2√q, q + 1 + 2√q

¢
.

Very informally, Deuring’s result implies that given n = q + 1 + t, where t ∈ Z is such that
|t| ≤ 2√q, we have that Nq,n is roughly equal to

p
4q − t2

.
π, which is represented graphically

in Figure 3.6 [Sch04]. A concise account of Deuring’s result can also be found in [Len87].

Figure 3.6: Visual interpretation of Deuring’s result

Lastly, let’s briefly mention that it is also sometimes possible to first choose the exact number

h · l of points we want and then construct an elliptic curve matching this requirement. This
is the so-called complex multiplication, or CM method, for which a description can be found in

[CF05, Chapter 18].

3.2.3 Hyperelliptic Curves

The sole objective of this (outrageously) short section is to provide a motivation for the study of

divisors, Picard groups and Jacobians that will come next. Indeed, hyperelliptic curves provide

the perfect example of a family of curves of cryptographic interest where the group law is not

directly defined on the set of points of the curve.

We want to emphasize that we will thus simply touch upon the topic of hyperelliptic curve

31Usually, we choose h = 1, 2, 3 or 4.

3.2. PLANE CURVES AND CRYPTOGRAPHY: A SNEAK PEEK 79

cryptography (HECC), and consequently, that our treatment will unfortunately not do justice

nor reflect the true value of using these curves for cryptographic purposes. We thus do not want

to leave the impression that hyperelliptic curves are not relevant in cryptography, as the truth

is quite the opposite! For all details32, the interested reader is urged to refer to the excellent

Handbook of Elliptic and Hyperelliptic Curve Cryptography [CF05].

In the crypto community, the term ‘hyperelliptic curves’ often refers to imaginary quadratic

hyperelliptic curves, and we shall follow this convention as well. For simplicity, we also present

the equation defining the curve in affine form, in accordance with most of the litterature of

HECC.

Definition 3.64 A hyperelliptic curve of genus g over a field K is an algebraic curve C given

by an equation of the form

y2 + h (x) y = f (x) ,

where h, f ∈ K [x], deg (f) = 2g + 1, deg (h) ≤ g, and f is a monic polynomial.

To ensure that C is smooth, it suffices to verify that the partial derivatives 2y+h and f 0−h0y
do not simultaneously vanish at any point of C

¡
K
¢
.

Remark 3.65 Thus, notice that an elliptic curve can also be seen as a hyperelliptic curve of

genus one.

In order to provide a visual aid for this definition, Figure 3.7 presents an example of the

graph of a hyperelliptic curve of genus two over the reals.

From this graph, it is at first really tempting to try to use ad hoc methods in the hope of

defining the equivalent of the chord-and-tangent rule for elliptic curves. However, the set of

points on a hyperelliptic curve of genus g ≥ 2 per se do not form a group. But all is not lost

since we can still use this set of points to turn it into a group. The clever way to proceed is to

consider the divisors on C in order to build the so-called Picard group, Pic0 (C), of the curve.

In turn, the Jacobian J(C) of the curve will be a certain abelian variety isomorphic (as abelian

groups) to Pic0 (C). So in a nutshell, the Jacobian of a hyperelliptic curve is the group we are

using to do discrete logarithm-based cryptogaphy.

We conclude this section by providing an avant-goût of what the group law on the Jacobian

look like. Figure 3.8 represents a hyperelliptic curve of genus two over the reals. With the

notation for divisors that will be introduced at the beginning of next section, we have in this

32The 808 pages of this work is a truly complete account of the state-of-the-art in curve cryptography.

80 CHAPTER 3. ALGEBRAIC CURVES

Figure 3.7: An example of a hyperelliptic curve of genus 2 over the reals

example that

(P1) + (P2)− 2 (O) + (Q1) + (Q2)− 2 (O) = (R1) + (R2)− 2 (O) .

3.3 Divisors

As outlined in the previous section in the case of hyperelliptic curves, divisors will be the tool

we need to turn a set into a group. Roughly speaking, and just to give an idea, let’s just say

for now that a divisor is a concise and convenient way of keeping track of the zeros and poles of

functions.

3.3.1 Basic Concepts

So we are now ready to describe how we can create a group out of a set of elements. The

starting point will be to consider a free abelian group. This process is in fact very natural, as

demonstrated in the following high school level example (which can easily be omitted by anyone

familiar with free abelian groups).

Example 3.66 A stamp collector takes his passion quite seriously. To each collectible corre-

sponds a unique identification code. It is then an easy matter to write in a compact form an up

3.3. DIVISORS 81

Figure 3.8: Visual interpretation of the group law on a hyperelliptic curve of genus two

to date inventory of his collection. At a glance, he can easily see what to buy and what can be

traded as well as updating the state of his collection after each transaction.

Date Operation C5732 E176 F2098 S54 ...
Oct. 9 Inventory 4 0 5 1 ...
Oct. 10 Transaction 0 0 -2 1 ...
Oct. 10 Inventory 4 0 3 2 ...

For quick reference, this last state could also be symbolized by the shorthand 4(C5732)+3(F2098)+

2(S54) + So we started with a set consisting of the different stamps and we ended up with a

group where a typical element consists of a list of integers, one for each stamp.

Formally, let S be a set (not necessarily finite) and let G be the collection of formal sums of

the form X
A∈S

nA(A)

where each nA is an integer and finitely many of them are nonzero. The natural addition ruleX
A∈S

mA(A) +
X
A∈S

nA(A) =
X
A∈S

(mA + nA)(A)

turns G into a group with identity
P
A∈S 0(A), denoted 0 (notice the difference between 0 and

0). The group G is called the free abelian group on S.

82 CHAPTER 3. ALGEBRAIC CURVES

Now, let C be our favorite algebraic curve, defined over a perfect field K, for which we are

collecting the points as a hobby. We then want to consider formal sums of the formX
P∈C

nP (P),

where each nP is an integer and finitely many of them are nonzero. Call such a sum a divisor

on C. The free abelian group generated by the points of C is called the divisor group of C and

is denoted by Div(C).

The degree of a divisor D is the integer

deg (D) =
X
P∈C

nP ,

which is a finite sum of integers. The divisors of degree zero form a subgroup of Div(C), which

we denote by

Div0(C) = {D ∈ Div(C)|deg (D) = 0} .

The support of D is defined as the (finite) set of points P such that nP is nonzero:

Supp (D) = {P ∈ C|nP 6= 0} .

We say that D is prime to D0 if D and D0 have disjoint supports. Furthermore, D is called an

effective (or positive) divisor when all nP > 0. Lastly, we will write D ≥ D0 when D−D0 is an

effective divisor.

Now, let σ in Gal(K/K), the Galois group of K over K, be given. Then, for any point

P = [x0 : . . . : xn], we let Pσ = [xσ0 : . . . : x
σ
n]. If D ∈ Div(C), we also define

Dσ =
X
P∈C

nP (P
σ).

Lastly, a divisor D is said to be rational over K (or defined over K) if Dσ = D for all σ in

Gal(K/K). The group of divisors defined over K will be denoted DivK (C). Similarly, Div
0
K(C)

is the group of degree zero divisors defined over K.

3.3.2 Discrete Valuations

We will now build a discrete valuation on the function field K(C). Before we do so, we first

recall some concepts.

3.3. DIVISORS 83

Definition 3.67 A discrete valuation (also called an order function) on a field F is a surjective

map v : F → Z∪ {∞} such that:

(i) v(a) =∞ if and only if a = 0.
(ii) v(a · b) = v(a) + v(b).
(iii) v(a+ b) ≥ min (v(a), v(b)).

The valuation ring of F is R = {a ∈ F |v(a) ≥ 0}. Lastly, the ring R is called a discrete

valuation ring (abbreviated DVR).

Now to each smooth point of C, we will associate a discrete valuation, ordP , that will

basically tell us whether a function f ∈ K(C) has a zero or a pole at P , and if so, will also give
the multiplicity.

Proposition 3.68 Let C be an algebraic curve defined over K and let P ∈ C be smooth point.
Then the function

ordP : K(C) −→ Z ∪ {∞},

which maps 0 to ∞, and f 6= 0 to its order of vanishing at P , is a discrete valuation. Namely,

if ordP (f) < 0, then f has a pole of order − ordP (f) at P ,

if ordP (f) = 0, then f is defined and nonzero at P ,

if ordP (f) > 0, then f has a zero of order ordP (f) at P .

It therefore follows that the following two (intuitively clear) properties hold:

ordP (f · g) = ordP (f) + ordP (g) and ordP (f + g) ≥ min (ordP (f), ordP (g)) .

For further details on these discrete valuations, please refer to [Sil86, Section II.1].

3.3.3 Principal Divisors

It will now be convenient to associate a divisor to each function f ∈ K(C). The idea is to
‘make a list’ where each entry is a point P ∈ C together with ordP (f), the order of f at P .

A convenient way to do so is to consider the formal sum
P
P∈C ordP (f)(P). The following

proposition from [Sil86, Proposition II.1.2] then ensures that this indeed defines a divisor.

Proposition 3.69 Let C be a smooth algebraic curve defined over K and f ∈ K(C) be given.
Then, there are a finite number of points of C at which f has a zero or pole. Moreover, if f has

no poles, then f is constant (that is, f ∈ K).

84 CHAPTER 3. ALGEBRAIC CURVES

We can now formally define the divisor we associate to the function f .

Definition 3.70 Let C be a smooth algebraic curve defined over K. The divisor of a function

f ∈ K(C)∗ is
div(f) =

X
P∈C

ordP (f)(P).

Definition 3.71 A divisor D ∈ Div(C) is said to be principal if there is an f ∈ K(C)∗ such
that D = div(f).

The following basic properties of principal divisors, from [Sil86, Proposition II.3.1], will prove

to be truly useful throughout this dissertation.

Proposition 3.72 Let C be a smooth algebraic curve defined over K and f, g ∈ K(C)∗ be
given. Then,

(i) div(f) = 0 if and only if f ∈ K∗.
(ii) deg(div(f)) = 0. That is, all principal divisors have degree zero.
(iii) div(f · g) = div(f) + div(g).
(iv) div

¡
f
g

¢
= div(f)− div(g).

(v) div(fn) = n · div(f) for all integers n ≥ 1.

Definition 3.73 Let Princ (C) = {D ∈ Div(C)|D is principal} denote the set of principal di-
visors on C.

Remark 3.74 The above proposition in fact also shows that Princ (C) is a subgroup of Div0(C).

Moreover, notice that given a principal divisor D = div(f), the function f ∈ K(C)∗ is only
determined up to multiplication by a nonzero element of K. Indeed, if g ∈ K(C)∗ is such that
D = div(f) = div(g), then

0 = D −D = div(f)− div(g) = div
µ
f

g

¶
,

from which follows that f/g ∈ K∗. Thus, f = c · g for some c ∈ K∗.

Example 3.75 All divisors of degree zero on P1 are principal. Indeed, let D =
P
nP (P) ∈

Div
¡
P1
¢
be given such that deg (D) = 0. For each P = [xP : yP] ∈ P1, the function yPX−xPY

will vanish at P only. Thus, D = div (f) where

f =
Y
P∈P1

(yPX − xPY)np .

The key observation here is to notice that we have f ∈ K(P1) since deg (D) = 0.

3.3. DIVISORS 85

This simple example, as we will later see, is a key difference between elliptic curves and

curves of genus zero, such as P1.
We now define an equivalence relation on divisors, which is the first step towards the con-

struction of the Jacobian of a curve. In this chapter, we will only consider linearly equivalent

divisors, as opposed to, say, algebraically or numerically equivalent divisors. An overview of

these equivalence relations can be found in [Die85, Section VII.7]. In the next chapter, we will

see how to modify the definition of linear equivalence in order to construct generalized Jacobians

(c.f. Section 4.2).

Definition 3.76 Let D1, D2 ∈ Div(C) be given. If D1−D2 is a principal divisor, then we say
that D1 and D2 are linearly equivalent, and we write D1 ∼ D2.

Lastly, given a divisor D and a function f , we formalize the idea of ‘evaluating f at D’.

Definition 3.77 Let C be a smooth algebraic curve defined over K. Let D =
P
P∈C

nP (P) ∈

Div(C) and f ∈ K(C)∗ be given such that D and div(f) have disjoint supports. We then define

f(D) =
Y
P∈C

f(P)nP =
Y

P∈Supp(D)
f(P)nP .

Notice that this is a finite product since finitely nP ’s are nonzero by definition.

3.3.4 The Riemann-Roch Theorem

Initially demonstrated as Riemann’s inequality [Ful69, Section 8.3], the Riemann-Roch theorem

has gained its current form following the work of Gustav Roch, himself a student of Riemann,

during the 1850s. This much celebrated theorem is one of the most important tool in the

algebraic geometry of curves.

To each divisor, we now associate a subset of K(C) as follows.

Definition 3.78 Let D ∈ Div (C) be given. We let

L(D) =
©
f ∈ K(C)∗

¯̄
div (f) ≥ −D

ª
∪ {0} .

The set L(D) ⊆ K(C) is in fact a finite-dimensional K-vector space [Sil86, Proposition II.5.2
(b)]. Its dimension will be denoted l(D) = dimK L(D).
Technically, we would need to formally introduce canonical divisors (and thus differential

forms33) in order to fully appreciate the scope of Riemann-Roch. However, the only result that

33 Indeed, a divisor KC ∈ Div (C) is said to be canonical if there is a nonzero differential form ω on C such
that KC ∼ div (ω).

86 CHAPTER 3. ALGEBRAIC CURVES

we will need in this work is a corollary of this theorem that does not involve canonical divisors.

We have then settled for stating the general result for completeness and to refer to Section II.4

of [Sil86] for details about differentials and canonical divisors.

Theorem 3.79 (Riemann-Roch) Let C be a smooth algebraic curve and KC be a canonical

divisor on C. Then, there is a nonnegative integer g such that

l (D)− l (KC −D) = deg (D)− g + 1

for all D ∈ Div (C). The integer g is called the genus of C.

The classical proof of Brill and Noether was reproduced by Fulton in [Ful69, Section 8.6].

As for the proof of the following corollary, see [Sil86, Corollary II.5.5(c)].

Corollary 3.80 Let C be a smooth algebraic curve of genus g and let D ∈ Div (C) be given.
If deg (D) > 2g − 2, then l (D) = deg (D)− g + 1.

3.3.5 The Abel-Jacobi Theorem

We now see a very interesting application of the theory of divisors. At the same time, it will be

a good occasion to get used to work with principal divisors, as this will be much needed to get

to understand generalized Jacobians.

As pointed out by Jean-Pierre Serre, the Abel-Jacobi Theorem is of the utmost importance

since “The theory of the usual Jacobian has its source in the theorems of Abel and Jacobi”

[Ser88, p.108]. As a bonus, the proof of this result is quite enlightening, one part being a

sequence of intuitive deductions, while the other demontrates the powerfulness of the Riemann-

Roch theorem. We will thus take the time of going through this proof.

But before we do so, we will need to make a fundamental observation about the principal

divisors on an elliptic curve. This simple exercise merely requires to play with secant and tangent

lines.

Let E be a smooth elliptic curve defined over K and let P , Q ∈ E be given. Let also R be

the third point of intersection of E with the straight line `P,Q passing through P and Q. Finally,

let `P+Q,O be the line passing through P +Q and O. For quick reference, the chord-and-tangent
rule has been reproduced in Figure 3.9.

Remark 3.81 In the sequel, we will often abuse notation and identify `P,Q with both the line

passing through P and Q and the function defining this line. From the context, it should however

be clear as to which notion we are referring to.

3.3. DIVISORS 87

Figure 3.9: The chord-and-tangent rule and its interpretation in terms of divisors

Now, `P,Q will have zeros at P , Q and R only, which must leave a pole of order 3 at the

point at infinity. In other words,

div

µ
`P,Q
Z

¶
= (P) + (Q) + (R)− 3(O).

Similarly, we have that

div

µ
`P+Q,O
Z

¶
= (R) + (P +Q)− 2(O).

Thus,

div

µ
`P,Q
`P+Q,O

¶
= div

µ
`P,Q
Z

¶
− div

µ
`P+Q,O
Z

¶
= (P) + (Q)− (P +Q)− (O).

We have therefore shown:

Lemma 3.82 Let E be a smooth elliptic curve defined over K and let P , Q ∈ E be given.

Then,

div

µ
`P,Q
`P+Q,O

¶
= (P) + (Q)− (P +Q)− (O), (3.15)

where `P1,P2 denotes the equation of the line passing through P1 and P2 (tangent at the curve if

P1 = P2).

We can now repeatedly use this result as follows. In the case where P = Q, then the above

identity reads as

div (g2) = 2(P)− (2P)− (O), where g2 =
`P,P
`P+P,O

∈ K(C)∗.

88 CHAPTER 3. ALGEBRAIC CURVES

Next, 3P = P + 2P , and so we can easily find a function g3 ∈ K(C)∗ such that

div (g3) = (P) + (2P)− (3P)− (O).

As a result,

div (g2 · g3) = 3(P)− (3P)− 2(O).

Likewise, 4P = P + 3P and we thus know a g4 ∈ K(C)∗ satisfying

div (g4) = (P) + (3P)− (4P)− (O).

And this implies that

div (g2 · g3 · g4) = 4(P)− (4P)− 3(O).

This recursive process shows that for any integer k ≥ 1, there is a function fk ∈ K(C)∗ such
that

div (fk) = k(P)− (kP)− (k − 1) (O).

Notice that when k = 1, we can simply let f1 = 1.

Lemma 3.83 Let E be a smooth elliptic curve defined over K and P ∈ E be given. Then for

any integer k ≥ 1, there is a fk ∈ K(C)∗ such that

div (fk) = k(P)− (kP)− (k − 1) (O). (3.16)

So the moral of the story is that we can already see how it is possible to express many divisors

of degree zero as a divisor of a function, simply by playing with straight lines.

Abel’s Theorem

Given a smooth elliptic curve defined over K, we may then wonder:

To what extent can a divisor of degree zero be expressed as a divisor of a function?

So let’s challenge ourselves and try to express an arbitrary divisor of degree zero as a divisor of

a function. Thus, let

D = a1(P1)+ a2(P2)+ ...+ am(Pm)− b1(Q1)− b2(Q2)− ...− bn(Qn) + c(O) ∈ Div 0(E) (3.17)

be given such that a1, . . . , am > 0 and b1, . . . , bn > 0. At this point, we simply want to know

whether or not this can be achieved (and thus we won’t take efficiency considerations into

account here).

3.3. DIVISORS 89

The obvious thing to do first is to use identity (3.16) for each Pi and Qj . So we know that

there are functions fi and gj satisfying

ai(Pi) = (aiPi) + (ai − 1) (O) + div (fi) for 1 ≤ i ≤ m, and
bj(Qj) = (bjQj) + (bj − 1) (O) + div (gj) for 1 ≤ j ≤ n.

Substituting in (3.17) then yields

D = (a1P1) + ...+ (amPm)− (b1Q1)− ...− (bnQn) + (n−m) (O) + div
µ
f1f2...fm
g1g2...gn

¶
, (3.18)

where we used the fact that a1 + . . . + am − b1 − . . . − bn = −c since D has degree zero. So

we now have all the coefficients of the (aiPi) equal to one, and those of (b1Q1) equal to −1.
Recall that our goal is to replace terms on the right hand side as much as possible by divisors

of functions. An easy simplification is to read (3.15) as

(a1P1) + (a2P2) = (a1P1 + a2P2) + (O) + div (h1)

for some h1 ∈ K(C)∗ and substitute in (3.18) to get

D = (a1P1 + a2P2) + (a3P3) + ...+ (amPm)− (b1Q1)− (b2Q2)− ...− (bnQn)

+ (n−m+ 1) (O) + div
µ
f1f2...fm
g1g2...gn

· h1
¶
.

We can then repeat this process to decrease the number of terms in the right until we hit

D = (a1P1 + a2P2 + ...+ amPm)− (b1Q1 + b2Q2 + ...+ bnQn) + div (f) (3.19)

for some f ∈ K(C)∗. So, as soon as a1P1 + a2P2 + ... + amPm = b1Q1 + b2Q2 + ... + bnQn,

we know that D is principal. Moreover, we were actually able to keep track of all functions

involved so that it is technically possible to explicitely write down the function whose divisor is

D, if such a function exists. And just like that, we have rediscovered Abel’s theorem:

Theorem 3.84 (Abel) Let E be a smooth elliptic curve defined overK and D =
P
P∈E nP (P) ∈

Div0(E) be given.

If
X
P∈E

nPP = O, then D is principal.

Notice that
P
P∈E nPP is a finite sum of points of E, and not a divisor.

Jacobi’s Theorem

We here keep the notation of the previous section and we further let

P = a1P1 + a2P2 + ...+ amPm and

Q = b1Q1 + b2Q2 + ...+ bnQn.

90 CHAPTER 3. ALGEBRAIC CURVES

Does the converse of Abel’s theorem holds? That is, if D is a principal divisor, then does it imply

that P = Q? First, we already know that all principal divisors have degree zero by Proposition

3.72. Next, by the method used to prove Abel’s theorem, we also know that the arbitrary D we

started with can always be written as

D = (P)− (Q) + div(f)

for some f ∈ K(C)∗. Therefore,

D is principal if and only if (P)− (Q) is principal.

It thus suffices to show:

Lemma 3.85 Let E be a smooth elliptic curve defined over K and P , Q ∈ E be given. Then,

(P)− (Q) is principal if and only if P = Q.

Proof. Let’s begin by the easy implication and assume that P = Q. Then, (P) − (Q) = 0 =

div(1), and so (P)− (Q) is principal.
As for the converse, we now assume that (P) − (Q) is principal. Then, there is a f in the

function field of E such that div(f) = (P) − (Q). Hence, it suffices to show that f is constant
in order to get the desired result. Now, div(f) ≥ − (Q) and 0 ≥ − (Q) so that L ((Q)) contains
both f and the constant functions. But since deg ((Q)) > 2g − 2, we can apply the corollary of
the Riemann-Roch theorem (see Corollary 3.80) to get that l ((Q)) = deg ((Q))−g+1 = 1. We
then conclude that f is constant. Hence, (P)− (Q) = div(f) = 0, which implies that P = Q.¤

And so we have proved the converse of Abel’s theorem, which was originally due to Jacobi.

Theorem 3.86 (Jacobi) Let E be a smooth elliptic curve defined over K and let D =P
P∈E nP (P) ∈ Div

0(E) be given.

If D is principal, then
X
P∈E

nPP = O.

Lastly, we take the time to re-write the complete result we just shown.

Theorem 3.87 (Abel-Jacobi) Let E be a smooth elliptic curve defined over K and let D =P
P∈E nP (P) ∈ Div(E) be given. Then,

D is principal if and only if deg (D) = 0 and
P
P∈E

nPP = O.

3.4. THE PICARD GROUP 91

We therefore have an easy criterion to decide if two divisors are linearly equivalent:

Corollary 3.88 Let E be a smooth elliptic curve defined over K and let

D1 =
P
P∈E

nP (P),D2 =
P
P∈E

mP (P) ∈ Div(E)

be given. Then,

D1 ∼ D2 if and only if deg (D1) = deg (D2) and
P
P∈E

nPP =
P
P∈E

mPP .

3.4 The Picard Group

3.4.1 Cryptographic Motivation

In 1985, Koblitz [Kob87] and Miller [Mil86b] independently proposed to use the group of points

of an elliptic curve as an alternative to the multiplicative group of a finite field used by ElGamal

[ElG85a]. Now, elliptic curves posses the remarkable property that its Jacobian coincide with

the points of the curve themselves. Hence, we have the choice of understanding the group of

points on an elliptic curve in two ways:

• In terms of points, tangent and secant lines, or

• As the natural abelian variety isomorphic to the zero part of the Picard group.

There is no need to say that the first interpretation is by far the simplest and that the chord-

and-tangent rule can be understood by anybody. Then why should we even consider the second

interpretation? Well, suppose that one hopes to find another family of groups suitable for DL-

based cryptography. In that case, if we are only aware of the first interpretation, we might try

to vary the curve and try to find one for which the points do form a group. Unfortunately, like

we already mentionned for the case of hyperelliptic curves, there is no guarantee that a natural

group structure exists on the points of the chosen curve.

However, if one starts with any smooth curve C, then by construction, the Jacobian of

C, J(C), always is (among other things) a good old abelian group. Naively, we could say that

constructing the Jacobian of a curve is a clever process that builds a group for which the building

blocks forming each element are the points of C. It then becomes a natural process to vary C

and look for a J(C) where the computations can be done efficiently and where the DLP seems

intractable. Recall that the hunt for such curves was already open in 1985 when elliptic curves

made their appearance. Two years later, David Cantor showed how to explicitely compute in

the Jacobian of hyperelliptic curves [Can87] and shortly after, Koblitz proposed to use them in

cryptography [Kob89].

92 CHAPTER 3. ALGEBRAIC CURVES

3.4.2 Construction of the Picard Group

So our task is to start with a smooth curve C for which the points do not necessarily form a

group, and use them to build a group out of it. In other words, we want to interpret the group

law on an elliptic curve in terms of divisors in such a way that this process could be applied to

other curves as well.

Let E be a smooth elliptic curve. The very first step is to know which divisor will play the

role of a point P ∈ E. A natural candidate is of course the divisor (P) (that is, nP = 1 is

the only nonzero coefficient). We should normally have that the point at infinity corresponds

to the identity element of Div(E), which is not currently the case since (O) 6= 0. An easy

fix-up is to associate the divisor (P) − (O) to the point P , which we will informally denote
by P ! (P) − (O). Now, let’s see what happens when we add two points P,Q ∈ E. Let
R := P +Q. Following our association,

E Div(E)
P ! (P)− (O)
Q ! (Q)− (O)

P +Q ! (P) + (Q)− 2(O)

and hence the point R should correspond to the divisor (P) + (Q)− 2(O) as well, which means
that we really want to view the divisors (R) − (O) and (P) + (Q) − 2(O) as representing the
same point. We therefore want to define an explicit equivalence relation on divisors in order to

resolve this ambiguity.

But before that takes us too far afield, let’s remark that we really don’t need to consider all

divisors here. Indeed, what do the divisors (P) − (O), (Q) − (O) and (P) + (Q) − 2(O) have
in common? Well, they all have degree zero. Since the divisors of degree zero, Div0(C), form a

subgroup of Div(C), we can hereafter only work with degree zero divisors.

We now proceed to determine this equivalence relation. Starting from the association P !
(P)− (O), we wish to know what are the other members of Div0(E) that also correspond to P :

E Div0(E)
P ! (P)− (O)
O ! D

P +O ! (P)− (O) +D
We could thus express O as a sum of points of E, say O = P1 + . . .+ Pk where the points are

not necessarily distinct. Then,

E Div0(E)
P ! (P)− (O)

P1 + . . .+ Pk ! (P1) + . . .+ (Pk)− k(O)
P + P1 + . . .+ Pk = P ! (P) + (P1) + . . .+ (Pk)− (k + 1) (O)

3.4. THE PICARD GROUP 93

Therefore, we want to require that a divisor
P
P∈E nP (P) be equivalent to (P)− (O) precisely

when
P
P∈E nPP = P .

More generally, given two divisors

D1 = a1(P1) + a2(P2) + ...+ am(Pm) and D2 = b1(Q1) + b2(Q2) + ...+ bn(Qn)

in Div0(E), we can let

P = a1P1 + a2P2 + ...+ amPm and Q = b1Q1 + b2Q2 + ...+ bnQn.

Thus,
E Div0(E)
P ! D1
Q ! D2

and we will want that D1 be equivalent to D2 if and only if P = Q. Interesting. This charac-

terization in fact turns out to be closely related to the Abel-Jacobi theorem. Indeed, recall that

Corollary 3.88 states that P = Q is a necessary and sufficient condition to have D1 ∼ D2 (since
D1 and D2 both have degree zero). The equivalence relation we were looking is thus no other

than the linear equivalence of divisors.

We can then remove the ambiguity in our correspondence by considering the quotient group

Div0(E)/Princ(E). As this group is defined in terms of points and functions (and does not

involve the group law on the elliptic curve), it can then be defined for a general curve as well.

Definition 3.89 Let C be a smooth algebraic curve over K. The group Div(C)/Princ(C) is

called the Picard group or the divisor class group of C and is denoted by Pic(C). The degree

zero part of the Picard group, Pic0(C), is simply Div0(C)/Princ(C). Furthermore, the class of

a divisor D ∈ Div0(C) in Pic0(C) will be donoted by [D].

It is therefore possible to vary the curve and study the group Pic0(C) from a cryptographic

point of view. For elliptic curves, it is now a routine exercise with the tools at hand to prove

the following result34.

Proposition 3.90 Let E be a smooth elliptic curve over K. Then the map

E → Pic0(E)
P 7→ [(P)− (O)]

34The proof can also be found in [Sil86, Proposition III.3.4].

94 CHAPTER 3. ALGEBRAIC CURVES

is a group isomorphism with well-defined inverse

Pic0(E) → E"X
P∈E

nP (P)

#
7→

X
P∈E

nPP .

Of course, the structure of Pic0(C) can be as rich as an elliptic curve, but could also be quite

trivial in some cases.

Example 3.91 As we saw in example 3.75 , all divisors of degree zero on P1 are principal.
Hence, Pic0

¡
P1
¢
is the trivial group with only one element.

3.4.3 The Jacobian

So far, we know that we can start with a smooth curve C (for which the set of points does not

necessarily form a group) and build the group Pic0(C). We can however go one step further as

it turns out that Pic0(C) is naturally isomorphic to an abelian variety.

Theorem 3.92 Let C be a smooth algebraic curve of genus g defined over an algebraically

closed field. Then, there exists an abelian variety J(C) of dimension g and an isomorphism of

groups

ϕ : Pic0(C)→ J(C).

The variety J(C) is called the Jacobian of C.

The proof of this result can be found in [Sil94, Proposition III.2.6]. For a more complete

treatment, please refer to [Wei48]. As well, take note that an explicit construction of the

Jacobians of hyperelliptic curves is given in Mumford’s Tata lectures on Theta II [Mum84,

Chapter IIIa].

For cryptographic applications, we of course do not work in all of J = J(C), but in a finite

subgroup. If C is defined over a perfect field K, then we can consider the subset of J whose

elements are of the form ϕ ([D]), where D is a divisor defined over K (that is, Dσ = D for every

σ ∈ Gal
¡
K/K

¢
). When C is understood, we often denote this set by J (K) and we have that

J (K) is a subgroup of J . Lastly, the elements of J (K) are called the K-points of J . More

details can be found in [CF05, Section 4.4.4].

Having a structure of an abelian variety to work with is certainly an attractive feature for

cryptographic applications. However, it could just be as interesting to consider a wider family

of algebraic varieties. For instance, an algebraic group is, loosely speaking, a variety (affine or

3.4. THE PICARD GROUP 95

projective) that is also a good old group and for which the addition and inverse maps are also

morphisms. As a result, the cryptographic potential of commutative algebraic groups are worth

exploring.

Definition 3.93 Let G be an algebraic variety. Suppose that G is also a group with identity

O ∈ G and that the addition law ⊕ : G×G→ G and inverse map ª : G→ G are morphisms.

Then, (G,O,⊕,ª) is said to be an algebraic group, or a group variety. Also, G is said to be a

commutative algebraic group if the underlying group is abelian.

For instance, elliptic curves are commutative algebraic groups. Two other fundamental

examples of commutative algebraic groups are the additive group

Ga ∼= A1

and the multiplicative group

Gm ∼=
©
x ∈ A1

¯̄
x 6= 0

ª
,

which will be at the forefront of the explicit cryptosystem that we will construct in Chapter 5.

More generally, as we will shortly see, generalized Jacobians are commutative algebraic

groups that are not, in general, abelian varieties. À propos, we can now say that we have the

appropriate background needed to explore the cryptographic potential of generalized Jacobians,

which is the object of next chapter.

96 CHAPTER 3. ALGEBRAIC CURVES

Chapter 4

Generalized Jacobians and
Cryptography

“What makes discrete log based cryptosystems work
is that they are based on the mathematics of algebraic groups.
An algebraic group is both a group and an algebraic variety.
The group structure allows you to multiply and exponentiate.

The variety structure allows you to express all elements
and operations in terms of polynomials, and therefore

in a form that can be efficiently handled by a computer.”

- Rubin & Silverberg

This chapter aims at introducing generalized Jacobians in the context of cryptography. Sur-

prisingly, in order to use these structures in practice, only a minimum of results from this theory

are needed. This will allow us to quickly focus on concrete applications (and hopefully not

get lost in technical details). This will indeed be possible since the underlying ideas behind

the construction of both (ordinary) Jacobians and generalized Jacobians truly are the same.

Namely,

1. Start with your favorite algebraic curve
2. Consider its divisors of degree zero
3. (Cleverly) define an equivalence relation on them
4. Find a canonical representative for each class

The first two steps are identical in both approaches. Now, for generalized Jacobians, a new

equivalence relation needs to be defined. This crucial step will ensure the very existence of the

commutative algebraic groups we are looking for: the generalized Jacobians.

97

98 CHAPTER 4. GENERALIZED JACOBIANS AND CRYPTOGRAPHY

Francesco Severi was the first to explicitly mention generalized Jacobians in his work ‘Fun-

zioni quasi abeliane’ of 1947 [Sev47, Chapter II], where an extensive bibliography can also be

found. His treatment was however limited to the case where the base field was the field of com-

plex numbers. In 1950, Maxwell Rosenlicht had just completed his thesis ‘Equivalence Concepts

on an Algebraic Curve’ under the supervision of Oscar Zariski at Harvard. His dissertation

contained the construction and properties of generalized Jacobians in the most global setting.

His trilogy of articles [Ros52, Ros54, Ros75] published in the Annals of Mathematics contains

the essential of the results on generalized Jacobians. Another excellent reference is ‘Groupes

algébriques et corps de classes’ [Ser75] of Jean-Pierre Serre, which provides the necessary back-

ground on algebraic curves as well1 .

Throughout this chapter, and in order to avoid confusion, the term Jacobian alone will

denote the ‘usual’ Jacobian as defined in the last chapter (see Section 3.4.3), whereas the qualifier

‘generalized’ will always be explicitely employed when referring to generalized Jacobians. Finally,

most of our notation concerning generalized Jacobians will follow Serre’s exposition [Ser88,

Chapter V].

4.1 Motivation

We here wish to give a flavor as to ‘why’ generalized Jacobians are worth considering for cryp-

tographic applications. The following observations, half rigourous, half heuristic, have in fact

been the motivation behind our research on this subject. It is hoped that sharing these first

ideas right from the start will highlight the cryptographic potential of these structures.

In what follows, let C be a curve defined over a finite field Fq. As usual, let J denote its
Jacobian variety and J(Fq) be the finite subgroup consisting of the Fq-points of J . We will also
assume that we chose C such that the discrete logarithm problem in J(Fq) is believed to be
intractable (so we might think of C as being a carefully chosen elliptic or hyperelliptic curve,

for example).

As its name suggests, generalized Jacobians will be defined in such a way that the usual

Jacobian will be subsumed under the new concept. A natural way to proceed is to modify

the equivalence relation on the divisors of C such that it coincides with linear equivalence in

some specific cases. Since we need the new equivalence classes to form a group (with operation

induced from the formal addition of divisors), it will also be required that the set of divisors

1For those uncomfortable with la langue de Molière, an english translation [Ser88] is also available.

4.1. MOTIVATION 99

equivalent to the zero divisor 0 forms a subgroup. More precisely, the new equivalence relation,

called m-equivalence2, will enjoy the following property:

If two divisors are m-equivalent, then they are linearly equivalent as well. (4.1)

This implies that each m-equivalence class will be a subdivision of an original divisor class. In

the following schematic representation of a Jacobian versus a generalized Jacobian, the bold

lines represent the divisor classes under linear equivalence while the thin lines show the subdivi-

sions obtained when considering m-equivalence classes. We are therefore in the presence of the

following ‘before-and-after’ makeover:

Usual Jacobian Generalized Jacobian

Linear equivalence:

D ∼ D0 iff ∃f ∈ K(C)∗ such that
D −D0 = div(f)

m-equivalence:
D ∼m D0 iff D ∼ D0, plus a condition

to be determined

Figure 4.1: Similarities between usual and generalized Jacobians

The idea of having these two equivalence relations, one being a ‘refinement’ of the other, is

somehow like the task of delivering mail on a street with appartment buildings. At a higher level,

we can view all individuals living in one building as ‘sharing the same class’, while at a smaller

scale, we could just as well define new classes according to the occupants of each appartment.

And just like with condition (4.1), the persons sharing the same appartment must also live in

2To be completely rigorous, we should state that m-equivalence will be defined on divisors having disjoint
support with m. The complete details will be given when we formally define m-equivalence in Section 4.2.

100 CHAPTER 4. GENERALIZED JACOBIANS AND CRYPTOGRAPHY

the same building. Following this analogy, notice that we already know how to provide a unique

street address to each building and it thus remains to determine how to systematically attach

an appartment number to each subdivision.

The plan is now to see how requirement (4.1) alone already gives us a feeling of the cryp-

tographic properties of generalized Jacobians. In fact, regardless of the precise definition of

m-equivalence, it is immediately possible to deduce some interesting arithmetic properties of

these algebraic groups. The following observations will of course often rely on our prior knowl-

edge about the Jacobian.

REPRESENTATION OF ELEMENTS. In order to identify a m-equivalence class, it suf-

fices to specify a divisor class modulo linear equivalence together with an extra piece of infor-

mation that will uniquely identify in which subdivision it lies. We can then see an element of

the generalized Jacobian as a pair, where the first component is an element of the Jacobian and

the second is a label that specifies the subdivision.

GROUP LAW.We now turn our attention to the group law algorithm, since it is at the heart

of any cryptographic application using a group structure. We claim that the group operation on

the generalized Jacobian will carry all the information needed to perform the addition on the

Jacobian. In other words, suppose that we completely forgot how to add two elements P and Q

of J but somehow managed to remember the group operation on the generalized Jacobian Jm.

From the construction of the Jacobian, we know that P and Q respectively correspond to divisor

classes (under linear equivalence) with representative DP and DQ, say. We could then use the

group law on the generalized Jacobian to compute a divisor DR such that DP +DQ ∼m DR.

Figure 4.2: Group law on a generalized Jacobian

4.1. MOTIVATION 101

By (4.1), this implies thatDP+DQ ∼ DR as well and so the last step is to recover the element
R of J corresponding to the equivalence class (modulo linear equivalence) of DR. Finally, we

get that P + Q = R, as wanted. Hence, it follows that the group law on the Jacobian can be

inferred from the one of the generalized Jacobian. Of course, we are not making any affirmation

concerning the efficiency of this reduction. What really matters here is that if we start with a

(cryptographically) rich addition on J , it would be surprising to end up with a useless addition

on Jm (a more precise affirmation will be made later). The above remarks also tells us that we

should expect the cost of the explicit group law on Jm to be at least as high as the one on J .

The gap in efficiency between these two group laws will inevitably depend on ‘how much effort’

is required to determine in which subdivision (i.e. m-equivalence class) a given divisor lies.

GROUP ORDER & POINT COUNTING. Let Jm(Fq) denote the subset of Jm formed by
m-equivalence classes whose divisors are Fq-points. Since J(Fq) is a group, then so is Jm(Fq).
Moreover, if we assume that the number s of m-equivalence classes within one divisor class

(under linear equivalence) is finite, then #Jm(Fq) = s · #J(Fq) will be finite as well. We

therefore officially designate Jm(Fq) as our chosen candidate for a new group potentially suitable
for cryptographic applications. Notice that the order of Jm(Fq) will in general be a composite
number. So in practice, we will want s or #J(Fq) to possess at least one large prime factor in
order to thwart the Pohlig-Hellman attack (see Section 2.7.1) on discrete logarithms of Jm(Fq). In
addition, suppose that we choose the curve C such that#J(Fq) can be determined in polynomial-
time. Then, the cardinality of Jm(Fq) can be efficiently computed if and only if s can be efficiently
determined as well.

ORDER OF ELEMENTS AND GENERATORS. The obvious statement is that by La-

grange’s theorem, the order of an element of Jm(Fq) must divide s ·#J(Fq). We can however go
one step further. Let A ∈ Jm(Fq), D be a representative of the m-equivalence class associated

to A and let P ∈ J(Fq) be the element corresponding to the linear divisor class of D. Denote
by l the order of P in J(Fq). Then, requirement (4.1) implies that the order of A has to be a
multiple of l. Moreover, if A is a generator of Jm(Fq), then P will have no choice but to generate
all of J(Fq).

DISCRETE LOGARITHMS. We saw that the group laws on J(Fq) and on Jm(Fq) are
closely related, and so that raises the possibility that their discrete logarithms could be linked

as well. Here is a heuristic argument in the case where Jm(Fq) is a cyclic group. Recall that we
are working under the hypothesis that the DLP in J(Fq) is computationally infeasible. ‘Can the
DLP on Jm(Fq) be easy?’, should now (hopefully) be on everybody’s lips. So let’s assume that it
is and see what happens. First, let A be a generator of Jm(Fq) and let D, P , and l be as above.

102 CHAPTER 4. GENERALIZED JACOBIANS AND CRYPTOGRAPHY

As mentioned earlier, P will generate J(Fq) so we can try to solve an instance Q = kP of the

discrete logarithm in J(Fq). Let DQ be a representative of the class (modulo linear equivalence)
associated to Q. So in particular, we have that

kD = D +D + ...+D| {z }
k times

∼ DQ.

Moreover, all sums of the form (k+ nl)D, where n is a non-negative integer, will be linearly

equivalent to DQ as well. Hence, among them, there will be a (smallest) n0 such that (k +

n0l)D ∼m DQ since A was a generator of Jm(Fq)). See Figure 4.3 for a tiny example with l = 7,
k = 5 and n0 = 2.

Figure 4.3: Illustrative example with l = 7, k = 5 and n0 = 2

Now if we let B ∈ Jm(Fq) be the element corresponding to the m-equivalence class of DQ,
it follows that B = (k + n0l)A. Under our assumption that the DLP in Jm(Fq) is easy, we can
therefore recover (with non-negligible probability) logAB

def
= k + n0l. Finally, we obtain the

really neat relation

logP Q = (logAB)mod l. (4.2)

That of course contradicts our first assumption that the discrete logarithm problem in J(Fq)
was computationnaly infeasible. The moral of the story is that we should expect the discrete

logarithm problem in Jm(Fq) to be at least as hard as the one on J(Fq). So when trying to
construct a Jm(Fq) suitable for cryptographic applications, we should therefore start with a
curve C for which the DLP in J(Fq) is believed to be intractable. And to do so, nearly twenty
years of research in this direction will be available for us to use.

4.2. EQUIVALENCE RELATION INDUCED FROM A MODULUS 103

4.2 Equivalence relation induced from a modulus

Now finally comes the time to explicitely define the m-equivalence relation which is the key

ingredient in the construction of generalized Jacobians. As outlined in the previous section, our

strategy will be to first work over an arbitrary algebraically closed field (having of course Fq
in mind) in order to get acquainted with the generalized Jacobian, and right before we jump

into the applications, we will simply specify a finite subgroup (where all computations can be

performed over Fq) to work with.
So let K be an algebraically closed field and C be a smooth algebraic curve defined over K.

Recall that we aim at ‘refining’ linear equivalence in such a way that the new equivalence classes

will be subdivisions of the originals. If we let D =
P
P∈C nP (P), D

0 =
P
P∈C n

0
P (P) ∈ Div0(C)

be given such that D is linearly equivalent to D0, then there is a nonzero rational function f in

the function field K(C) of C satisfying div(f) = D −D0. That is,X
P∈C

ordP (f)(P) =
X
P∈C

(nP − n0P)(P),

which can also be expressed as

ordP (f) = nP − n0P for all P ∈ C.

The whole idea behind these equivalence relations is to somehow ‘measure’ how much D differs

from D0. A possible additional criterion would be to consider a specific point M ∈ C and check
whether nM = n0M . If it is the case, then ordM (f) = 0 and so f is defined and nonzero atM . We

are thus led to consider the value of f(M). But since f is determined up to multiplication by a

nonzero constant (c.f. Section 3.3.3 on page 84), we can then assume without loss of generality

that we chose f such that f(M) = 1. That will now ensure that our function f is uniquely

determined. So now we can consider a second point N ∈ C distinct from M and wonder if

nN = n0N . In the affirmative, compute f(N) for the record. And we could continue just the

same with more points if we please. So let P0 :=M , P1 := N , P2, ..., Pr be the chosen distinct

points of C where we want to require that nPi = n0Pi (0 ≤ i ≤ r). We could then define a

tentative relation ‘∼̇’ as follows:

D∼̇D0 iff D ∼ D0 and nPi = n
0
Pi for 0 ≤ i ≤ r.

This is clearly an equivalence relation on Div0(C). Notice that it can also be rephrased as

D∼̇D0 iff ∃f ∈ K(C)∗ such that div(f) = D −D0 and ordPi(f) = 0 for 0 ≤ i ≤ r.

104 CHAPTER 4. GENERALIZED JACOBIANS AND CRYPTOGRAPHY

However, that relation merely takes care of ensuring that f(Pi) is defined and nonzero. But once

this verification is done, why not taking advantage of the value of f(Pi)? So suppose that we

have computed the values f(P0), f(P1), ..., f(Pr) and wish to compare them somehow. Since

we want to end up with an equivalence relation, the safest bet is to work with equalities. We

could then look for divisors satisfying

1 = f(P0) = f(P1) = ... = f(Pr) (4.3)

(recall that f was chosen such that 1 = f(M) and that P0 :=M). This condition certainly is a

much stronger requirement than before, as illustrated in Figure 4.4.

Figure 4.4: A stronger requirement on the function f

Notice that we can express condition (4.3) in a slightly different form which will be directly

related to divisors of functions, as condition f(Pi) = 1 is equivalent to ordPi(1 − f) ≥ 1. We
can therefore write down our second candidate:

D∼̈D0 iff ∃f ∈ K(C)∗ such that div(f) = D −D0 and ordPi(1− f) ≥ 1 for each Pi ∈ S,
where S = {P0, P1, . . . , Pr} .

It is once again a simple matter to check that this indeed defines an equivalence relation. There

is yet another modification that might be interesting. Indeed, the condition ordPi(1 − f) ≥ 1
says that 1− f has a zero at Pi, but the order of this zero is not specified at all. Hence, for an

4.2. EQUIVALENCE RELATION INDUCED FROM A MODULUS 105

integer mi ≥ 1, we could impose the stricter condition that ordPi(1 − f) ≥ mi if we want. So

given positive integers m0, m1, ..., mr, we can consider the following relation:

D
···∼ D0 iff ∃f ∈ K(C)∗ such that div(f) = D −D0 and ordPi(1− f) ≥ mi for each Pi ∈ S.

(4.4)

This relation is reflexive becauseD−D = div(1) and ordPi(0) =∞ by convention (see Definition

3.67).

It is symmetric as well, for if D ···∼ D0 with D −D0 = div(f), then D0 −D = div(1/f) and

ordPi

µ
1− 1

f

¶
= ordPi

µ
−1− f

f

¶
= ordPi(1− f)− ordPi(f)| {z }

=0

≥ mi.

Finally, it is transitive since if D ···∼ D0 and D0 ···∼ D00 with D−D0 = div(f) and D0−D00 = div(g),

then D −D00 = div(fg) and we have that

ordPi (1− fg) = ordPi ((1− f) + (1− g)− (1− f)(1− g))

≥ min
³
ordPi ((1− f) + (1− g))| {z }

≥mi

, ordPi ((1− f)(1− g))| {z }
≥2mi

´
≥ mi.

We have therefore convinced ourselves through this little exercise that (4.4) is an equivalence

relation.

We now take the time to simplify the notations a little. Since we need to specify each point

Pi together with an associated positive integers mi, a compact way to do so would be to write

it as the effective divisor

m =
rX
i=0

mi(Pi).

It is also a standard notation to write f ≡ 1modm as a shorthand for the requirement ordPi(1−
f) ≥ mi for each Pi ∈ S. For this reason, it is customary to call m a modulus supported on

Sm = {P0, P1, ..., Pr}.
We also want to point out that if a divisor D is such that D ···∼ 0, then D = div(f) =P
P∈C ordP (f)(P) where ordPi(f) = 0 for 1 ≤ i ≤ r. That is, supp(D) is disjoint from Sm.

Consequently, it will be convenient to define our equivalence relation (only) on the set of divisors

having support disjoint from Sm. We are finally ready to rewrite (4.4) with the new terminology

and to formally define m-equivalence.

106 CHAPTER 4. GENERALIZED JACOBIANS AND CRYPTOGRAPHY

Definition 4.1 Let m be an effective divisor supported on Sm and let D and D0 be two divisors

prime to Sm. We say that D and D0 are m-equivalent, and write D ∼m D0 if

∃f ∈ K(C)∗ such that div(f) = D −D0 and f ≡ 1modm.

As promised in Section 4.1, this definition readily implies property (4.1), which said that ‘If

two divisors are m-equivalent, then they are linearly equivalent as well’. Since this is such an

important property for us, we now grant it the status it deserves.

Lemma 4.2 Let D and D0 be two divisors prime to Sm. If D ∼m D0, then D ∼ D0 as well.

If we denote by [D] (respectively [D]m) the class of D under linear equivalence (respectively

m-equivalence), then the above fact implies that [D]m ⊆ [D], as wanted. We were therefore right
when we claimed that ‘each m-equivalence class is a subdivision of an original divisor class’.

4.3 Generalized Jacobian Varieties

We here keep the conventions and notations of the previous section and we begin by introducing

a few more definitions in order to be able to easily work with m-equivalence. So let Divm(C) be

the subgroup of Div(C) formed by all divisors of C which are prime to Sm. Let also Div
0
m(C)

be the subgroup of Divm(C) composed of divisors of degree zero. Moreover, let Princm(C) be

the subset of principal divisors which are m-equivalent to the zero divisor. In other words,

Princm(C) = [0]m = {div(f) |f ∈ K(C)∗ and f ≡ 1modm}.
Since we want to show that the set of m-equivalence classes is indeed a group, the first step

will be to show that Princm(C) is a subgroup of Div
0
m(C). This is a formality. First notice that

0 ∈ Princm(C) by definition and that Princm(C) ⊆ Div0m(C) since all principal divisors have
degree zero (c.f. Proposition 3.72). Now let D ∼m 0 be given. By symmetry, 0 ∼m D as well

so there is a f ∈ K(C)∗ such that 0−D = div(f) and f ≡ 1modm. Thus, (−D)− 0 = div(f),
which shows that −D ∼m 0. Lastly, let D and D0 be two divisors prime to Sm such that D ∼m 0
and D0 ∼m 0. By the above argument −D0 ∼m 0, and so 0 ∼m −D0 (by symmetry). Then,

D ∼m 0 and 0 ∼m −D0 implies D ∼m −D0 (by transitivity). There is thus a f ∈ K(C)∗ such
that div(f) = D+D0 and f ≡ 1modm. It then follows that D+D0 ∼m 0, as wanted. We have
thus completed our homework and verified that Princm(C) is indeed a subgroup of Div

0
m(C).

We will therefore consider the quotient group Div0m(C)/Princm(C), which will be denoted

by Pic 0m(C). We are therefore in possession of an abelian group whose elements are the m-

equivalence classes. We are now crossing our fingers and hoping that there exists an algebraic

group isomorphic to Pic 0m(C).

4.3. GENERALIZED JACOBIAN VARIETIES 107

As pointed out in the introduction, this reasoning is in fact similar to the case of the (usual)

Jacobian J , which was treated in ‘Variétés abéliennes et courbes algébriques’ (i.e. Abelian

varieties and algebraic curves) [Wei48] by André Weil3 . Recall that the Jacobian of C is an

abelian variety of dimension equal to the genus of C (c.f. Theorem 3.92). It is therefore

a complete algebraic variety. However, the generalized Jacobians won’t in general enjoy this

property. Maxwell Rosenlicht [Ros54, p.515] summarizes the situation as follows:

“We proceed to construct a generalized Jacobian variety (...). The method is the same

as that used by Weil to construct the ordinary Jacobian variety of C, but unfortu-

nately the noncompleteness of our generalized Jacobians will considerably complicate

the steps used in [Wei48], and that proof cannot be taken over verbatim to the present

case.”

Regrettably, it would therefore be much too involving to reproduce his construction here.

We will instead have to be satisfied with an outline of the technique used. But before we do

so, we of course state the existence theorem whose complete proof can be found in the original

article of Rosenlicht [Ros54] as well as in [Ser88, Chapter V, in particular Prop. 2 and Thm

1(b)].

Theorem 4.3 Let K be an algebraically closed field and C be a smooth algebraic curve of genus

g defined over K. Then for every modulus m, there exists a commutative algebraic group Jm

isomorphic to the group Pic 0m(C).The dimension π of Jm is given by

π =

½
g if m = 0,
g + deg(m)− 1 otherwise.

(4.5)

We can finally present the definition of a generalized Jacobian:

Definition 4.4 The algebraic group Jm is called the generalized Jacobian of the curve C with

respect to the modulus m.

As announced, we now outline the main steps of the proof4 in a quick summary, which follows

the terminology and conventions of ‘Foundations of Algebraic Geometry’ of Weil [Wei46]. The

main idea is to employ the method of generic points in order to first build a birational group Y

defined over K, and then apply a result of Weil yielding the existence and uniqueness of a true

algebraic group birationnaly isomorphic to Y (over K). The birational group Y is obtained by

3An amusing fact: Émile Picard was the co-advisor of André Weil during his studies at the Université de
Paris in the 1920s.

4Please take note that the ideas behind this proof are not needed for the sequel.

108 CHAPTER 4. GENERALIZED JACOBIANS AND CRYPTOGRAPHY

endowing the π-fold symmetric product C(π) of C with a commutative rational composition law

~ : Y ×Y → Y defined over K, where π is the arithmetic (or virtual) genus of the singular curve

Cm defined by m [Ser88, Chapter IV, Section 4]. Finally, the theorem of Weil [Wei48, Wei55]

ensures the existence of an algebraic group Jm together with a birational map Φ : C(π) → Jm

defined over K satisfying Φ(P) + Φ(Q) = Φ(P ~ Q), where P and Q are independent generic

points of C(π).

If we now go back to very basic properties of generalized Jacobians, notice that there are

many Jm associated to a fixed curve C, one for each choice of modulus m in fact. This contrasts

with the (usual) Jacobian which is uniquely determined from C. And of course, it might happen

that two generalized Jacobians Jm and Jm0 be isomorphic as abelian groups even if m 6= m0. The
large quantity of generalized Jacobians we can choose from certainly is a potential advantage for

cryptographic applications since generating a suitable curve seems a priori much harder than

selecting (random) points for the modulus.5

4.3.1 Link Between Ordinary and Generalized Jacobians

We now want to establish the existence of a canonical surjective homomorphism from Jm to J ,

which can then be used to compare various properties of these two groups. First recall that by

Theorem 3.92, there is a natural group isomorphism ϕ between J and the group Pic 0(C) of

divisors of degree zero modulo linear equivalence:

ϕ : Pic 0(C)
∼→ J (4.6)

By Lemma 4.2, we also know that for a divisor D prime to Sm, we have [D]m ⊆ [D]. Hence,
there is a surjective homomorphism σ from Pic 0m(C) to Pic

0(C) that sends [D]m to the divisor

class [D]:

σ : Pic 0m(C) ³ Pic 0(C)
[D]m 7→ [D]

(4.7)

Futhermore, Theorem 4.3 implied the existence of a group isomorphism ψ between Pic 0m(C)

and the generalized Jacobian Jm:

ψ : Pic 0m(C)
∼→ Jm (4.8)

5Of course, this remark only concerns algebraic curves suitable for public-key cryptography, such as elliptic
and hyperelliptic curves.

4.3. GENERALIZED JACOBIAN VARIETIES 109

The following diagram can therefore be obtained by combining (4.6), (4.7), and (4.8):

Pic 0m(C)
ψ−→ Jm

σ

⏐⏐y
Pic 0(C)

ϕ−→ J

As a result, there is a surjective homomorphism τ := ϕ ◦ σ ◦ ψ−1 from Jm to J :

τ : Jm ³ J .

If the map τ and its inverse can be efficiently computed, then it can be used for instance to

‘transport’ the group law on Jm to the one on J , as put forward in Section 4.1. Indeed, given P

and Q in J , their sum can be computed as follows. Since τ is onto, first find any A and B in

Jm such that τ(A) = P and τ(B) = Q. Then add A and B using the known group operation on

Jm to obtain the element C. Then, τ(C) is the sum of P and Q as

τ(C) = τ(A+B) = τ(A) + τ(B) = P +Q.

Notice that this is well-defined since for any choice A0 and B0 satisfying τ(A0) = P and τ(B0) = Q

and such that A0 +B0 = C0, we will have

τ(C 0) = τ(A0 +B0) = τ(A0) + τ(B0) = τ(A) + τ(B) = τ(A+B) = τ(C).

An interesting object of study certainly is the kernel Lm of the map τ since it it might give

us information about the structure of Jm.

4.3.2 Fundamental Exact Sequence

First notice that since τ is a homomorphism, then Lm is a subgroup of Jm. We can then consider

the following short exact sequence (of abelian groups):

0 −→ Lm
i n c lu s io n−→ Jm

τ−→ J −→ 0

Therefore,

The generalized Jacobian Jm is an extension of the usual Jacobian J by Lm.

Evidently, the direct product Lm × J whose group law is given by (k1, P1) + (k2, P2) =

(k1k2, P1 + P2) can be seen as a trivial extension of J by Lm as it satisfies the exact sequence:

0 −→ Lm
ι−→ Lm × J

ρ−→ J −→ 0,

110 CHAPTER 4. GENERALIZED JACOBIANS AND CRYPTOGRAPHY

where ι(k) = (k, 0) and ρ(k, P) = P . Notice that this direct product is not really interesting

from a cryptographic point of view since

n(k, P)
def
=(k, P) + (k, P) + ...+ (k, P)| {z }

n times

= (kn, nP),

and therefore offers no cryptographic advantage over the cartesian product of Lm with J . It

would therefore be really convenient to know at this point under which circumstances can Jm

become a direct product. Luckily, as we are about to see, this almost never happens and there

is moreover a really simple criterion to fulfill in order to avoid this degenerate case. The answer

once again resides in a theorem of Rosenlicht, whose proof concludes the article ‘Generalized

Jacobian Varieties’ [Ros54, Thm 13]:

Theorem 4.5 (Rosenlicht) Let C be a smooth algebraic curve defined over an algebraically

closed field, J be the Jacobian of C and Jm be the generalized Jacobian of C with respect to a

modulus m. If the genus g of C and the dimension π of Jm satisfy

0 < g < π, (4.9)

then there exists no regular cross section for the natural homomorphism τ : Jm ³ J.

Recall that a regular cross section for τ is an everywhere defined rational map τ̃ : J → Jm

such that τ ◦ τ̃ is the identity on J :
Jm

τ̃
¿
τ
J .

But if we consider the direct product Lm × J , there is an obvious cross section ρ̃ : J → Lm × J
given by ρ̃(P) = (1, P) since

ρ̃(P +Q) = (1, P +Q) = (1, P) + (1, Q) = ρ̃(P) + ρ̃(Q).

Therefore, requirement (4.5) suffices to guarantee that Jm is not the direct product Lm×J . And
since the dimension of Jm is given by (4.5), it follows that g < π is equivalent to deg(m) ≥ 2.
These observations can now be stated formally:

Corollary 4.6 Let C be a smooth algebraic curve of genus g defined over an algebraically

closed field and Jm be the generalized Jacobian of C with respect to a modulus m. If g ≥ 1 and
deg(m) ≥ 2, then Jm is not a trivial direct product.

This amazingly simple statement suggests to consider the case where the two lower bounds

g = 1 and deg(m) = 2 are simultaneously reached. For this reason, the generalized Jacobians

of an elliptic curve with respect to a modulus m = (M) + (N), where M 6= N , is the family of
groups we chose to study and put forward for cryptographic applications in Chapter 5.

4.4. GROUP EXTENSIONS 111

4.4 Group Extensions

Since Jm is an extension of J by Lm, it is possible to say a little bit more concerning the

representation of the elements of Jm as well as its group operation. Indeed, from the theory

of group extensions which can be found in [HS71, Chapter III] and [Wei69, Chapter 5], the

following classical results are available6.

Theorem 4.7 Let (G,+) be a group and (A, ·) be a commutative group. Let also

1 −→ A
i−→ G

p−→ G −→ 0 (4.10)

be a short exact sequence defining the group extension G of G by A. Denote by ⊕ the group

operation on G. Then,

1. Let s : G → G be a (set-theoretic) section for p (that is, p ◦ s is the identity on G but s

doesn’t have to be a group homomorphism). Then the map

A×G −→ G

(a,σ) 7−→ a⊕ s(σ)

is a bijection of sets. Hence, each element of G can be unequivocally represented as a pair

(a,σ), where a ∈ A and σ ∈ G.

2. There is a well-defined natural action of G on A given by

A×G −→ A

(a,σ) 7−→ aσ := x⊕ aª x,

where x is any element of G satisfying p(x) = σ and Äx denotes the inverse of x in G.

3. In fact, the group operation ⊕ : G×G→ G can be expressed in terms of this action:

(a,σ)⊕ (b, τ) = (a · bσ · c(σ, τ),σ + τ) , (4.11)

where c : G×G→ A must satisfy the following condition (since the group operation ⊕ is
associative):

c(σ, τ) · c(σ + τ , ρ) = c(τ , ρ)σ · c(σ, τ + ρ). (4.12)

A function c satisfying (4.12) is called a 2-cocycle on G with values in A, and the set of

all such cocycles is denoted Z2(G,A).
6Remark that in order to be consistent with the litterature, we chose here to follow (for the most part) the

usual notation for group extensions (for example, greek letters no longer represent functions, but rather elements
of a group G). The main exception to the rule being that we will use the multiplicative (respectively additive)
notation for the group A (respectively G) in order to be coherent with the concrete applications we have in mind.

112 CHAPTER 4. GENERALIZED JACOBIANS AND CRYPTOGRAPHY

4. Finally, c can be written in terms of s as

c(σ, τ) = s(σ)⊕ s(τ)Ä s(σ + τ).

Despite this detailed and cumbersome notation, equation (4.11) really stands out. Indeed,

the sharp eye of the cryptographer will probably have noticed right from the start that

n(a,σ) := (a,σ)⊕ (a,σ)⊕ ...⊕ (a,σ)| {z }
n times

= (∗, nσ) (4.13)

implies that the discrete logarithm problem on G and G are related. Before we can say more,

we need to derive a few more (easy) properties of G. First remark that taking τ = ρ = 0 in

(4.12) yields the pretty identity

c(0, 0)σ = c(σ, 0). (4.14)

It is also a routine exercise to verify that the identity element7 of G is 0Ḡ := (c(0, 0)
−1, 0)

and that the inverse of an element (a,σ) ∈ G is given by:³¡
a−σ · c(−σ,σ) · c(0, 0)

¢−1
,−σ

´
.

We then have that n(a,σ) = 0G implies nσ = 0, from which follows that

The order of σ divides the order of (a,σ),

assuming that (a,σ) has finite order.

Remark 4.8 Take note that these basic properties will be used in Chapter 5 when we derive

an explicit group law algorithm for a specific generalized Jacobian of an elliptic curve.

4.5 The Algebraic Group Lm

We have seen so far that the generalized Jacobian Jm, with respect to m =
P
P∈CmP (P) of

support Sm, is an extension of the usual Jacobian J by Lm, the kernel of τ : Jm ³ J . It then

followed that the elements of Jm could be seen as pairs (k, P), where k ∈ Lm and P ∈ J . Using
this representation, the group law on Jm could be expressed in terms of the group laws on Lm

and on J , and also involved a 2-cocycle on J with values in Lm. In addition, we already know

efficient algorithms to compute in the Jacobian of a suitably chosen curves, such as an elliptic

or an hyperelliptic curve. And at last, we now turn our attention to the mysterious group Lm.

7Notice that the identity of G is not necessarily (1, 0), as one might first suspect.

4.5. THE ALGEBRAIC GROUP LM 113

Recall that the map τ : Jm ³ J was defined to be the composition ϕ ◦ σ ◦ ψ−1, where both
ϕ and ψ are isomorphisms:

Jm
ψ−1−→ Pic 0m(C)

σ−→ Pic 0(C)
ϕ−→ J .

Consequently, Lm is isomorphic to ker(σ), where σ simply sent the m-equivalence class [D]m of

a divisor D to its divisor class [D] under linear equivalence. Hence, σ([D]m) = [0] if and only if

D is a principal divisor prime to Sm. That is, there is a f ∈ K(C)∗ such that D = div(f) and

ordP (f) = 0 for each P ∈ Sm. Notice that this latter condition means that f is a unit (i.e. is
invertible) at every point of Sm. We therefore know that

[D]m ∈ ker(σ) iff ∃f ∈ K(C)∗ such that D = div(f) and f is invertible at each P ∈ Sm.

We would then like to have a representative for each m-equivalence class comprised of prin-

cipal divisors. Notice that since div(f) determines f up to a (nonzero) constant factor, then we

can just as well express a representative as a function.

Recall that Pic 0m(C) = Div 0m(C)/Princm(C), where Princm(C) = {div(f)|f ∈ K(C)∗ and
f ≡ 1modm}. Therefore, two divisors will be m-equivalent if and only if they differ by an
element of Princm(C). Let now f be any representative of the class [div(f)]m. So any given

element of this class can be expressed as div(f · h), for some h ≡ 1modm.
Fix a point P ∈ Sm and let t be a uniformizer for C at P [Sil86, p.22] (that is, an element

of K(C) satisfying ordP (t) = 1). Since h satisfies ordP (h− 1) ≥ mP , then h − 1 has a zero of
order at least mP at P . Thus, h can be expressed as the formal series

h− 1 = amP t
mP + amP+1t

mP+1 + amP+2t
mP+2 +

Hence,

f · h = f + f · (amP t
mP + amP+1t

mP+1 + amP+2t
mP+2 + ...),

where deg (f · (h− 1)) ≥ mP since ordP (f) = 0. Thus, we may assume without loss of generality

that f has the form f = a0 + a1t + ... + amP−1t
mP−1, where a0 6= 0. It will however be more

convenient to write f as

f = a0 · (1 + a01t+ ...+ a0mP−1t
mP−1), where a0 6= 0.

For example, if mP = 1, each representative consist of a nonzero constant and we therefore

recover a copy of the multiplicative group Gm. When mP = 2,

[div (a(1 + bt))]m + [div (c(1 + dt))]m = [div (ac (1 + (b+ d) t))]m ,

114 CHAPTER 4. GENERALIZED JACOBIANS AND CRYPTOGRAPHY

and so a copy of both Gm and Ga are involved. In general, notice that if

f1 = b0 ·
¡
1 + b1t+ ...+ bmP−1t

mP−1¢ and f2 = c0 · ¡1 + c1t+ ...+ cmP−1t
mP−1¢ ,

then the desired representative for [div(f1f2)]m can just as well be computed via the following

matrix multiplication:⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 b1 b2 b3 . . . bm
P
−1

0 1 b1 b2 . . . bm
P
−2

0 0 1 b1 . . . bm
P
−3

0 0 0 1 . . . bm
P
−4

...
...

...
...

. . .
...

0 0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 c1 c2 c3 . . . cm
P
−1

0 1 c1 c2 . . . cm
P
−2

0 0 1 c1 . . . cm
P
−3

0 0 0 1 . . . cm
P
−4

...
...

...
...

. . .
...

0 0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Of course, the above semi formal discussion concerning Lm is far from providing an actual

proof of the following theorem of Rosenlicht [Ros54], but somehow at least captures the un-

derlying ideas. The complete details can be found in [Ser88], Sections 13 to 17 of Chapter

V.

Theorem 4.9 (Rosenlicht) Let C be a smooth algebraic curve defined over an algebraically

closed field, J be the Jacobian of C and Jm be the generalized Jacobian of C with respect to a

modulus m =
P
P∈CmP (P) of support Sm. Let also Lm be the kernel of the natural homomor-

phism τ from Jm onto J. Then, Lm is an algebraic group isomorphic to the product of a torus

T = (Gm)#Sm−1 by a unipotent group V of the form

V =
Y
P∈Sm

V(m
P
),

where each V(m
P
) is isomorphic to the group of matrices of the form:⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 a2 a3 . . . am
P
−1

0 1 a1 a2 . . . am
P
−2

0 0 1 a1 . . . am
P
−3

0 0 0 1 . . . am
P
−4

...
...

...
...

. . .
...

0 0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Remark 4.10 Notice that since Lm, Jm and J are all algebraic groups, then we can say that

Jm is in fact an extension as algebraic groups of J by Lm. Algebraic group extensions and their

principal properties are discussed in Chapter VII of [Ser88].

4.5. THE ALGEBRAIC GROUP LM 115

If we are in the situation where m = (P0) + (P1) + ... + (Pr) with the Pi’s distinct, then

Lm is isomorphic to a torus T of dimension r. Moreover, since the usual Jacobian of P1 is
trivial (c.f. Section 3.91), it then follows that the generalized Jacobian of P1 with respect
to m will be isomorphic to T . As a result, algebraic tori of any dimension can be seen as

generalized Jacobians. Algebraic tori over a finite field have interesting cryptographic properties,

as demonstrated by Rubin and Silverberg [RS03, RS04a]. We will come back to this in Section

4.6.

The complete opposite situation would be to consider a module of the form m = m(P). Then

the group Lm will be isomorphic to V(m). Observe that the discrete logarithm problem on V(m)
alone is easy since⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 a2 a3 . . . an−1
0 1 a1 a2 . . . an−2
0 0 1 a1 . . . an−3
0 0 0 1 . . . an−4
...

...
...

...
. . .

...
0 0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

n

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 na1 ∗ ∗ . . . ∗
0 1 na1 ∗ . . . ∗
0 0 1 na1 . . . ∗
0 0 0 1 . . . ∗
...

...
...

...
. . .

...
0 0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and therefore n = (na1)a
−1
1 . However, according to (4.11), the group law on the generalized

Jacobian will be given by

(M1, P1) + (M2, P2) = (M1M2 · c(P1, P2), P1 + P2) ,

where M1, M2 ∈ V(m) and P1, P2 ∈ J . We therefore obtain that

n(M,P) = (Mn · μ, nP) ,

where the value of μ equals c(P,P) · c(P, 2P) · . . . · c(P, (n− 1)P). Remark that μ can be seen
as a mask hiding the value of the DL in the unipotent group. Of course in practice the value of

μ can (and should!) be computed differently. But the point here is that μ depends on P and

is independent of M . As a result, if it is computationnaly infeasible to compute μ given P and

n(M,P) (but not n), then the value of Mn will be just as hard to compute (the role of μ here is

to ‘mimic a one-time pad’). Therefore, even if the discrete logarithm problem on Lm is trivial,

it does not necessarily implies that the corresponding problem on the generalized Jacobian will

be easy. This simple example shows that a deeper analysis of the behavior of these ‘masks’,

based on the specific 2-cocycle appearing in the group law algorithm, should be done for the

specific generalized Jacobians that one wishes to use for cryptographic purposes.

116 CHAPTER 4. GENERALIZED JACOBIANS AND CRYPTOGRAPHY

4.5.1 A Concrete (and Easy) Example

Time for some hands-on practice. The goal of the following exercise is to work directly on

divisors, from the definition of m-equivalence alone in order to recover the structure of the

algebraic group Lm introduced in Theorem 4.9. We will work in the simple case where the

curve is the projective line P1 and the modulus is of the form m = (L) + (M) + (N), where

L = (XL : 1), M = (XM : 1), N = (XN : 1) ∈ P1 are distinct points. Of course, it will be
strictly forbidden to cheat and work backwards from the conclusion of the theorem: we should

instead try to forget all we know so far about Lm and let the ‘mathemagic’ operate.

First recall that all degree zero divisors of P1 are principal (see Example 3.75). We are
therefore considering m-equivalence on divisors of the form

D = div(g), where ordL(g) = ordM (g) = ordN (g) = 0.

So let D1 and D2 be two such divisors, with D1 = div(f1) and D2 = div(f2). From the very

definition of m-equivalence, we have that

D1 ∼m D2 iff ∃f ∈ K(P1)∗ such that div(f) = D1 −D2 and f ≡ 1modm,
iff ∃f ∈ K(P1)∗ such that div(f) = D1 −D2 and

ordL(1− f) ≥ 1, ordM (1− f) ≥ 1, ordN (1− f) ≥ 1,

iff ∃f ∈ K(P1)∗ such that div(f) = div
µ
f1
f2

¶
and f(L) = f(M) = f(N) = 1,

iff ∃c ∈ K∗ such that f1(L)
f2(L)

=
f1(M)

f2(M)
=
f1(N)

f2(N)
=
1

c
,

iff
f1(L)

f2(L)
=
f1(M)

f2(M)
=
f1(N)

f2(N)
,

iff
f1(L)

f1(M)
=
f2(L)

f2(M)
and

f1(M)

f1(N)
=
f2(M)

f2(N)
.

It then follows that the map

ψ : Pic 0m(P1) −→ Gm ×Gm

[div(f)]m 7−→
µ
f(L)

f(M)
,
f(M)

f(N)

¶
is well-defined and injective. As for surjectivity, let (a, b) be a given element of Gm × Gm for

which we need to find a function f ∈ K(P1)∗ satisfying

ordL(f) = ordM (f) = ordN (f) = 0,
f(L)

f(M)
= a and

f(M)

f(N)
= b.

To do so, we use the technique underlying the interpolation polynomial of Lagrange8 in order
8To be accurate, we should point out that it was first discovered by Edward Waring in 1779, then rediscovered

by Leonhard Euler in 1783 and finally by Joseph Louis Lagrange in 1795.

4.6. CRYPTOSYSTEMS FALLING IN THE SPECTRUMOFGENERALIZED JACOBIANS117

to set f(X,Y) equal to

a (X −XMY) (X −XNY)
(XL −XM) (XL −XN)Y 2

+
(X −XLY) (X −XNY)
(XM −XL) (XM −XN)Y 2

+
(X −XLY) (X −XMY)

b (XN −XL) (XN −XM)Y 2
.

Then, f(L) = a, f(M) = 1 and f(N) = b−1, which yields that ψ ([div(f)]m) = (a, b), as wanted.

Thus, we have shown that ψ : Pic 0m(P1)→ Gm ×Gm is a well-defined bijection of sets.
We are now ready to describe the group law in terms of this representation. Again, let

D1 = div(f1), D2 = div(f2) be two divisors prime to Sm and let

a1 =
f1(L)

f1(M)
, b1 =

f1(M)

f1(N)
and a2 =

f2(L)

f2(M)
, b2 =

f2(M)

f2(N)
.

That is, D1 and D2 respectively correspond to (a1, b1) and to (a2, b2). We now want to know

the element of Gm ×Gm corresponding to D1 +D2. But this is easy since

D1 +D2 = div(f1) + div(f2) = div(f1 · f2),

and we just have to let f3 := f1 · f2, then write down

f3(L)

f3(M)
=

f1(L) · f2(L)
f1(M) · f2(M)

= a1 · a2 and
f3(M)

f3(N)
=
f1(M) · f2(M)
f1(N) · f2(N)

= b1 · b2

in order to conclude that D1 +D2 is associated to (a1 · a2, b1 · b2). We have thus recovered the
torus of dimension 2 stated in Theorem 4.9.

4.6 Cryptosystems Falling in the Spectrum of Generalized
Jacobians

We conclude this chapter by providing a perspective as to where cryptography based on gener-

alized Jacobians actually ‘fits’ within the numerous public-key protocols proposed to this date.

This global picture will serve two purposes. First, it demonstrates that several of the most

popular PKC based on discrete logarithms can be interpreted in the language of generalized

Jacobians. This fundamental observation shows that seemingly unrelated structures can in fact

be seen as realizations of the same mathematical object. Second, this unified approach further

motivates the hunt for generalized Jacobians (where neither Lm nor J are trivial) suitable for

cryptographic applications9.

Among the groups utilized in DL-based cryptography mentionned in Section 2.6, it turns out

that the multiplicative group of a finite field, the elliptic curves, the Jacobian of hyperelliptic

9The hunt opens next chapter where our prey will be a generalized Jacobian of an elliptic curve.

118 CHAPTER 4. GENERALIZED JACOBIANS AND CRYPTOGRAPHY

curves and the algebraic tori can all be seen as generalized Jacobians. Moreover, two more

cryptosystems whose underlying structures do not even form a group, namely LUC and XTR,

are also closely related to generalized Jacobians.

Figure 4.5 provides a simplified view of the interrelation between the cryptosystems (on the

bottom line) and their underlying structures. A line connecting two elements of the diagram

means ‘can be interpreted in the language of’.

Figure 4.5: Relation between DL-based cryptosystems and generalized Jacobians

This schematic representation clearly highlights the two distinct sub-families of generalized

Jacobians that have been used so far: the usual Jacobians and the algebraic tori. Curiously,

the specific strengths of each family are somehow complementary. Indeed, the popularity of

elliptic curves and Jacobians of low genus hyperelliptic curves is due in part to their resistance

to subexponential attacks. On the other hand, algebraic tori (and their quotients) constitute a

very neat way to represent elements in a compact form, significantly decreasing the amount of

information that needs to be exchanged.

USUAL JACOBIANS. They are the generalized Jacobians corresponding to the case where

the linear group Lm is trivial. That is, if the modulus m =
P

P∈CmP (P) with support Sm

was chosen to have degree zero or one. Indeed, if m = 0, then the condition f ≡ 1modm, i.e.
ordPi(1 − f) ≥ mi for each Pi ∈ Sm is vacuously true and therefore, m-equivalence coincides
with linear equivalence. As well, if m = (M), then the requirement f ≡ 1modm reduces to

ordM (1 − f) ≥ 1, which is equivalent to f(M) = 1. Hence, m-equivalence in this case reads

D ∼m D0 iff ∃f ∈ K(C)∗ such that div(f) = D−D0 and f(M) = 1. But since div(c ·f) = div(f)
for any nonzero constant c, the condition f(M) = 1 is superfluous. It then follows that when

m = (M), linear and m-equivalence also define the same divisor classes.

Recall that the use of Jacobians in cryptography via elliptic curves goes back to 1985

4.6. CRYPTOSYSTEMS FALLING IN THE SPECTRUMOFGENERALIZED JACOBIANS119

[Mil86c, Kob87] and that since then, it has prompted an impressive amount of research on

the cryptographic uses of algebraic curves. From special hardware for hyperelliptic curves to

side-channel attacks or pairings10, it seems that the frenzy surrounding them has not faded in

nearly twenty years. This contagious enthusiasm inevitably raised the possibility that other

abelian varieties, or more generally algebraic groups, might be of interest for cryptographers

(and needless to say, cryptanalysts).

ALGEBRAIC TORI. An algebraic torus T of dimension d is the generalized Jacobian of

the projective line P1 with respect to a modulus m = (P0) + (P1) + ... + (Pd), where the Pi’s

are distinct. Indeed, we have seen that every divisor of degree zero on P1 is principal, and
consequently that its Jacobian J is trivial (c.f. Example 3.91). On the other hand, according to

Theorem 4.9, we know that Lm is isomorphic to the product of (Gm)d by the unipotent group
V . But since each mi = 1 (0 ≤ i ≤ d), it is easy to see that V is trivial in this case. Finally, we

get that Jm has to be isomorphic to T (since it is an extension of J by Lm).

The most obvious examples of applications of algebraic tori in cryptography are none other

than the classical Diffie-Hellman key exchange, together with the ElGamal cryptosystem and

signature (respectively covered in Sections 2.3.3, 2.4.3 and 2.5.2). In fact, as soon as the oper-

ations of a cryptographic scheme are performed in the multiplicative group of a finite field, we

can say that they are based on the simplest torus, namely the multiplicative group Gm.

However, the first explicit use of algebraic tori in cryptography is fairly recent. Recall that

the concept of torus-based cryptography has been formally introduced by Karl Rubin and Alice

Silverberg at CRYPTO 2003 [RS03]. The quality of Silverberg’s presentation at this conference

was impressing, at all levels, and certainly contributed to give wings to these news ideas. Inspired

by conjectures made about XTR by Bosma, Hutton and Verheul at ASIACRYPT 2002 [BHV02],

Rubin and Silverberg were not only able to disprove these conjectural statements, but also

reinterpreted XTR in terms of tori. In addition, they also showed how the cryptosystem LUC

[LS93], based on Lucas functions, could also be reconsidered in the language of tori. That’s

not all. They set the general framework for torus-based cryptography and gave two explicit

cryptosystems, one based on a 1-dimensional torus (corresponding to the case n = 2 described

below) and another, CEILIDH, which uses a torus of dimension 2 (where n = 6).

More precisely, if we let Tn be the algebraic torus of dimension ϕ(n), then the group Tn(Fq)
is finite and can be identified with the cyclic subgroup of F∗qn of order Φn(q), where Φn is the
n-th cyclotomic polynomial [RS03, lemma 7 (i)-(ii)]. In a nutshell, let’s just say that Tn(Fq)

10For instance, the web site ‘Pairing-based Crypto Lounge ’ of Paulo Barreto [Bar02] now lists over 200 articles
related to the use of pairings in cryptography alone.

120 CHAPTER 4. GENERALIZED JACOBIANS AND CRYPTOGRAPHY

can be substituted in cryptographic protocols requiring that the DLP of the underlying group

be presumably hard. The (straightforward) torus-based versions of Diffie-Hellman, ElGamal

encryption and signature can be found in Section 6 of [RS03].

As for efficiency, the group operation on Tn(Fq) is simply the usual multiplication inherited
from F∗qn , so that poses no problem. But it raises the question as to what can possibly be the
advantage of working in Tn(Fq) instead of in the whole group. So, as I often ask my students:
‘where’s the catch?’ This is precisely where it becomes interesting. The secret in fact lies in the

way that elements of Tn(Fq) can be represented: they are just like the tiny umbrellas that can
fit in a pocket, but once deployed offer a full size cover. Indeed, for suitably chosen values of n,

we know how to represent the elements of Tn(Fq) in a compact form, using only ϕ(n) elements of
Fq. For instance, if n is a prime power or a product of two prime powers, then we know that such
a compact representation must exist (see the discussion following Voskresenskii’s conjecture in

[RS03, Section 4, Conjecture 9]). Explicit formulæ for converting from one representation to the

other are given for T2 and T6 in Section 5 of [RS03]. So in practice, Alice and Bob each perform

their computations directly in Tn(Fq) ⊆ F∗qn and simply convert to the compact representation
whenever they need to send data to the other party.

The main advantage of CEILIDH over LUC and XTR is that its underlying structure is

a good old group. Hence, unlike the other two which only possess a natural exponentiation,

CEILIDH has full multiplication and exponentiation. In fact, the elements exchanged in the

LUC cryptosystem correspond to the ones of T2/S2, where Sk is the symmetric group on k

letters. Even if the quotient variety T2/S2 is not an algebraic group, exponentiation is still well-

defined on this set of equivalence classes, enabling for example to perform a key exchange ‘à la

Diffie-Hellman’. Similarly, the system XTR of A. K. Lenstra and E. R. Verheul [LV00, LV01] is

based on the variety T6/S3, and since exponentiation in T6 preserves S3-orbits, it follows that

the exponentiation in the quotient is well-defined.

In the light of these observations, it is no longer mysterious as to why LUC and XTR also have

the ability of compactly representing their elements. In a nutshell, LUC, XTR and CEILIDH

have the discrete log security of F∗pn , where n = 2 for LUC and n = 6 for XTR and CEILIDH,
while it is possible to represent the elements using only ϕ(n) elements of Fp. In comparison with
the classical Diffie-Hellman key exchange, we would have to work a priori with F∗pn directly in
order to achieve a comparable security level, but then the elements transmitted between Alice

and Bob would consist of n elements of Fp. So interesting savings occur as soon as ϕ(n) is
rather small compared to n. If we consider the ratio of the number of bits of security to the

number of bits transmitted, we therefore obtain a standard of measure of 1 for Diffie-Hellman,

4.6. CRYPTOSYSTEMS FALLING IN THE SPECTRUMOFGENERALIZED JACOBIANS121

and a quotient of 2 log p /(ϕ(2) log p) = 2 for LUC and of 6 log p /(ϕ(6) log p) = 3 for XTR and

CEILIDH.

That concludes our brief overview of torus-based cryptography. More details and recent

advancements on the work of Rubin and Silverberg can be found in [RS04a], [RS04b], [RS04c],

[DW04], [vDGP+05], and [GV05].

To sum up, we are currently using two distinct types of generalized Jacobians in cryptog-

raphy: the Jacobians (corresponding to trivial Lm) and the algebraic tori (for which J is now

trivial). Hence, we know that seperately, both Jacobians and algebraic tori are great choices for

DL-based cryptography. Standing right here, it seems now so obvious that the natural thing to

do next is to consider a generalized Jacobian for which neither J nor Lm is trivial. The goal

we are after is to come up with sufficient evidences to confidently answer the following yes/no

question:

Can generalized Jacobians with nontrivial J and Lm be used for cryptographic purposes?

There are, as usual, two hidden requirements behind this question: the efficiency and the

security aspects. And as in court, what we need is one good witness with competitive security

and efficiency to win our case. The next step is to find a potentially good witness. Since we

here venture in an unexplored territory, we are therefore free to choose a really simple case of

study (and then hopefully simplify the analysis).

For the curves we wish to consider, the two natural candidates are elliptic curves and hyper-

elliptic curves. They are equally interesting candidates from our point of view, but unfortunately

a cruel choice must be made here11. Given that this curve will be our spokesperson for these

new ideas and given that ECC is (to this date) considered in the community as ‘the alternative

to RSA’, we are therefore opting for elliptic curves. Lastly, we have to decide upon a modulus

m to use. Thanks to corollary 4.6, we know that once we have fixed a smooth elliptic curve E

over a finite field Fq, then it suffices to choose m such that deg(m) ≥ 2 in order to guarantee
that Jm will not be a trivial direct product. In the simplest case, m = (M) + (N) with distinct

M and N in E(Fq). Remark that we want to assume that M 6= N , since otherwise Theorem

4.9 tells us that Lm is isomorphic to the additive group Ga , for which the DLP is really easy.
Luckily, when M 6= N , that same theorem ensures that Lm will be isomorphic to Gm. This is
just perfect since the generalized Jacobians we get will then be a mixture of two well-studied

cryptographic structures: elliptic curves and finite fields. So after all, the choice of a witness

11See Chapter 6 where further work is discussed.

122 CHAPTER 4. GENERALIZED JACOBIANS AND CRYPTOGRAPHY

was quite natural: E for popularity and m for simplicity. And as previously advertised, this

case study will be fully investigated in the next chapter.

Chapter 5

A Concrete Cryptosystem

“It is possible to write endlessly

on elliptic curves (this is not a threat).”

- Serge Lang

Cryptographers like finite fields because of their efficiency and care about elliptic curves

for their security. Unfortunately, this dichotomy appears ineluctable: when comes the time to

choose a group to implement a DL-based protocol, it seems that there is room for only one of

them. So it sounds like we cannot have the best of both worlds... But before giving up too

easily, let’s recall a few facts for the record:

• Elliptic curves are their own Jacobians
• Generalized Jacobians are extensions of a Jacobian by a linear group
• For suitably chosen moduli, this linear group coincides with Gm .

So if we consider a generalized Jacobian Jm which is a nontrivial extension of E by Gm, then
we can naively picture Jm(Fq) as being an elliptic curve ‘intertwined’ with a finite field, just like
a ringwire puzzle1 where two pieces of metal are interlaced. In comparison, a direct product

would then correspond to a mere juxtaposition of the two parts.

Keeping this image in mind, we now have some serious work ahead of us before we can

claim that this particular generalized Jacobian is an interesting candidate to consider for prac-

tical applications. Indeed, recall that the main requirements for a group G to be suitable for

cryptography are that

1Which is sometimes also called a ‘disentanglement puzzle’.

123

124 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

Figure 5.1: A ringwire puzzle: unsolved (left) and solved (right).

• The elements of G can be easily represented in a compact form,

• The group operation can be performed efficiently,

• The discrete logarithm problem in G is believed to be intractable, and

• The group order can be efficiently computed.

Ensuring that these requirements are fulfilled is the exciting program of this chapter. Once

this is achieved, we could then right away use this generalized Jacobian as the underlying group

of the (generalized) ElGamal cryptosystem, for instance. Thus all the work resides in showing

that the above four properties hold. In the end, we will also have to keep in mind that the

overall appreciation also has to take into account the relative performance obtained compared

to other popular cryptosystems.

5.1 Initial Setup

This short section contains the global description of the generalized Jacobians that will be

studied in this chapter, together with important reminders. It is also the time to make a few

conventions in order to ease the exposition.

First recall that by Corollary 4.6, the simplest case where the generalized Jacobian is not a

direct product arise when the curve we consider has genus one and the modulus has degree 2.

So throughout this chapter, we will work with a smooth elliptic curve E defined over a finite

field K = Fq. For the purpose of constructing the generalized Jacobian, we will view E as being
defined over Fq, so that the results of Chapter 4 directly apply here.
We now need to fix a modulus m = (M) + (N), where M and N are points of E(Fq).

Remark that for the applications we have in mind, like the generalized ElGamal cryptosystem

and signature, we need the group Jm to be publicly known, so M and N are assumed to be

5.2. EXPLICIT BIJECTION BETWEEN PIC 0
M(E) AND GM ×E 125

public parameters. Also notice that in practice, we will be free to select M and N , so that for

a given elliptic curve, there are in fact many possible moduli to choose from.

Now, since we ultimately want to ‘intertwine’ E with the multiplicative group of a finite

field2 Fr, the generalized Jacobian we consider should be an extension of E by Gm. Nothing
easier since having Lm isomorphic to Gm is guaranteed by Theorem 4.9 as soon as M 6= N .

One more thing: we will have to use the correspondence between Pic 0m(E) and Jm in order to

‘transport’ the group law on divisors to Gm ×E, which means that we will certainly rely on the
known group isomorphism

E → Pic 0(E) (5.1)

P 7→ (P)− (O) + Princ(E)

given in Proposition 3.90. Now, since m-equivalence is defined on divisors whose support is

disjoint from {M,N}, we won’t be able to use (5.1) directly, unless M , N 6= O. So to make our
lives a little easier, we will thereafter assume that condition M , N 6= O is also fulfilled. Hence,

we can let M = (XM : YM : 1) and N = (XN : YN : 1). These are so far the only conditions we

impose on m.

Lastly, let’s establish two small conventions that will also contribute to simplify our lives.

First, we know by Theorem 4.7 that there is a bijection of sets between Jm and Gm × E, so
by an ‘element of Jm’, we will thereafter mean a pair (k, P), where k ∈ Gm and P ∈ E. Also,
once an explicit bijection between Pic 0m(E) and Gm ×E will be fixed, by ‘the group law on Jm’,
it will be understood ‘the group operation on Gm × E induced from the addition on Pic 0m(E)

through this particular bijection’.

5.2 Explicit Bijection between Pic 0m(E) and Gm ×E

In the preceding section, we chose a tailor-made modulus that guaranteed the existence of

a bijection of sets ψ : Pic 0m(E) → Gm × E. So we already know that the elements of our

generalized Jacobian can be conveniently represented as pairs (k, P), where k ∈ Gm and P ∈ E.
The next step is to make this bijection explicit. Although the mere existence of ψ suffices to

compactly represent the elements of Jm, understanding this correspondence in depth will prove

to be useful in the next section when comes the time to work out explicit formulæ for the group

operation on Gm × E. Indeed, given (k1, P1) and (k2, P2) ∈ Jm, we will have to compute their
sum (k3, P3) ∈ Jm. Hence if we know that (k1, P1) and (k2, P2) respectively correspond to the

2 It will be possible to see how q and r are related once we have determined the group law in Section 5.3.

126 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

m-equivalence class of D1 and D2, then (k3, P3) must correspond to the m-equivalence class of

D1 +D2. That is,

If ψ ([D1]m) = (k1, P1) and ψ ([D2]m) = (k2, P2), then ψ ([D1 +D2]m) = (k3, P3).

Hence, exploring ψ can be seen as the first step towards the obtention of the group law algorithm

on Gm ×E.
We are now ready to begin our investigation. As mentioned earlier, we already possess a

group isomorphism between Pic 0(E) and E, so this will be our official starting point. Under

this isomorphism, recall that the class of a divisor D =
P
P∈E nP (P) ∈ Div

0(E) is mapped to

the sum S =
P
P∈E nPP ∈ E. By Abel’s theorem (Theorem 3.84), there is then an f ∈ K(E)∗

such that

D = (S)− (O) + div(f). (5.2)

Notice that ifD has disjoint support withm, then either S 6=M , N and ordM (f) = ordN (f) = 0,

or else S ∈ {M,N} and ordS(f) = −1. This latter case is undesirable here since we might need
to evaluate f at both M and N , just as we did in the example on P1 of Section 4.5.1. Hence,
if S 6=M , N , then we can keep equation (5.2) as is. Otherwise, Abel’s theorem will once more

come to the rescue: the idea is to use, in place of (S) − (O), another simple divisor linearly
equivalent to D which will now have disjoint support with m. Concretely, observe that if we

translate S by a point T ∈ E, we obtain

D ∼ (S)− (O) ∼ (S + T)− (T),

and thus if T /∈ {O,M,N,M −N,N −M}, then both (M + T)− (T) and (N + T)− (T) have
disjoint support with m. So from now on, we will assume that such a ‘translation point’ T is

fixed and publicly known. We can now let

R =

½
O if S /∈ {M,N},
T otherwise,

and so there is an f ∈ K(E)∗ satisfying

D = (S +R)− (R) + div(f), (5.3)

where the property ordM (f) = ordN (f) = 0 is fulfilled as soon as D has disjoint support with

m. Remark that this way of writing out a divisor highlights the point S of E corresponding to

D, so it remains to determine how to ‘read’ the corresponding element of Gm from (5.3). This

is what we undertake now.

5.2. EXPLICIT BIJECTION BETWEEN PIC 0
M(E) AND GM ×E 127

Since any two divisors in an m-equivalence class are mapped to the same element of Gm ×E,
our approach will be to unravel the definition of m-equivalence until we can clearly see how

to associate an element of Gm × E to each class. So let D1 = (S1 + R1) − (R1) + div(f1),
D2 = (S2 +R2)− (R2) + div(f2) ∈ Div0m(E) be given such that

Ri =

½
O if Si /∈ {M,N},
T otherwise,

for i = 1, 2. We then have

D1 ∼m D2 iff ∃f ∈ K(E)∗ such that div(f) = D1 −D2 and f ≡ 1modm,

iff ∃f ∈ K(E)∗ such that div(f) = (S1 +R1)− (S2 +R2) + (R2)− (R1)

+div

µ
f1
f2

¶
and ordM (1− f) ≥ 1, ordN (1− f) ≥ 1,

iff S1 +R1 − (S2 +R2) +R2 −R1 = O and ∃f ∈ K(E)∗ such that

div(f) = div

µ
f1
f2

¶
and f(M) = f(N) = 1,

iff S1 = S2, R1 = R2 and ∃c ∈ K
∗
such that

f1(M)

f2(M)
=
f1(N)

f2(N)
=
1

c
,

iff S1 = S2 and
f1(M)

f2(M)
=
f1(N)

f2(N)
,

iff S1 = S2 and
f1(M)

f1(N)
=
f2(M)

f2(N)
.

That means that in order to check whether two given divisors are m-equivalent, we simply have

to test two equalities, one in E and one in Gm. The obvious candidate for ψ is thus the map

ψ : Pic 0m(E) −→ Gm ×E
[D]m 7−→ (k, S),

such that them-equivalence class ofD =
P
P∈E nP (P) ∈ Div

0
m(E) corresponds to S =

P
P∈E nPP

and k = f(M)/f(N), where f ∈ K(E)∗ is any function satisfying

div(f) =

(
D − (S) + (O) if S /∈ {M,N},
D − (S + T) + (T) otherwise.

Notice that the existence of f is guaranteed by Abel’s theorem (c.f. Theorem 3.84) and that

ψ is well-defined since we have just shown that for D1 = (S1 + R1) − (R1) + div(f1), D2 =
(S2 +R2)− (R2) + div(f2), k1 = f1(M)/f1(N) and k2 = f2(M)/f2(N), we have:

[D1]m = [D2]m implies that k1 = k2 and S1 = S2.

128 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

Moreover, ψ is injective since we also already know that

(k1, S1) = (k2, S2) implies that [D1]m = [D2]m.

It therefore remains to show that ψ is surjective as well. So given (k, S) ∈ Gm ×E, we must find
an f ∈ K(E)∗ such that f(M)/f(N) = k. Using the idea behind the interpolation polynomial
of Lagrange, or simply by inspection, we easily see that

f(X,Y,Z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k (X −XNZ) + (XMZ −X)

(XM −XN)Z
if XM 6= XN ,

k (Y − YNZ) + (YMZ − Y)
(YM − YN)Z

otherwise,

fulfills the required conditions (notice that XM = XN implies that YM 6= YN since we assumed

that M 6= N and ZM = ZN = 1). Hence, the divisor

D =

(
(S)− (O) + div(f) if S /∈ {M,N},
(S + T)− (T) + div(f) otherwise,

is mapped to (k, S), as wanted. Et voilà: we have therefore shown that ψ is the bijection we

were looking for.

Proposition 5.1 Let E be a smooth elliptic curve defined over Fq, T ∈ E\{O, M , N , M−N ,
N −M} and m = (M) + (N) with M , N ∈ E \{O} , M 6= N be given. Let also

ψ : Pic 0m(E) −→ Gm ×E
[D]m 7−→ (k, S) ,

be such that the m-equivalence class of D =
P

P∈E nP (P) corresponds to S =
P

P∈E nPP ∈ E
and k = f(M)/f(N), where f ∈ K(E)∗ is any function satisfying

div(f) =

(
D − (S) + (O) if S /∈ {M,N},
D − (S + T) + (T) otherwise.

Then, ψ is a well-defined bijection of sets.

Remark 5.2 Notice that since the zero divisor can be written as

0 = (O)− (O) + div(c),

where c is any nonzero constant, then 0 corresponds to the pair (1,O). That is, (1,O) is the
identity element of Jm.

5.3. THE GROUP LAW ALGORITHM 129

5.3 The Group Law Algorithm

We here undertake the crucial task of inferring an algorithm to compute the group operation on

Jm. So we are just about to establish the bridge between theory and practice: with the concrete

equations at hand, even someone who never heard of generalized Jacobians or group cohomology

before will just as well be able to understand the various properties of Jm.

Remember that by the theory of group extensions, we already know the basic structure of

the addition on Jm. Actually, recall that by Theorem 4.7, we have for any k1, k2 ∈ Gm and P1,
P2 ∈ E,

(k1, P1) + (k2, P2) = (k1k2 · cm(P1, P2), P1 + P2) , (5.4)

where cm : E×E → Gm is a 2-cocycle depending on the modulus m. It thus suffices to make cm
explicit. As in the example of Section 4.5.1, we will roll up our sleeves and work directly with

divisors. So given (k1, P1) and (k2, P2) in Jm, we wish to compute their sum (k3, P3).

There are two distinct cases to study, depending if the use of a ‘translation point’ T is at

all needed. Fortunately, there is an easy criterion to decide when it occurs. Indeed, suppose

that the group we consider for cryptographic applications is the subgroup of Jm generated by

the element (k, P). By the addition rule (5.4), it immediately follows that

If (j,Q) ∈ h(k, P)i , then Q ∈ hP i .

As a result, if neither M nor N is a multiple of P , then the group operation on h(k, P)i will
never involve points of the form (∗,M) or (∗, N). Thus, there is no need to employ a translation
point in this case. Of course, when either M or N lies in hP i, then the corresponding addition
formulæ will use translation points when appropriate in order to cover all possible cases. This

motivates the following definition.

Definition 5.3 Let E be an elliptic curve defined over Fq and B ∈ E(Fq) be a given basepoint.
Let also M , N ∈ E(Fq) be given. Then the modulus m = (M) + (N) is said to be B-unrelated
if M , N /∈ hBi. Otherwise, it will be called B-related.

5.3.1 Group Law for B-unrelated Moduli

As announced, the aim of this section is to transport the addition on Pic 0m(E) to Gm × E in

order to get explicit equations involving the group laws on Gm and E. So given (k1, P1), (k2, P2)
and (k3, P3) in Jm such that

(k1, P1) + (k2, P2) = (k3, P3) and P1, P2, P3 /∈ {M,N} ,

130 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

our task is to express (k3, P3) in terms of (k1, P1) and (k2, P2). By the explicit bijection between

Pic0m(E) and Gm × E (see Proposition 5.1), the elements (k1, P1) and (k2, P2) are respectively

the image of the m-equivalence class of D1 = (P1)−(O)+div(f1) and D2 = (P2)−(O)+div(f2).
Notice that since P1, P2 /∈ {M,N}, then f1 and f2 are both defined and nonzero at M and N .

That being said, we can now endowGm×E with the group operation inherited from Pic 0m(E).
So basically, all we need to know is to which element of Gm ×E does D3 = D1+D2 correspond
(and yes, this is the act where the hidden 2-cocycle finally makes its triumphal appearance).

First, we have by definition that

D3 = (P1) + (P2)− 2(O) + div(f1 · f2), (5.5)

so in order to get the element of Gm ×E we are looking for, the way to go is to express the right
hand side of (5.5) as (P3)− (O)+div(f3). By Abel’s theorem (c.f. Theorem 3.84), we know that

(P1) + (P2)− 2(O) ∼ (P1 + P2)− (O),

and so there is a function LP1,P2 ∈ K(E)∗ satisfying

(P1) + (P2)− 2(O) = (P1 + P2)− (O) + div(LP1,P2). (5.6)

Combining (5.6) and (5.5) yields

D3 = (P1 + P2)− (O) + div(f1 · f2 · LP1,P2).

Phantastisch! That means that we can set P3 = P1 + P2 and f3 = f1 · f2 · LP1,P2 . Hence, D3
corresponds to (k3, P3), where

k3 =
f3(M)

f3(N)
=
f1(M) · f2(M) · LP1,P2(M)
f1(N) · f2(N) · LP1,P2(N)

= k1 · k2 ·
LP1,P2(M)

LP1,P2(N)
.

That is,

(k1, P1) + (k2, P2) =

µ
k1 · k2 ·

LP1,P2(M)

LP1,P2(N)
, P1 + P2

¶
.

So we really are on the right track since our addition rule so far agrees with the prediction (5.4)

obtained from group extensions. Hence the 2-cocycle cm : E × E → Gm we were seeking is

finally unveiled:

cm(P1, P2) =
LP1,P2(M)

LP1,P2(N)
. (5.7)

The very last step is to make LP1,P2 explicit. We have to look for a function LP1,P2 satisfying

(5.6), or equivalently,

div(LP1,P2) = (P1) + (P2)− (P1 + P2)− (O). (5.8)

5.3. THE GROUP LAW ALGORITHM 131

That should sound familiar now (See Lemma 3.82). The natural approach is to consider the line

`P1,P2 , passing through P1 and P2, that will inevitably hit −P3 = −(P1 + P2) as well. Then,

div

µ
`P1,P2
Z

¶
= (P1) + (P2) + (−P3)− 3(O). (5.9)

Not exactly what we want yet, so in order to introduce the term −(P1+P2) and get rid of (−P3)
at once, we might want to look at `P1+P2,O, which is of course the line passing through P1+P2,

O, and a fortiori through −P3. That is,

div

µ
`P1+P2,O

Z

¶
= (P1 + P2) + (−P3)− 2(O). (5.10)

Subtracting (5.10) from (5.9), we get

div

µ
`P1,P2
`P1+P2,O

¶
= (P1) + (P2)− (P1 + P2)− (O). (5.11)

Finally, equations (5.8) and (5.11) imply that LP1,P2 and `P1,P2 /`P1+P2,O differ by a nonzero

multiplicative constant:

∃c ∈ K∗ satisfying LP1,P2 = c ·
`P1,P2
`P1+P2,O

. (5.12)

Figure 5.2: Unveiling the 2-cocycle cm

Let’s point out that our initial conditions M , N 6= O and P1, P2, P3 = P1 + P2 /∈ {M,N}
are sufficient to ensure that LP1,P2(M) and LP1,P2(N) will both be defined and nonzero, since

equation (5.8) tells us that the only zeros and poles of LP1,P2 occur at P1, P2, P1+P2 and O. But
say we want to compute LP1,P2(M) by evaluating `P1,P2(M) and `P1+P2,O(M) separately. That

will work just fine as long asM 6= −P3. But whenM = −P3, we get `P1,P2(M) = `P1+P2,O(M) =

132 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

0 and so evaluating `P1,P2(M) /`P1+P2,O(M) amounts to study the indeterminate form ‘0/0’.

Since the goal of this section is to obtain a group law valid for any P1, P2, P3 ∈ hBi under the
assumption that M , N /∈ hBi, then it follows that −P3 /∈ {M,N} anyway, so we do not have
to worry about this case now. We can then add the extra requirement −(P1+P2) /∈ {M,N} to
the points we consider and simply move on.

Therefore, by equations (5.7) and (5.12), it is now legitimate to write

cm(P1, P2) =
LP1,P2(M)

LP1,P2(N)
=
c · `P1,P2(M)
`P1+P2,O(M)

· `P1+P2,O(N)
c · `P1,P2(N)

=
`P1,P2(M)

`P1+P2,O(M)
· `P1+P2,O(N)
`P1,P2(N)

, (5.13)

and our goal is achieved since the 2-cocycle cm is now completely determined. To be on the

safe side, we may want to double-check that expression (5.13) is well-defined since after all, we

have some freedom on both the equations of the lines (they are determined up to a constant

factor) and on the representatives for the homogeneous coordinates of M and N . That is, for

M = (XM : YM : 1), N = (XN : YN : 1) and λ1, λ2, c1, c2 any nonzero constants, we have

M ∼ (λ1XM : λ1YM : λ1), N ∼ (λ2XN : λ2YN : λ2) and c1 · `P1,P2 , c2 · `P1+P2,O respectively

defining the same line as `P1,P2 and `P1+P2,O. Since `P1,P2 and `P1+P2,O are both homogeneous

polynomials of degree one, it follows that

c1 · `P1,P2(λ1XM ,λ1YM ,λ1)
c2 · `P1+P2,O(λ1XM ,λ1YM ,λ1)

· c2 · `P1+P2,O(λ2XN ,λ2YN ,λ2)
c1 · `P1,P2(λ2XN ,λ2YN ,λ2)

=

λ1 · `P1,P2(XM , YM , 1)
λ1 · `P1+P2,O(XM , YM , 1)

· λ2 · `P1+P2,O(XN , YN , 1)
λ2 · `P1,P2(XN , YN , 1)

=

`P1,P2(M)

`P1+P2,O(M)
· `P1+P2,O(N)
`P1,P2(N)

,

which confirms that formula (5.13) was well-defined. Finally, we are ready to properly write

down the group law we just obtained.

Proposition 5.4 Let E be a smooth elliptic curve and let m = (M) + (N) be given such that

M and N are distinct nonzero points of E. If (k1, P1) and (k2, P2) are elements of Jm fulfilling

P1, P2, ± (P1 + P2) /∈ {M,N}, then

(k1, P1) + (k2, P2) = (k1k2 · cm(P1, P2), P1 + P2) , (5.14)

where cm : E ×E → Gm is the 2-cocycle given by

cm(P1, P2) =
`P1,P2(M)

`P1+P2,O(M)
· `P1+P2,O(N)
`P1,P2(N)

,

and `P,Q denotes the equation of the straight line passing through P and Q (tangent at the curve

if P = Q).

5.3. THE GROUP LAW ALGORITHM 133

5.3.2 Group Law for B-related Moduli

Inspired by the method used to obtain a group operation for B-unrelated moduli, we here treat

the general case of adding arbitrary points of Jm. So let (k1, P1), (k2, P2) and (k3, P3) be elements

of Jm satisfying

(k3, P3) = (k1, P1) + (k2, P2).

As suggested in Section 5.2, an easy way to proceed is to use what we called a ‘translation point’

each time we encounter a divisor whose support contains M or N (see p.126 for details). So we

first need to fix a point T /∈ {O,M,N,M −N,N −M} of E and let, for i = 1, 2,

Ri =

½
T if Pi ∈ {M,N},
O otherwise.

That way, (Pi)− (O) ∼ (Pi + Ri)− (Ri) and the support of the divisor on the right hand side
satisfies {Pi +Ri, Ri} ∩ {M,N} = ∅. For i = 1, 2, let

Di = (Pi +Ri)− (Ri) + div(fi), (5.15)

and notice that this implies that ordM (fi) = ordN (fi) = 0. Using the bijection ψ : Pic 0m(E)→
Gm ×E of Proposition 5.1, the m-equivalence class of Di (i = 1, 2) can be specified by the pair
(ki, Pi), where

ki =
fi(M)

fi(N)
.

With all this information at hand, we should now be able to find an expression for k3 and

P3 in terms of k1, k2, P1 and P2 in the twinkling of an eye. First set D3 = D1 +D2 and use

equation (5.15) in order to rewrite D3 as

D3 = (P1 +R1) + (P2 +R2)− (R1)− (R2) + div(f1 · f2). (5.16)

Just as before, we need to find a way to express this divisor as

D3 = (P3 +R3)− (R3) + div(f3),

where R3 will of course be defined according to the value of P3:

R3 =

½
T if P3 ∈ {M,N},
O otherwise,

and f3 ∈ K(E)∗ is a function yet to be determined. Once more, Abel’s theorem (c.f. Theorem

3.84) will provide the intuition we need since

(P1 +R1) + (P2 +R2)− (R1)− (R2) ∼ (P1 + P2 +R3)− (R3).

134 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

Hence, there is an L ∈ K(E)∗ (involving possibly all of P1, P2, P3, R1, R2 and R3) such that

(P1 +R1) + (P2 +R2)− (R1)− (R2) = (P1 + P2 +R3)− (R3) + div(L). (5.17)

From (5.16) and (5.17), we obtain:

D3 = (P1 + P2 +R3)− (R3) + div(f1 · f2 · L),

and we can simply let P3 = P1 +P2 and f3 = f1 · f2 ·L. So it means that D3 is associated with
(k3, P3), where

k3 =
f3(M)

f3(N)
=
f1(M) · f2(M) · L(M)
f1(N) · f2(N) · L(N)

= k1 · k2 ·
L(M)

L(N)
.

Playing with lines will once more prove to be a good tactic to deduce an explicit expression for

L. So in order to see which ones we should consider, we first take the time to rewrite (5.17) as

div(L) = (P1 +R1)− (R1) + (P2 +R2)− (R2)− (P3 +R3) + (R3). (5.18)

A quick inspection of this principal divisor suggests that the favorite candidates are the following

six straight lines: `P1,R1 , `P1+R1,O, `P2,R2 , `P2+R2,O, `P3,R3 and `P3+R3,O (yes, this is what it

takes). Plus, in order to exactly obtain (5.18), it might not be a bad idea to consider `P1,P2 and

`P1+P2,O as well. We therefore get:

div

µ
`P3,R3
`P3+R3,O

¶
= (P3) + (R3)− (P3 +R3)− (O),

−div
µ
`P1,R1
`P1+R1,O

¶
= (P1 +R1)− (P1)− (R1) + (O),

−div
µ
`P2,R2
`P2+R2,O

¶
= (P2 +R2)− (P2)− (R2) + (O),

div

µ
`P1,P2
`P1+P2,O

¶
= (P1) + (P2)− (P1 + P2)− (O).

Adding these four equations yields

div

µ
`P1,P2
`P1+P2,O

· `P1+R1,O
`P1,R1

· `P2+R2,O
`P2,R2

· `P3,R3
`P3+R3,O

¶
=

(P1 +R1)− (R1) + (P2 +R2)− (R2)− (P3 +R3) + (R3).
(5.19)

From (5.18) and (5.19), we have consequently determined L up to a nonzero constant. But since

this constant will cancel out when computing L(M) /L(N) , we can without loss of generality

assume that

L =
`P1,P2
`P3,O

· `P1+R1,O
`P1,R1

· `P2+R2,O
`P2,R2

· `P3,R3
`P3+R3,O

. (5.20)

5.3. THE GROUP LAW ALGORITHM 135

As we can see, the term `P1,P2 /`P1+P2,O still appears, but is now followed by ‘correction factors’

that will ensure, thanks to (5.18), that the only true zeros and poles of L arise at Ri and Pi+Ri

(i = 1, 2, 3), which are all different from M and N by construction. Hence, the quotient

L(M) /L(N) will always be defined and nonzero.

Since the group operation we just obtained holds on all of Jm, we might wonder what happens

when P1, P2, ±P3 /∈ {M,N}. In this case, we have R1 = R2 = R3 = O and (5.20) reduces to:

L =
`P1,P2
`P3,O

· `P1,O
`P1,O

· `P2,O
`P2,O

· `P3,O
`P3,O

=
`P1,P2
`P3,O

,

which coincides with Proposition 5.4 for B-unrelated moduli. So evaluating a group operation

on Jm will be more expensive as soon as one of the Pi’s equals M or N . The relevance of this

difference will be addressed in Section 5.3.4. But first, it is time to summarize what we’ve got.

Proposition 5.5 Let E be a smooth elliptic curve, m = (M) + (N) be given such that M and

N are distinct nonzero points of E and let T ∈ E be any point such that T /∈ {O, M , N , M−N ,
N −M}. Given (k1, P1) and (k2, P2) in Jm, set P3 = P1 + P2 and let, for i = 1, 2, 3,

Ri =

½
T if Pi ∈ {M,N},
O otherwise.

Then,

(k1, P1) + (k2, P2) =

µ
k1k2 ·

L(M)

L(N)
, P3

¶
,

where

L =
`P1,P2
`P3,O

· `P1+R1,O
`P1,R1

· `P2+R2,O
`P2,R2

· `P3,R3
`P3+R3,O

.

As usual, `P,Q denotes the equation of the straight line passing through P and Q (tangent at the

curve if P = Q).

5.3.3 Toy Example

Before going any further, we work out a tiny paper and pencil example in order to get a flavor

of how the computations in Jm will be performed in practice. It is also the right time to start

looking for tricks to speed things up, since everyone knows that computing by hand gives us a

strong motivation (and plenty of time!) to realize what shortcuts could be considered.

We will work with the generalized Jacobian of the elliptic curve

E : y2 = x3 + x+ 4

over Fp = F7 with respect to the modulus m = (M) + (N), where M = (xM , yM) = (0, 5)

and N = (xN , yN) = (5, 1). All computations are performed in the subgroup of Jm generated

136 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

by (k, P), where k = 1 and P = (xP , yP) = (6, 3). Notice that p, E, M , N , P and k are all

publicly known quantities that determine the group h(k, P)i we are working in, and provide the
necessary information to perform the group operation inside h(k, P)i.
Before we begin, we can quickly verify that E is nonsingular, as a = 1, b = 4 and ∆ =

−16 ·
¡
4a3 + 27b2

¢
= 3 6= 0. Next we want to compute multiples of (1, P) in order to get an idea

of what h(1, P)i looks like. In the present case, it is easier to work in affine coordinates since we
do not have to worry about the cost of inversions (of course, homogeneous coordinates would

have worked perfectly fine too).

We now proceed to compute 2(1, P) = (1, P) + (1, P). According to Theorem 3.55, we have

`P,P (x, y) = y −mx− b, where

m =
3x2P + a

2yP
=
3 · 62 + 1
2 · 3 = 3 and b =

−x3P + axP + 2b
2yP

=
−63 + 6 + 2 · 4

2 · 3 = 6.

Thus, 2P = (x2P , y2P) = (4, 3) since

x2P =m
2 − 2xP = 32 − 2 · 6 = 4 and y2P = −mx2P − b = −3 · 4− 6 = 3.

It follows that `2P,O(x, y) = x− x2P = x− 4, and we have
`P,P (M)

`2P,O(M)
=
`P,P (xM , yM)

`2P,O(xM , yM)
=
yM −mxM − b

xM − 4
=
5− 3 · 0− 6
−4 = 2.

Similarly,
`2P,O(N)

`P,P (N)
=
`2P,O(xN , yN)

`P,P (xN , yN)
=

xN − 4
yN −mxN − b

=
5− 4

1− 3 · 5− 6 = 1.

Finally, by Proposition 5.4 , we get that

2(1, P) =

µ
1 · 1 · `P,P (M)

`2P,O(M)
· `2P,O(N)
`P,P (N)

, 2P

¶
= (2, 2P) = (2, (4, 3)) .

Almost too easy. We could then continue to compute the multiples of (1, P) by hand, and

perhaps make it an interesting alternative to counting sheep at night... Otherwise, a small

Magma program readily produces the output shown in Table 5.1.

Since neitherM = (0, 5) nor N = (5, 1) appear in this table, that means that m = (M)+(N)

is a P -unrelated modulus (and this is why we did not need to specify a translation point here).

We also have that (1, P) has order 30 = #F∗7 × ord(P) and

h(1, P)i = { (i,Q)| i ∈ F∗7 and Q ∈ hP i} .

We will come back to this example a little latter, although it is overwhelmingly tempting to

look at the DLP in h(1, P)i right away... (Unthinkable to wait until Section 5.5? Then cogitate
on a good general strategy3 to recover, say, 27 from the couple (3, (4, 3))).

3We of course have to pretend that we can’t do an exhaustive search here.

5.3. THE GROUP LAW ALGORITHM 137

(1, P) = (1, (6, 3)) 11(1, P) = (2, (6, 3)) 21(1, P) = (4, (6, 3))
2(1, P) = (2, (4, 3)) 12(1, P) = (4, (4, 3)) 22(1, P) = (1, (4, 3))
3(1, P) = (4, (4, 4)) 13(1, P) = (1, (4, 4)) 23(1, P) = (2, (4, 4))
4(1, P) = (4, (6, 4)) 14(1, P) = (1, (6, 4)) 24(1, P) = (2, (6, 4))
5(1, P) = (3,O) 15(1, P) = (6,O) 25(1, P) = (5,O)
6(1, P) = (3, (6, 3)) 16(1, P) = (6, (6, 3)) 26(1, P) = (5, (6, 3))
7(1, P) = (6, (4, 3)) 17(1, P) = (5, (4, 3)) 27(1, P) = (3, (4, 3))
8(1, P) = (5, (4, 4)) 18(1, P) = (3, (4, 4)) 28(1, P) = (6, (4, 4))
9(1, P) = (5, (6, 4)) 19(1, P) = (3, (6, 4)) 29(1, P) = (6, (6, 4))
10(1, P) = (2,O) 20(1, P) = (4,O) 30(1, P) = (1,O)

Table 5.1: Multiples of (1, P) obtained with Magma

5.3.4 Properties of the Group Law

Now that we have derived nice explicit formulæ for the group operation, we take a (well-

deserved!) pause for contemplating them. That’s right. This small section aims at collecting

tricks, remarks and corollaries on the group law in order to be fully prepared for the more serious

efficiency and security aspects of the next sections.

B-RELATED OR UNRELATED? That is the question, indeed. Well, the obvious remark

is that B-related moduli offer greater generality while the group law associated to B-unrelated

ones is simpler. But if we were to pick one for applications, which one should we choose? First

recall that by Proposition 5.4 and 5.5, the general group law (both for B-related and unrelated

moduli) can be rewritten as

(k1, P1) + (k2, P2) =

µ
k1k2 ·

L(M)

L(N)
, P1 + P2

¶
,

where

L =

⎧⎪⎪⎨⎪⎪⎩
`P1,P2
`P3,O

if {P1, P2, P1 + P2,−P1 − P2} ∩ {M,N} = ∅,
`P1,P2
`P3,O

· `P1+R1,O · `P2+R2,O · `P3,R3
`P1,R1 · `P2,R2 · `P3+R3,O

otherwise.

The straightforward implementation of this group law will then satisfy the following two prop-

erties:

1. Computing (k1, P1)+(k2, P2) when {P1, P2, P1 + P2,−P1 − P2}∩{M,N} 6= ∅ will require
more computing time than if {P1, P2, P1 + P2,−P1 − P2} ∩ {M,N} = ∅.

2. The code will contain conditional ‘if-then-else’ statements in order to compute L.

138 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

The obvious consequence of property 1 is that some computing time can be saved if we

employ a B-unrelated modulus. This discrepancy in efficiency is however the lesser of two evils.

As a matter of fact, B-related moduli seem to be more susceptible to side-channel attacks.

Recall that the general (and greatly simplified!) principle behind these attacks is to measure

side-channel information of a cryptographic device (like running times, power consumption or

electromagnetic emanations) in order to retrieve secret data4. As a result, codes whose running

time depend on secret input data have to be avoided as much as possible in practice. In addition,

the collected side-channel information is sometimes even sufficient to retrieve which branch of

a conditional statement was executed, therefore revealing information about the value of the

condition tested. Therefore, the straightforward algorithm for computing a group operation for

a B-related modulus violates two basic principles for minimizing side-channel leakage.

These remarks show that the efficiency and security characteristics of B-related and B-

unrelated moduli differ, so they should be studied separately. The above evidences also suggest

that B-unrelated moduli might have a higher potential for practical implementations, and since

the ultimate objective of this chapter is to build a practical cryptosystem based on a simple

generalized Jacobian in order to highlight the potential of these algebraic groups, B-unrelated

moduli were chosen for our case study (inevitably relegating B-related moduli to further work).

Thus from this point on, we will assume that the moduli we consider are all B-unrelated.

BASIC PROPERTIES.We here present a small collection of properties of the group law that

will prove to be very useful in the sequel. In fact, they are either remarks previously made in

the text (that we formally state for the record) or else are easily derived from Proposition 5.4 .

Corollary 5.6 Let E be a smooth elliptic curve and let m = (M) + (N) be given such that

M and N are distinct nonzero points of E. Let also (k, P), (k1, P1), (k2, P2) ∈ Jm be given such
that P1, P2, ± (P1 + P2) /∈ {M,N}. Then,

1. (1,O) is the identity element of Jm.

2. cm(P1, P2) = cm(P2, P1) (This reflects the fact that Jm is abelian).

3. If M = (XM : YM : 1) and N = (XN : YN : 1), then cm(P,−P) = `P,O(M) /`P,O(N) , and
so the inverse of (k, P) is given by

−(k, P) =
µ
1

k
· `P,O(N)
`P,O(M)

,−P
¶

4More information concerning these attacks can be found in the original articles [Koc96, KJJ99], as well as
in Chapters IV and V of [BSS05].

5.4. EFFICIENCY 139

4. cm(O, P) = 1 for all P ∈ E\{M,N}. Hence,

(k1,O) + (k2, P) = (k1k2, P) .

5. Furthermore, Jm contains a subgroup isomorphic to Gm , as

(k1,O) + (k2,O) = (k1k2,O) for all k1, k2 ∈ Gm .

6. If E is defined over Fq, B ∈ E (Fq) and M , N ∈ E (Fqr) are such that m is B-unrelated,

then F∗qr × hBi, together with the addition law of Proposition 5.4, is a subgroup of Jm.

The only statement that might require a further justification is property 6. Notice that it sim-

ply follows from properties 1 and 3, together with the observation that `P1,P2(M), `P1,P2(N) ∈
F∗qr whenever P1, P2 ∈ hBi. So at last, we have made completely explicit the finite group
F∗qr × hBi that we will be using for cryptographic applications.

5.4 Efficiency

Now that we have the group law algorithm at hand, it is time to wonder about the practicality

of generalized Jacobians: from the choice of a B-unrelated modulus to scalar multiplication,

various efficiency aspects have to be addressed.

5.4.1 Additions in the Group

The first remark in order is that the group operation on Jm has mainly two parts: performing

an addition on E and evaluating the cocycle. These two steps involve the equation of the same

straight lines, so intermediate computations for the addition on E should be reused in order to

get the cocycle value. As a second remark, notice that the coordinates of M = (XM : YM : 1)

and N = (XN : YN : 1) will be much used in the evaluation of the cocycle. Since we have

the freedom to select the modulus of our choice, this might be an opportunity to speed up

the computations. For instance, some (or even all) of XM , XN , YM and YN could be chosen

such that the cost of a multiplication of a field element by these special coordinates becomes

significantly faster than that of a general multiplication. For this reason, we will thereafter make

a distinction between a general multiplication, which will be denoted by the symbol ‘∗’, and a
multiplication by a constant, represented by ‘·’.
For (k1, P1), (k2, P2) ∈ F∗qr×hBi, we now wish to determine the cost of computing (k3, P3) =

(k1, P1) + (k2, P2). We will first work in affine coordinates, so let M = (xM , yM) and N =

140 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

(xN , yN) be given. Recall that by property 4 of Corollary 5.6, (k3, P3) = (k1 ∗ k2, P1 + P2) as
soon as P1 or P2 equals O. Thus in this case the computation cost is merely a multiplication
in F∗qr plus an addition on E, which will be abbreviated by M + E. Now if P1, P2 6= O and

P1 + P2 = O, then

(k3, P3) =

µ
k1 ∗ k2 ∗ `P1,P2(M) ∗ `P1+P2,O(N)

`P1,P2(N) ∗ `P1+P2,O(M)
, P1 + P2

¶
=

µ
k1 ∗ k2 ∗ `P1,O(M) ∗ 1

`P1,O(N) ∗ 1
, P1 + P2

¶
=

µ
k1 ∗ k2 ∗ (xM − x1) ∗

1

(xN − x1)
, P1 + P2

¶
,

where P1 = (x1, y1) and P2 = (x2, y2). Thus the associated cost is three multiplications and an

inversion in F∗qr , together with an addition on E, or 3M+ I+E for short. Finally, we consider

the case where P1, P2, P3 6= O, and we let P3 = (x3, y3). According to Theorem 3.55 , the

slope m of the line passing through P1 and P2 will be computed as an intermediate result while

evaluating P3 since

P3 =
¡
m2 + a1m− a2 − x1 − x2, (x1 − x3)m− a1x3 − y1 − a3

¢
.

Thus,

(k3, P3) =

µ
k1 ∗ k2 ∗ `P1,P2(M) ∗ `P1+P2,O(N)

`P1,P2(N) ∗ `P1+P2,O(M)
, P1 + P2

¶
=

µ
k1 ∗ k2 ∗ (yM − y1 + (x1 − xM) ∗m) ∗ (xN − x3)

(yN − y1 + (x1 − xN) ∗m) ∗ (xM − x3)
, P1 + P2

¶
=

µ
k1 ∗ k2 ∗ (yM − y1 + x1 ∗m− xM ·m) ∗ (xN − x3)

(yN − y1 + x1 ∗m− xN ·m) ∗ (xM − x3)
, P1 + P2

¶
which yields a cost of 5 general multiplications, two multiplications by a constant and one

inversion in F∗qr , plus an addition on E, or 5M+ 2C+ I+E.

However, as soon as the cost of a field inversion is significantly higher than that of a multipli-

cation, projective coordinates will be preferred. Recall that in (ordinary) projective coordinates,

(X : Y : Z) corresponds to the affine point (X/Z, Y/Z) if Z 6= 0 and to O otherwise. So let

Pi = (Xi : Yi : Zi) (i = 1, 2, 3) and M = (XM : YM : 1), N = (XN : YN : 1) be the projective

coordinates of the points.

In the most common case where P1, P2, P3 6= O, the corresponding formulæ for computing
P1+P2 will not evaluatem directly (since that would require an inversion), but rather computes

quantities α and β such that m = α/β.

5.4. EFFICIENCY 141

Remark 5.7 While computing a scalar multiple of an element, individually storing both the

numerators and denominators is profitable since it allows to perform a single inversion at the

very end of the computation.

So with the values of α and β already known, we can evaluate

γ = ((YM · Z1 − Y1) ∗ β + (X1 −XM · Z1) ∗ α) ∗ (XN · Z3 −X3) and

δ = ((YN · Z1 − Y1) ∗ β + (X1 −XN · Z1) ∗ α) ∗ (XM · Z3 −X3)

such that cm(P1, P2) = γ/δ. Hence if we keep track of the numerators and denominators

separately, so that we are given a1, b1, a2, b2 ∈ F∗qr such that k1 = a1/b1 and k2 = a2/b2, then
k3 = a3/b3, where

a3 = a1 ∗ a2 ∗ γ and b3 = b1 ∗ b2 ∗ δ.

Notice that these equations hold both when P1 = P2 and P1 6= P2. Hence, when P1, P2, P3 6= O,
the number of operations needed for computing a sum is given by 10M+ 6C+E. Similarly, if

P1 or P2 equals O, then we simply set γ = δ = 1, which yields a cost of 2M+E for computing

(k3, P3). Lastly, if P1, P2 6= O but P3 = O, then γ = XM · Z1 −X1 and δ = XN · Z1 −X1, so
the evaluation of (k3, P3) requires 4M + 2C + E. Of course, these costs should be seen as an

upper bound rather than a precise account of the complexity.

Indeed, a careful analysis would first require to consider fields of characteristic two and of

odd characteristic separately, and should simultaneously optimize the cost of an addition on E

and the computation of k3. A separate account should also be performed for the case P1 6= P2
and for P1 = P2, since the equations for adding or doubling points on E differ. Then one

would need to compare the results obtained for various coordinate systems, like the Jacobian

(or weighted projective) coordinates, the Chudnovsky Jacobian coordinates as well as various

mixed or redundant representations. Finally, a similar parallel inspection should be performed

when protection against side-channel attacks is required.

Needless to say, this tedious analysis should be performed prior to any serious performance

comparison with other cryptosystems. However, it would be premature to do so at this stage

since the goal we are currently after is to establish the relevance of generalized Jacobians in

cryptography.

5.4.2 Scalar Multiplications

In this section, we will assume that we fixed a smooth elliptic curve E over Fq together with
a point B ∈ E(Fq) of prime order l to serve as our basepoint. Moreover, we will assume that

142 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

a B-unrelated modulus m = (M) + (N) was chosen such that M and N are distinct nonzero

points of E (Fqr). By property 6 of Corollary 5.6, we know that F∗qr × hBi is a finite subgroup
of Jm. So given (k, P) ∈ F∗qr × hBi and a positive integer n, we are looking for an efficient way
to compute the scalar multiple n(k, P).

First notice that if P = O, then n(k,O) = (kn,O) = (knmod ord(k),O) by property 4 of
Corollary 5.6 . So computing this scalar multiple of (k,O) simply requires to perform the

discrete exponentiation knmod ord(k) in the finite field Fqr .
Now if P ∈ hBi \{O}, then P has prime order l. In order to compute n(k, P), the obvious

remark is that a repeated application of the group law yields n(k, P) = (∗, nP). Thus if we set
n0 = nmod l, we get n(k, P) = (∗, n0P). So instead of computing n(k, P) directly, we could
make use of the value of n0(k, P). Indeed, if we let n1 = bn/lc, then n = n1 · l + n0 and so
n(k, P) = n1l(k, P) + n0(k, P). Therefore, if we let l(k, P) = (λ,O) and n0(k, P) = (νn0 , n0P),
we obtain

n(k, P) = n1l(k, P) + n0(k, P) (5.21)

= n1(λ,O) + (νn0 , n0P)

= (λn1 ,O) + (νn0 , n0P)

= (νn0 · λn1 , n0P)

by repeated applications of property 4 of Corollary 5.6. Hence evaluating n(k, P) using this trick

is essentially computing λ, λn1 and n0(k, P). So if several scalar multiples of the same element

(k, P) need to be performed, then the value of λ may be precomputed in order to speed up the

computations.

Lastly, notice that the really simple equality n(k, P) = (νn0 · λn1 , n0P) in fact relates three
instances of the discrete logarithm problem in three different groups, namely a generalized

Jacobian, an elliptic curve and a finite field. This expression therefore deserves to be studied

in Section 5.5, where security matters will be addressed. For future reference, we now state it

properly as a little lemma.

Lemma 5.8 Let E be a smooth elliptic curve defined over Fq, B ∈ E(Fq) of prime order l
be given and m = (M) + (N) be a B-unrelated modulus, where M and N are distinct nonzero

points of E (Fqr). For k ∈ F∗qr , P ∈ hBi \{O} and a positive integer n, let l(k, P) = (λ,O) and
n0(k, P) = (νn0 , n0P). Then,

n(k, P) = (νn0 · λn1 , n0P),

where n0 = nmod l and n1 = bn/lc.

5.4. EFFICIENCY 143

5.4.3 Choosing a Suitable Modulus

Since the beginning of this chapter, we have deduced various desirable properties of the public

modulus m = (M) + (N). Namely, we want M = (XM : YM : 1) and N = (XN : YN : 1) to be

distinct nonzero points of E (Fqr) such that m = (M) + (N) is a B-unrelated modulus.

Remark 5.9 For efficiency, we have also previously raised the possibility of selecting some

or all of the coordinates of M and N in such a way that multiplying a field element by those

chosen constants is notably faster than computing a general multiplication. However, since it

would take us too far afield to formalize the intuitive notion of ‘notably faster multiplication’,

this supplementary requirement will not be taken into account in this section.

The next step is to ensure that these requirements can be efficiently and simultaneously

fulfilled. To do so, the prime power q and the positive integer r can first be fixed. For cryp-

tographic applications, we usually consider elliptic curves defined over F2s or Fp, where s is a
positive integer and p > 3 is prime. Another possibility is to work over an optimal extension

field, as described in [BP98].

If Char(Fq) = 2, then non-supersingular5 elliptic curves should be used in order to avoid

the MOV attack [MOV93]. In that case, the elliptic curve can be taken to have a Weierstraß

equation of the form

Ea,b : y
2 + xy = x3 + ax2 + b, (5.22)

with a, b ∈ Fq. The discriminant ∆ = b must also be nonzero in order to guarantee that the

curve be nonsingular.

If Char(Fq) = p 6= 2, 3, the elliptic curve considered is given by

Ea,b : y
2 = x3 + ax+ b, (5.23)

where a, b ∈ Fq and ∆ = −16(4a3 + 27b2) 6= 0.
Before we start to think about a good way of choosing a

B-unrelated modulus, some facts are worth mentioning.. First notice that random choices of

M and N have the advantage of being less susceptible to future attacks targeted at moduli with

special properties: it is thus a wise choice when long-term security is seeked. Moreover, when

the parameters of a cryptosystem are generated by a third party, Tracy, then the possibility that

they were specifically chosen such that Tracy possesses a trapdoor compromising the security

of the system might become an issue. However, if the parameters are verifiably pseudo-random,

5Recall that an elliptic curve E over Fq is said to be supersingular if Char (Fq) divides q + 1−#E (Fq).

144 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

then it is very unlikely that Tracy knows such a trapdoor. A method for generating verifiably

pseudo-random parameters for elliptic curves is described in the IEEE P1363 standard [IEE99,

Sections A.12.4-A.12.7]. These two arguments show that even if pseudo-random moduli might

not be the optimal choice for efficiency, they can provide security advantages over moduli with

special properties.

So we now discuss how to efficiently generate an elliptic curve together with a pseudo-random

B-unrelated modulus. Several methods are known to select an elliptic curve E over Fq with good
cryptographic properties. The requirements on E as well as various techniques for choosing a

suitable curve are discussed in Section 5.2 of the excellent survey [KMV00]. That Section also

mentions heuristic arguments suggesting that pseudo-randomly choosing elliptic curves6, until

one fulfilling all criteria is found, is an efficient procedure to select a curve in characteristic 2

and p. It is moreover a simple matter to choose pseudo-random points on an elliptic curve,

both in characteristic 2 and p. Such pseudo-codes can be found in Sections A.11.1 and A.11.2 of

[IEE99]. The underlying idea is simply to successively generate pseudo-random values x ∈ Fqr ,
until there is a y ∈ Fqr such that (x, y) ∈ E (Fqr). It is therefore a simple matter to efficiently
generate pseudo-random M and N subject to the constraints M , N 6= O and M 6= N . The last
step is to check whether m is B-related or not.

A straightforward case arises when r > 1 and both M and N lie in E (Fqr), but are not in
E (Fq). Indeed, for any B ∈ E (Fq), we have hBi ⊆ E (Fq) and thus M , N /∈ hBi. We then
conclude that m is B-unrelated.

There is also an easy criterion to decide if the modulus is B-unrelated when at least one of

M or N is a point of E (Fq). Recall that for cryptographic applications, it is recommended that
#E (Fq) = h · l, where l is a large prime and the cofactor h is small, while the order of E (Fq)
can be determined using the Schoof-Elkies-Atkin (SEA) algorithm, which is outlined in [BSS99,

Chapter VII]. In the standards for elliptic curve cryptography [IEE99, NIoST00, CR00], it is

specified that h should equal 1, 2, 3 or 4.

As usual, let B ∈ E (Fq) be a point of order l. If h = 1, then hBi = E (Fq), which implies
that the chosen modulus will be B-related as soon as one of M or N is in E (Fq). However,
if h > 1, then at least half of the elements of E (Fq) are outside of hBi. Thus when h > 1,

pseudo-randomly choosing M and N until a B-unrelated modulus is encountered will be an

efficient way to proceed, as long as we are able to quickly verify if M or N is a multiple of B.

Clearly, we have that

If M ∈ hBi , then lM = O.

6That is, selecting pseudo-random a and b in Fq that will determine the elliptic curve Ea,b.

5.4. EFFICIENCY 145

For the elliptic curve we consider, it turns out that the converse also holds. Indeed, by the

Structure Theorem for Finitely Generated Abelian Groups [Hun74, Theorem II.2.2], we know

that E (Fq) is isomorphic to a direct sum of the form Z/lZ ⊕ G, where Z/lZ is the additive
group of integers modulo l and G is a group of order h. Since l is prime, it follows that the only

elements of order l in E (Fq) must lie in hBi. We have therefore shown that if M ∈ E (Fq), then

lM = O if and only if M ∈ hBi .

We thus have an easy and efficient method to decide if a given modulus is B-unrelated.

Alternatively, one could also use the Weil pairing in order to achieve the same goal. Indeed,

back in 1986, Victor Miller noticed that the Weil pairing provides a solution to the subgroup

membership problem on elliptic curves7. The following proposition, whose proof can be found

in [Gal04, Section 8], provides an efficient method to decide if a point Q lies in the subgroup

generated by P .

Proposition 5.10 Let E be a smooth elliptic curve defined over a finite field Fq, m ≥ 2 be an
integer prime to Char (Fq), P ∈ E

¡
Fq
¢
be a point of order m and Q ∈ E[m] be given. Then,

Q ∈ hP i if and only if em (P,Q) = 1, (5.24)

where em : E[m] × E[m] → μm is the classical Weil pairing, μm =
n
ζ ∈ F∗qk

¯̄̄
ζm = 1

o
is the

subgroup of mth roots of unity and k is the smallest positive integer8 satisfying m
¯̄¡
qk − 1

¢
.

Remark 5.11 This proposition uses the original version of the Weil pairing9 as defined in

[Sil86, Section III.8], as opposed to the modified pairings exploited in several cryptographic ap-

plications, such as for the identity-based encryption scheme of Boneh and Franklin [BF01, BF03].

An easy way to remember which pairing to use here is to note that for property (5.24) to hold,

we must have em (P,P) = 1. For this same reason, the above proposition might not hold for the

Tate-Lichtenbaum pairing either, since it is not necessarily alternating.

In his now famous unpublished manuscript10 “Short Programs for Functions on Curves”,

Miller presents a fast probabilistic polynomial-time algorithm to compute the Weil pairing. In

the recent special issue “Pairings and their Use in Cryptology” of the Journal of Cryptology,

Miller also signed an article concerned with the efficient calculation of this pairing [Mil04].

7This observation is in fact one of the ideas underlying his algorithm for determining the group structure of
E (Fq), which is described in [Mil86a, Algorithm 3].

8This integer k is sometimes called the embedding degree, MOV degree, or security multiplier.
9This pairing was introduced by André Weil in 1940 and was used in his first proof of the Riemann Hypothesis

for curves over finite fields [Wei40].
10Which is now available online (see [Mil86a, Algorithm 2]).

146 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

To sum up, we now know how to efficiently generate a B-unrelated modulus, simply by

choosing random affine points M 6= N on the curve11 until both M and N are outside hBi.
In order to test if a given point lies in the subgroup generated by B, two methods were also

mentioned.. From a global perspective, this means that we now have all the tools at hand to

select the generalized Jacobians we are considering for the cryptographic applications of this

chapter.

5.4.4 Group Order and Generators

For a given elliptic curve E over Fq, a basepoint B ∈ E (Fq) of prime order l, and a B-unrelated
modulus m = (M) + (N) such that M and N are distinct nonzero points of E (Fqr), we now
wish to make some observations concerning the order of the elements in F∗qr × hBi, which will
then be used to study the structure of this group. In what follows, the prime l is assumed to be

known12.

ORDER OF THE ELEMENTS. Given any element (k, P) ∈ F∗qr × hBi for which P 6= O,
we first want to efficiently compute its order m. By definition, m is the least positive integer

such that m(k, P) = (1,O). Since m(k, P) = (∗,mP), we have that mP = O, and thus that m
is a multiple of l = ord (P). There is then a positive integer n such that m = n · l. Hence,

(1,O) = m(k, P) = n · l(k, P) = n(λ,O) = (λn,O),

where λ ∈ F∗qr satisfies l(k, P) = (λ,O). It thus follows that λn = 1, for which the least solution
is n = ord(λ). As a result,

The order of (k, P) equals ord(λ) · l.

So in particular,

(k, P) generates F∗qr × hBi if and only if λ generates F∗qr . (5.25)

Since l is already known, it only remains to determine ord(λ) if we wish to compute ord ((k, P)).

First notice that computing λ can be done by evaluating the scalar multiple l(k, P), since both

l and (k, P) are known. Moreover, recall that determining the order of an element in a finite

group G can be readily achieved when the factorization of #G is known. The corresponding

deterministic algorithm can be found in [MvOV96, Algorithm 4.79]. As a result, the order of an

element of F∗qr ×hBi can be efficiently computed as soon as the factorization of qr− 1 is known.
11Remembering that the underlying elliptic curve should have a cofactor greater than one when r = 1.
12Recall that #E (Fq) can be efficiently computed and was chosen such that its factorization is of the form

l · h, where h is a small integer.

5.4. EFFICIENCY 147

STRUCTURE OF F∗qr × hBi. Next we turn our attention to the structure of F∗qr × hBi. We
first point out that this group has order (qr − 1) · l, and will therefore never have prime order.
Consequently, F∗qr × hBi might not be a cyclic group. Fortunately, it is possible to investigate
a little further by taking a closer look at (5.25). Indeed, let g be a generator of F∗qr and let α
be the element of F∗qr such that l(1, P) = (α,O). In order to know if F∗qr × hBi is cyclic, we can
start by explicitly write down the values of l(1, P), l(g, P), l(g2, P), . . . , l(gq

r−2, P) in terms of

α. We have

l
¡
gi, P

¢
= l

¡¡
gi,O

¢
+ (1, P)

¢
= l

¡
gi,O

¢
+ l (1, P) =

¡
gil,O

¢
+ (α,O) = (αgil,O),

for any integer i such that 0 ≤ i < qr−1. We would therefore like to know if there is a generator
of F∗qr among α,αgl,αg2l, . . . ,αg(q

r−2)l. Now notice that as soon as l - (qr − 1), we have that

αgil = αgjl iff il ≡ jl (mod qr − 1) iff i ≡ j (mod qr − 1) iff i = j,

where 0 ≤ i, j < qr − 1. Therefore, the qr − 1 elements α,αgl,αg2l, . . . ,αg(qr−2)l of F∗qr are
all distinct, which means that F∗qr =

©
α,αgl,αg2l, . . . ,αg(q

r−2)lª, and thus that this set must
contain a generator of F∗qr . Finally, we use (5.25) to conclude that F∗qr × hBi is cyclic whenever
l - (qr − 1).
If l | (qr − 1), then the above counting argument no longer holds. Indeed, the order of α

now comes into play. By hypothesis, we know that qr − 1 = ld for some positive integer d.

Thus the order of α divides l · d. If we are in the situation where αd = 1, then
¡
αgil

¢d
= 1 for

0 ≤ i < qr − 1, which means that there is no generator of F∗qr among α,αgl,αg2l, . . . ,αg(q
r−2)l.

This simple observation shows that the behavior of F∗qr ×hBi may be different when l | (qr − 1),
and thus that a further study of this case would be of interest.

Remark 5.12 It would also be possible to work in a proper cyclic subgroup of F∗qr × hBi.
However, an advantage of considering all of F∗qr × hBi is that the plaintext imbedding of a
message is then readily achieved. Efficient methods for imbedding plaintexts in an elliptic curve

can be found in [Kob87, Section 3].

FINDING A GENERATOR. Lastly, given a cyclic group F∗qr × hBi for which the factor-
ization of the group order (qr − 1) · l is known, we describe how a generator of this group can
be efficiently selected. First recall that for any cyclic group G = hgi of order n and integer
1 ≤ i ≤ n,

gi is a generator of G if and only if gcd (n, i) = 1. (5.26)

There are therefore exactly φ(n) generators of G, where φ is Euler’s totient function (see Section

2.4.2). So if we choose a random element of G, the probability that it is a primitive element is

148 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

φ(n)/n. But φ(n) > n /(6 ln lnn) as soon as n ≥ 5 [RS62]. Therefore, the probability that a
randomly chosen element of G be a generator is at least 1 /(6 ln lnn) . As a result, successively

choosing random elements of G until a generator is found is an efficient (expected polynomial-

time) method to select a primitive element, as soon as there is an efficient deterministic procedure

to decide if a given element is of maximal order. Thus if the factorization of qr− 1 is known, we
conclude that randomly choosing elements of F∗qr × hBi until a generator is found is an efficient
(expected polynomial-time) procedure to obtain a primitive element of F∗qr × hBi.

Remark 5.13 Notice that if (k, P) is a generator of F∗qr × hBi, then it does not imply that k
is a generator of F∗qr . Indeed, recall that in our toy example of Section 5.3.3, we saw that the
element (1, B) was a primitive element of F∗7 × hBi.

5.5 The Discrete Logarithm Problem

Among the four essential ingredients needed for a group to be suitable for DL-based cryptography

outlined at the beginning of this chapter, we have so far covered three of them. Namely, we now

know how to compactly represent the elements of our generalized Jacobian, how to efficiently

perform the group operation and how to compute the group order. Thus, the very last step is

to study the discrete logarithm problem in F∗qr × hBi.
Throughout this section, E will as usual denote a smooth elliptic curve defined over Fq,

B ∈ E (Fq) a point of prime order l, m = (M) + (N) a B-unrelated modulus with M and N

distinct nonzero points of E (Fqr). Finally, we will assume that these parameters have been
chosen such that F∗qr × hBi is a cyclic subgroup of Jm generated by (k, P).

5.5.1 A Natural Solution

The first exercise that should be done in order to get a flavor of how to attack the discrete

logarithm problem in F∗qr × hBi is to try to write down the most natural way we could see to
solve this problem. If we do so, we will then have an upper bound on the complexity of the

problem that will (hopefully) raise several relevant questions concerning the overall difficulty of

the problem.

Thus, given an element (j,Q) ∈ F∗qr × hBi, we wish to determine the least positive integer n
such that n(k, P) = (j,Q). Notice that such a n exists since h(k, P)i = F∗qr ×hBi by hypothesis.
While considering efficiency aspects in the previous section, recall that we came up with an

interesting way of computing scalar multiples of (k, P). Indeed, by Lemma 5.8 , we have that

(j,Q) = n(k, P) = (νn0 · λn1 , n0P),

5.5. THE DISCRETE LOGARITHM PROBLEM 149

where n0 = nmod l, n1 = bn/lc, l(k, P) = (λ,O) and n0(k, P) = (νn0 , n0P). Thus, given the

values of

j = νn0 · λn1 and Q = n0P ,

recovering n is the goal of this game. First notice that knowing n is equivalent to know both n0

and n1 (since l is public and n = n1 · l + n0). Also observe that Q is independent of n1 while j
depends on both n0 and n1.

The obvious strategy is then to start by solving an instance of the discrete logarithm problem

on E in order to recover n0 from Q = n0P . Once n0 is known, the value of νn0 can be easily

computed, as n0(k, P) = (νn0 , n0P). Next derive the value of λ
n1 by computing ν−1n0 · j (notice

that νn0 6= 0 since by construction, νn0 ∈ F∗qr). Then recover n1 by computing the discrete
logarithm of λn1 to the base λ. Finally, let n = n1 · l + n0. We have therefore shown:

Lemma 5.14 Let E be a smooth elliptic curve over Fq, B ∈ E (Fq) be a point of prime order,
m = (M)+(N) be a B-unrelated modulus, whereM and N are distinct nonzero points of E (Fqr)
such that F∗qr×hBi is a cyclic subgroup of Jm. Then, the discrete logarithm problem in F∗qr×hBi
is no harder than sequentially solving a discrete logarithm in E followed by one in F∗qr .

In a nutshell, the computing sequence that was performed in order to extract n can be

visualized as follows:

n0P
DLP
V
in E

n0 → νn0 → λn1
DLP
V

in F∗
qr

n1 → n

Figure 5.3: Natural solution to a DLP on the generalized Jacobian

In this figure, the triple arrow ‘V’ emphasize that this step requires to perform a discrete

logarithm, while the simple arrow ‘→’ means that this computation can be efficiently performed.
There are therefore two bottlenecks in this solution: one for each DLP to be solved. Unfortu-

nately, the most obvious solution to a problem needs not coincide with the optimal strategy, so

we have to wonder:

Is it possible to do any better?

The remainder of this chapter will attempt to answer this intuitive question. Since providing a

clear answer to a vague question is to no avail, the first step is to draw up a list of (still informal)

subquestions of interest:

150 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

• If we know how to solve the discrete logarithm problem in F∗qr × hBi,
do we necessarily know how to solve it in E?

• If we know how to solve the discrete logarithm problem in F∗qr × hBi,
do we necessarily know how to solve it in F∗qr?

• Is it possible to solve a discrete logarithm problem in F∗qr × hBi
by solving one in E and one in F∗qr in parallel?

• Can some clever precomputations be made in order to speed up
the extraction of a discrete logarithm in F∗qr × hBi?

This list is far from being exhaustive and of course, several auxiliary questions will arise

along the way. Before we take a closer look at them, we conclude this section with an analogy

that has proved to be useful in Chapter 2 for providing a mental image of the inner workings of

a cryptographic technique.

Indeed, the process of sequentially performing two discrete logarithms in two different struc-

tures, that arise naturally with this generalized Jacobian, has a simple conceptual interpretation

in terms of padlocks and safes. With the above notation, suppose that Eve wishes to recover

Bob’s private key n from his public key (j,Q), with the help of the publicly available data (k, P)

and λ. As observed above, the knowledge of n is equivalent to the knowledge of both n0 and

n1, where

n0 = logP Q and n1 = logλ
¡
ν−1n0 · j

¢
.

Notice that the first discrete logarithm is in the elliptic curve E while the second is in the finite

field F∗qr . Thus, Bob in fact possesses two private keys: n0 for the elliptic curve and n1 for
the finite field. Recall that with the simple model of a public-key cryptosystem described in

Section 2.4.1, the combination used to open the safe played the role of the private key. Thus one

possibility here would be to consider two safes, S0 and S1, with respective secret combinations

n0 and n1.

If the two safes were side by side, then Eve and her evil friend Ed could simultaneously try

to open both safes at the same time, thus recovering n0 and n1 is parallel. But as depicted

in Figure 5.3, Eve’s straightforward strategy is to first recover n0 from n0P , and then use this

value to discover her second challenge λn1 , form which she gets n1. That suggests that the safe

S1 should instead be placed inside of S0.

This interpretation correctly suggests that the obvious strategy is to first open the outer safe,

S0, which protects the inner safe, S1. Also notice that this physical model does not rule out the

possibility that there might exist a smarter way to proceed (for example, if the lock of the inner

5.5. THE DISCRETE LOGARITHM PROBLEM 151

Simple Model for a Public-key Cryptosystem with Two Safes

Alice
Put message m in safe S1
and lock it
Put S1 within the safe S0
Lock S0 and send it to Bob −→

Bob
Open S0 to
recover the closed safe S1
Unlock S1
and retrieve m

safe is controlled by an electromagnet while the lock of the outer safe is purely mechanical, then

cutting the current could unlock the inner safe before the outer safe is opened). But enough

Hollywood scenarios, as we now need to seriously study this discrete logarithm.

5.5.2 Reductions among Discrete Logarithm Problems

In the previous section, we have seen that a natural approach to solve a discrete logarithm in

F∗qr × hBi is to extract a discrete logarithm in E followed by one in F∗qr . We would now like to
say more about the interrelation between these three problems.

Loosely speaking, the goal we are after in this section is to show that any given algorithm

that solves DLPs in F∗qr × hBi may be used as a subroutine to solve DLPs in E as well as in

F∗qr . That means that if anyone ever discovers an efficient way to solve DLPs in F∗qr × hBi, he
or she could use it to efficiently solve instances of the DLP in E and F∗qr , rendering obsolete all
cryptographic protocols based on the discrete logarithm problem in these groups.

Before we start, it will be best to go over two important properties of discrete logarithms that

will be used to prove the results of this section. For this purpose, let G be any (multiplicatively

written) cyclic group of order n generated by an element g.

We begin with the random self-reducible property of discrete logarithms, which is based on

the equality

ga · gr = ga+r. (5.27)

We say that an algorithm A has a non-negligible probability of solving the DLP in G (to the base
g) if for an input h uniformly chosen at random in G, there is a non-negligible probability13 that

A outputs logg h. But in practice, it is often desirable to learn the discrete logarithm of a specific
element s of the group. It is however possible that the probability that A yields a = logg s on

input s equals zero14. The strategy is then to ‘disguise’ s using equation (5.27). Indeed, if we

13That is, there is a polynomial p such that this probability is greater than 1/p(logn).
14For instance, the algorithm could solve all instances for which the discrete logarithm is even, but fail otherwise.

152 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

uniformly pick an integer r in {0, 1, . . . , n− 1}, then s ·gr = ga ·gr = ga+r (Take note that if r is
uniformly selected, then so is a+ r). So on input s · gr, there is now a non-negligible probability
that A yields the value of a + r. If so, then a can be recovered since r is known. Thus, A
implies the existence of a randomized algorithm A0 such that for any input s ∈ G, there is a
non-negligible probability that A0 outputs logg s.

r∈R{0,1,...,n−1} A0
s−→ s·gr−→ A a+r−→ a−→

Figure 5.5: Constructing A0 from A

The second property concerns the choice of the generator of the group. Namely, if g1 and

g2 are distinct generators of G, then any algorithm A1 that has a non-negligible probability
of solving discrete logarithms in G to the base g1 can readily be turned into an algorithm A2
having non-negligible probability of solving discrete logarithms in G to the base g2. Indeed, let

h = ga2 be an instance of the DLP in G to be solved. By the random self-reducible property

of discrete logarithms, we can assume without loss of generality that for any s ∈ G, A1 has a
non-negligible probability of producing logg1 s. So first invoke A1 on input g2 in order to get,
with non-negligible probability, an integer b such that g2 = gb1 and 0 < b < n. Since g1 and

g2 are both generators, it follows that gcd (n, b) = 1 (see Fact (5.26 on page 147)), and so b is

an invertible element of (Z /nZ)∗. Then compute an integer c such that bc ≡ 1 (modn) and
0 < c < n using, for instance, the extended Euclidean algorithm [MvOV96, Algorithm 2.107].

Then,

gc2 =
¡
gb1
¢c
= gbc1 = g1.

Next, we can obtain with non-negligible probability an integer d such that h = gd1 and 0 ≤ d < n
by invoking A1 on input h. Finally,

h = gd1 = (g
c
2)
d
= gcd2 ,

and so a = cdmodn, which completes the argument.

The link between the DLP in the generalized Jacobian and in the elliptic curve appearing to

be simple, we might want to analyze it first. We therefore want to show:

Lemma 5.15 Let E be a smooth elliptic curve over Fq, B ∈ E (Fq) be a point of prime order
l, m = (M) + (N) be a B-unrelated modulus, where M and N are distinct nonzero points of

5.5. THE DISCRETE LOGARITHM PROBLEM 153

A2
g2−→ A1 b−→

h−→ a=b−1dmodn−→
h−→ A1 d−→

Figure 5.6: Constructing A2 from A1

E (Fqr) such that F∗qr × hBi is a cyclic subgroup of Jm. Then, the discrete logarithm problem in

F∗qr × hBi is at least as hard as the discrete logarithm problem in hBi ⊆ E (Fq).

Proof. Let AJm be an algorithm that has a non-negligible probability of solving discrete loga-

rithms in F∗qr×hBi to the base (k, P), where (k, P) is a generator of F∗qr×hBi. We wish to show
that there is an algorithm AE having a non-negligible probability of solving discrete logarithms
in hBi to the base P . So let Q = n0P be an instance of the discrete logarithm problem in hBi,
where 0 ≤ n0 < l. By the random self-reducible property of discrete logarithms, we can assume

without loss of generality that given any element of F∗qr×hBi, its discrete logarithm (to the base
(k, P)) has a non-negligible probability of being obtained with AJm . Now, for a randomly chosen
element j ∈ F∗qr , invoke AJm on input (j,Q). With non-negligible probability, a non-negative
integer n such that n(k, P) = (j,Q) will be obtained, yielding n0 = nmod l. ¤

j∈RF∗qr AE
Q−→ (j,Q)−→ AJm

n−→ n0=nmod l−→

Figure 5.7: Converting an instance of the DLP in hBi into one in F∗qr × hBi

Next we want to show a similar reduction between the discrete logarithm problem in F∗qr×hBi
and in F∗qr . Notice how this proof differs from the previous one, even though the same underlying
technique is used in both proofs.

Lemma 5.16 Let E be a smooth elliptic curve over Fq, B ∈ E (Fq) be a point of prime order
l, and m = (M) + (N) be a B-unrelated modulus, where M and N are distinct nonzero points

of E (Fqr) such that F∗qr × hBi is a cyclic subgroup of Jm. Then, the discrete logarithm problem

in F∗qr × hBi is at least as hard as the discrete logarithm problem in F∗qr .

154 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

Proof. Let AJm be an algorithm that has a non-negligible probability of solving discrete loga-

rithms in F∗qr × hBi to the base (k, P), where (k, P) is a generator of F∗qr × hBi. We want to
show the existence of an algorithm AF∗

qr
having a non-negligible probability of solving discrete

logarithms in F∗qr to the base g, where g is a generator of F∗qr . Thus let h = gn be an instance
of the discrete logarithm problem in F∗qr , with 0 ≤ n < qr− 1. As usual, we can assume without
loss of generality that given any element of F∗qr ×hBi, its discrete logarithm (to the base (k, P))

has a non-negligible probability of being obtained with AJm (by the random self-reducible prop-

erty). Invoking AJm twice, on inputs (g,O) and (h,O), will yield with non-negligible probability
integers a and b satisfying (g,O) = a (k, P), (h,O) = b (k, P) and 0 ≤ a, b < (qr − 1) l. Notice
that l must divide both a and b, so there are integers c and d such that a = c · l, b = d · l and
0 ≤ c, d < (qr − 1).
If we now let l (k, P) = (λ,O), then λ has to be a generator of F∗qr by (5.25). We then have

g = λc since

(g,O) = a (k, P) = c · l (k, P) = c(λ,O) = (λc,O).

Moreover, both g and λ generates F∗qr , from which follows that gcd(c, qr − 1) = 1 (by (5.26)).
Lastly, by property 4 of Corollary 5.6, we have

(λd,O) = d (λ,O) = d · l (k, P) = b (k, P) = (h,O) = (gn,O) = n(g,O) = n(λc,O) = (λcn,O),

and we finally get n = c−1dmod(qr − 1). ¤

AF∗
qr

(g,O)−→ AJm
a−→

h−→ n=c−1dmod(qr−1)−→
(h,O)−→ AJm

b−→

Figure 5.8: Converting an instance of the DLP in F∗qr into two instances in F∗qr × hBi

From a practical point of view, the two lemmas of this section imply that even though

generalized Jacobians are newcomers in cryptography, we already know that solving their DLP

cannot be easier than solving discrete logarithms in two of the most studied groups used in

DL-based cryptography today.

5.5. THE DISCRETE LOGARITHM PROBLEM 155

5.5.3 Precomputations and Parallelization

Now that we have strong evidence that the discrete logarithm problem in the generalized Ja-

cobians we consider is a computationally difficult problem, we further investigate the natural

solution proposed in Section 5.5.1. Recall that Lemma 5.14 showed that an instance of the

DLP in F∗qr × hBi can be solved by sequentially extracting a discrete logarithm in E followed

by one in F∗qr . So the next step is to try to determine under which circumstances the DLP in
F∗qr × hBi could be performed any faster.
As usual, let (j,Q) = n(k, P) be an instance of the DLP in F∗qr × hBi to be solved, where

0 ≤ n < (qr − 1) l. By Lemma 5.8, we know that the scalar multiple n(k, P) can be computed
as

n(k, P) = (νn0 · λn1 , n0P),

where we keep the notation n = n1 · l + n0, 0 ≤ n0 < l, 0 ≤ n1 < qr − 1 as well as l(k, P) =
(λ,O) and n0(k, P) = (νn0 , n0P). Notice that the sequential solution of Section 5.5.1 performs
computations involving νn0 · λn1 only once νn0 is known, which can be pictured as follows.

F∗qr E

n0P
↓
n0
↓

νn0 · λn1 νn0
↓
λn1

↓
n1

Figure 5.9: A sequential solution to the DLP in F∗qr × hBi

We could instead attempt to extract a discrete logarithm in F∗qr in parallel with the one in
the elliptic curve. On one hand, using the identity (j,Q) = n(k, P) = (νn0 · λn1 , n0P), one can
start to solve Q = n0P for n0 by extracting a discrete logarithm in E.

In the meantime, we can also start to extract a discrete logarithm in the finite field as follows.

This time, let

n2 = nmod (q
r − 1) .

Then compute l (j,Q) which will equal, say, (j0,O). We now have:

(j0,O) = l (j,Q) = l · n (k, P) = n · l (k, P) = n (λ,O) = (λn,O) = (λn2 ,O) .

156 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

Since j0 and λ are known, we can then solve the following DLP in F∗qr in order to get n2:

j0 = λn2 .

Remark that this can be done in parallel with the computation of n0.

Finally, try to combine n0 and n2 using the Chinese remainder theorem in order to recover n.

However, we must have gcd (l, qr − 1) = 1 in order to fully recover n with this method. Notice
the similarity with the Pohlig-Hellman method.

Let’s now see what the situation is when l | qr − 1. Thus, the order of our generalized
Jacobian F∗qr × hBi is of the form d · lα, where α ≥ 2 and l - d. For cryptographic purposes,
recall that we can think of l as being a 160-bit prime and qr to have roughly 1024 bits.

Now just as before, let (j,Q) = n (k, P) be the instance of the discrete logarithm problem

that we wish to solve. In order to be able to use the Chinese remainder theorem to recover n in

this case, we will need to know ½
nα := nmod l

α

nd := nmod d
.

This can be achieved in several steps as follows.

1. Let’s begin with the easy part. That is, the computation of nd. Start by computing

lα (j,Q) which will equal, say, (j0,O). Then we get

(j0,O) = lα (j,Q) = lαn (k, P) = nlα−1 · l (k, P)

= nlα−1 (λ,O) =
³³

λl
α−1´n

,O
´
=
³³

λl
α−1´nd

,O
´
,

which means that

j0 =
³
λl

α−1´nd
,

where j0 and λl
α−1

are known. It thus suffices to solve a DLP in F∗qr in order to recover
nd.

2. Next we want to determine nα. To do so, first let n0 := nmod l (= nαmod l). To get n0,

we proceed the obvious way:

(j,Q) = n (k, P) = (∗, nP) = (∗, n0P) ,

and we thus have Q = n0P , which requires to solve a DLP in the elliptic curve. Notice

that we have now retrieved all the information about n that Q contained. That is, we

should expect that all other discrete logs that we have to solve from this point on will be

in the finite field F∗qr . Very well.

5.5. THE DISCRETE LOGARITHM PROBLEM 157

3. Then we will determine

n1 :=
n− n0
l

mod l.

This is where it gets interesting. Indeed, rewrite n as n0 + n1l+ml2 for some (unknown)

integer m and compute dlα−2 (j,Q) to get, say,
¡
j00, dlα−2Q

¢
. Now remark that¡

j00, dlα−2Q
¢
= dlα−2 (j,Q) = dlα−2 · n (k, P) = dlα−2

¡
n0 + n1l +ml

2
¢
(k, P)

= dlα−2n0 (k, P) + n1dl
α−2 · l (k, P) +m · dlα (k, P)

= dlα−2 (νn0 , n0P) + n1dl
α−2 (λ,O) +m (1,O)

=
³
(νn0)

dlα−2 · μ, dlα−2Q
´
+
³³

λdl
α−2´n1

,O
´
+ (1,O)

=
³
(νn0)

dlα−2 · μ ·
³
λdl

α−2´n1
, dlα−2Q

´
,

where μ is simply the product of the 2-cocycles from repeated applications of the group

law. Notice that μ can be computed directly from Q and dlα−2. It therefore follows that

j00

μ · (νn0)
dlα−2

=
³
λdl

α−2´n1
,

where the only unknown is n1. Thus, n1 can be obtained by solving a DLP in F∗qr .

4. If α = 2, then we are done since nα = n0 + n1l. Otherwise, proceed to compute n2 such

that

n2 :=
n− n0 − n1l

l2
mod l,

and then repeat this process for n3, n4, ..., nα−1. Finally get nα = n0 + n1l+ n2l2 + ...+

nα−1l
α−1.

5. At last, combine nd and nα using the Chinese remainder theorem in order to get n.

The remarkable property of this method is that

The value of νn0 is used to compute n1.

As a result, this still suggests that the value of n0, obtained by solving a DLP in E, should be

known prior to the computation of n1. In other words, to compute nα, the discrete logarithm

on the elliptic curve should be performed first, and then be followed by discrete logarithms in

F∗qr . Reiterate that this sequence of operations is similar to the Pohlig-Hellman method. Now to
the best of our knowledge, there is no version of this method that allows to retrieve n1 without

computing n0 first. Thus the best method we know in this case involves to sequentially extract

a discrete logarithm in E followed by at least one in F∗qr .

158 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

Those familiar with pairing-based cryptography will have noticed that the problem of choos-

ing a smooth elliptic curve E over Fq such that #E (Fq) = l · h (with h small) and l | qr − 1 is
in fact identical to the problem of generating suitable curves for pairing-based applications. As

opposed to the usual ECC, generating curves at random until a suitable one is found no longer

is an efficient method in this case [BK98]. Fortunately, the frenzy surrounding pairing-based

crypto stimulated the search for efficient curve generation algorithms. We now know several

techniques allowing to efficiently choose suitable curves for various values of r of cryptographic

interest. See [MNT01, BS04, BW03, BN05, DEM05] for details.

The informal argument that “the inner workings of the Pohlig-Hellman method suggests

that we must solve a DLP in E, followed by (at least) one in F∗qr” is of course far from being

a satisfactory answer. Indeed, there may be other techniques allowing to solve everything in

parallel...

We thus now explore other avenues that could lead to a general parallel solution. We start

by considering the computing sequence presented in Figure 5.10.

F∗qr E

νn0 · λn1 n0P
↓ ↓

(logλ νn0 + n1)mod (q
r − 1) n0

↓
νn0 νn0
↓

logλ νn0
↓
n1

Figure 5.10: An alternate solution to the DLP in F∗qr × hBi

At first sight, this method appears to be even worse than the solution of Figure 5.9 since it

first performs a discrete logarithm in E and one in F∗qr in parallel, followed by a second discrete
logarithm in F∗qr . However, suppose that the values of logλ νn0 have been precomputed for all
possible values of νn0 . That is, we possess a table T listing the possible νn0 along with their

respective discrete logarithms to the base λ. Then as soon as the value of νn0 is known, a

simple table look-up would yield logλ νn0 , and thus n1. Granted that these precomputations

have been performed, we would then only need to solve a DLP in E and in F∗qr in parallel. The
precomputation time will then determine if this strategy can be realistically considered.

During the precomputation phase, a discrete logarithm in F∗qr has to be computed for each

5.5. THE DISCRETE LOGARITHM PROBLEM 159

of the possible value of νn0 . Thus if we let Γ be the set of all possible νn0 , that is

Γ = {ν0, ν1, ν2, . . . , νl−1} ⊆ F∗qr ,

then 1 ≤ #Γ ≤ l represents the number of entries in T. For instance, if Γ is of exponential
size, then the precomputation time will be exponential as well, and this strategy would then be

impractical. Thus the next step is to study the quantity #Γ, but before we do so, we note a few

observations conserning Γ.

Remark 5.17 Even if F∗qr×hBi is cyclic, it is still possible to have νi = νj with i 6= j. Indeed,
in our toy example of Section 5.3.3, we had ν3 = ν4 = 4.

Remark 5.18 The set Γ, as well as its size, does not only depend on the choice of the group

F∗qr ×hBi, but also on the specific generator chosen. In the example of Section 5.3.3, we consid-
ered the generalized Jacobian of E : y2 = x3+x+4 over F7 with respect to m = ((0, 5))+((5, 1)),
and worked in the subgroup F∗7 × hBi of order 30 generated by (k,B) = (1, (6, 3)). For that

generator, we already possess all the information at hand to form the corresponding set Γ =

{1, 2, 4}. Another possible generator for this subgroup is (k0, B0) = 23(k,B) = (2, (4, 4)) since

gcd(30, 23) = 1 (see fact 5.26). Using the precomputed list of multiples of (k,B) provided in

Table 5.1, it is a simple matter to get that

0(k0, B0) = (1,O),
1(k0, B0) = 23(k,B) = (2, (4, 4)),
2(k0, B0) = 16(k,B) = (6, (6, 3)),
3(k0, B0) = 9(k,B) = (5, (6, 4)),
4(k0, B0) = 2(k,B) = (2, (4, 3)).

Thus, Γ0 = {1, 2, 5, 6} is the set associated to (k0, B0). Hence, we have that Γ Ã Γ0, Γ ! Γ0 and
#Γ 6= #Γ0, even if (k,B) and (k0, B0) generate the same group.

Remark 5.19 Lastly, notice that Γ is simply a set, and is not necessarily a subgroup of F∗qr
(and so #Γ does not have to divide qr − 1). Indeed, we just saw that Γ0 = {1, 2, 5, 6} and thus
Γ0 cannot be a subgroup of F∗7 since #Γ0 - #F∗7.

The Classical Occupancy Problem

In order to get a first idea on the size of Γ, a good place to start is to look at some empirical

data. Using the computer algebra system Magma, six thousand generalized Jacobians with

r = 1, q prime such that 214 < q < 220 and underlying elliptic curves with cofactor h = 2 were

pseudo-randomly generated. For the time being, we leave the details of the implementation

aside since we simply want to get an idea of the relative size of Γ at this point15 . For each
15More details concerning the implementation can be found on page 165.

160 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

generalized Jacobian, the percentage 100 ·#Γ/l, representing the proportion of the number of
distinct νn0 to the maximal size

16

Note that we indeed have l ≤ q − 1 since by Hasse’s Theorem (see Theorem 3.63), l =

#E(Fq)/h ≤
¡
q + 1 + 2

√
q
¢±
2 ≤ q − 1.00000 00000 of Γ, was tabulated. The histogram of

Figure 5.11 was obtained.

Figure 5.11: A first look at the relative size of Γ

The obvious observation is that the mean value on this graphic is about 78, 7%. So roughly

speaking, the size of Γ for a typical generalized Jacobian in this sample is at least 3l/4: this

would mean that the precomputation step requires the extraction of 3l/4 discrete logarithms in

F∗qr , which is clearly out of reach. This first impression being really positive, we now need to
take a closer look at the behavior of 100 ·#Γ/l.
Such a nice bell shape most probably means that more can be said about the expected value

of the quantity 100 ·#Γ/l. In order to see how we could model this problem, we go back to the
very definition of the νn0 ’s. We know that for every n0 ∈ {0, 1, . . . , l − 1}, the value of νn0 ∈ F∗qr
is obtained by evaluating n0(k, P) = (νn0 , n0P). So each possible n0 is assigned to one of q

r− 1
possible values. Thus, each n0 could be represented by a tennis ball that is thrown into one of

the possible qr − 1 boxes. Once each of the l balls have been placed into their respective box,
we simply need to count the number of nonempty boxes to get #Γ.

Balls and urns are to probability theory what padlocks and safes are to cryptography. In

addition of being great didactic tools, these physical models allow us to keep in mind intuitive

properties while helping us to make the connection between seemingly unrelated problems. Thus
16

5.5. THE DISCRETE LOGARITHM PROBLEM 161

Figure 5.12: The Classical Occupancy Problem

reinterpreting our really specific problem in terms of balls and boxes might help us to have a

more global perspective on the behavior of the generalized Jacobians we consider.

Perhaps the most natural experiment we can think of in terms of balls and boxes would be

to randomly throw l balls into qr−1 boxes. That is, the l balls are randomly and independently
distributed among the qr − 1 equally probable boxes. At the end of this process, let ∆ be the

set of nonempty boxes that were obtained.

We have then produced, with the pseudo-random number generator of Magma, a sample of

six thousand pairs of Γ and ∆ in order to compare the behavior of genuine generalized Jacobians

with random assignment of balls into boxes. To generate each pair, a pseudo-random generalized

Jacobian (with r = 1, q prime such that 214 < q < 220 and underlying elliptic curve of cofactor

h = 2) was first generated, and for the corresponding values of l and q − 1, the quantities #Γ
and #∆ were tabulated. The results are shown in the graphic below.

Figure 5.13: Comparing the relative size of Γ and ∆

162 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

Looking at this histogram, it appears that there is a strong correlation between these two sets

of data. Indeed, the mean of both samples equals 78, 69%, while the sample variance obtained

is 0, 038 for data obtained from generalized Jacobians, and 0, 029 for pseudo-random numbers.

It would therefore be useful to know more about the simplified experiment where each ball is

randomly thrown.

Afterall, the idea of placing balls into boxes is quite natural, so it has certainly been consid-

ered before. We are thus looking for information on a discrete distribution for which our own

description is in terms of tennis balls and shoe boxes17 ... In the first volume of An Introduction

to Probability Theory and its Applications [Fel68], William Feller does provide the terminology

we are looking for. Indeed, the Classical Occupancy Problem refers to the experiment where

B > 0 balls are distributed among C > 1 cells such that each of the CB possible outcome has
probability (1/C)B.
Interestingly enough, this urn model arises in a wide variety of applications, such as the

theory of photographic emulsions, irradiation in biology, cosmic ray experiments and even gene

distributions [Fel68, Section I.2]. As a consequence, various results concerning this problem are

available in the literature.. Two other general references for the Classical Occupancy Problem

are the following books by Johnson and Kotz [JK69, JK77].

For the application we have in mind, we are mainly concerned with the numberX of occupied

(i.e. nonempty) cells. First, the probability that exactly t cells (1 ≤ t ≤ min(B, C)) are taken is
given by

Pr (X = t) =

¡C
t

¢
CB

tX
i=1

(−1)t+i
µ
t

i

¶
iB,

which can be obtained using Boole’s formula [JK69, Sec. I.4], or simply by inspection.

Closed expressions for the expected value and variance can also be found in [JK69, Section

10.5]:

E[X] = C
Ã
1−

µ
1− 1C

¶B!
, and (5.28)

Var[X] = C
µ
1− 1C

¶B
+ C(C − 1)

µ
1− 2C

¶B
− C2

µ
1− 1C

¶2B
.

Example 5.20 If we quickly look at a small example, say B = 10 and C = 20, the expected

number of nonempty cells is 8, 03 while the variance equals 1, 08. visually, the probability function

is as depicted in Figure 5.14.

17There will always be situations where Google will be helpless, and that was one of them. Luckily, humans
have a lot more imagination, so when asked the question “You know the experiment of throwing balls into boxes...

5.5. THE DISCRETE LOGARITHM PROBLEM 163

t Pr (X = t)

1 1, 95× 10−12
2 1, 90× 10−8
3 6, 23× 10−6
4 3, 87× 10−4
5 0, 00773
6 0, 0622
7 0, 224
8 0, 372
9 0, 268
10 0, 0655

Figure 5.14: Probability function for the occupancy distribution with B = 10 and C = 20.

We are here interested in the relative size Y =100 · X/B of the set ∆. In particular, we
would like to say more about the expected value and variance of Y subject to the constraints

B = l = #E(Fq)/h and C = qr − 1 when q is relatively large18 .
To do so, we will treat the case r = 1 and r > 1 separately since they will turn out to have

quite different behaviors. In fact, it is already possible to intuitively see why we should make

this distinction. If r > 1, then the number of boxes is at least q2 − 1 while the number of balls
can never exceed q+1+2

√
q by Hasse’s theorem (c.f. Theorem 3.63). Since the number of boxes

is rather large compared to the amount of balls, we thus suspect that the number of nonempty

boxes should be really close to B. On the other hand, if r = 1, then the number of balls is at
least

¡
q + 1− 2√q

¢
/h while the number of boxes equals q − 1, and thus these two quantities

are now of the same order of magnitude. In that case, the experimental data for h = 2 shown

in Figure 5.13 suggest that for a given h, the expected quantity of nonempty boxes should be a

certain fraction of B yet to be determined. We are now ready to turn these intuitive observations
into factual statements.

We begin with the case r = 1, and hence we have B = l = #E(Fq)/h and C = q − 1.
Also recall that we consider cofactors h ≥ 2 when r = 1 since all moduli would otherwise be

B-related. So as previously pointed out, this implies that B ≤ C. We first turn our attention to
the expected value of Y. Since 100/B is a constant, it follows that E[Y] = 100 · E[X]/B. Using
the lower and upper bound for B provided by Hasse’s theorem,

q + 1− 2√q
h

≤ B ≤
q + 1 + 2

√
q

h
,

Does it have a name?”, chances are someone will eventually remember where to look for the answer. I wish to
thank Jose Correa of the McGill Statistical Consulting Service for suggesting to look at Feller’s book [Fel68].
18That is, q has a minimum of 160 bits (and so is at least 1.5× 1048).

164 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

we therefore get that

100h(q − 1)
q + 1 + 2

√
q

⎛⎝1−µ1− 1

q − 1

¶ q+1−2√q
h

⎞⎠ ≤ E[Y] ≤ 100h(q − 1)
q + 1− 2√q

⎛⎝1−µ1− 1

q − 1

¶ q+1+2
√
q

h

⎞⎠ .
Evaluating the limit of this lower and upper bound as q tends to infinity, we obtain that they

both converge to the same quantity:

lim
q→∞

100h(q − 1)
q + 1± 2√q

⎛⎝1−µ1− 1

q − 1

¶ q+1∓2√q
h

⎞⎠ = 100h

µ
1− 1

h
√
e

¶
.

Thus by the squeeze (or sandwich) theorem [BS82, Thm 3.2.7] of elementary real analysis, it

follows that

lim
q→∞E

[Y] = 100h

µ
1− 1

h
√
e

¶
.

The convergence of E[Y] is illustrated in Figure 5.15 for r = 1, h = 2 and three particular (real)

values of l.

Figure 5.15: On the convergence of E[Y] for three particular values of l

We therefore have that

lim
q→∞E

[Y] =

⎧⎨⎩ 78, 6939% if h = 2,
85, 0406% if h = 3,
88, 4797% if h = 4.

5.5. THE DISCRETE LOGARITHM PROBLEM 165

That is, for q large enough, we should expect for h = 2, 3 and 4 to have respectively 0, 79 · l,
0, 85 · l and 0, 88 · l elements in ∆. The next step is then to compare these results with samples
obtained from true generalized Jacobians.

But before we do so, and for the sake of completeness, we now describe the procedure used

to generate all the samples of this section. Given positive integers r, h, LB and UB, each

generalized Jacobian was pseudo-randomly chosen as follows. First, a random19 prime p such

that 2LB < p < 2UB is first fixed. Then, random a, b ∈ Fp are generated until the curve
E : y2 = x3 + ax + b is nonsingular and #E(Fp)/h is a prime integer20. A random point

B ∈ E(Fp) is then selected until it has order #E(Fp)/h, and the basepoint is set to (k,B) for
a randomly chosen k ∈ F∗pr . Notice that we did not require that the basepoint generates all
of F∗pr × hBi in order to remain as general as possible. Next, M ∈ E(Fpr) is randomly chosen
until M /∈ hBi, which is followed by a random choice of N ∈ E(Fpr) that fulfills N 6= M and

N /∈ hBi. Finally, we set m = (M)+ (N). Then starts the determination of Γ: from ν0 = 1, the

elements ν1, ν2, . . ., νl−1 are recursively computed using the relation νi+1 = k · νi · cm(B, iB)
(0 ≤ i < l − 1), which easily follows from the group law algorithm given in Proposition 5.4 :

(νi+1, (i+ 1)B) = (i+ 1) (k,B) = (k,B) + i (k,B)

= (k,B) + (νi, iB) = (k · νi · cm(B, iB), (i+ 1)B) .

In parallel, each time a νi is computed, a random element of F∗pr is also generated and included
in the separate set ∆, which therefore allows to compare this generalized Jacobian with the

Classical Occupancy Problem where B = l and C = pr − 1.
The results of our simulations for r = 1 are shown in Table 5.2, where each entry corresponds

to the mean of a sample of size two thousand.

214 < q < 216 216 < q < 218 218 < q < 220

h = 2 Generalized Jacobians 78, 6859 78, 6939 78, 6920
Pseudo-Random 78, 6964 78, 6936 78, 6936

h = 3 Generalized Jacobians 85, 0352 85, 0405 85, 0391
Pseudo-Random 85, 0346 85, 0462 85, 0451

h = 4 Generalized Jacobians 88, 4724 88, 4779 88, 4818
Pseudo-Random 88, 4629 88, 4811 88, 4795

Table 5.2: Sample means of the relative size of Γ and ∆ for r = 1 and sample size two thousand

19Whenever we refer to a ‘random choice ’ of a parameter, it is understood that we used the buit-in Magma
function that returns a pseudo-random element from the chosen set. For instance, Random(E) returns a pseudo-
random point on the elliptic curve E.
20Notice that we did not use the complex multiplication method (CM method) to generate the curves.

166 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

In the light of these empirical results, we now have a better idea of the accuracy of the

theoretical predictions inspired by the Classical Occupancy Problem. As the ideal companion

to Table 5.2 is Figure 5.16, which displays three histograms, one for each cofactor, obtained for

generalized Jacobians with 218 < q < 220.

A quick glance at the graphics of Figure 5.16 reveals that the majority of the results fall

within ±0, 5% of the mean, and thus that the variance is relatively small for these samples. So

we now return to the Classical Occupancy Problem in order to study the behavior of Var[Y].

Recall that Y =100 ·X/B = 100 ·X/l and that a closed expression for the variance of X was

given by equation (5.28). Thus, Var[Y] = (100/l)2Var[X] and so

Var[Y] =
(100h)2(q − 1)
(#E(Fq))2

⎛⎝µ1− 1

q − 1

¶#E(Fq)
h

+ (q − 2)
µ
1− 2

q − 1

¶#E(Fq)
h

−(q − 1)
µ
1− 1

q − 1

¶ 2#E(Fq)
h

⎞⎠ .
By Hasse’s theorem (Theorem 3.63), we know that Var[Y] is bounded below by

(100h)2

⎛⎝ (q − 1)¡
q + 1 + 2

√
q
¢2 µ1− 1

q − 1

¶ q+1+2
√
q

h

+
(q − 1)(q − 2)¡
q + 1 + 2

√
q
¢2 µ1− 2

q − 1

¶ q+1+2
√
q

h

− (q − 1)2¡
q + 1− 2√q

¢2 µ1− 1

q − 1

¶ 2(q+1−2√q)
h

⎞⎠ ,
which converges to zero as q tends to infinity. Similarly, an upper bound for Var[Y] is given by

(100h)2

⎛⎝ (q − 1)¡
q + 1− 2√q

¢2 µ1− 1

q − 1

¶ q+1−2√q
h

+
(q − 1)(q − 2)¡
q + 1− 2√q

¢2 µ1− 2

q − 1

¶ q+1−2√q
h

− (q − 1)2¡
q + 1 + 2

√
q
¢2 µ1− 1

q − 1

¶ 2(q+1+2
√
q)

h

⎞⎠ ,
which also tends to zero when q goes to infinity. It thus follows that

lim
q→∞

Var[Y] = 0.

Actually, it is possible to graphically see how the variance decreases as q augments for genuine

generalized Jacobians. Figure 5.17 shows the results of our simulations for r = 1, h = 2, and

three intervals for q, where each sample is of size two thousand.

5.5. THE DISCRETE LOGARITHM PROBLEM 167

Figure 5.16: Relative size of Γ for r = 1, 218 < q < 220 and sample size two thousand

168 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

Figure 5.17: Relative size of Γ for r = 1, h = 2 and sample size two thousand

5.5. THE DISCRETE LOGARITHM PROBLEM 169

We of course also include Table 5.3 showing the variances21 obtained for each sample, both for

generalized Jacobians and for the pseudo-random case that simulates the Classical Occupancy

Problem.

214 < q < 216 216 < q < 218 218 < q < 220

h = 2 Generalized Jacobians 0,08480 0,02452 0,00629
Pseudo-Random 0,06379 0,01788 0,00437

h = 3 Generalized Jacobians 0,09912 0,02389 0,00635
Pseudo-Random 0,08686 0,02089 0,00546

h = 4 Generalized Jacobians 0,10464 0,02464 0,00669
Pseudo-Random 0,10176 0,02471 0,00594

Table 5.3: Sample variances of the relative size of Γ and ∆ for r = 1 and sample size two
thousand

At this point, we know that our experimental results for generalized Jacobians agree fairly

well with the Classical Occupancy Problem, both for the mean and variance. However, we only

have a really vague idea of ‘how fast’ we should expect the variance to decrease towards zero.

For illustrative purposes, the graph of Var[Y], as a function of q, for the case r = 1, h = 2 and

#E(Fq) = q + 1− 2
√
q, q + 1 and q + 1 + 2

√
q, is presented in Figure 5.18.

In order to study the rate of convergence of Var[Y], we will next consider the quantity

q · Var[Y]. Using standard methods of real analysis, one can show that lim
q→∞

q · Var[Y] exists
and is equal to a constant. More precisely, we have that

Lh = lim
q→∞

q ·Var[Y] =
104h

¡
he1/h − h− 1

¢
e2/h

=

⎧⎨⎩ 2188, 46 if h = 2,
2877, 76 if h = 3,
3301, 99 if h = 4.

Indeed, when evaluating this limit, the only part that is a little trickier is

lim
q→∞

q

Ãµ
1− 2

q − 1

¶#E(Fq)/h
−
µ
1− 1

q − 1

¶2#E(Fq)/h!
=
−1
he2/h

.

So when q is of cryptographic size, we expect that for h = 2, 3 or 4,

Var[Y] ≈ Lh
q
<
212

2159
= 2−147.

These results can be interpreted as follows. By Chebyshev’s inequality [Fel68, Section IX.6],

we know that for any real number ² > 0,

Pr (|Y − E [Y]| ≥ ²) ≤
Var[Y]

²2
.

21Recall that the sample variance of a finite set {x1, . . . , xn} of real numbers is given by 1
n−1

Pn
i=1 (xi − x)

2,

where x = 1
n

Pn
i=1 xi.

170 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

Figure 5.18: On the convergence of Var[Y] for three particular values of l

So for instance, if we allow a deviation of only 1% from the mean, we should have that

Pr (|Y − E [Y]| ≥ 1) ≤ Var[Y] ≈ 2−147

when q has (at least) 160 bits. Therefore, even if the upper bound given by Chebyshev’s

inequality might not be really tight22, it is still extremely unlikely that ∆ contains less than,

say, 3l/4 elements.

Next we consider the case r > 1, for which we have B = l = #E(Fq)/h balls and C = qr − 1
cells. We thus have the same number of balls as before, except that the number of boxes has

now increased, which has made us previously remark that the expected number of nonempty

boxes should be even larger in this case. Indeed, from equation (5.28), we get that

E[Y] =
100h (qr − 1)
#E(Fq)

⎛⎝1−µ1− 1

qr − 1

¶#E(Fq)
h

⎞⎠ ,
and thus that E[Y] is bounded below by

100h · q

q + 1 + 2
√
q
·
µ
1− 1

qr

¶
· qr−1

⎛⎝1−µ1− 1

qr − 1

¶ q+1−2√q
h

⎞⎠ , (5.29)

22As it applies to any random variable for which the mean and variance exist and are finite.

5.5. THE DISCRETE LOGARITHM PROBLEM 171

and above by

100h · q

q + 1− 2√q ·
µ
1− 1

qr

¶
· qr−1

⎛⎝1−µ1− 1

qr − 1

¶ q+1+2
√
q

h

⎞⎠ . (5.30)

When evaluating the limits of (5.29) and (5.30) as q → ∞, the only term that requires a little

work is to show that

lim
q→∞

qr−1

⎛⎝1−µ1− 1

qr − 1

¶ q+1±2√q
h

⎞⎠ =
1

h
,

which can be done using a binomial expansion, for instance. As a result, both the lower and

upper bound of E[Y] converge to 100, and we therefore conclude that

lim
q→∞E

[Y] = 100. (5.31)

So as soon as r is at least two and q is large, the relative size of ∆ should be near 100%. In other

words, the number of nonempty boxes should be close to B, which agrees with our intuitive
deductions previously made.

We could not hope for a better result about the Classical Occupancy Problem. Now is the

time to put generalized Jacobians to the test: twelve samples, each containing two thousand

generalized Jacobians with r = 2, have been generated23 to cover cofactors up to four and three

ranges for the prime q. Before we take a close look at the experimental means we obtained, a

quick glance at Figure 5.19 reveals that our histograms for generalized Jacobians with r = 2

no longer have a symmetric ‘bell shape’ (as in the case r = 1). Instead, all the weight is now

concentrated to the right, near the maximum value of 100% that can be observed. Notice that

this behavior agrees with equation (5.31) obtained for the Classical Occupancy Problem. Now,

the details of the comparative results obtained for generalized Jacobians and for simulations of

the Classical Occupancy Problem are shown in Table 5.4, where each entry is the mean of a

sample of size two thousand with r = 2.

These amazingly good results imply, among other things, that all data observed in these

samples must be strictly greater that 97%. Indeed, if even a single observation equals 97%, then

the sample mean would be at most

97% + 1999 · 100%
2000

= 99, 9985%.

This thus indicates that we should expect the variance to be small in this case as well. In fact,

if we once more go back to the Classical Occupancy Problem, we get the following surprisingly

23Using the same method as for r = 1 (see p.165).

172 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

Figure 5.19: Relative size of Γ for r = 2, 218 < q < 220 and sample size two thousand

5.5. THE DISCRETE LOGARITHM PROBLEM 173

214 < q < 216 216 < q < 218 218 < q < 220

h = 1 Generalized Jacobians 99, 9986 99, 9996 99, 9999
Pseudo-Random 99, 9986 99, 9996 99, 9999

h = 2 Generalized Jacobians 99, 9994 99, 9998 100, 0000
Pseudo-Random 99, 9993 99, 9998 100, 0000

h = 3 Generalized Jacobians 99, 9994 99, 9999 100, 0000
Pseudo-Random 99, 9995 99, 9999 100, 0000

h = 4 Generalized Jacobians 99, 9997 99, 9999 100, 0000
Pseudo-Random 99, 9996 99, 9999 100, 0000

Table 5.4: Sample means of the relative size of Γ and ∆ for r = 2 and sample size two thousand

simple result:

lim
q→∞

qk ·Var[Y] =
½

0 if k < r,
5000 if k = r,

where k ≥ 0 is an integer. Once more, this result can be shown using standard arguments of
real analysis (mostly involving binomial expansions, geometric series and repeated applications

of the squeeze theorem). So when q is large, we expect that

Var[Y] ≈ 5000
qr

.

Our experimental results once more concur with this theoretical prediction. Table 5.5 summa-

rizes the sample variances obtained for various cofactors and ranges for q.

214 < q < 216 216 < q < 218 218 < q < 220

h = 1 Generalized Jacobians 5, 1396× 10−6 3, 2279× 10−7 2, 1332× 10−8
Pseudo-Random 4, 7238× 10−6 3, 4185× 10−7 2, 1949× 10−8

h = 2 Generalized Jacobians 3, 7712× 10−6 2, 4373× 10−7 1, 9473× 10−8
Pseudo-Random 4, 3389× 10−6 3, 0330× 10−7 1, 6301× 10−8

h = 3 Generalized Jacobians 5, 9096× 10−6 2, 5674× 10−7 1, 8891× 10−8
Pseudo-Random 4, 4577× 10−6 3, 3428× 10−7 1, 8364× 10−8

h = 4 Generalized Jacobians 3, 9478× 10−6 3, 1000× 10−7 2, 0218× 10−8
Pseudo-Random 5, 8625× 10−6 2, 5969× 10−7 1, 9297× 10−8

Table 5.5: Sample variances of the relative size of Γ and ∆ for r = 2 and sample size two
thousand

It is also possible to visualize how the variance diminishes as q increases with the help of the

frequency histograms of these samples. The results of the simulations for generalized Jacobians

associated with r = 2 and h = 2 are shown in Figure 5.20.

To wrap-up this (rather long) section, it might not be a bad idea to recapitulate and put in

perspective the various results and observations we made. First recall that our main objective

174 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

Figure 5.20: Relative size of Γ for r = 2, h = 2 and sample size two thousand

5.5. THE DISCRETE LOGARITHM PROBLEM 175

was to investigate whether it seemed possible to practically precompute a table T of the possible

νn0 and corresponding logλ νn0 . If so, we saw how the DLP in F∗qr × hBi could then be solved
by performing, in parallel, a discrete logarithm in F∗qr and one in E, followed by a table look-up
in T. That thus led us to study the size of the set Γ = {ν0, ν1, ν2, . . . , νl−1} ⊆ F∗qr . Of course,
the larger #Γ is, the longer it takes to compute T.

A natural way of determining #Γ is to successively compute and store all νi (0 ≤ i < l)

using the recurrence relation

½
ν0 = 1,
νi+1 = k · νi · cm(B, iB).

Thus using this method, l elements of F∗qr need to be computed and stored. Clearly, this

can’t be done for parameters that we would use in practice for cryptographic applications, as

l = #E(Fq)/h would then have roughly 160 bits. Nevertheless, it is always possible to compute
#Γ for smaller values of l, and this is what we did with the help of Magma for primes q having

between 15 and 20 bits. Altogether, a total of 42 000 generalized Jacobians have been pseudo-

randomly generated and for each of them, the quantity 100 ·#Γ/l was tabulated. Among these
results, the minimum value that has been found was 77, 4309%. Consequently, none of these

generalized Jacobians had an associated set Γ of cardinality less than 3l/4. In order to find

heuristic arguments that would explain this behavior, we turned our attention to the Classical

Occupancy Problem. This urn model was indeed simple enough to analyse its behavior as

q → ∞. In all cases, we obtained that lim
q→∞E

[Y] was defined and greater than 78%, while

lim
q→∞

qk ·Var[Y] = 0 when 0 ≤ k < r and lim
q→∞

qr ·Var[Y] is a constant which is at most 5000. So
from Chebyshev’s inequality, it follows that the probability that #∆ ≤ 3l/4 is less than 2−147

when q has at least 160 bits (this estimate holding for r = 1 and h = 2, 3, or 4 as well as for

r > 1 and h = 1, 2, 3 or 4). This is excellent news concerning the Classical Occupancy Problem

and exactly the kind of results we were hoping for.

The last step was then to see whether the simplified model provided by the Classical Oc-

cupancy Problem seemed to give a satisfactory approximation of the behavior of generalized

Jacobians. Based on the results obtained from our simulations, the strong correlation between

the two problems was manifest. Although far from being a proof, these qualitative observations

provide a heuristic argument suggesting that in practice, it should be extremely unlikely that

the number #Γ of entries in T will be less than 3l/4, and consequently, that the time required

to compute T allows to proceed in parallel as in Figure 5.10.

176 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

On the Amount of Balls Falling into each Box

In the previous section, we have studied the possibility that the set Γ = {ν0, ν1, ν2, . . . , νl−1} ⊆
F∗qr be small enough to build a table T containing the elements of Γ together with their discrete
logarithms to the base λ. Even if we now have heuristics suggesting that this attack is unlikely to

work, it may still be possible that an opponent gains some advantage in considering a particular

(small) subset of Γ instead24. Indeed, there is a possibility that there exist up to l − #Γ + 1
elements among ν0, ν1, ν2, ..., νl−1 that are all equal (to, say, ν ∈ F∗qr). In other words, each
nonempty box would contain exactly one ball, except one that would be filled with the remaining

l − #Γ + 1 balls. From the previous section, we know25 that l −#Γ + 1 could be as large as
0.2131l. In this eventuality, precomputing logλ ν would clearly be a good strategy since there

would be over one chance out of five that solving a given instance26 of the DLP in F∗qr × hBi
(as depicted in Figure 5.10) involves a table look-up of the value logλ ν. Besides this worst-case

scenario, it might more generally happen that several elements of Γ each have a non-negligible

probability to arise while solving a DLP using the method outlined in Figure 5.10. If so, an

adversary may then choose to precompute the discrete logarithms of some or all of these values.

So given an integer L such that 0 < L < l, we now wish to know the likeliness that there is

at least one box containing more than L balls. Our starting point will once more be the study

of the Classical Occupancy Problem, where B balls are randomly distributed among C cells such
that the probability that a given ball falls into any one of the boxes is always 1/C. Recall that
the values of B and C we are here interested in satisfy B ≤ C (this property will be crucial in
the argument that follows).

Now let Zi be the random variable that represents the number of balls in box i after the B
balls have been thrown (1 ≤ i ≤ C). For each of the B independent throw, box i has probability
1/C of receiving that ball, and thus, Zi follows a binomial distribution with B Bernoulli trials
and probability of success (i.e. the current ball goes into box i) 1/C. Hence, the probability that
exactly j balls fall into box i is

Pr (Zi = j) =

µ
B
j

¶
1

Cj

µ
1− 1C

¶B−j
(0 ≤ j ≤ B),

while the mean and variance are given by

E[Zi] =
B
C and Var[Zi] =

B
C

µ
1− 1C

¶
.

24 I wish to thank Edlyn Teske for raising this possibility.
25 Indeed, when r = 1 and h = 2, we expect that l−#Γ+ 1 ≈ l− 0.7869l = 0.2131l.
26Chosen uniformly at random, of course.

5.5. THE DISCRETE LOGARITHM PROBLEM 177

Notice that both this mean and variance are less or equal to one since B ≤ C. The possible values
for j being 0 up to B, we thus expect to have a positively skewed asymmetrical distribution.27

In other words, using the analogy with the center of mass28 , this means that the majority of the

weight of the distribution will be relatively close to zero.

Example 5.21 Here is a tiny example to illustrate. The probability mass function for B = 10
and C = 20 is given explicitly in Figure 5.21: notice that the probability that box i contains at
most two balls is already 98, 8%. Moreover, a common mistake is to think that since we have 10

balls and 20 boxes, the probability that a box remains empty is 50%, while in reality it is almost

60%. However, we do have E[Zi] = 0, 5 (and Var[Zi] = 0, 475).

j Pr (Zi = j)

0 0, 599
1 0, 315
2 0, 0746
3 0, 0105
4 9, 65× 10−4
5 6, 09× 10−5
6 2, 67× 10−6
7 8, 04× 10−8
8 1, 59× 10−9
9 1, 86× 10−11
10 9, 77× 10−14

Figure 5.21: Binomial distribution corresponding to B = 10 and C = 20

We now want to formalize our intuition that finding a box with a large number of balls is

very unlikely (and at the same time get a better idea of what ‘large’ and ‘very unlikely’ mean

in this context). As we now see, this will be a relatively easy task since it will turn out that a

suitable upper bound can be obtained even if we make several gross approximations along the

way. Concretely, for an integer L satisfying 0 < L < l, we are first seeking an (easy to analyse

and compute) upper bound for the probability that box i contains more than L balls:

27As opposed to a bell shape that we might be tempted to approximate by a normal distribution...
28“Suppose X is a discrete random variable with values xi and corresponding probabilities pi. Now consider

a weightless (horizontal) rod on which are placed weights, at locations xi along the rod and having masses pi
(whose sum is one). The point at which the rod balances (its center of gravity) is E[X].” - From Wikipedia,
http://en.wikipedia.org/wiki/Expected_value.

178 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

Pr (Zi > L) =
BX

j=L+1

µ
B
j

¶
1

Cj

µ
1− 1C

¶B−j
≤

BX
j=L+1

µ
B
j

¶
1

Cj

≤
BX

j=L+1

Bj
j!
· 1Cj =

BX
j=L+1

1

j!
·
µ
B
C

¶j
≤

BX
j=L+1

1

j!

=
BX
j=0

1

j!
−

LX
j=0

1

j!
≤
∞X
j=0

1

j!
−

LX
j=0

1

j!
= e−

LX
j=0

1

j!
.

Notice that this upper bound does not even depend on the particular values of B and C, but
merely on the fact that B ≤ C. We can thus build the following pocket size table (Table 5.6) to
serve as a general rule of thumb.

L e−
LX
j=0

1

j!

2 0.218
4 0.00995
8 3, 06× 10−6
16 2, 98× 10−15
32 1, 19× 10−37
64 1, 23× 10−91
128 2, 03× 10−218

Table 5.6: Values of e−
PL

j=0 1/j! for small powers of 2

From Table 5.6, we see that the probability that a given box contains more than 64 balls is

already less than one chance over the (estimated!) number of atoms in the observable universe.

Very well. However, we are here after an even stronger result. Indeed, it is not enough for us to

know that any particular box has a very small probability of containing more than L balls, since

the statement that we wish to make is that among all C boxes, it is very unlikely to find even
one box with more than L balls. For this purpose, let Z = max(Z1,Z2, . . . ,ZC) be the maximum

number of balls found within one box. Then,

Pr (Z > L) = Pr ((Z1 > L) ∪ (Z2 > L) ∪ . . . ∪ (ZC > L))

≤ Pr (Z1 > L) + Pr (Z2 > L) + . . .+Pr (ZC > L)

= C · Pr (Z1 > L) .

A small calculation then yields the desired result when r = 1, q ≈ 2160 and L is chosen to
equal, say, one hundred. Indeed,

5.5. THE DISCRETE LOGARITHM PROBLEM 179

Pr (Z > 100) ≤ C · Pr (Z1 > 100) ≤ (q − 1)

⎛⎝e− 100X
j=0

1

j!

⎞⎠ ≈ 1, 57× 10−112.
Thus when r = 1 and q ≈ 2160 is of cryptographic size, the probability that there is a box

containing more than a hundred balls is at most 1, 57× 10−112. So in practice, we expect that
all boxes will contain at most 100 balls. If a similar statement holds for generalized Jacobians,

it would imply that for any νi ∈ Γ, there is a negligible probability that a table look-up of
the value logλ νi is needed when solving a randomly and uniformly chosen instance of the DLP

in F∗qr × hBi as outlined in Figure 5.10. There would then be no significant advantage for an
adversary (who wish to proceed as in Figure 5.10) to precompute logλ νi.

We now take a look at experimental data. For each of the samples we considered in last

section, we had also recorded the maximal number of balls within a box that we encountered,

both for generalized Jacobians and for the pseudo-random counterpart. The results for r = 1

are shown in Table 5.7.

214 < q < 216 216 < q < 218 218 < q < 220

h = 2 Generalized Jacobians 8 9 9
Pseudo-Random 8 9 9

h = 3 Generalized Jacobians 7 7 8
Pseudo-Random 7 8 8

h = 4 Generalized Jacobians 6 7 8
Pseudo-Random 6 7 7

Table 5.7: Maximal number of balls within a box encountered for r = 1 and sample size two
thousand

To obtain a similar result when r > 1, it suffices to be just a little more careful with the

upper bounds we choose. First notice that the current upper bound we have on Pr (Z > L)

depends on r:

Pr (Z > L) ≤ C · Pr (Z1 > L) = (qr − 1) · Pr (Z1 > L) .

It is however possible to obtain an upper bound which will solely depend on L. This can be

achieved as follows. Instead on merely relying on the fact that B/C ≤ 1, we will now make use
of the slightly stronger inequality:

B3
C2 ≤ 1.

This holds for any value of r > 1 (as soon as q > 7) since

B3 ≤ (q + 1 + 2√q)3 = (√q + 1)6 =
³
q3/2 + 3q + 3

√
q + 1

´2
≤
¡
q2 − 1

¢2 ≤ (qr − 1)2 = C2.

180 CHAPTER 5. A CONCRETE CRYPTOSYSTEM

We therefore have, for r > 1 and 1 < L < l,

Pr (Z > L) ≤ C · Pr (Z1 > L) = C ·
BX

j=L+1

µ
B
j

¶
1

Cj

µ
1− 1C

¶B−j

≤
BX

j=L+1

µ
B
j

¶
1

Cj−1 ≤
BX

j=L+1

Bj
j!
· 1

Cj−1 =
BX

j=L+1

B3
C2 ·

µ
B
C

¶j−3
· 1
j!

≤
BX

j=L+1

1

j!
=

BX
j=0

1

j!
−

LX
j=0

1

j!
≤
∞X
j=0

1

j!
−

LX
j=0

1

j!
= e−

LX
j=0

1

j!
.

Thus using our pocket size Table 5.6, we now get that for any r > 1 and q > 7, the probability

that at least one box contains more than 64 balls is at most 1, 23× 10−91.
Our simulations for r = 2 once more agree with this prediction: as a matter of fact, the largest

number of balls found into one box was three. These amazingly simple results are summarized

in Table 5.8.

214 < q < 216 216 < q < 218 218 < q < 220

h = 1 Generalized Jacobians 3 2 2
Pseudo-Random 2 2 2

h = 2 Generalized Jacobians 2 2 2
Pseudo-Random 2 2 2

h = 3 Generalized Jacobians 2 2 2
Pseudo-Random 2 2 2

h = 4 Generalized Jacobians 2 2 2
Pseudo-Random 2 2 2

Table 5.8: Maximal number of balls within a box encountered for r = 2 and sample size two
thousand

Finally, if we are ready to believe that the Classical Occupancy Problem provides a reasonable

approximation of generalized Jacobians (in terms of the maximal number of balls that can be

found within one box), we then infer that an adversary has no tangible gain in precomputing a

table of chosen elements of Γ along with their discrete logarithms. But of course, providing a

formal proof instead of a heuristic argument is another story...

We have therefore seen in this chapter that the simple generalized Jacobian F∗qr ×hBi fulfills
all the conditions for a group to be suitable for discrete logarithm-based cryptography. This

therefore provides the first example of a generalized Jacobian with nontrivial Lm and J that

could be used in public-key cryptography.

Chapter 6

Conclusion and Further Work

“Une approche qui débouche sur de bons problèmes
doit fatalement donner quelque chose de bien.”

“An approach leading to challenging problems
must inevitably yield something good.”

- Henri Darmon

Throughout this thesis, we have used an approach by exploration in order to be as transparent

as possible concerning the paths we followed when presenting original results. We hope that

this unusual style for research related reports provided a satisfactory motivation at every step

of the way.

This conclusion and further work will also follow the same lines: we will not draw a definitive

conclusion nor provide a precise program of research for further work. The reason is simple:

since this thesis introduced the use of generalized Jacobians to build cryptosystems, we believe

that it would be premature, at such an early stage, to pretend that we now see enough of the

picture to predict the future of generalized Jacobians in cryptography. In contrast, the approach

we will follow comprises two parts: a quick summary of results, followed by a list of ideas for

future explorations.

6.1 Summary of Results

In this dissertation, we have presented and studied generalized Jacobians from a cryptographic

point of view. In particular, we have seen how several popular public-key cryptosytems can in

fact be reinterpreted in the language of generalized Jacobians. From that point on, the relevance

of these algebraic groups in cryptography was already established.

181

182 CHAPTER 6. CONCLUSION AND FURTHER WORK

However, all of these cryptosystems had an underlying group with either a trivial linear

group Lm or a trivial Jacobian J . The next step was then to consider a generalized Jacobian

with nontrivial Lm and J .

Concretely, we chose to consider a generalized Jacobian of an elliptic curve (with respect to

a modulus of degree 2 formed by points of E(Fqr)) which was neither an abelian variety nor a
torus in order to provide the first instance of a semi-abelian variety suitable for cryptography.

We have shown how the elements can be compactly represented, the group law efficiently

computed and the group order readily determined. Lastly, we have proved that the DLP in this

generalized Jacobian is at least as hard as the DLP in E(Fq) and at least as hard as the DLP
in F∗qr .

As a result, the group we obtained possesses a discrete logarithm problem that combines, in

a natural fashion, the two most studied discrete logarithm problems to this date.

In the meantime, we have also characterized two subfamilies of generalized Jacobians on an

elliptic curve which present different cryptographic properties: we therefore introduced the new

concept of B-related and B-unrelated moduli in order to distinguish these two cases.

Finally, of independent interest is our discovery of an infinite family of unified point addition

formulæ for elliptic curves given by a general Weierstraß equation. This therefore provides

countermeasures to side-channel attacks on elliptic curve cryptosystems.

6.2 Work in Progress, Further Work and Open Problems

In the 1970s, Whitfield Diffie was keeping with him a list of what he called Problems for an

ambitious theory of cryptography [Fur92]: whenever he encountered a problem that seemed

interesting, he would jot it down on his list. Unfortunately, this precious document has since

disappeared. But the rest is history...

Of course, we have no pretention of comparing our work to that of Diffie; still, while pro-

gressing in this thesis, we naturally kept track of the possible topics we could see for further

work. The list we present here is therefore not a formal program of research, but rather a broad

variety of problems that arose from our search; it is thus meant as a notebook in perpetual

progression.

EXTENSION OF (ALGEBRAIC) GROUPS. In Chapter 5, we have studied the DLP of

a specific generalized Jacobian. However, we already know some properties of the group law of

an arbitrary generalized Jacobian, thanks to the theory of extensions of algebraic groups [Ser88,

6.2. FURTHER WORK 183

Chapter VII]. Is it possible to use this knowledge to derive further properties of the DLP in a

general Jm?

ADD MORE COPIES OF Gm . From the presentation we made in Chapter 4, it was already
clear that the simplest case of a generalized Jacobian of an elliptic curve with nontrivial Lm and

J is the case we chose to treat in Chapter 5. Now that we know that this group is suitable for

DL-based cryptography, we may wonder what the situation would be if we considered a modulus

of higher degree such that Lm would now be an algebraic torus of higher dimension. Would we

have in this case an interesting efficiency/security ratio? This analysis would of course have to

take into account the compression factor inherited from the algebraic torus.

COMPARISON OF THE DLP IN TWO GENERALIZED JACOBIANS. Given a

smooth algebraic curve C and two effective divisors m1 and m2 such that m1 ≥ m2, what can
be said about the relationship between the discrete logarithm problem in Jm1 and in Jm2?

HYPERELLIPTIC CURVES. Since the work of David Cantor [Can87], we are able to effi-

ciently compute in the Jacobian of hyperelliptic curves. Since then, the method has been refined,

and we are more than ever convinced that hyperelliptic curves of low genus are an interesting

alternative to ECC. For more details, see Hyperelliptic Curve Cryptosystems: Closing the Per-

formance Gap to Elliptic Curves [PWGP03]. The main observation here is that since the group

law on hyperelliptic curves of genus greater than one no longer only involves straight lines, then

this will inevitably be reflected in the group law algorithm of their generalized Jacobians. It

would thus be interesting to know if the efficient explicit formulæ already obtained for curves

of low genus could be extended in order to efficiently compute in the corresponding generalized

Jacobians.

EFFICIENCY OF THE GROUP LAW. In Section 5.3, we have derived a natural group

law for the generalized Jacobian of an elliptic curve with respect to a modulus of the form

m = (M) + (N), where M , N are distinct nonzero points of E. This group law was based on

the explicit bijection between Pic0m(E) and Gm × E that we obtained in Section 5.2. However,

there may exist other ways to compute this group operation that would be more efficient.

WEIL AND TATE PAIRINGS. Anyone familiar with the explicit methods to compute the

Weil and Tate pairings will have noticed some similarities with the group law of the generalized

Jacobians of Chapter 5. Can the abundant litterature on the efficient computations of pairings

be used for generalized Jacobians as well?

MUMFORD THETA GROUPS. The Mumford Theta groups, also called finite Heisenberg

groups, are also extensions of abelian varieties by the multiplicative group Gm. Moreover,

Miller’s method for computing the Weil pairing can be reinterpreted in terms of the Theta

184 CHAPTER 6. CONCLUSION AND FURTHER WORK

groups, as sketched in [Mil04]. It would thus be an interesting avenue to explore Theta groups

with cryptographic applications in mind. Further details on Theta groups can be found in

[Gor02, Section 3.2]

THE CASE M = −N . With the settings of Chapter 5, we can easily see that the expression
for the group law when M = −N greatly simplifies since xM = xN . Is it possible to build an

attack based on this? Or can we demonstrate that the DLP is still believed to be intractable in

this case?

B-RELATED MODULI. In Section 5.3.4, we have pointed out that B-unrelated moduli

seemed to be more efficient for concrete applications and less susceptible to side-channel attacks.

However, this observation is based on the specific group law algorithm that we obtained. There

is therefore more investigation to be done before we can claim that B-related moduli are less

attractive for cryptographic purposes.

CHARACTERISTIC TWO. The simulations of Section 5.5.3 have been made only in the

case of odd characteristic. An analogous study for elliptic curves over fields of characteristic two

should be undertaken, since these curves are so important for cryptographic purposes.

PROBABILISTIC COUNTING. The simulations of Section 5.5.3 were restricted to rela-

tively small values of q since the required computations were quite involving. An alternative

would be to consider larger values of q, but instead of computing the exact cardinality of Γ, one

may be able to improve the efficiency by considering approximations of #Γ.

TO WHAT EXTENT DO THE ν’S BEHAVE LIKE RANDOM NUMBERS? We

already saw two situations where the experiments show that the values of ν seem to behave like

randomly chosen numbers. How hard is it to distinguish between such values generated from a

generalized Jacobian and true random numbers? If this problem turns out to be easy, could it

be used to mount an attack against a generalized Jacobian cryptosystem?

COMPUTATIONAL DIFFIE-HELLMAN PROBLEM. In Chapter 5, we have exten-

sively studied the links between the DLP in the generalized Jacobians and the DLPs in the

elliptic curve and in the finite field. However, the security of many protocols is based on the

Computational Diffie-Hellman Problem (CDHP). It would therefore be relevant to study the

potential correlation between the three following CDHPs: in the generalized Jacobian, in the

elliptic curve and in the finite field.

PLAYWITH THE EQUIVALENCERELATION. In this thesis, linear andm-equivalence

of divisors played a central role. Indeed, the former leads to usual Jacobians while the latter

yields generalized Jacobians. Thus, it may be worthwhile to explore other equivalence relations

on divisors, both with a cryptographic and a cryptanalytic perspective in mind. Since much

6.2. FURTHER WORK 185

research on such equivalence relations has been done, it is even possible that we already possess

all the tools at hand to use these notions in cryptology.

KEEP THE MODULUS SECRET. Finally, we mention an avenue that may be more a

curiosity than an actual open question. The author is far from being a specialist in protocols,

but somehow thinks that another interesting possibility would be to keep the modulus secret.

For instance, in the case we studied in Chapter 5, suppose that the ECC parameters are publicly

known but that the values of M and N are shared only among a select group of individuals.

Then, it may be advantageous to have a common public-key infrastructure (PKI) that could

both serve for elliptic and generalized Jacobians cryptosystems. Another possibility would be

to explore if there would be any advantage of sharing the modulus among several parties. With

the cryptosystem of Chapter 5, suppose for instance that Alice knows M and that Bob knows

N . Then, they can certainly compute in the generalized Jacobian Jm if they pool their shares.

Would there be an advantage in proceeding this way? And if so, what can be said about the

difficulty of recovering a modulus from partial information?

This naive list comprises the security and efficiency aspects, the possible generalizations that

could be made as well as other directions that may be followed. Some of these problems appear

to be easy, and some look challenging: this great diversity then shows that many avenues are

open for future research in this area.

186 CHAPTER 6. CONCLUSION AND FURTHER WORK

Bibliography

[Adl79] Leonard M. Adleman. A subexponential algorithm for the discrete logarithm prob-
lem with applications to cryptography. In 20th Annual Symposium on Foundations
of Computer Science (FOCS ’79), pages 55—60. IEEE Computer Society Press,
1979.

[Adl94] Leonard M. Adleman. The function field sieve. In Proceedings of the 1994 Al-
gorithmic Number Theory Symposium, number 877 in Lecture Notes in Computer
Science, pages 108—121. Springer-Verlag, 1994.

[AM93] A.O.L. Atkins and F. Morain. Elliptic curves and and primality proving. Mathe-
matics of computation, 61:29—68, 1993.

[Art21] Emil Artin. Quadratische Körper im Gebiete der höheren Kongruenzen. PhD thesis,
Jahrb. phil. Fak. Leipzig, 1921.

[Bar02] Paulo Barreto. The pairing-based crypto lounge, Online since 2002. Available at
http://planeta.terra.com.br/informatica/paulobarreto/pblounge.html.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs
of knowledge. Journal of Computer and System Sciences, 37(2):156—189, 1988.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In
Advances in cryptology–CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 213—229. Springer-Verlag, Berlin, 2001.

[BF03] Dan Boneh and Matthew Franklin. Identity-based encryption from theWeil pairing.
SIAM Journal on Computing, 32(3):586—615, 2003.

[BHV02] Wieb Bosma, James Hutton, and Eric R. Verheul. Looking beyond XTR. In Ad-
vances in cryptology–ASIACRYPT 2002, volume 2501 of Lecture Notes in Com-
puter Science, pages 46—63. Springer, Berlin, 2002.

[BJ03] Billet and Joye. The jacobi model of an elliptic curve and side-channel analysis. In
T. Hoholdt M. Fossorier and A. Poli, editors, Applied Algebra, Algebraic algorithms
and Error-correcting Codes, volume 2143 of Lecture Notes in Computer Science,
pages 34—42. Springer, 2003.

187

188 BIBLIOGRAPHY

[BK98] R. Balasubramanian and Neal Koblitz. The improbablity that an elliptic curve has
subexponential discrete log problem under the Menezes-Okamoto-Vanstone algo-
rithm. Journal of Cryptology, 10(11):141—145, 1998.

[BL95] Dan Boneh and Richard J. Lipton. Quantum cryptanalysis of hidden linear func-
tions. In Don Coppersmith, editor, Advances in Cryptology - CRYPTO’95, volume
963 of Lecture Notes in Computer Science, pages 424—437. Springer, 1995.

[Bla79] George R. Blakley. Safeguarding cryptographic keys. In Richard E. Merwin, Jacque-
line T. Zanca, and Merlin Smith, editors, 1979 National Computer Conference,
volume 48 of AFIPS Conference proceedings, pages 313—317. AFIPS Press, 1979.

[Blu82] Manuel Blum. Coin flipping by telephone: A protocol for solving impossible prob-
lems. In Proceedings of the 24th IEEE Computer Conference, pages 133—137, 1982.
See also ACM SIGACT News, 15(1), 1983.

[BN05] Paulo S.L.M. Barreto and Michael Naehrig. Pairing friendly elliptic curves of prime
order. In Selected Areas in Cryptography (SAC 2005), 2005.

[BP98] Daniel V. Bailey and Christof Paar. Optimal extension fields for fast arithmetic in
public-key algorithms. In Advances in Cryptology–CRYPTO 1984), volume 1462
of Lecture Notes in Computer Science, pages 472—485. Springer, 1998.

[Bre80] Richard P. Brent. An improved Monte Carlo factorization algorithm. BIT,
20(2):176—184, 1980.

[BS82] Robert G. Bartle and Donald R. Sherbert. Introduction to real analysis. John Wiley
and son, New York, USA, 1982.

[BS04] Paulo S.L.M Barreto and Michael Scott. Generating more MNT elliptic curves,
2004. Cryptology ePrint Archive, Report 2004/058 (http://eprint.iacr.org).

[BSS99] Ian Blake, Gadiel Seroussi, and Nigel Smart. Elliptic curves in cryptography, volume
265 of London Mathematical Society Lecture Note Series. Cambridge University
Press, New York, USA, 1999.

[BSS05] Ian Blake, Gadiel Seroussi, and Nigel Smart. Advances in elliptic curve cryptogra-
phy, volume 317 of London Mathematical Society Lecture Note Series. Cambridge
University Press, New York, USA, 2005.

[BSW94] Johannes A. Buchmann, Renate Scheidler, and Hugh C. Williams. A key-exchange
protocol using real quadratic fields. Journal of Cryptology, 7(3):171—199, 1994.

[BW88] Johannes A. Buchmann and Hugh C. Williams. A key-exchange system based on
imaginary quadratic fields. Journal of Cryptology, 1(2):107—118, 1988.

[BW90] Johannes A. Buchmann and Hugh C. Williams. A key-exchange system based on
real quadratic fields. In CRYPTO: Proceedings of CRYPTO 89, volume 435 of
Lecture Notes in Computer Science, pages 335—343, 1990.

BIBLIOGRAPHY 189

[BW03] Friederike Brezing and Annegret Weng. Elliptic curves suitable for pair-
ing based cryptography, 2003. Cryptology ePrint Archive, Report 2003/143
(http://eprint.iacr.org).

[CA89] David Chaum and Hans Van Antwerpen. Undeniable signatures. In G. Brassard,
editor, Advances in Cryptology–CRYPTO ’89, volume 435 of Lecture Notes in
Computer Science, pages 212—216. Springer-Verlag, August 1989.

[Can87] David G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Mathematics
of Computation, 48(177):95—101, January 1987.

[CF05] Henri Cohen and Gerhard Frey, editors. Handbook of Elliptic and Hyperelliptic
Curve Cryptogrpahy. Chapman and Hall/CRC, Boca Raton, 2005.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable
secret sharing and achieving simultaneity in the presence of faults (extended ab-
stract). In 26th Annual Symposium on Foundations of Computer Science, pages
383—395. IEEE, 1985.

[Con99] Ian Connell. Elliptic Curve Handbook, 1999. Available at
http://www.math.mcgill.ca/connell/public/ECH1/. 553 pages.

[Cop84] D. Coppersmith. Fast evaluation of logarithms in fields of characterstic two. IEEE
Transactions on Information Theory, 30(4):587—594, 1984.

[COS86] D. Coppersmith, A. M. Odlyzko, and R. Schroeppel. Discrete logarithms in GF(p).
Algorithmica, 1(1):1—15, 1986.

[CR00] Certicom Research. Standards for efficient cryptography, 2000. Available at
http://www.secg.org.

[CvHP92] David Chaum, Eugène van Heijst, and B. Pfitzmann. Cryptographically strong
undeniable signatures, unconditionally secure for the signer. In J. Feigenbaum,
editor, Advances in Cryptology–CRYPTO ’91, volume 576 of Lecture Notes in
Computer Science, pages 470—484. Springer-Verlag, 1992.

[DEM05] Régis Dupont, Andreas Enge, and François Morain. Building curves with arbitrary
small MOV degree over finite prime fields. Journal of Cryptology, 18(2):79—89, 2005.

[Den82] Dorothy Elizabeth Robling Denning. Cryptography and data security. Addison-
Wesley, Reading, USA, 1982.

[Deu41] M. Deuring. Die typen der multiplikatorenringe elliptischer funktionenkörper. Abh.
Math. Sem. Hansischen Univ., 147:197—272, 1941.

[DH76a] Whitfield Diffie and Martin Hellman. Multiuser cryptographic techniques. In Proc.
AFIPS 1976 National Computer Conference, pages 109—112. AFIPS, 1976.

[DH76b] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644—654, November 1976.

190 BIBLIOGRAPHY

[Die85] Jean Dieudonné. History of Algebraic Geometry. Wadsworth Advanced Books and
Software, Monterey, 1985.

[DvOW92] Whitfield Diffie, Paul C. van Oorschot, and Michael Wiener. Authentication and
authenticated key exchanges. Designs, Codes and Cryptography, 2(2):107—125, 1992.

[DW04] M. Van Dijk and D. Woodruff. Asymptotically optimal communication for torus-
based cryptography. In Advances in Cryptology–CRYPTO 2004, volume 3152 of
Lecture Notes in Computer Science, pages 157 — 178. Springer-Verlag, 2004.

[ElG85a] Taher ElGamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. In Advances in Cryptology–CRYPTO 84), volume 196 of Lecture
Notes in Computer Science, pages 10—18. Springer, Berlin, 1985.

[ElG85b] Taher ElGamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. IEEE Transactions on Information Theory, 31(4):469—472, 1985.

[Fel68] William Feller. An introduction to probability theory and its applications. Vol. I.
Third edition. John Wiley & Sons Inc., New York, 1968.

[FMR99] Gerhard Frey, M.Ḿluller, and Hans-Georg Rück. The tate pairing and the discrete
logarithm applied to elliptic curve cryptosystems. IEEE Transactions on Informa-
tion Theory, 45:1717—1718, 1999.

[Ful69] William Fulton. Algebraic Curves. Mathematics Lecture Note Series. W. A. Ben-
jamin, New York-Amsterdam, 1969.

[Fur92] Franco Furger. Interview with Whitfield Diffie on the Development of Public Key
Cryptography , 1992. Available at http://www.itas.fzk.de/mahp/weber/diffie.htm.

[Gal04] Steven Galbraith. Easy decisions: Applications of pairings in cryptography, 2004.
available at http://www.isg.rhul.ac.uk/ sdg/chuo-uni.pdf.

[Gau00] Pierrick Gaudry. An algorithm for solving the discrete log problem on hyperelliptic
curves. Lecture Notes in Computer Science, 1807, 2000.

[Gen05] Rosario Gennaro. An improved pseudo-random generator based on the discrete
logarithm problem. Journal of Cryptology, 18(2):91—110, 2005.

[GHS02] P. Gaudry, F. Hess, and N. P. Smart. Constructive and destructive facets of Weil
descent on elliptic curves. Journal of Cryptology, 15(1):19—46, January 2002.

[Gol01] Oded Goldreich. Foundations of cryptography: Basic tools. Cambridge University
Press, Cambridge, 2001.

[Gop88] V. D. Goppa. Geometry and codes, volume 24 of Mathematics and its Applications
(Soviet Series). Kluwer Academic Publishers Group, Boston, 1988. Translated from
the Russian by N. G. Shartse.

[Gor93] Daniel M. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM
Journal on Discrete Mathematics, 6(1):124—138, 1993.

BIBLIOGRAPHY 191

[Gor98] Daniel M. Gordon. A survey of fast exponentiation methods. Journal of Algorithms,
27(1):129—146, 1998.

[Gor02] Eyal Z. Goren. Lectures on Hilbert Modular Varieties and Modular Forms, volume 14
of CRM Monograph Series. American Mathematical Society, Providence, 2002.

[GV05] Robert Granger and Frederik Vercauteren. On the discrete logarithm problem on
algebraic tori. In Advances in Cryptology (CRYPTO 2005), volume 3621 of Lecture
Notes in Computer Science, pages 66—85. Springer, 2005.

[Har77] Robin Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in Mathemat-
ics. Springer-Verlag, New York, 1977.

[Has33] Helmut Hasse. Beweis des analogons der riemannschen vermutung für die artinschen
und f.k. schmidtschen kongruenzzeta-funktionen in gewissen elliptischen fällen.
Nachr. Ges. Wiss. Göttingen, Math.-Phys. K., pages 253—262, 1933.

[HR83] Martin E. Hellman and Justin M. Reyneri. Fast computation of discrete logarithms
in GF (q). In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors,
Advances in Cryptology–CRYPTO 82, pages 3—13. Plenum Press, New York and
London, 1983.

[HS71] Peter Hilton and Urs Stammbach. Course in Homological Algebra. Number 4 in
Graduate Texts in Mathematics. Springer-Verlag, New York, 1971.

[HSS93] J. Håstad, A. W. Schrift, and A. Shamir. The discrete logarithm modulo a com-
posite hides O(n) bits. Journal of Computer and System Sciences, 47(3):376—404,
December 1993.

[Hun74] Thomas W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1974.

[Hus86] D. Husemöller. Elliptic curves, volume 111 of Graduate texts in Mathematics.
Springer, 1986.

[IEE99] IEEE. P1363: Standard Specifications For Public Key
Cryptography, Draft P1363/D13, 1999. Available at
http://grouper.ieee.org/groups/1363/private/P1363-11-12-99-pdf.zip.

[Jac35] Carl Gustav Jakob Jacobi. De usu theoriae integralium ellipticorum et integralium
abelianorum in analysi diophantea. Crelle Journal für die reine und angewandte
Mathematik, 13:353—355, 1835.

[JK69] N. L. Johnson and S. Kotz. Discrete Distributions. Wiley Series in Probability and
Mathematical Statistics. Wiley & Sons, Salt Lake City, 1969.

[JK77] N. L. Johnson and S. Kotz. Urn Models and Their Applications. Wiley Series in
Probability and Mathematical Statistics. John Wiley & Sons, New York, 1977.

192 BIBLIOGRAPHY

[JN03] Antoine Joux and Kim Nguyen. Separating decision Diffie—Hellman from compu-
tational Diffie—Hellman in cryptographic groups. Journal of Cryptology, 16(4):239—
247, September 2003.

[JQ01] Marc Joye and Jean-Jacques Quisquater. Hessian elliptic curves and side-channel
attacks. In D. Naccache Ç. Koç and C. Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES 2001, volume 2162 of Lecture notes in computer science,
pages 402—410. Springer, 2001.

[Ker83] Auguste Kerckhoffs. La cryptographie militaire. Journal des Sciences Militaires,
1883.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael Wiener, editor, Advances in Cryptology — CRYPTO ’ 99, volume 1666 of
Lecture Notes in Computer Science, pages 399—397. International Association for
Cryptologic Research, Springer-Verlag, Berlin Germany, 1999.

[KMV00] Neal Koblitz, Alfred Menezes, and Scott Vanstone. The state of elliptic curve
cryptography. Designs, Codes and Cryptography, 19:173—193, 2000.

[Knu73] Donald E. Knuth. The Art of computer programming, Vol. 3 : Sorting and Search-
ing. Addison-Wesley Series in Computer Science and Information Processing.
Addison-Wesley, Reading, 1973.

[Knu81] Donald E. Knuth. The Art of Computer Programming II: Seminumerical Algo-
rithms. Addison-Wesley Series in Computer Science and Information Processing.
Addison—Wesley, Reading, Massachusetts, second edition, 1981.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203—209, January 1987.

[Kob89] Neal Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology, 1(3):139—150,
1989.

[Kob90] Neal Koblitz. Constructing elliptic curve cryptosystems in characteristic 2. In Ad-
vances in Cryptology–CRYPTO 1990), volume 537 of Lecture Notes in Computer
Science, pages 156—167. Springer, 1990.

[Koc96] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Advances in Cryptology–CRYPTO 1996, volume 1109,
pages 104—113. International Association for Cryptologic Research, Springer-Verlag,
Berlin, Germany, 1996.

[Lan01] Tanja Lange. Efficient Algorithm on Hyperelliptic curves, 2001. Ph.D. Thesis avail-
able at http://www.ruhr-uni-bochum.de/itsc/tanja/preprints/main.pdf.

[Lem03] Franz Lemmermeyer. Higher Descent on Pell Conics: III: The First 2-descent,
2003. Preprint available at http://www.fen.bilkent.edu.tr/ franz/publ.html.

[Len87] H. W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathematics,
126:649—673, 1987.

BIBLIOGRAPHY 193

[Len02] H. W. Lenstra, Jr. Solving the Pell equation. Notices Amer. Math. Soc., 49(2):182—
192, 2002.

[Lev01] Steven Levy. CRYPTO: How the code rebels beat the government-saving privacy in
the digital age. Viking Penguin books, 2001.

[LS93] Michael J. J. Lennon and Peter J. Smith. LUC: A new public key system. Techni-
cal report, April 05 1993. Available at ftp://ripem.msu.edu/pub/crypt/docs/luc-
public-key-paper.ps.Z.

[LS01] P.-Y. Liardet and N.P. Smart. Preventing spa/dpa in ecc system using the ja-
cobi form. In D. Naccache Ç. Koç and C. Paar, editors, Cryptographic Hardware
and Embedded Systems - CHES 2001, volume 2162 of Lecture Notes in Computer
Science, pages 391—401. Springer, 2001.

[LV00] Arjen K. Lenstra and Eric R. Verheul. The XTR public key system. In Mihir
Bellare, editor, Advances in Cryptology–CRYPTO 2000, volume 1880 of Lecture
Notes in Computer Science, pages 1—19. International Association for Cryptologic
Research, Springer-Verlag, Berlin, Germany, 2000.

[LV01] Arjen K. Lenstra and Eric R. Verheul. An overview of the XTR public key system. In
Public-key cryptography and computational number theory (Warsaw, 2000), pages
151—180. de Gruyter, Berlin, 2001.

[Mau94] Ueli M. Maurer. Towards the equivalence of breaking the Diffie-Hellman proto-
col and computing discrete logarithms. In Yvo G. Desmedt, editor, Advances
in Cryptology–CRYPTO 94, volume 839 of Lecture Notes in Computer Science,
pages 271—281. International Association for Cryptologic Research, Springer-Verlag,
Berlin Germany, 1994.

[McC88] Kevin S. McCurley. A key distribution system equivalent to factoring. Journal of
Cryptology, 1:95—105, 1988.

[McC89] Kevin S. McCurley. Cryptographic key distribution and computation in class
groups. In Number theory and applications (Banff, AB, 1988), volume 265 of NATO
Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 459—479. Kluwer Acad. Publ., Dor-
drecht, 1989.

[McC90] Kevin S. McCurley. The discrete logarithm problem. In Carl Pomerance, editor,
Cryptology and Computational Number Theory, volume 42 of Proceedings of Sym-
posia in Applied Mathematics, pages 49—74. American Mathematical Society, 1990.

[Men93] Alfred Menezes. Elliptic Curve Public Key Cryptosystems, volume 234 of The
Kluwer International Series in Engineering and Computer Science. Kluwer Acad-
emic Publishers, Boston, MA, 1993.

[Mic02] Sun Microsystems. Elliptic Curve Cryptography: The Next Generation of Internet
Security, 2002. Available at http://research.sun.com/sunlabsday/ docs.2004/ECC-
whitepaper.pdf.

194 BIBLIOGRAPHY

[Mil86a] Victor S. Miller. Short programs for functions on curves. Technical report, 1986.

[Mil86b] Victor. S. Miller. Uses of elliptic curves in cryptography. In Hugh C. Williams,
editor, Advances in Cryptology–CRYPTO ’85, volume 218 of Lecture Notes in
Computer Science, pages 417—426, Berlin, 1986. Springer-Verlag.

[Mil86c] J. S. Milne. Jacobian varieties. In Arithmetic geometry, pages 167—212. Springer,
New York, 1986.

[Mil04] Victor S. Miller. The Weil pairing, and its efficient calculation. J. Cryptology,
17(4):235—261, 2004.

[MNT01] Atsuko Miyaji, Masaki Nakabayashi, and Shunzou Takano. New explicit conditions
of elliptic curve traces for FR-reduction. IEICE Transactions on Fundamentals,
E84-A(5):1234—1243, 2001.

[MOV93] Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic
curve logarithms to logarithms in a finite field. IEEE Transactions on Information
Theory, 39(5):1639—1646, 1993.

[MTI86] T. Matsumoto, Y. Takashima, and H. Imai. On seeking smart public-key-
distribution systems. The Transactions of the IECE of Japan, E69:99—106, 1986.

[Mum84] David Mumford. Tata Lectures on Theta II, volume 43 of Prog. in Math. Birkhäuser,
Basel, 1984.

[MvOV96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Ap-
plied Cryptography. CRC Press series on discrete mathematics and its applications.
CRC Press, Boca Raton, 1996.

[MW96] Ueli M. Maurer and Stefan Wolf. Diffie-Hellman oracles. In Neal Koblitz, editor,
Advances in Cryptology–CRYPTO ’96, volume 1109 of Lecture Notes in Computer
Science, pages 268—282. Springer-Verlag, 1996.

[MW99] Ueli M. Maurer and Stefan Wolf. The relationship between breaking the Diffie—
Hellman protocol and computing discrete logarithms. SIAM Journal on Computing,
28(5):1689—1721, October 1999.

[NIoST00] National Institute of Standards and Technology. FIPS PUB 186-2: The Digi-
tal Signature Standard (DSS). National Institute for Standards and Technology,
Gaithersburg, 2000. Available at http://csrc.ncsl.nist.gov/fips/fips186-2.pdf.

[Odl85] Andrew M. Odlyzko. Discrete logarithms in finite fields and their cryptographic
significance. In Thomas Beth, N. Cot, and I. Ingemarsson, editors, Advances in
cryptology: proceedings of EUROCRYPT 84, volume 209 of Lecture Notes in Com-
puter Science, pages 224—314, Berlin, 1985. Springer-Verlag.

[Odl00] Andrew M. Odlyzko. Discrete logarithms: the past and the future. Designs, Codes,
and Cryptography, 19(2/3):129—145, 2000.

BIBLIOGRAPHY 195

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and corre-
sponding signature schemes. In Ernest F. Brickell, editor, Advances in Cryptology–
CRYPTO ’92, volume 740 of Lecture Notes in Computer Science, pages 31—53.
Springer-Verlag, 1993.

[Ols73] Loren D. Olson. An elementary proof that elliptic curves are abelian variety. L’en-
seignement mathématique, XIX:172—181, 1973.

[Per86] René C. Peralta. A simple and fast probabilistic algorithm for computing square
roots modulo a prime number. IEEE Transactions on Information Theory,
32(6):846—847, 1986.

[PH78] Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance. IEEE Transactions on
Information Theory, 24:106—110, 1978.

[Pol78] John M. Pollard. Monte Carlo methods for index computation (modp). Mathe-
matics of Computation, 32(143):918—924, July 1978.

[Pol00] John M. Pollard. Kangaroos, monopoly and discrete logarithms. Journal of Cryp-
tology, 13(4):437—447, 2000.

[PWGP03] Jan Pelzl, Thomas Wollinger, Jorge Guajardo, and Christof Paar. Hyperelliptic
Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves. In Work-
shop on Cryptographic Hardware and Embedded Systems - CHES 2003, volume 2779
of Lecture Notes in Computer Science, pages 351—365. Springer, 2003.

[rBDJ] Éric Brier, Isabelle Déchène, and Marc Joye. Unified point addition formulae for
elliptic curve cryptosystems. In N. Nedjah and L. de Macedo, editors, Embedded
Cryptographic Hardware: Methodolgies and Architectures. Nova Science Publishers.

[Ros52] Maxwell Rosenlicht. Equivalence relations on algebraic curves. Annals of Mathe-
matics, 56:169—191, July 1952.

[Ros54] Maxwell Rosenlicht. Generalized Jacobian varieties. Annals of Mathematics,
59:505—530, May 1954.

[Ros75] Maxwell Rosenlicht. Differential extension fields of exponential type. Pacific J.
Math., 57(1):289—300, 1975.

[Ros81] Michael Rosen. Abel’s Theorem on the Lemniscate. The American Mathematical
Monthly, 88(6):387—395, 1981.

[RS62] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions
of prime numbers. Illinois J. Math., 6:64—94, 1962.

[RS03] Karl Rubin and Alice Silverberg. Torus-based cryptography. In Dan Boneh, editor,
Advances in Cryptology–CRYPTO ’03, volume 2729 of Lecture Notes in Computer
Science, pages 349—365. Springer-Verlag, 2003.

196 BIBLIOGRAPHY

[RS04a] Karl Rubin and Alice Silverberg. Algebraic tori in cryptography. In High primes and
misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams,
volume 41 of Fields Inst. Commun., pages 317—326. Amer. Math. Soc., Providence,
2004.

[RS04b] Karl Rubin and Alice Silverberg. Miscellaneous results on algebraic
tori. Technical report, 2004. Available at http://www.math.uci.edu/ asil-
verb/bibliography/torusapp.pdf.

[RS04c] Karl Rubin and Alice Silverberg. Using primitive subgroups to do more with fewer
bits. In Duncan Buell, editor, Algorithmic Number Theory - ANTS 2004, volume
3076 of Lecture Notes in Computer Science, pages 18—41. Springer-Verlag, Berlin
Heidelberg, 2004.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120—126, 1978.

[Sch85] Claus Peter Schnorr. Elliptic curves over finite fields and the computation of square
roots module p. Mathematics of Computation, 44(170):483—494, 1985.

[Sch91] Claus Peter Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161—174, 1991.

[Sch04] R. Schoof. Structure of E(Fq), 2004. Talk presented during the ECRYPT Summer
School on Elliptic Curves in Cryptography in Bochum, Germany.

[Ser75] Jean-Pierre Serre. Groupes algébriques et corps de classes. Hermann, Paris, 1975.

[Ser88] Jean-Pierre Serre. Algebraic groups and class fields, volume 117 of Graduate texts
in mathematics. Springer-Verlag, New-York, 1988.

[Sev47] Francesco Severi. Funzioni quasi abeliane. Pontificiae Academiae Scientiarum
Scripta Varia, v. 4. Vatican City, 1947.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379—423, 623—656, 1948.

[Sha49] Claude Shannon. Communication theory of secrecy systems. Bell System Technical
Journal, 28(4):656—715, oct 1949.

[Sha71] Daniel Shanks. Class number, A theory of factorization and genera. In D. J. Lewis,
editor, Proceedings of the Symposion on Pure Mathematics, pages 415—440. AMS,
1971.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612—613,
November 1979.

[Sho94] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factor-
ing. In Shafi Goldwasser, editor, Proceedings: 35th Annual Symposium on Founda-
tions of Computer Science, pages 124—134. IEEE Computer Society Press, 1994.

BIBLIOGRAPHY 197

[Sho97a] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484—
1509, October 1997.

[Sho97b] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, Advances in Cryptology — EUROCRYPT ’ 97, volume 1233 of
Lecture Notes in Computer Science, pages 256—266. International Association for
Cryptologic Research, Springer-Verlag, Berlin Germany, 1997.

[Sil86] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1986.

[Sil94] Joseph H. Silverman. Advanced topics in the arithmetic of elliptic curves, volume
151 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994.

[Sin99] Simon Singh. The code book: the evolution of secrecy from Mary Queen of Scots to
quantum cryptography. Anchor Books, New York, 1999.

[SS90] A. W. Schrift and A. Shamir. The discrete log is very discreet. In Baruch Awerbuch,
editor, Proceedings of the twenty-second annual ACM Symposium on Theory of
Computing, pages 405—415. ACM Press, 1990.

[ST92] Joseph H. Silverman and John Tate. Rational points on elliptic curves. Undergrad-
uate Texts in Mathematics. Springer-Verlag, New York, 1992.

[Sta96] Markus A. Stadler. Publicly verifiable secret sharing. In Ueli M. Maurer, editor,
Advances in Cryptology — EUROCRYPT ’ 96, volume 1070 of Lecture Notes in
Computer Science. International Association for Cryptologic Research, Springer-
Verlag, Berlin Germany, 1996.

[Tes01] Edlyn Teske. Computing discrete logarithms with the parallelized kangaroo method.
DAMATH: Discrete Applied Mathematics and Combinatorial Operations Research
and Computer Science, 130, 2001.

[The03] Nicolas Theriault. Index calculus attack for hyperelliptic curves of small genus. In
ASIACRYPT: Advances in Cryptology — ASIACRYPT: International Conference
on the Theory and Application of Cryptology. LNCS, Springer-Verlag, 2003.

[TW95] Richard Taylor and Andrew Wiles. Ring-theoretic properties of certain hecke alge-
bras. Annals of Mathematics, 141(3):553—572, 1995.

[vDGP+05] Marten van Dijk, Robert Granger, Dan Page, Karl Rubin, Alice Silverberg, Martijn
Stam, and David Woodruff. Practical cryptography in high dimensional tori. In Ad-
vances in Cryptology–CRYPTO 2005, volume 3494 of Lecture Notes in Computer
Science, pages 234—250. Springer-Verlag, 2005.

[Ver19] Gilbert S. Vernam. U.S. Patent 1,310,719, 1919. Available at
http://cryptome.org/vernam-patent.htm.

198 BIBLIOGRAPHY

[Ver26] G. S. Vernam. Cipher printing telegraph systems for secret wire and radio
telegraphic communications. Journal American Institute of Electrical Engineers,
XLV:109—115, 1926.

[vOW99] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with crypt-
analytic applications. Journal of Cryptology, 12(1):1—28, 1999.

[Was03] Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptography. Dis-
crete Mathematics and its Application. CRC Press, Boca Raton, 2003.

[Wei40] André Weil. Sur les fonctions algébriques à corps de constantes fini. C. R. Acad.
Sci. Paris, 210:592—594, 1940.

[Wei46] André Weil. Foundations of algebraic geometry,, volume 29 of American Mathemat-
ical Society Colloquium Publications. American Mathematical Society, New York,
1946.

[Wei48] André Weil. Variétés abéliennes et courbes algébriques, volume 1064 of Actualités
Sci. Ind. Hermann & Cie, Paris, 1948.

[Wei55] André Weil. On algebraic groups of transformations. Amer. J. Math., 77:355—391,
1955.

[Wei69] Edwin Weiss. Cohomology of groups. Pure and Applied Mathematics, Vol. 34.
Academic Press, New York, 1969.

[Wil95] Andrew Wiles. Modular elliptic curves and Fermat’s last theorem. Annals of Math-
ematics, 141(3):443—551, 1995.

Index

2-cocycle, 111, 112, 115, 129, 130, 132

Abel theorem, 88, 126, 127, 130, 133
Abel-Jacobi theorem, 86, 90
Abelian variety, 3, 75, 95, 182

Elliptic curve, 75
Adleman, Leonard, 16, 22, 36
Affine coordinates, 74, 136, 139
Affine space, 42
Algebraic curve, 48

nonsingular, see Algebraic curve, Smooth
Smooth, 51, 66

Algebraic set, 46
Archimedes, 54
Artin, Emil, 77
Asymmetric cryptographic systems, see Public-

key Cryptosystem
Attacks

Index-calculus on algebraic tori, 65
Man-in-the-middle, 18, 19
MOV, 15, 143
Side-channel, 61, 119, 141
And B-related moduli, 138

Authenticated key agreement scheme, 18
Awerbuch, Baruch, 39

B-related moduli, 129, 137
And side-channel attacks, 138
Computing time, 138
Group law, 133, 135

B-unrelated moduli, 129, 135, 137
Computing time, 138
Group law, 129, 132
Properties, 138

Potential for cryptographic applications,
138

Babbage, Charles, 70

Baby-step giant-step, see Discrete Logarithm
Problem (DLP)

Balls and urns, 160
Bernoulli, Jakob, 50

Lemiscate, 49
Binary method, 14
Bit commitments, 2, 37
Blakley, George R., 39
Blum, Manuel, 37
Bourbaki, Nicolas, 36
Brouncker, William, 54
Buchmann, Johannes A., 19, 32

Chiffre Indéchiffrable, Le, see Vigenère ci-
pher

Cantor, David, 91, 183
Cassini, Giovanni Dominico, 49
CEILIDH, 32, 119
Cell phone, 66
Chandah-sûtra, 13
Characteristic

Odd, 141
Two, 69, 141

Chinese remainder theorem, 34, 156, 157
Chor, Benny, 39
Chord-and-tangent rule, see Elliptic curves
Chudnovsky Jacobian coordinates, 141
Ciphertext, 9
Classical occupancy problem, 6, 159, 162,

165, 171, 176
Closed set, 45
Computational Diffie-Hellman Problem (CDHP),

25, 184
Convergence of Var[Y], 169
Cryptosystem, 9

Ad hoc methods, 1

199

200 INDEX

Decryption rule, 9
Desideratum de la cryptographie militaire,

19
Deuring, Max, 78
Diffie, Whitfield, 9, 17—19, 22, 182
Diffie-Hellman, 11, 15, 18

Key exchange, 2, 16, 17, 25, 119, 120
Key predistribution, 19
Multiuser Cryptographic Techniques, 17,

21
New Directions in Cryptography, 17, 19,

21
Digital signature, 2, 25
Digital Signature Algorithm (DSA), 29
Dimension

of a projective variety, 47
of a topological space, 47

Discrete exponentiation, 13, 16
Discrete Logarithm Problem (DLP), 2, 13,

17, 23, 115, 142, 149, 176, 179
Generic Algorithms for solving the, 33
Baby-step giant-step, 34
Kangaroo method, 35
Pohlig-Hellman, 34, 156, 157
Pollard’s Rho method, 35, 65

in F∗qr × hBi, 148
at least as hard the DLP in
hBi ⊆ E (Fq), 152

at least as hard the DLP in
F∗qr , 153

Precomputations and parallelization,
155

Pell conic, 64
Reductions among Discrete Logarithm

Problems, 151
Specific Algorithms for solving the, 33
Function field sieve, 36
Gaussian integer method, 36
Index-calculus, 36
Index-calculus targeted at algebraic
tori, 65

Number field sieve, 36
Discrete valuation, 83
Discrete valuation ring, 83
Discriminant

of a Weierstraß equation, 68

Divisor, 79, 82
Defined over K, 82
Effective, 82
Linear equivalence, 85
Principal, 84
Rational over K, 82
Support, 82

Divisor class group, see Picard group
Divisor group, 82
Divisor of a function, 84
Divisors of degree zero, 82
DVR, see Discrete valuation ring

ECDSA, 66
ElGamal

Challenge, 29
Cryptosystem, 2, 23, 24, 32, 91, 119,

124
Generalized Signature Scheme, 30, 30
Signature scheme, 2, 27, 28, 119, 124

ElGamal, Taher, 25
Elliptic curve, 66

Abelian variety, 75
Chord-and-tangent rule, 43, 70, 71
defined over K, 66
Factoring with, 66
Group law, 59, 70
j-invariant, 69
Primality testing, 66

Elliptic curve cryptosystems, 31, 118
Encryption rule, 9
Esperance, 164, 170
Euler’s totient function, 147

Factorization, 22
Fermat

Curve, 68
Fermat’s last theorem, 66, 68
FLT, see Fermat’s last theorem
Free abelian group, 80, 81
Function field, 50

Generalized Jacobians, 2, 98, 106, 107, 182
Discrete logarithms, 101
Existence theorem, 107
Finding a generator, 147

INDEX 201

Fundamental exact sequence, 109
Group extension, 111
Group law algorithm, 100, 115, 129,

183
Group order and generators, 146
Group order and point counting, 101
Link with ordinary Jacobians, 108
Order of elements and generators, 101
Order of the elements, 146
Representation of elements, 100, 111
Scalar multiplications, 141
Selection of a suitable modulus, 143
Structure of F∗qr × hBi, 147

Generator, 147
Genus, 66

of Pell conic, 67
Goldwasser, Shafi, 39
Granger, Robert, 65
Group, 10
Group Order, 146

Hash function, 2, 30
Hasse theorem, 77, 163, 166
Hasse, Helmut, 77
HECC, see Hyperelliptic curve cryptogra-

phy
Hellman, Martin, 9, 17, 22, 36
Homogeneous coordinates, 136
Homogeneous ideal, 45
Homogeneous polynomial, 45
Hungerford, Thomas W., 10
Hyperelliptic curve, 79

Jacobian, 79
Hyperelliptic curve cryptography, 32, 78

Identification scheme, 2, 39
Okamoto identification scheme, 40

Identity element of Jm, 128
IEEE P1363 standard, 144
Implicit key authentication, 18
Index-calculus, see Discrete Logarithm Prob-

lem (DLP)
Induced topology, 47
Irreducible set, 47
Isomorphism

of projective varieties, 51

j-invariant, 69
Jacobi’s Theorem, 89
Jacobi, Carl Gustav Jakob, 70
Jacobian coordinates, 141
Jacobians

Generalized, see Generalized Jacobians
Hyperelliptic curve, 79
Ordinary, 97, 107, 118, 118
Link with Generalized Jacobians, 108

Jayadeva, 54
Joux, Antoine, 17

Kangaroo method, see Discrete Logarithm
Problem (DLP)

Kerckhoffs, Auguste, 19
Key, 9
Key agreement, 12

Diffie-Hellman, 25
MTI, 18
Simple model, 12

Key distribution, 12
A simple model, 12
Diffie-Hellman, 19
in secret-key cryptography, 11

Key exchange
Diffie-Hellman, 2, 16

Key length, 31
Key predistribution, 20
Knuth, Donald E., 15, 22
Koblitz, Neal, 3, 31, 32, 77, 91, 119
Kronecker class number, 78

Lang, Serge, 123
Lange, Tanja, 32
Lemniscate of Bernoulli, 49
Lenstra, H. W. Jr., 17
Line, 48
Line at infinity, 70
LUC, 3, 119

m-equivalence, 99, 105, 127, 133
Example, 116
is an equivalence relation, 103—106

Magma, 65, 77, 159, 175
Command mode, 57
Example, 44, 48, 52, 58, 74

202 INDEX

Pell equation, 55, 57
Man-in-the-middle attack, see Attacks
Mask, 115
Maurer, Ueli, 17
McCurly, Kevin, 32
Mean, 171, 176
Menezes, Alfred, 15
Micali, Silvio, 37, 39
Miller, Victor, 3, 31, 91, 119, 145
Morphism, 51
MOV attack, see Attacks
MTI key agreement, see Key agreement

National Security Agency, 66
Nguyen, Kim, 17
NSA, 66
Number of atoms in the universe, 178
Number of balls within a box, 176, 179

Okamoto, Tatsuaki, 15, 39
One-time pad, 10, 115
One-way function, 16
Open set, 45
OpenPGP, 40
Order function, see Discrete valuation

Pairing-based cryptography, 119, 158
PDA, 66
Pell conic, see Pell equation

Genus of, 67
Pell equation, 53, 54, 63

Chord-and-tangent rule, 55, 62
Discrete logarithm problem, 64
Example, 55
Geometric group law, 55
Group law, 61, 64
Group order, 62
Group structure, 63
Historical perspective, 54

Perfect secrecy, 10
Personal digital assistant, 66
PGP (Pretty Good Privacy), 40
Picard group, 78, 79, 91, 92, 93
Pingala, Acharya, 13
Plaintext, 9

Imbedding, 147

Pohlig, Stephen C., 17, 22
Pohlig-Hellman

Algorithm, see Discrete Logarithm Prob-
lem (DLP), 101

Secret-key cryptosystem, 21, 21, 34
Similarity with RSA, 22

Point
nonsingular, see Point, Smooth
Singular, 51
Smooth, 51, 53

Point at infinity, 43, 51
Pollard’s Rho method, see Discrete Loga-

rithm Problem (DLP)
Pollard, John M., 35
Problems for an ambitious theory of

cryptography, 182
Projective algebraic set, 46

Defined over K, 46
Projective coordinates, 140
Projective space, 43

Rational points, 43
Projective variety, 47
Public-key Cryptosystem, 20, 21, 25

Reinterpreted in terms of generalized
Jacobians, 117

Simple model, 20
Two safes analogy, 150

Rational map, 50
Defined, 51
Regular, 51

Rational points of a variety, 46
Real quadratic fields, 19
Regular cross section, 110
Reyneri, Justin M., 36
Rho method, see Discrete Logarithm Prob-

lem (DLP)
Riemann-Roch theorem, 67, 86, 90
Ringwire puzzle, 123
Rivest, Ron, 22
Rosen, Michael, 49
Rosenlicht, Maxwell, 98, 107, 110, 114
Rotor machines, 13
RSA, 21—23

Similarity with the Pohlig-Hellman secret-
key cryptosystem, 22

INDEX 203

Rubin, Karl, 3, 32, 64, 97, 119

Scheidler, Renate, 19
Schnorr signature scheme, 29
Schnorr, Claus Peter, 29
Schoof, René, 77
Schoof-Elkies-Atkin (SEA) algorithm, 144
SEA algorithm, 77
Secret key, 13
Secret sharing, 38

Perfect, 38
Publicly Verifiable Secret Sharing (PVSS),

2, 39
Two-man rule, 38
Verifiable Secret Sharing (VSS), 39

Secret-key cryptosystems, 11, 20
Seinfeld, Jerry, 1
Sequential computation, 148
Serre, Jean-Pierre, 86, 98
Severi, Francesco, 42, 97
Shamir, Adi, 22, 32, 39
Shanks, Daniel, 15, 34
Shift registers, 13
Shor, Peter, 37
Shoup, Victor, 34
Side-channel analysis, see Attacks, Side-channel
Signature

Digital, 18, 25
ElGamal, 27, 28
Generalized ElGamal, 30
Schnorr, 29

Silverberg, Alice, 3, 32, 64, 97, 119
Silverman, Joseph H., 41, 66
Size of Γ, 160
Smart card, 66
Square-and-multiply, 14
SSH, 40
SSL, 40
Stadler, Markus, 39
Station-to-station Protocol, 18
STS, see Station-to-station Protocol
Subspace topology, 47
Symmetric cryptographic systems, 20

Tate, John, 41
Teske, Edlyn, 35

Topological space, 45
Topology, 44
Torus, 115, 118, 119, 182
Torus-based cryptography, 32, 63, 119
Translation point, 126, 129, 133
Trapdoor one-way function, 13, 16
Two safes analogy, 150

Valuation ring, 83
Van Oorschot, Paul C., 18, 35
Vanstone, Scott, 15
Variance, 166, 173, 176
Variety

Rational points, 46
Vercauteren, Frederik, 65
Vernam cipher, 10
Vigenère cipher, 70

Weierstraß equation, 67
Discriminant, 68
j-invariant, 69
Link with elliptic curves, 67

Weil pairing, 145, 183
Weil, André, 107
Wiener, Michael, 18, 35
Williams, Hugh C., 19, 32
Wolf, Stefan, 17
World War I, 10
World War II, 13

XTR, 3, 119, 120

Yahoo! Mail, 2

Zariski topology, 42, 46
Zariski, Oscar, 42, 98
Zero set, 46
Zimmermann, Phil, 40

