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Abstract

In this thesis we study the so-called big Heegner points introduced and first studied by

Ben Howard [How07b]. By construction these are global cohomology classes, with values

in the Galois representation associated to a twisted Hida family, interpolating in weight 2

the twisted Kummer images of CM points.

In the first part, we relate the higher weight specializations of the big Heegner point

of conductor one to the p-adic étale Abel–Jacobi images of Heegner cycles. This is based

on a new p-adic limit formula of Gross–Zagier type obtained in the recent work [BDP13]

of Bertolini–Darmon–Prasanna, a formula that we extend to a setting allowing arbitrary

ramification at p. As a first consequence of the aforementioned relation, we deduce an

interpolation of the p-adic Gross–Zagier formula of Nekovář over a Hida family.

In the second part, we extend some of these formulae in the anticyclotomic direction,

showing that the p-adic L-function introduced in [BDP13] can be obtained as the image

of a compatible sequence of big Heegner points of p-power conductor via a generalization

of the Coleman power series map. By Kolyvagin’s method of Euler systems, as reinvented

by Kato and Perrin-Riou, we then deduce certain new cases of the Bloch–Kato conjecture

for the Rankin–Selberg convolution of a cusp form with a theta series of higher weight, as

well as a divisibility in the Iwasawa–Greenberg main conjecture associated with this family

of motives.
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Abrégé

Cette thèse est consacrée aux “points de Heegner en famille” introduits par Ben Howard

dans [How07b]. Par définition, ce sont des classes de cohomologie globales à valeurs dans

la représentation Galoisienne associée à une famille de Hida, interpolant en poids 2 les

images de points CM par l’application de Kummer.

La première partie de cette thèse relie les spécialisations de la classe de Howard en poids

k � 2 aux images de certains cycles de Heegner par l’application d’Abel–Jacobi p-adique.

Notre démonstration de cette relation repose sur une formule de Gross–Zagier p-adique

obtenue dans les travaux récents [BDP13] de Bertolini–Darmon–Prasanna, et que nous

étendons ici à un cadre permettant de travailler avec des formes modulaires de niveau

divisible par p. On déduit de nos résultats une interpolation de la formule de Gross–Zagier

p-adique de Nekovář sur une famille de Hida.

La deuxième partie étend la définition de la classe de Howard “le long de la droite

anticyclotomique”, pour obtenir une classe de cohohomologie à deux variables. On montre

que la fonction L p-adique de Hida–Rankin, telle que décrite dans [BDP13], est l’image

de cette classe par une généralisation de l’isomorphisme de Coleman. La méthode des

systèmes d’Euler de Kolyvagin, telle que réinventée par Kato et Perrin-Riou, permet d’en

déduire certains nouveaux cas de la conjecture de Bloch–Kato pour la convolution de

Rankin–Selberg d’une forme parabolique avec une série thêta de poids supérieur, et une

divisibilité dans la conjecture principale de la théorie d’Iwasawa–Greenberg associée à cette

famille de motifs.
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Preface

It is a somewhat vexing fact that, to the embarrassment of many mathematicians, the

most convincing theoretical evidence in support of the Birch and Swinnerton-Dyer conjec-

ture still rests largely on the foundational works of Gross–Zagier [GZ86] and Kolyvagin

[Kol88], where the classical Heegner point construction attached to the auxiliary choice

of an imaginary quadratic field was stunningly exploited to establish the conjecture in

the case of analytic rank at most 1 for a class of elliptic curves that now, after Wiles’s

breakthrough [Wil95] culminating in [BCDT01], is known to be rich enough to include

all rational elliptic curves.

In this thesis we aim to further scrutinize the wealth of information accounted for

by Heegner points and their p-adic variation, examining a two-variable construction by

Howard [How07b] that extends over a Hida family and over the anticyclotomic tower.

Our new results in these directions are contained in Chapters 1 and 2, which are

slightly modified versions of the papers [Cas13a] (to appear in Mathematische Annalen)

and [Cas13b] (submitted for publication), and are ultimately based on the study of an

anticyclotomic p-adic L-function introduced in [BDP13] for which the characters relevant

for the Birch and Swinnerton-Dyer conjecture lie outside the range of classical interpola-

tion. Because of this feature, the p-adic Gross–Zagier formulae of [BDP13] are certainly

a less natural analogue of the result of Gross–Zagier than the p-adic formulae proven by

Perrin-Riou [PR87b] and Nekovář [Nek95], but a posteriori they have been found to be

useful for arithmetic applications.

Starting with Leopoldt’s formula, similar formulae for the values of p-adic L-functions

outside their range of classical interpolation have been discovered and exploited in most

situations where interesting Euler systems can be shown to exist. This point of view, which

is sometimes not completely apparent in the classical literature, is stressed in [BCD+13],

where the reader can see most clearly how our results fit within a broader perspective.

Francesc Castella

Montreal, 2013
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and Victor Rotger.

I would also like to thank Professors Ben Howard and Eyal Goren for agreeing to

be the external and internal examiners of this thesis, at the administrative sta↵ at McGill

University for ensuring that I meet all the requirements for graduation in a timely manner.

Finally, I can hardly find the words to faithfully express my wholehearted gratitude to

my parents and sisters. Their love has been a sustained source of inspiration for me, and

this thesis is dedicated to them.

xi





CHAPTER 1

Higher weight specializations of big Heegner points

Summary

Let f be a p-ordinary Hida family of tame level N , and let K be an imaginary quadratic

field satisfying the Heegner hypothesis relative to N . By taking a compatible sequence of

twisted Kummer images of CM points over the tower of modular curves of level �
0

(N) \
�
1

(ps), Howard [How07b] has constructed a canonical class Z in the cohomology of a

self-dual twist of the big Galois representation associated to f . If a p-ordinary eigenform f

on �
0

(N) of weight k > 2 is the specialization of f at ⌫, one thus obtains from Z⌫ a higher

weight generalization of the Kummer images of Heegner points. In this chapter we relate

the classes Z⌫ to the étale Abel–Jacobi images of Heegner cycles when p splits in K.
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2 1. HIGHER WEIGHT SPECIALIZATIONS

Introduction

Fix a prime p > 3 and an integer N > 4 such that p - N�(N). Let

fo =
X

n>0

anq
n 2 Sk(X0

(N))

be a p-ordinary newform of even weight k = 2r � 2 and trivial nebentypus. Thus fo is

an eigenvector for all the Hecke operators Tn with associated eigenvalues an, and ap is a

p-adic unit for a choice of embeddings ◆1 : Q ,�! C and ◆p : Q ,�! Qp that will remain

fixed throughout this paper. Also let O denote the ring of integers of a (su�ciently large)

finite extension L/Qp containing all the an.

For s > 0, let Xs be the compactified modular curve of level

�s := �
0

(N) \ �
1

(ps),

and consider the tower

· · · �! Xs
↵��! Xs�1

�! · · ·
with respect to the degeneracy maps described on the non-cuspidal moduli by

(E,↵E, ⇡E) 7�! (E,↵E, p · ⇡E),

where ↵E denotes a cyclic N -isogeny on the elliptic curve E, and ⇡E a point of E of exact

order ps. The group (Z/psZ)⇥ acts on Xs via the diamond operators

hdi : (E,↵E, ⇡E) 7�! (E,↵E, d · ⇡E)

compatibly with ↵ under the reduction (Z/psZ)⇥ �! (Z/ps�1Z)⇥. Set � := 1 + pZp.

Letting Js be the Jacobian variety of Xs, the inverse limit of the system induced by

Albanese functoriality,

(1.0.1) · · · �! Tap(Js)⌦Zp O �! Tap(Js�1

)⌦Zp O �! · · · ,

is equipped with an action of the Iwasawa algebras e⇤O := O[[Z⇥
p ]] and

⇤O := O[[�]].

Let hs be the O-algebra generated by the Hecke operators T` (` - Np), U` := T` (`|Np),

and the diamond operators hdi (d 2 (Z/psZ)⇥) acting on the space Sk(Xs) of cusp forms

of weight k and level �s. Hida’s ordinary projector

eord := lim
n!1

Un!
p
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defines an idempotent of hs, projecting to the maximal subspace of hs where Up acts

invertibly. We make each hs into a e⇤O-algebra by letting the group-like element attached

to z 2 Z⇥
p act as zk�2hzi.

Taking the projective limit with respect to the restriction maps induced by the natural

inclusion Sk(Xs�1

) ,! Sk(Xs) we obtain a e⇤O-algebra

(1.0.2) hord := lim �
s

eordhs

which can be seen to be independent of the weight k � 2 used in its construction.

After a highly influential work [Hid86b] of Hida, one can associate with fo a certain

local domain I quotient of hord, finite flat over ⇤O, with the following properties. For each

n, let an 2 I be the image of Tn under the projection hord �! I, and consider the formal

q-expansion

f =
X

n>0

anq
n 2 I[[q]].

We say that a continuous O-algebra homomorphism ⌫ : I �! Qp is an arithmetic prime

if there is an integer k⌫ � 2, called the weight of ⌫, such that the composition

� �! I⇥ �! Q
⇥
p

agrees with � 7�! �k⌫�2 on an open subgroup of � of index ps⌫�1 � 1. Denote by X
arith

(I)
the set of arithmetic primes of I, which will often be seen as sitting inside Spf(I)(Qp). If

⌫ 2 X
arith

(I), F⌫ will denote its residue field. Then:

• for every ⌫ 2 X
arith

(I), there exists an ordinary p-stabilized newform1

f⌫ 2 Sk⌫ (Xs⌫ )

such that ⌫(f) 2 F⌫ [[q]] gives the q-expansion of f⌫ ;

• if s⌫ = 1 and k⌫ ⌘ k (mod 2(p � 1)), there exists a normalized newform f ]⌫ 2
Sk⌫ (X0

(N)) such that

(1.0.3) f⌫(q) = f ]⌫(q)�
pk⌫�1

⌫(ap)
f ]⌫(q

p);

• there exists a unique ⌫o 2 X
arith

(I) such that fo = f ]⌫o .

In particular, after “p-stabilization” (1.0.3), the form fo fits in the p-adic family f .

1As defined in [NP00, (1.3.7)].
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Similarly for the associated Galois representation Vfo : the continuous h
ord-linear action

of the absolute Galois group GQ on the module

(1.0.4) T := Tord ⌦hord I, where Tord := lim �
s

eord(Tap(Js)⌦Zp O),

gives rise to a “big” Galois representation ⇢f : GQ �! AutI(T) such that

⌫(⇢f ) ⇠= ⇢⇤f⌫

for every ⌫ 2 X
arith

(I), where ⇢⇤f⌫ is the contragredient of the (cohomological) p-adic Galois

representation ⇢f⌫ : GQ �! Aut(Vf⌫ ) attached to f⌫ by Deligne; in particular, one recovers

⇢⇤fo from ⇢f by specialization at ⌫o.

Assume from now on that the residual representation ⇢̄fo is irreducible; then T can be

shown to be free of rank 2 over I. (See [MT90, Théorème 7] for example.) Let K be an

imaginary quadratic field with ring of integers OK containing an ideal N ⇢ OK with

(1.0.5) OK/N ⇠= Z/NZ,

and denote by H the Hilbert class field of K. Under this Heegner hypothesis relative to N

(but with no extra assumptions on the prime p), the work [How07b] of Howard produces

a compatible sequence U�s
p · Xs of cohomology classes with values in a certain twist of

the ordinary part of (1.0.1), giving rise to a canonical “big” cohomology class X, the big

Heegner point (of conductor 1), in the cohomology of a self-dual twist T† of T. Moreover,

if every prime factor of N splits in K, it follows from his results that the class

Z := CorH/K(X)

lies in Nekovář’s extended Selmer group eH1

f (K,T†). In particular, for every ⌫ 2 X
arith

(I)
with s⌫ = 1 and k⌫ ⌘ k (mod 2(p � 1)) as above, the specialization Z⌫ belongs to the

Bloch–Kato Selmer group H1

f (K,Vf ]⌫
(k⌫/2)) of the self-dual representation T† ⌦I F⌫ ⇠=

Vf ]⌫
(k⌫/2). The classes Z⌫ may thus be regarded as a natural higher weight analogue of the

Kummer images of Heegner points, on modular Abelian varieties (associated with weight

2 eigenforms).

But for any of the above f ]⌫ , one has an alternate (and completely di↵erent!) method of

producing such a higher weight analogue. Briefly, if k⌫ = 2r⌫ > 2, associated to any elliptic

curve A with CM by OK , there is a null-homologous cycle �heeg

A,r⌫
, a so-called Heegner cycle,

on the (2r⌫�1)-dimensional Kuga–Sato varietyWr⌫ giving rise to an H-rational class in the

Chow group CHr⌫+1(Wr⌫ )0 with Q-coe�cients. Since the representation Vf ]⌫
(r⌫) appears
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in the étale cohomology of Wr⌫ :

H2r⌫�1

ét

(W r⌫ ,Qp)(r⌫)
⇡
f
]
⌫��! Vf ]⌫

(r⌫),

by taking the images of the cycles �heeg

A,r⌫
under the p-adic étale Abel-Jacobi map

�ét

H : CHr⌫+1(Wr⌫ )0(H) �! H1(H,H2r⌫�1

ét

(W r⌫ ,Qp)(r⌫))

and composing with the map induced by ⇡f ]⌫ on H1’s, we may consider the classes

�ét

f ]⌫ ,K
(�heeg

r⌫ ) := CorH/K(⇡f ]⌫�
ét

H(�
heeg

A,r⌫
)).

By the work [Nek00] of Nekovář, these classes are known to lie in the same Selmer

group as Z⌫ , and the question of their comparison thus naturally arises.

Main Theorem (Thm. 1.4.12). Assume that p splits in K = Q(
p
�D) and that the

class Z is not I-torsion. Then for all but finitely many ⌫ 2 X
arith

(I) of weight k⌫ = 2r⌫ > 2

with k⌫ ⌘ k (mod 2(p� 1)) and trivial character, we have

hZ⌫ ,Z⌫iK =

✓
1� pr⌫�1

⌫(ap)

◆
4 h�ét

f ]⌫ ,K
(�heeg

r⌫ ),�ét

f ]⌫ ,K
(�heeg

r⌫ )iK
u2(4D)r⌫�1

,

where h, iK is the cyclotomic p-adic height pairing on H1

f (K,Vf ]⌫
(r⌫)), and u := |O⇥

K |/2.

Thus assuming the non-degeneracy of the p-adic height pairing, it follows that the étale

Abel–Jacobi images of Heegner cycles are p-adically interpolated by Z. We also note that

Z is conjecturally always not I-torsion ([How07b, Conj. 3.4.1]), and that by [How07a,

Cor. 5] this conjecture can be verified in any given case by exhibiting the non-vanishing of

an appropriate L-value (a derivative, in fact). But arguably the main interest of the above

result is to be found in connection with p-adic L-functions, as we indicate below.

Let G1 be the Galois group of the unique Z2

p-extension of K. In their recent proof

[SU13] one divisibility in the Iwasawa Main Conjecture for GL
2

, Skinner and Urban

construct an element Lp(f ⌦ K) 2 I[[G1]] which interpolates a certain two-variable p-

adic L-function Lp(f⌫ ⌦ K) 2 O⌫ [[G1]] attached to the specializations f⌫ . For any ⌫ as

in the above Main Theorem, the work [Nek95] of Nekovář proves a p-adic analogue of

the Gross–Zagier formula for Lf⌫ ,K . Combined with the existence of an I-valued “height

pairing” h, iK,T† on eH1

f (K,T†), we can easily deduce the following.

Corollary (Thm. 1.5.1). Let L0
f ,K be the linear term in the expansion of Lf ,K re-

stricted to the cyclotomic line. Under the assumptions of the Main Theorem, we have

L0
f ,K(1K) = hZ,ZiK,T† (mod I⇥).
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This paper is organized as follows. Section 1.1 is aimed at proving an expression for the

formal group logarithms of ordinary CM points on Xs using Coleman’s theory of p-adic

integration. Our methods here are drawn from [BDP13, §3], which we extend in weight 2

to the case of level divisible by an arbitrary power of p, but with ramification restricted to

a potentially crystalline setting. Not quite surprisingly, this restriction turns out to make

our computations essentially the same as theirs, and will su�ce for our purposes.

In Section 1.2 we recall the generalised Heegner cycles and the formula for their p-adic

Abel-Jacobi images from loc.cit., and discuss the relation between these and the more

classical Heegner cycles.

In Section 1.3 we deduce from the work [Och03] of Ochiai the construction of a “big”

logarithm map that will allow as to move between di↵erent weights in the Hida family.

Finally, in Section 1.4 we prove our results on the arithmetic specializations of the big

Heegner point Z. The key observation is that, when p splits in K, the combination of

CM points on Xs taken in Howard’s construction appears naturally in the evaluation of

the critical twist of a p-adic modular form at a canonical trivialized elliptic curve. The

expression from Section 1 thus yields, for infinitely many ⌫ of weight 2, a formula for the

p-adic logarithm of the localization of Z⌫ in terms of certain values of a p-adic modular

form of weight 0 associated with f⌫ (Theorem 1.4.9). When extended by p-adic continuity

to an arithmetic prime ⌫ of higher even weight, this expression is seen to agree with the

formula from Section 1.2, and by the interpolation properties of the big logarithm map it

corresponds to the p-adic logarithm of the localization of Z⌫ . The above Main Theorem

then follows easily from this.

We also note that an extension “in the anticyclotomic direction” of some of the results in

this paper leads to a number of arithmetic applications arising from the connection between

Howard’s big Heegner points and a certain p-adic L-function introduced in [BDP13]. This

connection appears implicitly here and is developed in [Cas13b].

Acknowledgements. It is a pleasure to thank my advisor, Prof. Henri Darmon, for

suggesting that I work on this problem, and for sharing with me some of his wonderful

mathematical insights. I thank both him and Adrian Iovita for critically listening to me

while the results in this paper were being developed, and also Jan Nekovář and Victor

Rotger for encouragement and helpful correspondence. It is a pleasure to acknowledge the

debt that this work owes to Ben Howard, especially for pointing out an error in an early

version of this paper, and for providing several helpful comments and corrections. Finally,
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1.1. Preliminaries

1.1.1. p-adic modular forms. To avoid some issues related to the representability

of certain moduli problems, in this section we change notations from the Introduction,

letting Xs be the compactified modular curve of level �s := �
1

(Nps), viewed as a scheme

over Spec(Qp). Let ⇡ : Es �! X̃s be the universal elliptic curve over the complement

X̃s ⇢ Xs of the cuspidal subscheme Zs ⇢ Xs, and let !Xs
be the invertible sheaf Xs given

by the extension of ⇡⇤⌦Es/ ˜Xs
to the cusps Zs as described in [Gro90, §1], for example.

Algebraically, H0(Xs,!
⌦2

Xs
) gives the space of modular forms of weight 2 and level �s

(defined over Qp). Consider the complex

(1.1.1) ⌦•
Xs/Qp

(logZs) : 0 �! OXs

d��! ⌦1

Xs/Qp
(logZs) �! 0

of sheaves on Xs. The algebraic de Rham cohomology of Xs

H1

dR

(Xs/Qp) := H1(Xs,⌦
•
Xs/Qp

(logZs))

is a finite-dimensional Qp-vector space equipped with a Hodge filtration

0 ⇢ H0(Xs,⌦
1

Xs/Qp
(logZs)) ⇢ H1

dR

(Xs/Qp),

and by the Kodaira-Spencer isomorphism !⌦2

Xs

⇠= ⌦1

Xs/Qp
(logZs), every cusp form f 2

S
2

(Xs) (in particular) defines a cohomology class !f 2 H1

dR

(Xs/Qp).

Let X be the complete modular curve of level �
1

(N), also viewed over Spec(Qp), and

consider the subspaces of the associated rigid analytic space Xan:

Xord ⇢ X<1/(p+1)

⇢ X<p/(p+1)

⇢ Xan.

To define these, let X/Zp be the canonical integral model of X over Spec(Zp), and let

XFp := X ⇥Zp Fp denote its special fiber. The supersingular points SS ⇢ XFp(Fp) is

the finite set of points corresponding to the moduli of supersingular elliptic curves (with

�
1

(N)-level structure) in characteristic p.

Let Ep�1

be the Eisenstein series of weight p � 1 and level 1, seen as a global section

of the sheaf !⌦(p�1)

X . (Recall that we are assuming p � 5.) The reduction of Ep�1

to XFp

is the Hasse invariant, which defines a section of the reduction of !⌦(p�1)

X with SS as its

locus of (simple) zeroes. If x 2 X(Qp), let x̄ 2 XFp(Fp) denote its reduction. Each point
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x̄ 2 SS is smooth in XFp , and the ordinary locus of X

Xord := Xan r
[

x̄2SS
Dx̄

is defined to be the complement of their residue discs Dx̄ ⇢ Xan. The function |Ep�1

(x)|p
defines a local parameter on Dx̄, and with the normalization |p|p = p�1, X<1/(p+1)

(resp.

X<p/(p+1)

) is defined to be complement in Xan of the subdiscs of Dx̄ where |Ep�1

(x)|p 
p�1/(p+1) (resp. |Ep�1

(x)|p  p�p/(p+1)), for all x̄ 2 SS.

Using the canonical subgroup HE (of order p) attached to every elliptic curve E corre-

sponding to a closed point in X<p/(p+1)

, the Deligne-Tate map

�
0

: X<1/(p+1)

�! X<p/(p+1)

is defined by sending E 7�! E/HE (with the induced action on the level structure) under

the moduli interpretation. This map is a finite morphism which by definition lifts to

characteristic zero the absolute Frobenius on XFp . (See [Kat73, Thm. 3.1].)

For every s > 0, the Deline-Tate map �
0

can be iterated s� 1 times on the open rigid

subspace X<p2�s/(p+1)

of Xan where |Ep�1

(x)|p > p�p2�s/(p+1). Letting ↵s : Xs �! X be

the map forgetting the “�
1

(ps)-part” of the level structure, define

W
1

(ps) ⇢ Xan

s

to be the open rigid subspace of Xs whose closed points correspond to triples (E,↵E, ⇡E)

whose image under ↵s lands inside X<p2�s
(p+1)

and are such that ⇡E generates the canonical

subgroup of E of order ps (as in [Buz03, Defn. 3.4]).

Define W
2

(ps) ⇢ Xan

s is the same manner, replacing p2�s/(p + 1) by p1�s/(p + 1) in

the definition of W
1

(ps). Then we obtain a lifting of Frobenius � = �s on Xs making the

diagram

W
2

(ps)
�

//

↵s

✏✏

W
1

(ps)

↵s

✏✏
X<p1�s

(p+1)

�
0 // X<p2�s

(p+1)

.

commutative by sending a point x = (E,↵E, ıE) 2 W
2

(ps), where ıE : µps ,�! E[ps] is

an embedding giving the �
1

(ps)-level structure on E, to x0 = (�
0

E,�
0

↵E, ı
0
E), where ı0E

is determined by requiring that ↵s(x0) lands in X<p2�s/(p+1)

and for each ⇣ 2 µps � {1},
ı0E(⇣) = �

0

Q if ıE(⇣) = pQ. (Cf. [Col97b, §B.2].)
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Let Is := {v 2 Q : 0  v < p2�s/(p+1)}, and for v 2 Is define the a�noid subdomain

Xs(v) of Xan

s inside W
1

(ps) whose closed points x satisfy |Ep�1

(x)|p � p�v. Then Xs(0) is

the connected component of the ordinary locus of Xs containing the cusp 1.

Denote by !Xan

s
the rigid analytic sheaf on Xan

s deduced from !Xs
and fix k 2 Z. The

space of p-adic modular forms of weight k and level �s (defined over Qp) is the p-adic

Banach space

Mord

k (Xs) := H0(Xs(0),!
⌦k
Xan

s
),

and the space of overconvergent p-adic modular forms of weight k and level �s is the p-adic

Fréchet space

M rig

k (Xs) := lim�!
v

H0(Xs(v),!
⌦k
Xan

s
),

where the limit is with respect to the natural restriction maps as v 2 Is increasingly

approaches p2�s/(p + 1). By restriction, a classical modular form in H0(Xs,!
⌦k
Xs
) defines

an (obviously) overconvergent p-adic modular form of the same weight an level. Moreover,

the action of the diamond operators on Xs gives rise to an action of (Z/psZ)⇥ on the spaces

of p-adic modular forms which agrees with the action on H0(Xs,!
⌦k
Xs
) under restriction.

We say that a ring R is a p-adic ring if the natural map R �! lim �R/pnR is an

isomorphism. For varying s, the data of a compatible sequence of embeddings µps ,�! E

as R-group schemes, amounts to the data of an embedding µp1 ,�! E[p1] of p-divisible

groups, and also to the given of a trivialization of E over R, i.e. an isomorphism

ıE : Ê �! Ĝm

of the associated formal groups. The space M(N) of Katz p-adic modular functions of

tame level N (over Zp) is the space of functions f on trivialized elliptic curves with �
1

(N)-

level structure over arbitrary p-adic rings, assigning to the isomorphism class of a triple

(E,↵E, ıE) over R a value f(E,↵E, ıE) 2 R whose formation is compatible under base

change. If R is a fixed p-adic ring, by only considering p-adic rings which are R-algebras,

we obtain the notion of Katz p-adic modular functions defined over R, forming the space

M(N)b⌦ZpR which will also be denoted by M(N) by an abuse of notation.

The action of z 2 Z⇥
p on a trivialization gives rise to an action of Z⇥

p on M(N):

hzif(E,↵E, ıE) := f(E,↵E, z
�1 · ıE),

and given a character � 2 Hom
cont

(Z⇥
p , R

⇥), we say that f 2M(N) has weight-nebentypus

� if hzif = �(z)f for all z 2 Z⇥
p . If k is an integer, denoting by zk the k-th power character

on Z⇥
p , the subspace Mord

k (Nps, ") of Mord

k (Xs) consisting of p-adic modular forms with
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nebentypus " : (Z/psZ)⇥ �! R⇥ can be recovered as

(1.1.2) Mord

k (Nps, ") ⇠= {f 2M(N) : hzif = zk"(z)f, for all z 2 Z⇥
p }.

Since it will play an important role later, we next recall from [Gou88, §III.6.2] the
definition in terms of moduli of the twist of p-adic modular forms by characters of not nec-

essarily finite order. Let R be a p-adic ring, and let (E,↵E, ıE) be a trivialized elliptic curve

with �
1

(N)-level structure over R. For each s, consider the quotient E
0

:= E/ı�1

E (µps),

and let '
0

: E �⇣ E
0

denote the projection. Since p - N , '
0

induces a �
1

(N)-level

structure ↵E
0

on E
0

, and since ker('
0

) ⇠= µps , the dual '̌
0

: E
0

�! E is étale, inducing

an isomorphism of the associated formal groups. Thus (with a slight abuse of notation)

ıE
0

:= ıE � '̌0

: Ê
0

⇠�! Ĝm is a trivialization of E
0

, and since we have an embedding

Z/psZ ⇠= ker('̌
0

) ,�! E
0

[ps], we deduce an isomorphism

E
0

[ps] ⇠= µps � Z/psZ

which we use to bijectively attach a ps-th root of unity ⇣C to every étale subgroup C ⇢
E

0

[ps] of order ps, in such a way that 1 is attached to ker('̌
0

).

Now for f 2M(N) and a 2 Zp, define f ⌦ 1a+psZp to be the rule on trivialized elliptic

curves given by

(1.1.3) f ⌦ 1a+psZp(E,↵E, ıE) =
1

ps

X

C

⇣�a
C · f(E

0

/C,↵C , ıC)

where the sum is over the étale subgroups C ⇢ E
0

[ps] of order ps, and where ↵C (resp.

ıC) denotes the �1

(N)-level structure (resp. trivialization) on the quotient E
0

/C naturally

induced by ↵E
0

(resp. ıE
0

).

Lemma 1.1.1. The assignment

a+ psZp  
�
f 7�! f ⌦ 1a+psZp

�

gives rise to an EndRM(N)-valued measure µ
Gou

on Zp.

Proof. Let
P

n anq
n be the q-expansion of f , i.e. the value that it takes at the triple

(Tate(q),↵
can

, ı
can

) = (Gm/q
Z, ⇣N ,µp1 ,! Gm/q

Z) over the p-adic completion of R((q)).

By the q-expansion principle, the claim follows immediately from the equality

f ⌦ 1a+psZp(q) =
X

n⌘a mod ps

anq
n,

which is shown by adapting the arguments in [Gou88, p. 102]. ⇤
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Definition 1.1.2 (Gouvêa). Let f 2 M(N) and � : Zp �! R be any continuous

multiplicative function. The twist of f by � is

f ⌦ � :=

✓Z

Zp

�(x)dµ
Gou

(x)

◆
(f) 2M(N).

This operation is compatible with the usual character twist of Hecke eigenforms:

Lemma 1.1.3. Let � : Z⇥
p �! R⇥ be a continuous character extended by zero on pZp.

If f 2M(N) has q-expansion
P

n anq
n, then f ⌦ � has q-expansion

P
n �(n)anq

n, and if

f has weight-nebentypus  2 Hom
cts

(Z⇥
p , R

⇥), then f ⌦ � has weight-nebentypus �2.

Proof. See [Gou88, Cor. III.6.8.i] and [Gou88, Cor. III.6.9]). ⇤

In particular, twisting by the identity function of Zp we obtain an operator

d : M(N) �!M(N)

whose e↵ect on q-expansions is q d
dq
. For every k 2 Z, we see from (1.1.2) and Lemma 1.1.3,

that this restricts to a map

d : Mord

k (Xs) �!Mord

k+2

(Xs)

which increases the weight by 2 and preserves the nebentypus. Moreover, for k = 0, the

arguments in [Col96, Prop. 4.3] can be adapted to show that d gives rise to a linear

map M rig

0

(Xs) �!M rig

2

(Xs), viewing M rig

k (Xs) as a subspace of Mord

k (Xs) via the natural

restriction map.

1.1.2. Comparison isomorphisms. Let ⇣s be a primitive ps-th root of unity, and

let F be a finite extension of Qp(⇣s) over which Xs acquires stable reduction, i.e. such that

the base extension Xs⇥Qp F admits a stable model over the ring of integers OF of F . For

the ease of notation, from now on we will denote Xs⇥Qp F (as well as the associated rigid

analytic space) simply by Xs.

Let Xs be the minimal regular model of Xs over OF , and denote by F
0

the maximal

unramified subfield of F . The work [HK94] of Hyodo-Kato endows the F -vector space

H1

dR

(Xs/F ) with a canonical F
0

-structure

(1.1.4) H1

log�cris

(Xs) ,�! H1

dR

(Xs/F )

equipped with a semi-linear Frobenius operator '.

After the proof [Tsu99] of the so-called semistable conjecture of Fontaine–Jannsen,

these structures are known to agree with those attached by Fontaine’s theory to the p-adic
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GF -representation

(1.1.5) Vs := H1

ét

(Xs,Qp).

More precisely, since Xs has semistable reduction, Vs is semistable in the sense of

Fontaine, and there is a canonical isomorphism D
st

(Vs)
⇠�! H1

log�cris

(Xs), inducing an

isomorphism

(1.1.6) D
dR

(Vs)
⇠�! H1

dR

(Xs/F )

as filtered '-modules after extending scalars to F .

Consider the étale Abel–Jacobi map CH1(Xs)0(F ) �! H1(F, Vs(1)) constructed in

[Nek00], which in this case agrees with the usual Kummer map

�F : Js(F ) �! H1(F,Qp ⌦ Tap(Js)),

where Js = Pic0(Xs) is the connected Picard variety of Xs. (See [loc.cit., Example(2.3)].)

Let g 2 S
2

(Xs) be a newform with primitive nebentypus, denote by Vg the p-adic Galois

representation associated to g, which is equipped with a Galois-equivariant projection

Vs �! Vg, and let V ⇤
g be the representation contragredient to Vg, so that Vg(1) and V ⇤

g are

in Kummer duality. Also, let Lg be a finite extension ofQp over which the Hecke eigenvalues

of g are defined. By [BK90, Example 3.11], the image of the induced composite map

(1.1.7) �g,F : Js(F )
�F��! H1(F, Vs(1)) �! H1(F, Vg(1))

lies in the Bloch–Kato “finite” subspace H1

f (F, Vg(1)), and by our assumption on g, the

Bloch-Kato exponential map gives an isomorphism

(1.1.8) expF,Vg(1)
:

D
dR

(Vg(1))

Fil0D
dR

(Vg(1))
�! H1

f (F, Vg(1))

whose inverse will be denoted by logF,Vg(1)
.

Our aim in this section is to compute the images of certain degree 0 divisors on Xs

under the p-adic Abel–Jacobi map �(p)g,F , defined as the composition

(1.1.9) Js(F )
�g,F��! H1

f (F, Vg(1))
logF,Vg(1)�����! D

dR

(Vg(1))

Fil0D
dR

(Vg(1))
⇠�! (Fil0D

dR

(V ⇤
g ))

_,

where the last identification arises from the de Rham pairing

(1.1.10) h , i
dR

: D
dR

(Vg(1))⇥D
dR

(V ⇤
g ) �! D

dR

(Qp(1))⌦Qp Lg
⇠= F ⌦Qp Lg
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with respect to which Fil0D
dR

(Vg(1)) and Fil0D
dR

(V ⇤
g ) are exact annihilators of each other.

A basic ingredient for this computation will be the following alternate description of the

logarithm map logF,Vg(1)
.

Recall the interpretation of H1(F, Vg(1)) as the space Ext1
Rep(GF )

(Lg, Vg(1)) of exten-

sions of Vg(1) by Lg in the category of p-adic GF -representations. Since F contains Qp(⇣s),

Vg is a crystalline GF -representation in the sense of Fontaine, and under that interpretation

the Bloch–Kato “finite” subspace corresponds to those extensions which are crystalline (see

[Nek93, Prop. 1.26], for example):

(1.1.11) H1

f (F, Vg(1)) ⇠= Ext1
Rep

cris

(GF )

(Lg, Vg(1)).

Now consider a crystalline extension

(1.1.12) 0 �! Vg(1) �! W �! Lg �! 0.

Since D
cris

(Vg(1))'=1 = 0 by our assumptions, the resulting extension of '-modules

(1.1.13) 0 �! D
cris

(Vg(1)) �! D
cris

(W ) �! F
0

⌦Qp Lg �! 0

admits a unique section sfrobW : F
0

⌦Qp Lg �! D
cris

(W ) with sfrobW (1) landing in the '-

invariant subspace D
cris

(W )'=1. Extending scalars from F
0

to F in (1.1.13) and taking

Fil0-parts, we take an arbitrary section sfilW : F ⌦Qp Lg �! Fil0D
dR

(W ) of the resulting

exact sequence of F -vector spaces

(1.1.14) 0 �! Fil0D
dR

(Vg(1)) �! Fil0D
dR

(W ) �! F ⌦Qp Lg �! 0

and form the di↵erence

tW := sfilW (1)� sfrobW (1),

which can be seen in D
dR

(Vg(1)), and whose image modulo Fil0D
dR

(Vg(1)) is well-defined.

Lemma 1.1.4. Under the identification (1.1.11), the above assignment

0! Vg(1)! W ! Lg ! 0  tW mod Fil0D
dR

(Vg(1))

defines an isomorphism which agrees with the Bloch–Kato logarithm map

logF,Vg(1)
: H1

f (F, Vg(1))
⇠�! D

dR

(Vg(1))

Fil0D
dR

(Vg(1))
.

Proof. See [Nek93, Lemma 2.7], for example. ⇤

Let � 2 Js(F ) be the class of a degree 0 divisor on Xs with support contained in the

finite set of points S ⇢ Xs(F ). The extension class W = W
�

(1.1.12) corresponding to
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�g,F (�) can then be constructed from the étale cohomology of the open curve Ys := XsrS,

as explained in [BDP13, §3.1]. We describe the associated sfilW
�

and sfrobW
�

.

By [Tsu99] (or also [Fal02]), denoting g-isotypical components by the superscript g,

there is a canonical isomorphism of F
0

⌦Qp Lg-modules

(1.1.15) D
cris

(Vg) ⇠= H1

log�cris

(Xs)
g

compatible with '-actions and inducing an F ⌦Qp Lg-module isomorphism

(1.1.16) D
dR

(Vg) ⇠= H1

dR

(Xs/F )g

after extension of scalars.

Writing � =
P

Q2S nQ.Q for some nQ 2 Z, we assume from now on that S contains

the cusps, and that the reductions of the points Q 2 S are smooth and pair-wise distinct.

We also assume that the reduction of S in the special fiber is stable under the absolute

Frobenius. Like H1

dR

(Xs/F ), the F -vector space H1

dR

(Ys/F ) is equipped with a canonical

F
0

-structure

(1.1.17) H1

log�cris

(Ys) ,�! H1

dR

(Ys/F ),

a Frobenius operator still denoted by ', and a Hecke action compatible with that in (1.1.4).

Thus for W = W
�

the exact sequence (1.1.13) is obtained as the pullback

(1.1.18) D
cris

(Vg(1))
� � // D

cris

(W
�

)

✏✏

⇢
// // F

0

⌦Qp Lg

�

✏✏

H1

log�cris

(Xs)g(1)
� � // H1

log�cris

(Ys)g(1)
�resQ
// // (F

0

⌦Qp Lg)
�S
0

of the bottom extension of '-modules with respect to the F
0

⌦Qp Lg-linear map sending

1 7! (nQ)Q2S, where the subscript 0 indicates taking the degree 0 subspace.

On the other hand, after extending scalars from F
0

to F and taking Fil0-parts, (1.1.14)

is given by the pullback2

(1.1.19) Fil0D
dR

(Vg(1))
� � // Fil0D

dR

(W
�

)
⇢
// //

✏✏

F ⌦Qp Lg

�

✏✏

Fil1H1

dR

(Xs/F )g �
� // Fil1H1

dR

(Ys/F )g
�resQ
// // (F ⌦Qp Lg)

�S
0

of the bottom exact sequence of free F ⌦Qp Lg-modules with respect to the F ⌦Qp Lg-linear

map sending 1 7! (nQ)Q2S.

2Notice the e↵ect of the Tate twist on the filtrations.
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Let "g = "g,p · "(p)g be the nebentypus of g, decomposed as the product of its “wild”

component "g,p on (Z/psZ)⇥ and its “tame” component "(p)g on (Z/NZ)⇥. Let g⇤ 2 S
2

(Xs)

be the form dual to g, defined as the newform associated with the twist g ⌦ "�1

g,p, and let

!g⇤ 2 H0(Xs,⌦1

Xs/F
) be its associated di↵erential, so that

Fil0D
dR

(V ⇤
g ) = (F ⌦Qp Lg).!g⇤ .

The image of the functional �(p)g,F (�) is thus determined by the value

(1.1.20) �
(p)
g,F (�)(!g⇤) = htW

�

,!g⇤idR

of the pairing (1.1.10), which corresponds to the Poincaré pairing on H1

dR

(Xs/F ) under the

identification (1.1.16). Using rigid analysis, we will now give an expression for the latter

pairing that will make (1.1.20) amenable to computations.

Let Xs be the canonical balanced model of Xs over Zp[⇣s] constructed by Katz and

Mazur. The special fiber Xs ⇥Zp[⇣s] Fp is a reduced disjoint union of Igusa curves over Fp

intersecting at the supersingular points, with exactly two of them isomorphic to the Igusa

curve Ig(�s) representing the moduli problem ([�
1

(N)], [�
1

(ps)]) over Fp (see [KM85,

§13]); we let I1 be the one that contains the reduction of W
1

(ps) ⇥Qp Qp(⇣s), and let I
0

be the other. (We note that these components are the two “good” components in the

terminology of [MW86].)

By the universal property of the regular minimal model, there exists a morphism

(1.1.21) Xs �! Xs ⇥Zp[⇣s] OF

which reduces to a sequence of blow-ups on the special fiber. Letting  be the residue field

of F , define W1 ⇢ Xs (resp. W0

⇢ Xs) to be the inverse image under the reduction map

via Xs of the unique irreducible component of Xs⇥OF
 mapping bijectively onto I1⇥Fp 

(resp. I
0

⇥Fp ) in Xs ⇥Zp[⇣s]  via the reduction of (1.1.21). Similarly, define U ⇢ Xs by

considering the irreducible components of Xs⇥Zp[⇣s] di↵erent from I1⇥Fp  and I
0

⇥Fp .

Letting SS denote (the degree of) the supersingular divisor of Ig(�s), one can show that

U intersects W1 (resp. W
0

) in a union of SS supersingular annuli.

Since they reduce to smooth points, the residue class DQ of each Q 2 S is conformal

to the open unit disc D ⇢ Cp. Fix an isomorphism hQ : DQ
⇠�! D that sends Q to 0, and

for a real number rQ < 1 in pQ, denote by VQ ⇢ DQ the annulus consisting of the points

x 2 DQ with rQ < |hQ(x)|p < 1.

Attached to any (oriented) annulus V , there is a p-adic annular residue map

ResV : ⌦1

V �! Cp
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defined by expanding ! 2 ⌦1

V as ! =
P

n2Z anT
n dT

T
for a fixed uniformizing parameter

T on V (compatible with the orientation), and setting ResV(!) = a
0

. This descends to a

linear functional on ⌦1

V/dOV . (See [Col89, Lemma 2.1].)

For any basic wide-open W (as in [Buz03, p. 34]), define

(1.1.22) H1

rig

(W) := H1(W ,⌦•(logZ)) ⇠= ⌦1

W/dOW ,

where ⌦•(logZ) denotes the complex of rigid analytic sheaves on W deduced from (1.1.1)

by analytification and pullback, and consider the basic wide-opens

fW1 := W1 r
[

Q2S
(DQ r VQ) fW

0

:= W
0

r
[

Q2S
(DQ r VQ).

The space H1

dR

(Xs/F ) is equipped with a natural action of the diamond operators,

and following [Col97a, §2] we define H1

dR

(Xs/F )prim to be the subspace of H1

dR

(Xs/F )

spanned by (the pullbacks of) the classes in H1

dR

(Xr/F ), for 0  r  s, with primitive

nebentypus at p. Also, we define H1

dR

(Ys/F )prim to be the image of H1

dR

(Xs/F )prim under

the natural restriction map H1

dR

(Xs/F ) �! H1

dR

(Ys/F ). Finally, let H1

rig

(fW1)⇤ be the

subspace of H1

rig

(fW1) consisting of classes ! with resVx(!) = 0 for all supersingular annuli

Vx and resVQ
(!) = 0 for all Q 2 S, and define H1

rig

(fW
0

)⇤ in the analogous manner.

Lemma 1.1.5 (Coleman). The natural restriction maps induce an isomorphism

H1

dR

(Ys/F )prim
⇠�! H1

rig

(fW1)⇤ �H1

rig

(fW
0

)⇤,

and if ⌘ and ! are any two classes in H1

dR

(Xs/F )prim, their Poincaré pairing is given by

h⌘,!i
dR

=
X

x2S[SS
ResVx(F!1|Vx

· ⌘1|Vx) +
X

x2S[SS
ResVx(F!

0

|Vx
· ⌘

0

|Vx),(1.1.23)

where for each annulus Vx, F!Vx
denotes any solution to dF!Vx

= !Vx on Vx.

Proof. By an excision argument, the first assertion follows from [Col97a, Thm. 2.1],

and the second is shown by adapting the arguments in [Col96, §5] for each of the two

components, as done in [Col94a, Prop. 1.3] for s = 1. (See also [Col97a, §3].) ⇤

1.1.3. Coleman p-adic integration. Coleman’s theory of p-adic integration provides

a coherent choice of local primitives that will allow us to we compute (1.1.20) using the

formula (1.1.23). The key idea is to exploit the action of Frobenius.

Recall the lift of Frobenius � : W
2

(ps) �! W
1

(ps) described in Section 1.1.1, where

Wi(ps) are the strict neighborhoods of the connected component Xs(0) of the ordinary
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locus of Xs containing the cusp 1 described there. Recall also the wide open space W1
described in the preceding section, which also contains Xs(0) by construction.

Proposition 1.1.6 (Coleman). Let g =
P

n>0

bnq
n 2 S

2

(Xs) be a normalized newform

with primitive nebentypus of p-power conductor, so that bp is such that Upg = bpg. There

exists a unique locally analytic function F!g on W1 with the following three properties:

• dF!g = !g on W1,

• F!g � bp
p
�⇤F!g 2M rig

0

(Xs), and

• F!g vanishes at 1.

Proof. This follows from the general result of Coleman [Col94b, Thm. 10.1]. Indeed,

a computation on q-expansions shows that the action of the Frobenius lift � on di↵erentials

agrees with that of pV , with V the map acting as q 7! qp on q-expansions, in the sense

that �⇤!g = p!V g on W 0
1 := ��1(W1 \W

1

(ps)). Since the di↵erential !g[p] = !g � bp!V g

attached to

g[p] =
X

(n,p)=1

bnq
n

becomes exact upon restriction to W 0
1, this shows that the polynomial L(T ) = 1� bp

p
T is

such that L(�⇤)!g = 0. Finally, since g has primitive nebentypus, bp has complex absolute

value p1/2, and hence [Col94b, Thm. 10.1] can be applied with L(T ) as above. ⇤

Attached to a primitive ps-th root of unity ⇣, there is an automorphism w⇣ of Xs which

interchanges the components W1 and W
0

. (See [BE10, Lemma 4.4.3].)

Corollary 1.1.7. Set �0 := w⇣ ���w⇣. With hypotheses as in Proposition 1.1.6, there

exists a unique locally analytic function F 0
!g

on W
0

with the following three properties:

• dF 0
!g

= !g on W
0

,

• F 0
!g
� bp

p
(�0)⇤F 0

!g
is rigid analytic on a wide-open neighborhood W 0

0

of w⇣Xs(0) in

W
0

, and

• F 0
!g

vanishes at 0.

Proof. Proposition 1.1.6 applied to the di↵erential !0
g := w⇤

⇣!g gives the existence

of a locally analytic function F!0
g
with F 0

!g
:= w⇤

⇣F!0
g
having the desired properties. The

uniqueness of F 0
!g

follows immediately from that of F!0
g
. ⇤

We refer to the locally analytic function F!g (resp. F 0
!g
) appearing in Proposition 1.1.6

as the Coleman primitive of g on W1 (resp. W
0

).
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Let g =
P

n>0

bnq
n be as in Proposition 1.1.6. The q-expansion

P
(n,p)=1

bn
n
qn corre-

sponds to a p-adic modular form g0 vanishing at 1 and satisfying dg0 = g[p], where d is

the operator described at the end of Section 2.1, which here corresponds to the di↵erential

operator OW �! ⌦1

W for any subspace W ⇢ Xs. Set d�1g[p] := g0.

Corollary 1.1.8. If F!g is the Coleman primitive of g on W1, then

F!g �
bp
p
�⇤F!g = d�1g[p].

Proof. Since d�1g[p] is an overconvergent rigid analytic primitive of !g[p] , and the

operator L(�⇤) = 1 � bp
p
�⇤ acting on the space of locally analytic functions on W1 is

invertible, we see that L(�⇤)�1(d�1g[p]) satisfies the defining properties of F!g . Since d
�1g[p]

vanishes at 1, the result follows. ⇤

We can now give an explicit formula for the p-adic Abel–Jacobi images of certain degree

0 divisors on Xs. Note that this formula it is key in all what follows.

Proposition 1.1.9. Assume that s > 1. Let g 2 S
2

(Xs) be a normalized newform with

primitive nebentypus of p-power conductor, let P be an F -rational point of Xs factoring

through Xs(0) ⇢ Xs, and let � 2 Js(F ) be the divisor class of (P )� (1). Then

(1.1.24) �
(p)
g,F (�)(!g⇤) = F!g⇤ (P ),

where F!g⇤ is the Coleman primitive of !g⇤ on W1.

Proof. By (1.1.20), we must evaluate htW
�

,!g⇤idR, where (with a slight abuse of

notation) tW
�

= sfilW
�

� sfrobW
�

with

• sfilW
�

2 Fil1D
dR

(W
�

) is such that ⇢(sfilW
�

) = 1 in (1.1.19), and

• sfrobW
�

2 D
cris

(W
�

)'=1 is such that ⇢(sfrobW
�

) = 1 in (1.1.18).

By Lemma 1.1.5, we see that these can be represented, respectively, by

• ⌘fil
�

a section of ⌦1

Xs/F
over Ys with simple poles at P and 1 and with

– ResP (⌘fil
�

) = 1,

– Res1(⌘fil
�

) = �1,
– ResQ(⌘fil

�

) = 0 for all Q 2 S � {P,1};
• ⌘frob

�

= (⌘frob1 , ⌘frob
0

) 2 ⌦1

fW1
⇥ ⌦1

fW
0

with

– (�⇤⌘frob1 , (�0)⇤⌘frob
�

) = (p · ⌘frob1 + dG1, p · ⌘frob
0

+ dG
0

) with G1 and G
0

rigid

analytic on ��1fW1 and (�0)�1fW
0

, respectively,

– ResVx(⌘
frob

�

) = 0 for all supersingular annuli Vx, and

– ResVQ
(⌘frob

�

) = ResQ(⌘fil
�

) for all Q 2 S.
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The arguments in [BDP13, Prop. 3.21] can now be straightforwardly adapted to deduce

the result. Indeed, using the defining properties of the Coleman primitives F!g⇤ and F 0
!g⇤

of !g⇤ on W1 and W
0

, respectively, one first shows that

(1.1.25)
X

x2S[SS
ResVx(F!g⇤ · ⌘frob1 ) = 0 and

X

x2S[SS
ResVx(F

0
!g⇤

· ⌘frob
0

) = 0

as in [loc.cit., Lemma 3.20]. On the other hand, using the same primitives, one shows as

in [loc.cit., Lemma 3.19] that

(1.1.26)
X

x2S[SS
ResV(F!g⇤ · ⌘fil�) = F!g⇤ (P ) and

X

x2S[SS
ResV(F 0

!g⇤
· ⌘fil

�

) = 0.

Substituting (1.1.26) and (1.1.25) into the formula (1.1.23) for the Poincaré pairing

(and using that s > 1, so that there is no overlap between the supersingular annuli in fW1
and the supersingular annuli in fW

0

), the result follows. ⇤

1.2. Generalised Heegner cycles

Let X
1

(N) be the compactified modular curve of level �
1

(N) defined over Q, and let

E be the universal generalized elliptic curve over X
1

(N). (Recall that N > 4.) For r > 1,

denote by Wr the (2r�1)-dimensional Kuga–Sato variety3, defined as the canonical desin-

gularization of the (2r� 2)-nd fiber product of E with itself over X
1

(N). By construction,

the variety Wr is equipped with a proper morphism

⇡r : Wr �! X
1

(N)

whose fibers over a noncuspidal closed point of X
1

(N) corresponding to an elliptic curve

E with �
1

(N)-level structure is identified with 2r � 2 copies of E. (For a more detailed

description, see [BDP13, §2.1].)
Let K be an imaginary quadratic field of odd discriminant �D < 0. It will be assumed

throughout that K satisfies the following hypothesis:

Assumptions 1.2.1. All the prime factors of N split in K.

Denote by OK the ring of integers of K, and note that by this assumption we may

choose an ideal N ⇢ OK with

OK/N ⇠= Z/NZ

that we now fix once and for all.

3Perhaps most commonly denoted by W2r�2; cf. [Zha97] and [Nek95], for example.
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Let A be a fixed elliptic curve with CM by OK . The pair (A,A[N]) defines a point PA

on X
0

(N) rational over H, the Hilbert class field of K. Choose one of the square-rootsp
�D 2 OK , let �p�D ⇢ A⇥ A be the graph of

p
�D, and define

⌥heeg

A,r := �p�D ⇥
(r�1)· · · ⇥ �p�D

viewed inside Wr by the natural inclusion (A ⇥ A)r�1 �! Wr as the fiber of ⇡r over a

point on X
1

(N) lifting PA. Let ✏W be the projector from [BDP13, (2.1.2)], and set

(1.2.1) �heeg

A,r := ✏W⌥heeg

A,r ,

which is an (r�1)-dimensional null-homologous cycle on Wr defining an H-rational class in

the Chow group CHr(Wr)0 (taken withQ-coe�cients, as always here) which is independent

of the chosen lift of PA.

These cycles (1.2.1) are the so-called Heegner cycles (of conductor one, weight 2r),

and they share with classical Heegner points many of their arithmetic properties (see

[Nek92, Nek95, Zha97]).

We next recall a variation of the previous construction introduced in the recent work

[BDP13] of Bertolini, Darmon, and Prasanna. Let A be the CM elliptic curve fixed above,

and consider the variety4

Xr := Wr ⇥ A2r�2.

For each class [a] 2 Pic(OK), represented by an ideal a ⇢ OK prime to N , let Aa :=

A/A[a] and denote by 'a the degree Na-isogeny

'a : A �! Aa.

The pair a ⇤ (A,A[N]) := (Aa, Aa[N]) defines a point PAa in X
0

(N) rational over H.

Let �t
'a
⇢ Aa ⇥ A be the transpose of the graph of 'a, and set

⌥bdp

'a,r := �t
'a
⇥ (2r�2)· · · ⇥ �t

'a
⇢ (Aa ⇥ A)2r�2 = A2r�2

a ⇥ A2r�2

(ıa,idA)����! Xr,

where ıa is the natural inclusion A2r�2

a �! Wr as the fiber of ⇡r over a point on X
1

(N)

lifting PAa . Letting ✏A be the projector from [BDP13, (1.4.4)], the cycles

(1.2.2) �bdp

'a,r := ✏A✏W⌥bdp

'a,r

define classes in CH2r�1(Xr)0(H) and are referred to as generalised Heegner cycles.

We will assume for the rest of this paper that K also satisfies the following:

4Notice that our indices di↵er from those in [BDP13].
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Assumptions 1.2.2. The prime p splits in K.

Let g 2 S
2r(X0

(N)) be a normalized newform, and let Vg be the p-adic Galois repre-

sentation associated to g by Deligne. By the Künneth formula, there is a map

H4r�3

ét

(Xr,Qp(2r � 1)) �! H2r�1

ét

(W r,Qp(1))⌦ Sym2r�2H1

ét

(A,Qp(1)),

which composed with the natural Galois-equivariant projection

H2r�1

ét

(W r,Qp(1))⌦ Sym2r�2H1

ét

(A,Qp(1))
⇡g⌦⇡

N

r�1������! Vg(r)

induces a map

⇡g,Nr�1 : H1(F,H4r�3

ét

(Xr,Qp(2r � 1))) �! H1(F, Vg(r))

over any number field F . In the following we fix a number field F containing H.

Now consider the étale Abel–Jacobi map

�ét

F : CH2r�1(Xr)0(F ) �! H1(F,H4r�3

ét

(Xr,Qp)(2r � 1))

constructed in [Nek00]. Let Fp be the completion of ıp(F ), and denote by locp the induced

localization map from GF to Gal(Qp/Fp). Then we may define the p-adic Abel–Jacobi map

AJFp by the commutativity of the diagram

(1.2.3) CH2r�1(Xr)0(F )

AJFp

++

⇡g,Nr�1

��ét

F
//

,,

H1(F, Vg(r))
locp

// H1(Fp, Vg(r))

H1

f (Fp, Vg(r))

[

logFp,Vg(r)

✏✏

Fil1D
dR

(Vg(r � 1))_,

where the existence of the dotted arrow follows from [Nek00, Thm.(3.1)(i)], and the

vertical map is given by the logarithm map of Bloch–Kato of Vg(r) as GFp-representation,

similarly as it appeared in (1.1.9) for r = 1. Using the comparison isomorphism of Faltings

[Fal89], the map AJFp may be evaluated at the class !g ⌦ e⌦r�1

⇣ , with e⇣ an Fp-basis of

D
dR

(Qp(1)) ⇠= Fp.

The main result of [BDP13] yields the following formula for the p-adic Abel–Jacobi

images of the generalised Heegner cycles (1.2.2) which we will need.
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Theorem 1.2.3 (Bertolini–Darmon–Prasanna). Let g =
P

n bnq
n 2 S

2r(X0

(N)) be a

normalized newform of weight 2r � 2 and level N prime to p. Then

(1� bpp
�r + p�1)

X

[a]2Pic(OK)

Na1�r · AJFp(�
bdp

'a,r)(!g ⌦ e⌦r�1

⇣ )

= (�1)r�1(r � 1)!
X

[a]2Pic(OK)

d�rg[p](a ⇤ (A,A[N])),

where g[p] =
P

(n,p)=1

bnq
n is the p-depletion of g.

Proof. See the proof of [BDP13, Thm. 5.13]. ⇤

We end this section by relating the images of Heegner cycles and of generalised Heegner

cycles under the p-adic height pairing. (Cf. [BDP13, §2.4].) Consider ⇧r := Wr ⇥ Ar�1

seen as a subvariety of Wr ⇥Xr = Wr ⇥Wr ⇥ (A2)r�1 via the map

(idWr , idWr , (idA,
p
�D)r�1).

Denoting by ⇡W and ⇡X the projections onto the first and second factors of Wr ⇥Xr, the

rational equivalence class of the cycle ⇧r gives rise to a map on Chow groups

⇧r : CH
2r�1(Xr) �! CHr+1(Wr)

induced by ⇧r(�) = ⇡W,⇤(⇧r · ⇡⇤
X�).

Lemma 1.2.4. We have

h�heeg

A,r ,�
heeg

A,r iWr = (4D)r�1 · h�bdp

idA,r,�
bdp

idA,riXr ,

where h, iWr and h, iXr are the p-adic height pairings of [Nek93] on CHr+1(Wr)0 and

CH2r�1(Xr)0, respectively.

Proof. The image �ét

F (�
heeg

A,r ) remains unchanged if we replace the cycle �p�D by the

modification

ZA := �p�D � (A⇥ {0})�D({0}⇥ A)

(see [Nek95, §II(3.6)]). Since clearly ZA · ZA = �2D, we thus see from the construction

of ⇧r that

(1.2.4) �ét

F (�
heeg

A,r ) = (�2D)r�1 · �ét

F (⇧r(�
bdp

idA,r)).

On the other hand, if h, iA denotes the Poincaré pairing on H1

dR

(A/F ), we have

h(
p
�D)⇤!, (

p
�D)⇤!0iA = D · h!,!0iA,
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for all !,!0 2 H1

dR

(A/F ). By the definition of the p-adic height pairings h, iWr and h, iXr

(factoring through �ét

F ), we thus see that

(1.2.5) h�bdp

idA,r,�
bdp

idA,riXr = Dr�1 · h⇧r(�
bdp

idA,r),⇧r(�
bdp

idA,r)iWr .

Combining (1.2.4) and (1.2.5), the result follows. ⇤

1.3. The big logarithm map

Let

f =
X

n>0

anq
n 2 I[[q]]

be a Hida family passing through (the ordinary p-stabilization of) a p-ordinary newform

fo 2 Sk(X0

(N)) as described in the Introduction. We begin this section by recalling the

definition of a certain twist of f such that all of its specializations at arithmetic primes of

even weight correspond to p-adic modular forms with trivial weight-nebentypus.

Decompose the p-adic cyclotomic character "
cyc

as the product

"
cyc

= ! · ✏ : GQ �! Z⇥
p = µp�1

⇥ �.

Since k is even, the character !k�2 admits a square root !
k�2

2 : GQ �! µp�1

, and in fact

two di↵erent square roots, corresponding to the two di↵erent lifts of k � 2 2 Z/(p � 1)Z

to Z/2(p� 1)Z. Fix for now a choice of !
k�2

2 , and define the critical character to be

(1.3.1) ⇥ := !
k�2

2 · [✏1/2] : GQ �! ⇤⇥
O,

where ✏1/2 : GQ �! � denotes the unique square root of ✏ taking values in �.

Remark 1.3.1. As noted in [How07b, Rem. 2.1.4], the above choice of ⇥ is for most

purposes largely indistinguishable from the other choice, namely !
p�1

2 ⇥, where

!
p�1

2 : Gal(Q(
p
p⇤)/Q)

⇠�! {±1} (p⇤ = (�1) p�1

2 p).

Nonetheless, for a given fo as above, our main result (Theorem 1.4.12) will specifically

apply to only one of the two possible choices for the critical character.

The critical twist of T is then defined to be the module

(1.3.2) T† := T⌦I I†

equipped with the diagonal GQ-action, where I† = I(⇥�1) is the free I-module of rank one

equipped with the GQ-action via the character GQ
⇥

�1

���! ⇤⇥
O �! I⇥.



24 1. HIGHER WEIGHT SPECIALIZATIONS

Lemma 1.3.2. Let ⇢T† : GQ �! AutI(T†) be the Galois representation carried by T†.

Then for every ⌫ 2 X
arith

(I) of even weight k⌫ = 2r⌫ � 2 we have

⌫(⇢T†) ⇠= ⇢f 0⌫ ⌦ "r⌫cyc,

where f 0⌫ is a character twist of f⌫ of weight k⌫ and with trivial nebentypus. In other words,

defining V†
⌫ := T† ⌦I F⌫ and letting Vf 0⌫ be the representation space of ⇢f 0⌫ , we have

(1.3.3) V†
⌫
⇠= Vf 0⌫ (r⌫),

and in particular V†
⌫ is isomorphic to its Kummer dual.

Proof. This follows from a straightforward computation explained in [NP00, (3.5.2)]

for example (where T† is denoted by T ). ⇤

Let ✓ : Z⇥
p �! ⇤⇥

O be such that ⇥ = ✓ � "
cyc

. It follows from the preceding lemma that

the formal q-expansion

f † = f ⌦ ✓�1 :=
X

n>0

✓�1(n)anq
n 2 I[[q]]

(where we put ✓�1(n) = 0 whenever p divides n) is such that, for every ⌫ 2 X
arith

(I) of

even weight, V†
⌫ is the Galois representation attached to the specialization f⌫ ⌦ ✓�1

⌫ of f †,

which by Lemma 1.1.3 is a p-adic modular form of weight 0 and trivial nebentypus.

We next recall some of the local properties of the big Galois representation T. Let

Iw ⇢ Dw ⇢ GQ be the inertia and decompositon groups at the place w of Q above p

induced by our fixed embedding ıp : Q ,�! Qp. In the following we will identify Dw

with the absolute Galois group GQp . Then by a result of Mazur and Wiles (see [Wil88,

Thm. 2.2.2]) there exists a filtration of I[Dw]-modules

(1.3.4) 0 �! F+

w T �! T �! F�
w T �! 0

with F±
w T free of rank one over I and with the Galois action on F�

w T unramified, given

by the character ↵ : Dw/Iw �! I⇥ sending an arithmetic Frobenius �p to ap. Twisting

(2.2.1) by ⇥�1 we define F±
w T† in the natural manner.

Let T⇤ := HomI(T, I) be the contragredient5 of T, and consider the I-module

(1.3.5) D := (F+

w T⇤b⌦Zp
bZnr

p )GQp ,

where F+

w T⇤ := HomI(F�
w T, I) ⇢ T⇤, and bZnr

p is the completion of the ring of integers of

the maximal unramified extension of Qp in Qp.

5So that T⇤ ⌦I F⌫
⇠= Vf⌫ for every ⌫ 2 Xarith(I).
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Fix a compatible system ⇣ = (⇣s)s�0

of primitive ps-th roots of unity ⇣s 2 Qp, and let

e⇣ be the basis of D
dR

(Qp(1)) corresponding to 1 2 Qp under the resulting identification

D
dR

(Qp(1)) = Qp.

Lemma 1.3.3. The module D is free of rank one over I, and for every ⌫ 2 X
arith

(I) of
even weight k⌫ = 2r⌫ � 2 there is a canonical isomorphism

(1.3.6) D⌫ ⌦D
dR

(Qp(r⌫))
⇠�! D

dR

(Vf⌫ (r⌫))

Fil0D
dR

(Vf⌫ (r⌫))
.

Proof. Since the action on F+

w T⇤ is unramified, the first claim follows from [Och03,

Lemma 3.3] in light of the definition (2.2.3) of D. The second can be deduced from [Och03,

Lemma 3.2] as in the proof of [Och03, Lemma 3.6]. ⇤

With the same notations as in Lemma 1.3.3, we denote by h , i
dR

the pairing

(1.3.7) h , i
dR

: D⌫ ⌦D
dR

(Qp(r⌫))⇥ Fil1D
dR

(Vf⇤⌫ (r⌫ � 1)) �! F⌫

deduced from the usual de Rham pairing

D
dR

(Vf⌫ (r⌫))

Fil0D
dR

(Vf⌫ (r⌫))
⇥ Fil0D

dR

(V ⇤
f⌫ (1� r⌫)) �! F⌫

via the identification (1.3.6) and the isomorphism V ⇤
f⌫
⇠= Vf⇤⌫ (k⌫ � 1).

Theorem 1.3.4 (Ochiai). Assume that the residual representation ⇢̄fo is irreducible,

fix an I-basis ⌘ of D, and set � := ap � 1. There exists an I-linear map

Log⌘T† : H
1(Qp,F

+

w T†) �! I[��1]

such that for every Y 2 H1(Qp,F+

w T†) and every ⌫ 2 X
arith

(I) of even weight k⌫ = 2r⌫ � 2

with k⌫ ⌘ k (mod 2(p� 1)), we have

⌫(Log⌘T†(Y)) =
(�1)r⌫�1

(r⌫ � 1)!
⇥

8
>>><

>>>:

⇣
1� pr⌫�1

⌫(ap)

⌘�1

⇣
1� ⌫(ap)

pr⌫

⌘
hlogV †

f⌫
(Y⌫), ⌘0⌫idR if #⌫ = 1;

G(#�1

⌫ )�1

⇣
⌫(ap)

pr⌫�1

⌘s⌫
hlogV †

f⌫
(Y⌫), ⌘0⌫idR if #⌫ 6= 1,

(1.3.8)

where

• logV †
f⌫

is the Bloch–Kato logarithm map for the representation V †
f⌫

over Qp,

• ⌘0⌫ 2 Fil1D
dR

(Vf⇤⌫ (r⌫ � 1)) is such that h⌘⌫ ⌦ e⌦r⌫
⇣ , ⌘0⌫idR = 1 under (1.3.7),

• #⌫ : Z⇥
p �! F⇥

⌫ is the finite order character z 7�! ✓⌫(z)z1�r⌫ ,

• s⌫ > 0 is such that the conductor of #⌫ is ps⌫ , and
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• G(#�1

⌫ ) is the Gauss sum
P

x mod ps⌫ #
�1

⌫ (x)⇣xs⌫ .

Proof. Let ⇤(C1) := Zp[[C1]], where C1 is the Galois group of the cyclotomic Zp-

extension of Qp, and let ⇤
cyc

be the module ⇤(C1) equipped with the natural action of

GQp on group-like elements. Also, let �o be a topological generator of C1 and define

I := (�, �o � 1),

seen as an ideal of height 2 inside Ib⌦Zp⇤(C1) ⇠= I[[C1]].

Consider the Ib⌦Zp⇤(C1)-modules

D := Db⌦Zp⇤(C1), F+

w T ⇤ := F+

w T⇤b⌦Zp⇤cyc

⌦ ! k�2

2 ,

the latter being equipped with the diagonal action of GQp . By [Och03, Prop. 5.3] there

exists an injective Ib⌦Zp⇤(C1)-linear map

ExpF+

w T ⇤ : ID �! H1(Qp,F
+

w T ⇤),

with cokernel killed by �, which interpolates the Bloch–Kato exponential map over the

arithmetic primes of I and of ⇤(C1).

As in (1.3.1), let ✏1/2 : C1 �! � ⇢ Z⇥
p be the unique square-root of the wild component

of the p-adic cyclotomic character "
cyc

, and let

Tw† : I[[C1]] �! I[[C1]]

be the I-algebra isomorphism given by Tw†([�]) = ✏
1/2
w

(�)[�] for all � 2 C1. Then letting

F+

w T † be the I[[C1]]-module F+

w T ⇤ with the C1-action twisted by ✏1/2, there is a natural

projection Cor : F+

w T † �! F+

w T† induced by the augmentation map I[[C1]] �! I.
Setting D† := IDb⌦ZpI[[C1]]/(✏1/2(�o)[�o]� 1), the composition

ID (Tw

†
)

�1

�����! ID
Exp

F+

w T ⇤
������! H1(Qp,F

+

w T ⇤) ⌦✏1/2����! H1(Qp,F
+

w T †) Cor��! H1(Qp,F
+

w T†),

factors through an injective I-linear map

(1.3.9) ExpF+

w T† : D† �! H1(Qp,F
+

w T†)

making, for every ⌫ 2 X
arith

(I) as in the statement, the diagram

D†
Exp

F+

w T†
//

Sp⌫
✏✏

H1(Qp,F+

w T†)

Sp⌫
✏✏

D
dR

(F+

w V †
f⌫
) // H1(Qp,F+

w V †
f⌫
)
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commutative, where the bottom horizontal arrow is given by

(�1)r⌫�1(r⌫ � 1)!⇥

8
>>><

>>>:

⇣
1� pr⌫�1

⌫(ap)

⌘⇣
1� ⌫(ap)

pr⌫

⌘�1

expV †
f⌫

if #⌫ = 1;

⇣
pr⌫�1

⌫(ap)

⌘s⌫
expV †

f⌫
if #⌫ 6= 1,

with expV †
f⌫

the Bloch–Kato exponential map for V †
f⌫
, which factors as

D
dR

(V †
f⌫
)

Fil0D
dR

(V †
f⌫
)

⇠ � D
dR

(F+

w V †
f⌫
)

exp

V
†
f⌫����! H1(Qp,F

+

w V †
f⌫
) �! H1(Qp, V

†
f⌫
).

Now if Y is an arbitrary class in H1(Qp,F+

w T†), then � ·Y lands in the image of the

map ExpF+

w T† and so

LogT†(Y) := ��1 · Exp�1

F+

w T†(� ·Y)

is a well-defined element in I[��1]⌦I D†. Thus defining Log⌘T†(Y) 2 I[��1] by the relation

LogT†(Y) = Log⌘T†(Y) · ⌘ ⌦ 1,

the result follows. ⇤

1.4. The big Heegner point

In this section we prove the main results of this paper, relating the étale Abel–Jacobi

images of Heegner cycles to the specializations at higher even weights of the big Heegner

point Z (whose definition is recalled below). Their proof is based on two key ingredients:

the properties of the big logarithm map deduced from the work of Ochiai as explained in

the preceding section, and the local study of (almost all) the weight 2 specializations of Z

taken up in the following.

1.4.1. Weight two specializations. As in Section 1.2, let K be a fixed imaginary

quadratic field in which all prime factors of N split, equipped with an ideal N ⇢ OK such

that OK/N ⇠= Z/NZ. We also assume that p splits in K, and let p be the prime of K above

p induced by our fixed embedding ıp, and by p̄ the other. Finally, A is a fixed elliptic curve

with CM by OK defined over the Hilbert class field H of K, and recall that in Section 1.3

we fixed a compatible system ⇣ = (⇣s)s�0

of primitive ps-th roots of unity ⇣s 2 Qp.

Let R
0

= bZnr

p be the completion of the ring of integers of the maximal unramified

extension of Qp, which we view as an overfield of H via ıp. Since p splits in K, A admits

a trivialization

ıA : Â �! Ĝm
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over R
0

with ı�1

A (µps) = A[ps] for every s > 0. Letting ↵A be the cyclic N -isogeny on

A with kernel A[N], the triple (A,↵A, ıA) thus defines a trivialized elliptic curve with

�
0

(N)-level structure defined over R
0

.

Set A
0

:= A/A[ps] and let (A
0

,↵A
0

, ıA
0

) be the trivialized elliptic curve deduced from

(A,↵A, ıA) via the projection A �! A
0

. Let C ⇢ A
0

[ps] be any étale subgroup of order ps,

and set As := A
0

/C. Finally, let (As,↵As , ıAs) be the trivialized elliptic curve with �
0

(N)-

level structure deduced from (A
0

,↵A
0

, ıA
0

) via the projection A
0

�! As, and consider

(1.4.1) hs = (As,↵As , ıAs(⇣s)),

which defines an algebraic point on the modular curve Xs.

Write p⇤ = (�1) p�1

2 p, and let # be the unique continuous character

(1.4.2) # : GQ(

p
p⇤) �! Z⇥

p /{±1}

such that #2 = "
cyc

. Notice the inclusion GHps
⇢ GQ(

p
p⇤) for any s > 0, where Hps denotes

the ring class field of K of conductor ps.

Lemma 1.4.1. The curve As has CM by the order Ops of K of conductor ps, and the

point hs is rational over Lps := Hps(µps). In fact we have

(1.4.3) h�s = h#(�)i · hs

for all � 2 Gal(Lps/Hps).

Proof. The first assertion is clear, and immediately from the construction we also see

that ↵As is the cyclic N -isogeny on As with kernel As[N \Ops ]. It follows that the point

(1.4.1) gives rise to precisely the point hs 2 Xs(C) in [How07b, Eq. (4)]. The result thus

follows from [loc.cit., Cor. 2.2.2]. ⇤

If ⌫ is an arithmetic prime of I, we let  ⌫ denote its wild character, defined as the

composition of ⌫ : I �! Qp with the structure map � = 1 + pZp �! I⇥, which we view

as a Dirichlet character of p-power conductor in the obvious manner. The nebentypus of

f⌫ is then given by

"f⌫ =  ⌫!
k�k⌫ ,

where ! : (Z/pZ)⇥ �! µp�1

⇢ Z⇥
p is the Teichmüller character.

Recall the critical characters ⇥ and ✓ from Section 1.3, and for every ⌫ 2 X
arith

(I) of
weight 2, consider the F⇥

⌫ -valued Hecke character of K given by

(1.4.4) �⌫(x) = ⇥⌫(artQ(NK/Q(x)))
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for all x 2 A⇥
K . Notice that since �⌫ has finite order, it may alternately be seen as character

on GK via the Artin reciprocity map artK : A⇥
K �! Gab

K .

For every ⌫ 2 X
arith

(I), after fixing an embedding F⌫ �! Qp, the form f⌫ 2 Sk⌫ (Xs⌫ )

defines a p-adic modular form f⌫ 2 M(N). Finally, recall the dual form f⇤⌫ defined as in

the paragraph before (1.1.20).

Lemma 1.4.2. Let ⌫ 2 X
arith

(I) have weight 2 and non-trivial wild character, and let

s > 1 be the p-power of the conductor of  ⌫. Then

(1.4.5) d�1f⇤[p]⌫ ⌦ ✓⌫(A,↵A, ıA) =
u

G(✓�1

⌫ )

X

�2Gal(Hps/H)

��1

⌫ (�̃) · d�1f⇤[p]⌫ (h�̃s ),

where u = |O⇥
K |/2, G(✓�1

⌫ ) =
P

x mod ps ✓
�1

⌫ (x)⇣xs is a usual Gauss sum, and for every

� 2 Gal(Hps/H), �̃ is any lift of � to Gal(Lps/H).

Remark 1.4.3. Since ⌫ has weight k⌫ = 2, we have ✓⌫ = #⌫ , where #⌫ is the finite

order character in the statement of Theorem 1.3.4.

Proof. We begin by noting that the expression in the right hand side of (1.4.5) does

not depend on the choice of lifts �̃. Indeed, as explained in [How07a, p. 808] the character

�
0,⌫ := �⌫ |A⇥

Q
, seen as a Dirichlet character in the usual manner, is such that ��1

0,⌫ = ✓2⌫ .

But since the weight of ⌫ is 2, we have

✓2⌫ = "f⌫ = "�1

f⇤⌫

(see [How07a, p. 806]), and our claim thus follows immediately from (1.4.3).

To compute the above value of the twist d�1f⇤[p]⌫ ⌦ ✓⌫ we follow Definition 1.1.2. The

integer s > 1 in the statement is such that ✓⌫ factors through (Z/psZ)⇥, therefore

d�1f⇤[p]⌫ ⌦ ✓⌫(A,↵A, ıA) =
X

a mod ps

✓⌫(a)

✓Z

a+psZp

dµ
Gou

(x)

◆
(d�1f⇤[p]⌫ )(A,↵A, ıA)

=
1

ps

X

a mod ps

✓⌫(a)
X

C

⇣�a
C · d�1f⇤[p]⌫ (A

0

/C,↵C , ıC),(1.4.6)

where as before A
0

:= A/ı�1

A (µps) = A/A[ps] and the sum is over the étale subgroups

C ⇢ A
0

[ps] of order ps. Letting �s be a generator of Z/psZ, these subgroups correspond

bijectively with the cyclic subgroups Cu = h⇣us .�si ⇢ µps ⇥Z/psZ, with u running over the

integers modulo ps, and we set ⇣Cu = ⇣us .
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Since ✓⌫ does not factor through (Z/ps�1Z)⇥, we have
P

a mod ps ✓⌫(a)⇣
�ua
s = 0 whenever

u /2 (Z/psZ)⇥. Continuing from (1.4.6), we thus obtain

d�1f⇤[p]⌫ ⌦ ✓⌫(A,↵A, ıA) =
1

ps

X

a mod ps

✓⌫(a)
X

u mod ps

⇣�ua
s · d�1f⇤[p]⌫ (ACu ,↵Cu , ıCu)

=
1

ps

X

u2(Z/psZ)⇥
d�1f⇤[p]⌫ (ACu ,↵Cu , ıCu)

X

a mod ps

✓⌫(a)⇣
�ua
s

=
1

G(✓�1

⌫ )

X

u2(Z/psZ)⇥
✓�1

⌫ (u) · d�1f⇤[p]⌫ (ACu ,↵Cu , ıCu),

with the last equality obtained by a change of variables. The result thus follows from the

relation
X

u2(Z/psZ)⇥
✓�1

⌫ (u) · d�1f⇤[p]⌫ (ACu ,↵Cu , ıCu) = u
X

�2Gal(Hps/H)

��1

⌫ (�̃) · d�1f⇤[p]⌫ (h�̃s ),

where u = |O⇥
K |/2, and for each � 2 Gal(Hps/H), �̃ 2 Gal(Lps/H) lifts �. ⇤

Keeping the above notations, let �s 2 Js(Lps) be the divisor class of (hs) � (1), and

consider the element in Js(Lps)⌦Z F⌫ given by

(1.4.7) eQ�⌫ :=
X

�2Gal(Hps/H)

��̃
s ⌦ ��1

⌫ (�̃),

where for every � 2 Gal(Hps/H), �̃ is any lift to Gal(Lps/H).

Let Fs be the completion of ıp(Lps), and consider the p-adic Abel–Jacobi map �
(p)
f⌫ ,Fs

defined in (1.1.9) which we extend by F⌫-linearity to a map

�
(p)
f⌫ ,Fs

: Js(Lps)⌦Z F⌫ �! (Fil1D
dR

(Vf⇤⌫ ))
_.

Proposition 1.4.4. Let ⌫ 2 X
arith

(I) and s > 1 be as in Lemma 1.4.2. Then

(1.4.8)
X

�2Gal(Hps/H)

��1

⌫ (�̃) · d�1f⇤[p]⌫ (h�̃s ) = �
(p)
f⌫ ,Fs

( eQ�⌫ )(!f⇤⌫ ).

Proof. The integer s > 1 in the statement is so that the nebentypus "f⌫ of f⌫ is

primitive modulo ps. Moreover, since p splits in K, we see from the construction that the

point hs lies in the connected component Xs(0) of the ordinary locus of Xs containing the

cusp 1. Thus Proposition 1.1.9 applies, giving

�
(p)
f⌫ ,Fs

(�s)(!f⇤⌫ ) = F!f⇤⌫
(hs),
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where F!f⇤⌫
is the Coleman primitive of !f⇤⌫ from Proposition 1.1.6, and by linearity

(1.4.9)
X

�2Gal(Hps/H)

��1

⌫ (�̃) · F!f⌫
(h�̃s ) = �

(p)
f⌫ ,Fs

( eQ�⌫ )(!f⇤⌫ ).

Since � lifts the Deligne–Tate map to Xs, we see that �hs is defined over the subfield

Hps�1(⇣s) ⇢ Lps . If bp denotes the Up-eigenvalue of f⇤⌫ , by Corollary 1.1.8 we obtain

X

�

��1

⌫ (�̃) · d�1f⇤[p]⌫ (h�̃s ) =
X

�

��1

⌫ (�̃) · F!f⇤⌫
(h�̃s )�

bp
p

X

�

��1

⌫ (�̃) · F!f⇤⌫
(�h�̃s )

=
X

�

��1

⌫ (�̃) · F!f⇤⌫
(h�̃s ),

where all the sums are over � 2 Gal(Hps/H), and the second equality follows immediately

from the fact ✓⌫ is primitive modulo ps. The result thus follows from (1.4.9). ⇤

Still with the same notations, recall Hida’s ordinary projector (1.0.2) and set ys :=

eordhs, which naturally lies in eordJs(Lps) (see [How07b, p.100]). Equation (1.4.3) then

amounts to the fact that

(1.4.10) y�s = ⇥(�) · ys

for all � 2 Gal(Lps/Hps), where ⇥ is the critical character (1.3.1). Denoting by Jord

s (Lps)†

the module eordJs(Lps) with the Galois action twisted by ⇥�1, and by y†s the point ys seen

in this new module, (1.4.10) translates into the statement that

y†s 2 H0(Hps , J
ord

s (Lps)
†).

Lemma 1.4.5 (Howard). The classes

xs := CorHps/H(y
†
s) 2 H0(H, Jord

s (Lps)
†)(1.4.11)

are such that

↵⇤xs+1

= Up · xs, for all s > 0

under the Albanese maps induced from the degeneracy maps ↵ : Xs+1

�! Xs.

Proof. This is shown in the course of the proof of [How07b, Lemma 2.2.4]. ⇤

Abbreviate by Taordp (Js) the module eord(Tap(Js) ⌦Zp O) from the Introduction, and

denote by Taordp (Js)† this same module with the Galois action twisted by ⇥�1. By the

Galois and Hecke-equivariance of the twisted Kummer map

Kums : H
0(H, Jord

s (Lps)
†) �! H1(H,Taordp (Js)

†)
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constructed in [How07b, p. 101], Lemma 1.4.5 implies that the cohomology classes Xs :=

Kums(xs) are such that ↵⇤Xs+1

= Up · Xs, for all s > 0.

Definition 1.4.6 (Howard). The big Heegner point of conductor one is the cohomology

class X given by the image of

lim �
s

U�s
p · Xs

under the natural map induced by the hord[GQ]-linear projection lim �s
Taordp (Js)† �! T†.

Our object of study is in fact the big cohomology class

(1.4.12) Z := CorH/K(X),

which is predicted to be non-trivial by [How07b, Conj. 3.4.1].

Conjecture 1.4.7 (Howard). The class Z is not I-torsion.

Recall from [How07b, §2.4] that the strict Greenberg Selmer group Sel
Gr

(K,T†) is

defined to be the subspace of H1(K,T†) consisting of classes c which are unramified outside

the places above p and such that locv(c) lies in the kernel of the natural map

H1(Kv,T†) �! H1(Kv,F
�
w T†)

for all v|p.
For every ⌫ 2 X

arith

(I) of weight 2, let L(s, f⌫ ,�⌫) be the Rankin–Selberg convolution

L-function of [How09, §1]. In the spirit of the classical Gross–Zagier theorem, one has

the following criterion for the non-triviality of (the specializations of) Z.

Theorem 1.4.8 (Howard). The class Z belongs to Sel
Gr

(K,T†), and if there is some

⌫ 0 2 X
arith

(I) of weight 2 and non-trivial nebentypus such that L0(1, f⌫0 ,�⌫0) 6= 0, then

Conjecture 1.4.7 holds.

Proof. The first assertion is shown in [How07b, Prop. 2.4.5]. The second is shown

in [How07a, Prop. 3] and follows from the equivalence

(1.4.13) Z⌫0 6= 0 () L0(1, f⌫0 ,�⌫0) 6= 0

combined with the freeness of Sel
Gr

(K,T†) ⌦I O⌫ ([Nek06, Prop. 12.7.13.4(iii)]) for any

⌫ 2 X
arith

(I). ⇤

The following result shows that Proposition 1.4.4 may be reformulated as giving an

explicit formula, for all but finitely many ⌫ 2 X
arith

(I) of weight 2, for the image of the

classes Z⌫ under the inverse of the Bloch–Kato exponential map.
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For any class [a] 2 Pic(OK), taking a representative a ⇢ OK prime to Np, define

a ⇤ (A,↵A, ıA) := (Aa,↵Aa , ıAa),

where Aa = A/A[N], ↵Aa = Aa[N], and ıAa is the trivialization Âa
'̂�1

a��! Â
ıA�! Ĝm induced

by the projection 'a : A �! Aa.

Theorem 1.4.9. Let ⌫ 2 X
arith

(I) have weight 2 and non-trivial wild character  ⌫, and

let s > 1 be the p-power of the conductor of  ⌫. Then

(1.4.14)
X

[a]2Pic(OK)

d�1f [p]⌫ ⌦ ✓�1

⌫ (a ⇤ (A,↵A, ıA)) = u
⌫(ap)s

G(✓�1

⌫ )
logs,Vf⌫ (1)

(locp(Z⌫))(!f⇤⌫ ),

where u = |O⇥
K |/2, and G(✓�1

⌫ ) is the Gauss sum
P

x mod ps ✓
�1

⌫ (x)⇣xs .

Proof. Since clearly

d�1f [p]⌫ ⌦ ✓�1

⌫ = d�1f⇤[p]⌫ ⌦ ✓⌫ ,
letting Fs be the completion of ıp(Lps) it su�ces to establish the equality

(1.4.15) d�1f⇤[p]⌫ ⌦ ✓⌫(A,↵A, ıA) = u
⌫(ap)s

G(✓�1

⌫ )
logFs,Vf⌫ (1)

(locp(X⌫))(!f⇤⌫ ).

Combining the formulas from Lemma 1.4.2 and Proposition 1.4.4, we have

(1.4.16) d�1f⇤[p]⌫ ⌦ ✓⌫(A,↵A, ıA) =
u

G(✓�1

⌫ )
�
(p)
f⌫ ,Fs

( eQ�⌫ ).

Now the integer s > 1 is such that the natural map T �! V⌫ can be factored as

(1.4.17) T �! Taordp (Js) �! V⌫ ,

and we have V†
⌫
⇠= V⌫ as GLps

-modules. Tracing through the construction of X, we see

that the image of U s
p ·X⌫ in H1(Lps ,V†

⌫) agrees with the image of eQ�⌫ under the composite

map (where the unlabelled arrow is induced by (1.4.17))

Js(Lps)⌦Z F⌫
Kums���! H1(Lps ,Tap(Js)⌦Z F⌫)

eord��! H1(Lps ,Ta
ord

p (Js)⌦Z F⌫) �!
�! H1(Lps ,V⌫) ⇠= H1(Lps ,V†

⌫).(1.4.18)

Since Up acts on V†
⌫ as multiplication by ⌫(ap), we thus arrive at the equality

(1.4.19) Kums(e
ord eQ�⌫ ) = ⌫(ap)

s · resLps/H(X⌫) 2 H1(Lps ,V⌫).

By [Rub00, Prop. 1.6.8], this shows that the restriction to locp(X⌫) to GFs is contained in

the Bloch–Kato finite subspace H1

f (Fs,V⌫) ⇠= H1

f (Fs,V†
⌫). Since the map �(p)f⌫ ,Fs

is defined
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by the commutativity of the diagram

Js(Lps)⌦Z F⌫

�
(p)
f⌫ ,Fs

++

(2.3.17)
//

,,

H1(Lps ,V⌫)
locp

// H1(Fs,V⌫)

H1

f (Fs,V⌫)

[

logFs,V⌫
✏✏

(Fil0D
dR

(V⌫))_,

we thus see that (1.4.15) follows from (1.4.16) and (1.4.19). ⇤

Corollary 1.4.10. Assume that there is some ⌫ 0 2 X
arith

(I) of weight 2 and non-

trivial nebentypus such that L0(1, f⌫0 ,�⌫0) 6= 0. Then, for all but finitely many ⌫ 2 X
arith

(I),
the localization map

(1.4.20) locp : SelGr

(K,V†
⌫) �! H1(Qp,V†

⌫)

is injective.

Proof. By Howard’s Theorem 1.4.8, our nonvanishing assumption implies that Z is

not I-torsion, and hence by the exact sequence

0 �!
eH1

f (K,T†)⌫

⌫ · eH1

f (K,T†)⌫
�! eH1

f (K,V†
⌫) �! eH2

f (K,T†)⌫ [⌫] �! 0

(see [How07b, Cor. 3.4.3]), combined with the finite generation over I of eH1

f (K,T†) and

[How07b, Lemma 2.1.6], it implies that the image of Z in eHf (K,V†
⌫) is nonzero for almost

all ⌫ 2 X
arith

(I); in particular, for all but finitely many ⌫ of weight 2 and non-trivial neben-

typus, Z⌫ 6= 0 in eHf (K,V†
⌫) ⇠= Sel

Gr

(K,V†
⌫) (see [How07b, Eq. (22)] for the comparison).

Now, by [How07b, Cor. 3.4.3] it follows that Sel
Gr

(K,T†) has rank one, and hence

(1.4.21) Sel
Gr

(K,V†
⌫) = Z⌫ .F⌫

for almost all ⌫ 2 X
arith

(I). Thus to prove the result it su�ces to show that the implication

Z⌫ 6= 0 =) locp(Z⌫) 6= 0

holds for every ⌫ 2 X
arith

(I) of weight 2 and non-trivial nebentypus. (Indeed, by (1.4.21)

this will show that the localization map (1.4.20) is injective at infinitely many ⌫, and by

[How07b, Lemma 2.1.7] it will follow that the kernel of the localization map

locp : eH1

f (K,T†) �! H1(Qp,T†)
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must be I-torsion, hence supported only at a finite number of arithmetic primes.)

Let ⌫ 2 X
arith

(I) and s > 1 be as in Theorem 1.4.9, and assume that Z⌫ 6= 0. Since the

restriction map

H1(K,V†
⌫)

resLps���! H1(Lps ,V†
⌫) ⇠= H1(Lps ,V⌫)

is injective, the class resLps
(Z⌫) is non-zero, and it arises as the image of a necessarily

non-torsion point in Js(Lps) under the composite map (cf. (2.3.17))

(1.4.22) Js(Lps) �! H1(Lps ,Ta
ord

p (Js)) �! H1(Lps ,V⌫),

where the first arrow is the Kummer map composed with the ordinary projector eord. Let

Lps be the completion of ıp(Lps) ⇢ Qp. Then both the natural map

Js(Lps)⌦Q �! Js(Lps)⌦Qp

and the local Kummer map

Js(Lps)⌦Qp �! H1(Lps ,Tap(Js)⌦Zp Qp)

are injective, and hence by the commutativity of the resulting diagram

Js(Lps)⌦Q
(2.3.21)⌦Q

//

✏✏

H1(Lps ,V⌫)

locp

✏✏

Js(Lps)⌦Qp
// H1(Lps ,V⌫),

it follows that locp(resLps
(Z⌫)) = resLps

(locp(Z⌫)) 6= 0, whence locp(Z⌫) 6= 0 as desired. ⇤

1.4.2. Higher weight specializations. Now we can prove our main result. Recall

from the introduction that fo is a p-ordinary newform of level N prime to p, even weight

k � 2 and trivial nebentypus, and that f =
P

n>0

anq
n 2 I[[q]] is the Hida family passing

through the ordinary p-stabilization of fo. Let ⌫o be the arithmetic prime of I such that

f⌫o is the ordinary p-stabilization of fo, and let T† = T ⌦ ⇥�1 be the critical twist of T
such that #⌫o is the trivial character (as opposed to !

p�1

2 .)

If f⌫ is the ordinary p-stabilization of a p-ordinary newform f ]⌫ of even weight 2r⌫ > 2

and trivial nebentypus, the Heegner cycle �heeg

A,r⌫
has been defined in Section 1.2 (attached

to a suitable choice of an imaginary quadratic field K), and by [Nek00, Thm. (3.1)(i)] the

class

(1.4.23) �ét

f ]⌫ ,K
(�heeg

r⌫ ) := CorH/K(�
ét

f ]⌫ ,H
(�heeg

A,r⌫
))

lies in the Bloch–Kato Selmer group H1

f (K,Vf ]⌫
(r⌫)).
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On the other hand, by [How07b, Prop. 2.4.5], the big Heegner point X lies in the

strict Greenberg Selmer group Sel
Gr

(H,T†) (defined in [loc.cit., Def. 2.4.2]), and since

Sel
Gr

(K,V†
⌫) ⇠= H1

f (K,V†
⌫) as explained in [How07b, p. 114]) and V†

⌫
⇠= Vf ]⌫

(r⌫) by

Lemma 1.3.2, the class

Z⌫ = CorH/K(X⌫)

naturally lies in H1

f (K,Vf ]⌫
(r⌫)) as well. Our main result relates these two classes.

Assumptions 1.4.11. (1) The residual representation ⇢̄fo is absolutely irreducible,

(2) ⇢fo |GQp
has non-scalar semi-simplication,

(3) The prime p splits in K,

(4) Every prime divisor of N splits in K.

Theorem 1.4.12. Together with Assumptions 1.4.11, suppose that there exists some

⌫ 0 2 X
arith

(I) of weight 2 and non-trivial nebentypus such that

(1.4.24) L0(1, f⌫0 ,�⌫0) 6= 0.

Then for all but finitely many ⌫ 2 X
arith

(I) of weight 2r⌫ > 2 with 2r⌫ ⌘ k (mod 2(p� 1)),

we have

(1.4.25) hZ⌫ ,Z⌫iK =

✓
1� pr⌫�1

⌫(ap)

◆
4

·
h�ét

f ]⌫ ,K
(�heeg

r⌫ ),�ét

f ]⌫ ,K
(�heeg

r⌫ )iK
u2(4D)r⌫�1

,

where h, iK is the cyclotomic p-adic height pairing on H1

f (K,Vf ]⌫
(r⌫)), u = |O⇥

K |/2, and

�D < 0 is the discriminant of K.

Proof. By [How07b, Prop. 2.4.5] the class Z lies in the strict Greenberg Selmer group

Sel
Gr

(K,T†) (note that under our assumptions we may take � = 1 in Howard’s result),

and hence its restriction locp(Z) at p lies in the kernel of the natural map

H1(Qp,T†) �! H1(Qp,F
�
w T†)

induced by (2.2.1) (twisted by⇥�1). SinceH0(Qp,F�
w T†) = 0 by [How07b, Lemma 2.4.4],

the class locp(Z) can therefore be seen as sitting inside H1(Qp,F+

w T†). Thus upon taking

an I-basis ` of D, we can form

Larith

p (f †) := u · Log`T†(locp(Z)) 2 I[��1] (� := ap � 1).

On the other hand, consider the continuous function on Spf(I)(Qp) given by

Lanaly

p (f †) : ⌫ 7�!
X

[a]2Pic(OK)

d�1f [p]⌫ ⌦ ✓�1

⌫ (a ⇤ (A,↵A, ıA)).
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(Its continuity can be checked by staring at the q-expansion of d�1f [p]⌫ ⌦ ✓�1

⌫ and appealing

to the results in [Gou88, §I.3.5], for example.)

By the specialization property (1.3.8) of the map Log`T† , we immediately see that Theo-

rem 1.4.9 can be reformulated as follows: For every ⌫ 2 X
arith

(I) of weight 2 and non-trivial

wild character, there exists a unit ⌦⌘⌫ 2 O⇥
⌫ such that

(1.4.26) ⌫
�
Lanaly

p (f †)
�
= ⌦⌘

⌫ · ⌫
�
Larith

p (f †)
�
.

In fact,

(1.4.27) ⌦⌘
⌫ = h⌘⌫ ⌦ e⌦r⌫

⇣ ,!f⇤⌫ idR

under the pairing (1.3.7), so that !f⇤⌫ = ⌦⌘
⌫ · ⌘0⌫ with ⌘0⌫ as defined in Theorem 1.3.4. (That

⌦⌘
⌫ , which a priori just lies in F⌫ , is indeed a unit is shown in [Och06, Prop. 6.4].) Since

both Larith

p (f †) and Lanaly

p (f †) are continuous functions of ⌫, (1.4.26) shows that the map

⌫ 7�! ⌦⌘
⌫ is continuous, and hence the relation (1.4.27) is valid for all ⌫ 2 X

arith

(I).
Now let ⌫ 2 X

arith

(I) be as in the statement. Then ✓⌫(z) = zr⌫�1#⌫(z) = zr⌫�1 as

characters on Z⇥
p , from where if follows that

⌫
�
Lanaly

p (f †)
�
=

X

[a]2Pic(OK)

d�1f [p]⌫ ⌦ ✓�1

⌫ (a ⇤ (A,↵A, ıA))

=
X

[a]2Pic(OK)

d�r⌫ f [p]⌫ (a ⇤ (A,A[N])).(1.4.28)

By Theorem 1.2.3, setting

�bdp

r⌫ :=
X

[a]2Pic(OK)

Na1�r ·�bdp

'a,r⌫ 2 CH2r⌫�1(Xr⌫ )0(K),(1.4.29)

the equation (1.4.28) can be rewritten as

⌫
�
Lanaly

p (f †)
�
= E⌫(r⌫)E⇤

⌫ (r⌫)
(�1)r⌫�1

(r⌫ � 1)!
· AJQp(�

bdp

r⌫ )(!f ]⌫
⌦ e⌦r⌫�1

⇣ )

= E⌫(r⌫)E⇤
⌫ (r⌫)

(�1)r⌫�1

(r⌫ � 1)!
· logV†

⌫
(locp(�

ét

f ]⌫ ,K
(�bdp

r⌫ )))(!f ]⌫
⌦ e⌦r⌫�1

⇣ ),(1.4.30)

where

E⌫(r⌫) :=
✓
1� pr⌫�1

⌫(ap)

◆
, E⇤

⌫ (r⌫) :=

✓
1� ⌫(ap)

pr⌫

◆
,

and �ét

f ]⌫ ,K
:= ⇡f ]⌫ ,Nr⌫�1

� �ét

K with notations as in the diagram (1.2.3) defining AJQp .
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On the other hand, by the specialization property of the map Log`T† we have

⌫
�
Larith

p (f †)
�
= u

(�1)r⌫�1

(r⌫ � 1)!
E⌫(r⌫)�1E⇤

⌫ (r⌫) · logV†
⌫
(locp(Z⌫))(⌘

0
⌫).(1.4.31)

Comparing (1.4.31) and (1.4.30), we thus conclude form (1.4.26) that

logV†
⌫
(locp(Z⌫))(!f ]⌫

⌦ e⌦r⌫�1

⇣ ) =
1

u
E⌫(r⌫)2 · logV†

⌫
(locp(�

ét

f ]⌫ ,K
(�bdp

r⌫ )))(!f ]⌫
⌦ e⌦r⌫�1

⇣ ).

Since Fil1D
dR

(Vf ]⌫
(r⌫ � 1)) is spanned by !f ]⌫

⌦ e⌦r⌫�1

⇣ , it follows that

logV†
⌫
(locp(Z⌫)) =

1

u
E⌫(r⌫)2 · logV†

⌫
(locp(�

ét

f ]⌫ ,K
(�bdp

r⌫ ))),

and since logV†
⌫
is an isomorphism, that

(1.4.32) locp(Z⌫) =
1

u
E⌫(r⌫)2 · locp(�ét

f ]⌫ ,K
(�bdp

r⌫ )).

Our nonvanishing assumption (1.4.24) implies by Corollary 1.4.10 that the localization

map locp on Sel
Gr

(K,V†
⌫) ⇠= Sel

Gr

(K,Vf ]⌫
(r⌫)) is injective for almost all ⌫, and hence

(1.4.33) Z⌫ =
1

u
E⌫(r⌫)2 · �ét

f ]⌫ ,K
(�bdp

r⌫ )

for all but finitely many ⌫ 2 X
arith

(I) of weight k⌫ = 2r⌫ as in the statement. In particular,

we each such ⌫ we have

hZ⌫ ,Z⌫iK =
1

u2

E⌫(r⌫)4 · h�ét

f ]⌫ ,K
(�bdp

r⌫ ),�ét

f ]⌫ ,K
(�bdp

r⌫ )iK

=
1

u2

E⌫(r⌫)4 ·
h�ét

f ]⌫ ,K
(�heeg

r⌫ ),�ét

f ]⌫ ,K
(�heeg

r⌫ )iK
(4D)r⌫�1

,

where the last equality follows from Lemma 1.2.4 in light of (1.4.23) and (1.4.29). The

result follows. ⇤

Remark 1.4.13. As shown in the course of the proof of Theorem 1.4.12, we deduce in

fact the equality (1.4.33) of global cohomology classes for almost all ⌫ as in the statement.

1.5. I-adic Gross–Zagier formula

Let G1 be the Galois group of the unique Z2

p-extension of K, and denote by

Lp(f ⌦K) 2 I[[G1]]

the “three-variable” p-adic L-function attached to f over K constructed in [SU13, §12.3].
Letting D1 (resp. C1) denote the Galois group of the anticyclotomic (resp. cyclotomic)
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Zp-extension of K, we identify I[[G1]] with I1[[C1]] where I1 := I[[D1]], and choosing a

generator �o of C1, we may thus expand

(1.5.1) Lp(f ⌦K) = Lf ,K + L0
f ,K(�o � 1) + L00

f ,K(�o � 1)2 + · · ·

with coe�cients L(i)
f ,K 2 I1.

Recall that the big Heegner point Z lies in the strict Greenberg Selmer group Sel
Gr

(K,T†),

and that (as explined in [How07b, p. 113] for example) this group identified with Nekovář’s

extended Selmer group eH1

f (K,T†).

By [Nek06, §11], there exists an I-bilinear “height pairing”

h , iK,T† : eH1

f (K,T†)⇥ eH1

f (K,T†) �! I

such that

(1.5.2) ⌫
�
hY,Y0iK,T†

�
= hY⌫ ,Y

0
⌫iK

for all ⌫ 2 X
arith

(I) and Y,Y0 2 eH1

f (K,T†).

Theorem 1.5.1. With notations and assumptions as in Theorem 1.4.12, if L0
f ,K 2 I1

is the linear term in the expansion (1.5.1), then

L0
f ,K(1K) = hZ,ZiK,T†

up to a unit in I⇥.

Proof. For every ⌫ 2 X
arith

(I) of even weight as Theorem 1.4.12, the work [Nek95] of

Nekovář produces a two-variable p-adic L-function Lp(f⌫⌦K) 2 F⌫ [[G1]]. After expanding

Lp(f⌫ ⌦K) = Lf⌫ ,K + L0
f⌫ ,K(�o � 1) + L00

f⌫ ,K(�o � 1)2 + · · ·

similarly as in (1.5.1), [SU13, Thm. 12.3.2(ii)] implies on the one hand that

(1.5.3) ⌫(L0
f ,K(1K)) = L0

f⌫ ,K(1K)

up to a unit in O⇥
L , and on the other the main result of [Nek95] can be rewritten as the

p-adic Gross–Zagier formula

(1.5.4) L0
f⌫ ,K(1K) =

✓
1� pr⌫�1

⌫(ap)

◆
4 h�ét

f ]⌫ ,K
(�heeg

r⌫ ),�ét

f ]⌫ ,K
(�heeg

r⌫ )iK
u2(4D)r⌫�1

.

Combining (1.5.2) applied to Z with (1.5.3) and (1.5.4), the result follows immediately

from Theorem 1.4.12. ⇤





CHAPTER 2

p-adic L-functions and the p-adic variation of Heegner points

Summary

Let f be a newform of weight k � 2 and trivial nebentypus, let K be an imaginary

quadratic field, and let � be an anticyclotomic Hecke character of K of infinity type (`,�`)
with ` � k/2. Denote by Vf the restriction to GK of the self-dual Tate twist of the p-

adic Galois representation associated to f . Specialized to Vf ⌦ �, the general Bloch–Kato

conjectures predict the equality between the rank of certain Galois cohomology groups

associated to Vf ⌦ � and the order of vanishing of the associated L-function L(f,��1, s)

at the central critical point s = k/2. In this chapter1 we prove the Bloch–Kato conjecture

when L(f,��1, k/2) 6= 0 under certain assumptions, including that p is a prime of good

ordinary reduction for f which splits in K, and that K satisfies the Heegner hypothesis.

1Revised in August 2013.
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Introduction

Let p be an odd prime and let f 2 Sk(�0

(N)) be a normalized newform of weight k � 2

and level N prime to p. Let ⇢f : GQ �! AutL(Vf ) be the self-dual Tate twist of the p-adic

Galois representation associated with f , defined over a finite extension L/Qp with ring of

integers O, let Tf ⇢ Vf be a GQ-stable O-lattice, and denote by ⇢̄f the (semi-simple) mod

p representation obtained by reducing the resulting ⇢f : GQ �! AutO(Tf ) modulo the

maximal ideal of O.

Let K be an imaginary quadratic field of odd discriminant. If � is any anticyclotomic

Hecke character of K with values in O, the representation Vf,� := (Vf |GK
)⌦� is conjugate

self-dual, i.e. V ⇤
f,�(1)

⇠= V c
f,�, where V ⇤

f,�(1) denotes the Kummer dual of Vf,�, and V c
f,� the

conjugate of Vf,� by the non-trivial automorphism of K. Motivated by Dirichlet’s class

number formula and the celebrated Birch and Swinnerton-Dyer conjecture, which they are

expected to generalize, the Bloch–Kato conjectures (see [BK90], [FPR94]) predict the

equality

ords=k/2L(f,�
�1, s)

?

= dimLSel(K,V c
f,�).

Here Sel(K,Vf,�) is the Bloch–Kato Selmer group, and L(f,��1, s) = L(Vf,�, s) is the

Rankin–Selberg L-function of f with the theta series associated to ��1. This L-function

satisfies a functional equation relating its values at s to those at s� k, so that s = k/2 is

the central critical point.

Assume that K satisfies the following Heegner hypothesis :

(heeg) every prime factor of N splits in K,

and fix an integral ideal N ⇢ OK with OK/N ⇠= Z/NZ. Then if we restrict above to

characters � of conductor dividing N, the sign ✏ = ±1 in the functional equation of

L(f,��1, s), and hence the parity of ords=k/2L(f,��1, s), depends only on the behaviour

of � at 1: if � has infinity type (`,�`) with ` � 0, then ✏ = �1 for ` < k/2, whereas

✏ = +1 for ` � k/2.

Theorem. Suppose k ⌘ 2 (mod p�1), and let � be an O-valued anticyclotomic Hecke

character of K of conductor dividing N and infinity type (`,�`) with ` � k/2 and ` ⌘ 0

(mod p� 1). In addition to (heeg), assume

(ord) f is ordinary at p,

(spl) p splits in K,

(ram) p does not divide the class number of K,

(irr) ⇢f |GK
is irreducible.
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If L(f,��1, k/2) 6= 0, then Sel(K,V c
f,�) = 0.

The proof of this Theorem (Theorem 2.4.6 in the paper) is based on the study of a

certain anticyclotomic p-adic L-function; we devote the rest of this introduction to describe

in some detail the main ingredients that enter into the proof.

Fix a choice of embeddings ıp : Q ,�! Qp and ı1 : Q ,�! C, and let p ⇢ OK be the

prime above p induced by ıp. By the work [BDP13] of Bertolini, Darmon and Prasanna,

there exists a p-adic L-function Lp(f) interpolating the square-roots of (the algebraic

part of) the central critical values L(f,��1, k/2) for varying � as in the statement of the

Theorem above.

Let K1/K be the anticyclotomic Zp-extension of K, and let T† be a self-dual twist of

the big Galois representation associated with a Hida family with coe�cients in I. Howard’s
construction [How07b] of big Heegner points produces a “big” cohomology class Z1
with values in T† interpolating in weight 2 the Kummer images of Heegner points over

K1/K. Extending Cornut and Vatsal’s proof of Mazur’s conjecture on the nonvanishing

of Heegner points, it is shown in loc.cit. that Z1 is nontorsion over the Iwasawa algebra

I[[Gal(K1/K)]].

Since f satisfies (ord), there is a Hida family f 2 I[[q]] passing through it. Theo-

rem 2.3.1, which is the technical core of the paper, shows that a “big” p-adic L-function

Lp(f †), extending Lp(f) over a certain twist of f , is the image of Z1 under a generalization

of the Coleman power series map. This map is constructed in Theorem 2.2.8, and relies

crucially on the assumption (spl)2. If ⌫f : I �! Q
⇥
p is the O-algebra homomorphism such

that ⌫f (f) recovers f , and if � be as above, it then follows from the “explicit reciprocity

law” of Theorem 2.3.11 that the nonvanishing of L(f,��1, k/2) controls the nonvanishing

of the twist of ⌫f (Z1) by �. The proof of the Theorem above then follows easily from

Fouquet’s extension of Kolyvagin’s methods, which proves under mild assumptions one of

the divisibilities predicted by the two-variable main conjecture of [How07b, §3.3].
Following similar arguments, we also obtain one of the divisibilities in the Iwasawa-

Greenberg main conjecture for the representation Vf,� (see Corollary 2.4.10).

The organization of this paper is as follows. In the next section we briefly recall the

construction of the class Z1 and of the big p-adic L-function Lp(f †). In Sect. 2.2, by

combining the work of Ochiai with some ideas from the recent work of Loe✏er–Zerbes, we

deduce a variant of Perrin-Riou’s regulator map adapted to the local situation at p that

2As the construction of Lp(f) in [BDP13] does. Note however that Howard’s construction of Z1 requires
no assumption on the behaviour of p in K.
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arises in our setting. Sect. 2.3 is devoted to the proof Theorem 2.3.1, relating Z1 and

Lp(f †) via the big p-adic regulator map of Sect. 2.2. Finally, in Sect. 2.4 we deduce the

preceding arithmetic applications.

Acknowledgements. It is a pleasure to thank Henri Darmon, Ben Howard, Ming-Lun Hsieh,

and Antonio Lei for enlightening conversations and correspondence related to this work.

Some of the results in this paper were first outlined at the workshop on the p-adic Langlands

program held at the Fields Institute of Toronto in April 2012, and we thank the Fields

Institute and the organizers of the workshop for their hospitality and support.

Unless otherwise stated, it is assumed throughout the article that f andK are as above.

2.1. Big Heegner points

2.1.1. Critical twist of a Hida family. Let f =
P1

n=1

anq
n 2 I[[q]] be the Hida

family passing through f , where I is a complete noetherian local ring finite flat over O[[1+

pZp]], and let

⇢f : GQ �! AutI(T)

be the big Galois representation associated with f in [Hid86a, Thm. 2.1]. We say that

a continuous O-algebra homomorphism ⌫ : I �! Q
⇥
p is an arithmetic prime of I if there

is an integer k⌫ � 2 such that the composition � := 1 + pZp �! I⇥ ⌫�! Q
⇥
p is given by

� 7�!  ⌫(�)�k⌫�2 for some finite order character  ⌫ : � �! Q
⇥
p ; we then say that k⌫ is the

weight ⌫ and that  ⌫ is the wild character of ⌫. Denote by X
arith

(I) the set of arithmetic

primes of I, and for each ⌫ 2 X
arith

(I), let F⌫ be its residue field (which is a finite extension

of Qp), and O⌫ denote its ring of integers. By [Hid86a, Cor. 1.3], for each ⌫ 2 X
arith

(I)
there is an ordinary p-stabilized newform f⌫ of weight k⌫ whose q-expansion is given by

⌫(f) 2 F⌫ [[q]]. Moreover, if s⌫ � 1 is such that  ⌫ is trivial on �s⌫ ⇢ �, then f⌫ has

level Nps⌫ and nebentypus "f⌫ =  ⌫!
k�k⌫ , where ! : (Z/pZ)⇥ �! Z⇥

p is the Teichmüller

character.

Decompose the p-adic cyclotomic character "
cyc

: GQ �! Z⇥
p as the product ✏

tame

· ✏
wild

of its tame and wild components, and define the critical character

(2.1.1) ⇥ := ✏
(k�2)/2
tame

· [✏1/2
wild

] : GQ �! O[[�]]⇥ �! I⇥,

where ✏(k�2)/2
tame

: GQ �! (Z/pZ)⇥ is any of the two possible square-roots of ✏k�2

tame

, and ✏1/2
wild

is the unique square-root of ✏
wild

with values in �. Let I† be the free I-module of rank 1

equipped with the GQ-action via the character ⇥, and define the critical twist of T to be
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(cf. [How07b, Def. 2.1.3])

T† := T(1)⌦I I†

equipped with the diagonal GQ-action, where T(1) = Tb⌦ZpZp(1) is the Tate twist of T.
For each ⌫ 2 X

arith

(I), let V⌫ be the p-adic Galois representation associated with f⌫ by

Deligne. Then by [Hid86a, Thm. 2.1], T⌫ := ⌫(T) is a GQ-stable O⌫-lattice in V⌫ , and by

construction V †
⌫ := T †

⌫ ⌦Zp Qp is a self-dual twist of V⌫ .

2.1.2. Review of Howard’s big Heegner points. Recall the cyclic ideal N ⇢ OK

of norm N fixed in the introduction. For each integer s � 0, let Js be the Jacobian of the

modular curve Xs of level �
0

(N) \ �
1

(ps), and for each t � 0 let Hpt+1 be the ring class

field of K for the order Opt+1 ⇢ OK of conductor pt+1. Denote by hpt+1,s 2 Xs(C) the

point corresponding to the triple (Apt+1,s, npt+1,s, ⇡pt+1,s), where

• Apt+1,s(C) = C/Opt+1+s ,

• npt+1,s = Apt+1,s[N \Opt+1+s ],

• ⇡pt+1,s generates the kernel of the cyclic ps-isogeny C/Opt+1+s �! C/Opt+1 .

For each residue class i modulo p � 1, let ei be the projector to the !i-isotypical

component of O[[Z⇥
p ]]. By [How07b, Cor. 2.2.2],

ypt+1,s := ek�2

eordhpt+1,s

defines a point on Jord,†
s rational over Hpt+1+s , where Jord,†

s = eordJ†
s is the ordinary part

of Js with its natural Galois action twisted by ⇥�1. Let Gpt+1 be the Galois group of

the maximal extension of Hpt+1 unramified outside the primes above Np. By [loc.cit,

Lemma 2.2.4], the image Xpt+1,s of ypt+1,s under the composite map

Jord,†
s (Hpt+1+s)

Cor

H
pt+1+s

H
pt+1�������! Jord,†

s (Hpt+1)
Kums���! H1(Gpt+1 ,Taord,†p (Js)),

satisfies ↵⇤Xpt+1,s = Up · Xpt+1,s�1

, where

↵⇤ : H1(Gpt+1 ,Taord,†p (Js)) �! H1(Gpt+1 ,Taord,†p (Js�1

))

is induced by the degeneracy map Xs
↵�! Xs�1

given by (E,C, ⇡) 7! (E,C, p · ⇡) on

non-cuspidal points.

Definition 2.1.1. The big Heegner point of conductor pt+1 is the cohomology class

Xpt+1 2 H1(Hpt+1 ,T†)
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defined as the image of lim �s
U�s
p · Xpt+1,s under the composite map

H1(Gpt+1 , lim �
s

Taord,†p (Js)) �! H1(Gpt+1 ,T†) Inf��! H1(Hpt+1 ,T†).

LetK1/K be the anticyclotomic Zp-extension ofK, and letKt ⇢ K1 be the subfield of

degree pt overK, so thatKt ⇢ Hpt+1 by (ram). SetD1 := Gal(K1/K), and I1 := I[[D1]].

Theorem 2.1.2 (Howard). Let t > 0 be an integer.

(1) The big Heegner point Xpt+1 belongs to the strict Greenberg Selmer group

Sel
Gr

(Hpt+1 ,T†) ⇢ H1(Hpt+1 ,T†),

and satisfies

CorHpt+1

/Hpt
(Xpt+1) = Up · Xpt .

(2) Setting Zt := CorHpt+1

/Kt(Xpt+1), the class

Z1 := lim �
t

U�t
p · Zt 2 eH1

f,Iw(K1,T†) := lim �
t

eH1

f (Kt,T†)

is not I1-torsion, where eH1

f (Kt,T†) is Nekovář’s extended Selmer group.

Proof. See [How07b, Prop. 2.4.5, Prop. 2.3.1] for (1), and [loc.cit., Thm. 3.1.1] for

(2), noting that
eH1

f (Kt,T†) ⇠= Sel
Gr

(Kt,T†)

after [loc.cit., Lemma 2.4.4]. ⇤

2.1.3. Big p-adic Rankin L-series. Fix an elliptic curve A with CM by OK , defined

over the Hilbert class field H of K. By (spl), A has ordinary reduction at the prime of H

above p induced by ıp : Q ,�! Qp, and hence we may fix a trivialization

ıA : Â
⇠�! Ĝm

as formal groups over bZnr

p , the completion of the ring of integers of the maximal unramified

extension Qnr

p of Qp. Fix a �
1

(N)-level structure

↵A : µN ,�! A[N],

and consider the triple (A,↵A, ıA). For each class [a] 2 Pic(OK), represented by an OK-

ideal a ⇢ K prime to Np, define

a ⇤ (A,↵A, ıA) = (Aa,'a � ↵A, ıA � '̂�1

a ),
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where 'a : A �! Aa := A/A[a] is the natural projection and '̂a : Â
⇠�! Âa denotes the

isomorphism induced by 'a on the associated formal groups.

If g is a p-adic modular form with q-expansion
P

n bnq
n, the q-expansions

g[p] :=
X

(n,p)=1

bnq
n, d�1g = d�1g[p] :=

X

(n,p)=1

n�1bnq
n

correspond to p-adic modular forms that will abusively be denoted by g[p] and d�1g in the

following. Let recK : K⇥\A⇥
K �! Gab

K and recp : Q⇥
p
⇠= K⇥

p �! Gab

K be the global and

local-at-p reciprocity maps of class field theory. Then if � : D1 �! Q
⇥
p is a continuous

character and [a] 2 Pic(OK), define �a : Z⇥
p �! Q

⇥
p by �a(x) = �(recp(x)recK(a)).

Two-variable construction. The critical character ⇥ defined in (2.1.1) factors through

Gal(Q(µp1)/Q), and we let ✓ : Z⇥
p �! I⇥ be such that ⇥ = "

cyc

� ✓. If ⌫ 2 X
arith

(I) has
even weight k⌫ = 2r⌫ � 2, then

✓⌫(z) = zr⌫�1#⌫(z)

for all z 2 Z⇥
p , where #⌫ : Z⇥

p �! Q
⇥
p is a finite order character such that "f⌫ = #2

⌫ (see

[How07a, p. 808]). Thus the formal q-expansion

f † :=
1X

n=1

✓�1(n)anq
n 2 I[[q]]

has the property that for every ⌫ 2 X
arith

(I) of even weight, ⌫(f †) 2 F⌫ [[q]] gives the q-

expansion of the twist f †⌫ := f⌫ ⌦ ✓�1

⌫ , which is a p-adic modular form of weight 2 with

trivial nebentypus.

Definition 2.1.3. The big anticyclotomic p-adic L-function Lp(f †) associated to f † is

the generalized measure on D1 ⇥ X
arith

(I) (in the sense of [Hid88, §3]) given by

⌫ 7�! Lp(f
†
⌫)

for all ⌫ 2 X
arith

(I), where Lp(f †⌫) is the integral measure dµf†⌫
on D1 given by

Lp(f
†
⌫)(�) =

Z

D1

�(x)dµf†⌫
(x)

:=
X

[a]2Pic(OK)

��1(a)��1(Na) · d�1f †⌫ ⌦ �a(a ⇤ (A,↵A, ıA))

for all � 2 Hom
cts

(D1,Q
⇥
p ).
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This terminology is justified by recent works of Bertolini, Darmon and Prasanna

[BDP13], Brakočević [Bra11], and Hsieh [Hsi12], among others. The next result just

gives the coarse form of their result that will be used here.

Theorem 2.1.4. Let ⌫ 2 X
arith

(I) be an arithmetic prime of weight k⌫ = 2r⌫ � 2 with

r⌫ ⌘ k/2 (mod p � 1) and trivial wild character, and let � be an anticyclotomic Hecke

character of K of conductor dividing N and infinity type (`,�`) with ` � r⌫ and ` ⌘ 0

(mod p� 1). Then

Lp(f
†
⌫)(�) 6= 0 () L(f⌫ ,�

�1, r⌫) 6= 0,

where L(f⌫ ,��1, r⌫) is the central critical value for the Rankin–Selberg convolution of f⌫
with the theta series of ��1.

Proof. Our assumptions on ⌫ are so that #⌫ = 1, and since � has conductor prime

to p, it follows that

d�1f †⌫ ⌦ � = d`�r⌫ f [p]⌫ ,

where d is the Atkin–Serre ✓-operator q d
dq

acting on p-adic modular forms. Setting j :=

`� r⌫ � 0, we thus see that

Lp(f
†
⌫)(�) =

X

[a]2Pic(OK)

��1(a)Na�j · djf [p]⌫ (a ⇤ (A,↵A, ıA)),

and since the Hecke character �Nr⌫ has infinity type (k⌫ + j,�j), the result follows from

the combination of [BDP13, (5.2.4)] and [loc.cit., Thm. 5.9]. ⇤

2.2. p-adic regulator maps

In [Och03], Ochiai constructs a map interpolating the cyclotomic regulator of Perrin-

Riou over the arithmetic specializations of a Hida family. Using ideas from the recent work

of Loe✏er–Zerbes [LZ11], in this section we show how to assemble Ochiai’s construction

at each of the finite layers in the unramified Zp-extension of Qp, deducing a two-variable

regulator map for the critical twist of a Hida family.

2.2.1. Twisted nearly-ordinary deformations. Let f be a Hida family with as-

sociated Galois representation ⇢f : GQ �! AutI(T). By a result of Mazur and Wiles

([Wil88, Thm. 2.2.2]), if Dw ⇢ GQ is the decomposition group of a place w of Q above p,

there exists an exact sequence of I[[Dw]]-modules

(2.2.1) 0 �! F+

w (T) �! T �! F�
w (T) �! 0
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with each F±
w (T) free of rank 1 over I, and with the action of Dw on F+

w (T) given by an

unramified character ↵ : Dw �! I⇥ sending a geometric Frobenius Frobp to ap 2 I⇥, the
p-th coe�cient of f . In the following, we will take w to be the place of Qp above p induced

by our fixed embedding ıp : Q ,�! Qp, and identify the associated Dw with the absolute

Galois group GQp := Gal(Qp/Qp).

Denote by �
cyc

:= Gal(Q1/Q) the Galois group of the cyclotomic Zp-extension of Q,

and let ⇤
cyc

be the free ⇤(�
cyc

) := Zp[[�cyc

]]-module of rank 1 equipped with the natural

GQ-action on group-like elements.

Definition 2.2.1. The nearly-ordinary deformation of T is the I := Ib⌦Zp⇤(�cyc

)-

module

T := Tb⌦Zp⇤cyc

equipped with the diagonal GQ-action. It comes equipped with the exact sequence of

I[[Dw]]-modules

(2.2.2) 0 �! F+

w (T ) �! T �! F�
w (T ) �! 0

obtained by tensoring (2.2.1) with ⇤
cyc

.

Definition 2.2.2. The big Dieudonné module of T is the I-module

D := (F+

w (T)b⌦Zp
bZnr

p )GQp ,

and we let D := Db⌦Zp⇤(�cyc

) be the corresponding I-module associated with the nearly-

ordinary deformation T .

Specialization maps. Recall that � denotes the group of 1-units in Z⇥
p , and let ✏ be the

isomorphism

(2.2.3) ✏ : �
cyc

⇠�! �

induced by the p-adic cyclotomic character "
cyc

: GQ �! Z⇥
p . Similarly as X

arith

(I), define
X

arith

(⇤(�
cyc

)) to be the set of continuous characters � : �
cyc

�! Q
⇥
p such that for some

integer `� � 0, called the weight of �, the character �
0

:= � · ✏�`� has finite order.

Every pair (⌫, �) 2 X
arith

(I)⇥X
arith

(⇤(�
cyc

)) defines a continuous homomorphism I �!
O⌫,�, where O⌫,� is the ring obtained by adjoining to O⌫ the values of �. Tensoring with

O⌫,� over I via this map, we set

T⌫,� := T ⌦I O⌫,�, F±
w (T⌫,�) := F±

w (T )⌦I O⌫,�,
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and define V⌫,� := T⌫,�[1/p] and F±
w (V⌫,�) := F±

w (T⌫,�)[1/p]. Then T⌫,� ⇠= T⌫(�), where

T⌫(�) denotes the cyclotomic twist of T⌫ by the character �.

For every finite unramified extension F/Qp, let

(2.2.4) Sp⌫,� : H1(F,F+

w (T )) �! H1(F,F+

w (T⌫,�)) �! H1(F,F+

w (V⌫,�))

be the induced maps on cohomology.

In parallel to (2.2.4), attached to every pair (⌫,�) there are specialization maps

(2.2.5) Sp⌫,� : D ⌦Zp OF �! D
(F )

dR

(F+

w (V⌫,�))

dependent upon the choice of a compatible system (⇣s)s�0

of primitive ps-th roots of unity

⇣s 2 Qp, and where D
(F )

dR

(F+

w (V⌫,�)) := (F+

w (V⌫,�)⌦Qp BdR

)GF is the de Rham Dieudonné

module associated with the p-adic GF -representation V⌫,�. Since

D
(F )

dR

(F+

w (V⌫,�)) ⇠= D
dR

(F+

w (V⌫,�))⌦Zp OF ,

the definition of the maps (2.2.5) is reduced to the case where F = Qp, for which see

[Och03, Def. 3.12]. (Note that the definition of these maps will not be needed in the

following.)

2.2.2. Going up the unramified Zp-extension. Let F1 be the unramified Zp-

extension of Qp, and denote by O1 its ring of integers. Identify U := Gal(F1/Qp) with

Zp by sending a geometric Frobenius Frobp to 1, and for every n � 0, let Fn be the subfield

of F1 with Gal(Fn/Qp) ⇠= Z/pnZ.

Let On be the ring of integers of Fn. Setting Un := Gal(F1/Fn), the group ring

On[U/Un] is equipped with two natural commuting actions of U , one on the coe�cients

and the other on the group-like elements, and we let Sn be the Zp-submodule of On[U/Un]

where these two actions agree. Thus

Sn :=

(
X

�2U/Un

a�.� 2 On[U/Un] : ⌧a� = a⌧�1� for all ⌧ 2 U

)
.

If xn 2 On, the element yn(xn) =
P

�2U/Un
x�

�1

n .� lies in Sn, and the resulting map

yn : On �! Sn is easily seen to be an isomorphism of Zp[U/Un]-modules. These maps fit
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into commutative diagrams

On+1

yn+1 //

TrFn+1

/Fn

✏✏

Sn+1

✏✏

⇢ On+1

[U/Un+1

]

On

yn // Sn ⇢ On[U/Un],

where the right vertical arrow is induced by the projection U/Un+1

�⇣ U/Un.

Lemma 2.2.3 (Loe✏er–Zerbes). The Yager module S1 := lim �n
Sn is free of rank 1

over Zp[[U ]]. More precisely, the maps yn induce an isomorphism

lim �
n

On
⇠�! S1

of Zp[[U ]]-modules.

Proof. See [LZ11, Prop. 3.3] and the discussion in [loc.cit., §3.2]. ⇤

Corollary 2.2.4. The module D1 := Db⌦ZpS1 is free of rank 1 over I1 := I[[U ]].

Proof. By Lemma 2.2.3, we have D1 ⇠= lim �n
(D⌦ZpOn), where the limit is taken with

respect to the maps 1⌦TrFn+1

/Fn . Since D is free of rank 1 over I by [Och03, Lemma 3.3],

the result follows. ⇤

The Z2

p-extension of Qp. Let Qp,1 be the cyclotomic Zp-extension of Qp, and let L1
be the compositum F1Qp,1, so that

G := Gal(L1/Qp) ⇠= Z2

p.

By local class field theory, L1 contains many distinguished Zp-extensions obtained

from the torsion points of height 1 Lubin–Tate formal groups over Qp. More precisely,

if k1/Qp is a ramified Zp-extension contained in L1, and if $ 2 Zp is a generator of

the group of universal norms of the extension k1(µp)/Qp, there is a height 1 Lubin–Tate

formal group F' over Qp (associated with a “lift of Frobenius” ' 2 Zp[[X]] corresponding

to $) such that

kn(µp) = Qp(F'[$
n])

for all n > 0, where kn ⇢ k1 is the n-th layer of k1/Qp (so that Gal(kn/Qp) ⇠= Z/pnZ),

and F'[$n] denotes the $n-torsion of F'. Upon fixing an isomorphism

⌘ : F'
⇠��! bGm
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over bQnr

p , we may then define a basis (⇠s)s�0

of the $-adic Tate module of F' corresponding

to (⇣s)s�0

by setting ⇠s := ⌘�
�s
p (⇣s�1), where �p 2 Gal(bQnr

p /Qp) is an arithmetic Frobenius.

This induces the horizontal isomorphisms

Gal(k1(µp)/Qp)
⇠ //

✏✏✏✏

Gal(Qp(µp1)/Qp)

✏✏✏✏
�$ := Gal(k1/Qp)

⇠ // Gal(Qp,1/Qp) = �
cyc

,

and we let

(2.2.6) $ : Gal(k1(µp)/Qp)
⇠��! Z⇥

p (resp.  : �$
⇠��! �)

be the composition of the top (resp. bottom) isomorphism with "
cyc

(resp. (2.2.3)).

Set ⇤(�$) := Zp[[�$]]. Similarly as X
arith

(⇤(�
cyc

)), define X
arith

(⇤(�$)) to be the set

of continuous characters � : �$ �! Q
⇥
p such that for some integer `� � 0, called the

weight of �, the character �
0

:= � · �`� has finite order.

Define the modules

D$ := Db⌦Zp⇤(�$), T$ := Tb⌦Zp⇤$,

where ⇤$ is the free ⇤(�$)-module of rank 1 equipped with the natural action of GQp .

Then, in analogy with (2.2.4) and (2.2.5), we may define specialization maps

Sp⌫,� : D$ �! D
dR

(F+

w (V⌫,�))

and

Sp⌫,� : H
1(Qp,F

+

w (T$)) �! H1(Qp,F
+

w (V⌫,�))

for every pair (⌫,�) 2 X
arith

(I)⇥ X
arith

(⇤(�$)).

For an abelian extension K/Qp with Gal(K/Qp) ⇠= Zd
p, and a Zp-module M equipped

with a continuous linear action of GQp , we set

H1

Iw

(K,M) := lim �
K0

H1(K 0,M),

where the limit is over the finite subextensions K 0/Qp contained in K with respect to

corestriction. We then continue to denote by Sp⌫,� the composition of the preceding

specialization maps with the natural projections D1 �! D$ and H1

Iw

(L1,F+

w (T)) �!
H1(Qp,F+

w (T$)), the latter arising from the identification

H1

Iw

(L1,F+

w (T)) ⇠�! H1

Iw

(F1,F+

w (T$))
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given by Shapiro’s lemma.

2.2.3. Construction of big p-adic regulator maps. For F/Qp a finite extension,

and V a p-adic GQp-representation, let

expF,V : D(F )

dR

(V ) �! H1(F, V )

be the Bloch–Kato exponential map, and let H1

e (F, V ) ⇢ H1(F, V ) denote its image. This

map through D
(F )

dR

(V )/Fil0D(F )

dR

(V ), and when the induced map is an injection we let

logF,V := exp�1

F,V : H1

e (F, V ) �! D
(F )

dR

(V )/Fil0D(F )

dR

(V )

be the logarithm map of Bloch–Kato. As usual, we use the notational abbreviations

D
dR

(V ), expV and logV when F = Qp.

Definition 2.2.5. We say that an arithmetic prime ⌫ 2 X
arith

(I) is exceptional if it

has weight k⌫ = 2, ⌫(ap) = ±1, and the wild character  ⌫ of ⌫ is trivial.

Let e↵ := limn!1 apn

p 2 µp�1

(I⇥) be the Teichmüller lift of ap, and define the ideal of

I[[U ]] ⇠= I[[G]]

J1 := (e↵� 1, �o � 1),

where �o 2 �
cyc

is any fixed topological generator.

Theorem 2.2.6. Fix a compatible system (⇣s)s�0

of primitive ps-th roots of unity. There

exists an injective I[[G]]-linear map

ExpG
F+

w (T) : J1D1 �! H1

Iw

(L1,F+

w (T))

with pseudo-null cokernel and with the following property: If k1/Qp is any ramified Zp-

extension contained in L1, then for every pair (⌫,�) 2 X
arith

(I) ⇥ X
arith

(⇤(�$)) with

1  `� < k⌫, the diagram

J1D1
Exp

G

F+

w (T)
//

Sp⌫,�

✏✏

H1

Iw

(L1,F+

w (T))

Sp⌫,�

✏✏

D
dR

(F+

w (V⌫,�)) // H1(Qp,F+

w (V⌫,�))
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commutes, where the bottom horizontal arrow is given by

(�1)`��1(`� � 1)!⇥

8
>>><

>>>:

⇣
1� $

`�

⌫(ap)p

⌘⇣
1� ⌫(ap)

$
`�

⌘�1

exp if �
0

= 1,

⇣
⌫(ap)p

$
`�

⌘�t�
exp if �

0

6= 1,

with t� > 0 the p-order of the conductor of �
0

, and exp the Bloch–Kato exponential map.

Remark 2.2.7. If (⌫,�) 2 X
arith

(I)⇥X
arith

(⇤(�$)) is a pair as in Theorem 2.2.6, there

is a commutative diagram

D
dR

(F+

w (V⌫,�))

⇠
=

✏✏

exp

F+

w (V⌫,�)

// H1

e (Qp,F+

w (V⌫,�))

✏✏

D
dR

(V⌫,�)/Fil
0D

dR

(V⌫,�)
expV⌫,�

// H1

e (Qp, V⌫,�),

where the vertical maps are induced by the inclusion F+

w (V⌫,�) ⇢ V⌫,�, and the left one

is shown to be an isomorphism as in [Och03, Lemma 3.2]. Hence in the statement of

Theorem 2.2.6 we let exp denote either of the horizontal maps in the preceding diagram.

(Note that the same remarks apply with Qp replaced by any finite unramified extension

F/Qp.)

Proof of Theorem 2.2.6. For every n � 0, consider the height 2 ideal of I

Jn := (↵(Frobp|Fn), �o � 1) = (apn

p � 1, �o � 1).

By [Och03, Prop. 5.3] (which is stated over Qp, but the same arguments work over the un-

ramified extensions Fn/Qp, changing Frobp to Frobp|Fn = Frobpn

p ), there exists an injective

I-linear map

Exp(n)

F+

w (T )

: Jn(D ⌦Zp On) �! H1(Fn,F
+

w (T ))

with pseudo-null cokernel and such that for every (⌫,�) 2 X
arith

(I) ⇥ X
arith

(⇤(�
cyc

)) with

1  `� < k⌫ the diagram

Jn(D ⌦Zp On)
Exp

(n)

F+

w (T )

//

Sp⌫,�

✏✏

H1(Fn,F+

w (T ))

Sp⌫,�

✏✏

D
(Fn)

dR

(F+

w (V⌫,�)) // H1(Fn,F+

w (V⌫,�))
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commutes, where the bottom horizontal arrow is given by the map

(�1)`��1(`� � 1)!⇥

8
>>><

>>>:

⇣
1� p`��1

⌫(ap)

⌘⇣
1� ⌫(ap)

p`�

⌘�1

exp(n) if �
0

= 1,

⇣
⌫(ap)

p`��1

⌘�s�
exp(n) if �

0

6= 1,

with s� the p-order of the conductor of �
0

and exp(n) the Bloch–Kato exponential map

over Fn (see Remark 2.2.7). The map Exp(n)

F+

w (T )

is obtained by multiplying by Jn the

restriction

⇣
bZnr

p [[�
cyc

]]b⌦ZpF
+

w (T)
⌘GFn �!

✓
H1(Qnr

p ,⇤
cyc

)

H0(Qnr

p ,Zp)
b⌦ZpF

+

w (T)
◆GFn

to the GFn-invariants of the I-linear isomorphism of [loc.cit., Prop. 5.11], obtained in turn

by taking the formal tensor product b⌦ZpF
+

w (T) of the large exponential map of Perrin-Riou

[PR94, Thm. 3.2.3] for the representation Qp(1) of GbQnr

p
.

Now define

ExpG
F+

w (T) := lim �
n

Exp(n)

F+

w (T )

: J1D1 �! H1

Iw

(F1,F+

w (T )) ⇠= H1

Iw

(L1,F+

w (T)),

using the identification lim �n
D ⌦Zp On

⇠= D1(:= Db⌦ZpS1) from Lemma 2.2.3. By the

discussion in [LZ11, §6.4.3], we see that for every ⌫ 2 X
arith

(I) the specialization at ⌫ of the

map ExpG
F+

w (T) so constructed interpolates over F1 the large exponential map of F+

w (V⌫)

for any ramified Zp-extension k1/Qp contained in L1, and hence the result follows. ⇤

Recall from §2.1.1 the definition of the critical twist T† of a Hida family, and set

� := ap � 1.

Theorem 2.2.8. Fix an I-basis ⌘ of D and a compatible system (⇣s)s�0

of primitive

ps-th roots of unity. Let k1/Qp be a ramified Zp-extension contained in L1, and assume

k1 6= Qp,1. There exists a I[[�$]]-linear map

Log⌘
F+

w (T†
)

: H1

Iw

(k1,F+

w (T†)) �! I[[�$]]⌦I I[��1]

with the following property: For any non-exceptional ⌫ 2 X
arith

(I) of even weight k⌫ =

2r⌫ � 2, and any � 2 X
arith

(⇤(�$)) of weight `� ⌘ 0 (mod p � 1) with `� < r⌫, if
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Y1 2 H1

Iw

(k1,F+

w (T†)) then

⌫(Log⌘
F+

w (T†
)

(Y1))(�) =
(�1)r⌫�`��1

(r⌫ � `� � 1)!

⇥

8
>>><

>>>:

⇣
1� pr⌫�1

⌫(ap)$
`�

⌘�1

⇣
1� ⌫(ap)$

`�

pr⌫

⌘
hlogV †

⌫,�
(⌫(Y1)�), ⌘0⌫idR if �

0

= 1,

G(��1

0

)�1

⇣
⌫(ap)$

`�

pr⌫�1

⌘t�
hlogV †

⌫,�
(⌫(Y1)�), ⌘0⌫idR if �

0

6= 1,

where t� > 0 is p-order of the conductor of �
0

,

G(��1

0

) :=
X

v mod p
t�+1

��1

0

(v)⇣vt�+1

,

⌫(Y1)� := Sp⌫,�(Y1), and ⌘0⌫ 2 Fil0D
dR

(V †
⌫ (

�`�
$ )) is the dual to ⌘†⌫,`� under the de Rham

pairing

(2.2.7)
D

dR

(V †
⌫ (

`�
$ ))

Fil0D
dR

(V †
⌫ (

`�
$ ))
⇥ Fil0D

dR

(V †
⌫ (

�`�
$ )) �! F⌫ .

Proof. The proof is similar to that of [Cas13a, Thm. 3.4]. Let �
1

2 Gal(Qp,1/Qp)

be such that "
cyc

(�
1

) = 1 + p, and set

D† := D ⌦I I/(�o � (1 + p)[✏1/2
wild

(�
1

)]).

Consider the map Tw
⇥

1

: I[[G]] �! I[[G]] defined by the commutativity of the diagram

(2.2.8) I[[G]]

✏✏✏✏

Tw

⇥

1 // I[[G]]

✏✏✏✏
I

� 7![✏
1/2
wild

(�)]�
// I.

The bottom horizontal map is an I-linear isomorphism, and since k1 6= Qp,1, the map

Tw
⇥

1

is I[[�$]]-linear. Use the same notation to denote the induced I[[�$]]-module iso-

morphism Tw
⇥

1

: J1D1 �! J1D1 and let

Tw
⇥

: H1

Iw

(L1(µp),F
+

w (T))� �! H1

Iw

(L1(µp),F
+

w (T†))�

be the result of taking the � := Gal(Qp(µp)/Qp)-invariants of the composite map

H1

Iw

(L1(µp),F
+

w (T)) ⌦II†��! H1

Iw

(L1(µp),F
+

w (T))⌦I I† ⇠= H1(L1(µp),F
+

w (T†))

(see [Rub00, Prop. 6.2.1(i)] for a proof of the last isomorphism).
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Let pr$ : H1

Iw

(L1(µp),F
+

w (T†)) �! H1

Iw

(k1(µp),F
+

w (T†)) be the projection induced

by I[[G]] �! I[[�$]], and define

J †
$D†

$ := J1D1 ⌦I[[G]]

I[[G]]/(�o � (1 + p)[✏1/2
wild

(�
1

)])⌦I[[G]]

I[[�$]].

By the interpolation property of the map ExpG
F+

w (T) of Theorem 2.2.6, the composition

J1D1
Tw

�1

⇥

1���! J1D1
Exp

G

F+

w (T)������! H1

Iw

(L1,F+

w (T))
Res��! H1

Iw

(L1(µp),F
+

w (T))� Tw

⇥��! H1

Iw

(L1(µp),F
+

w (T†))�

pr$���! H1

Iw

(k1(µp),F
+

w (T†))� ⇠= H1

Iw

(k1,F+

w (T†))

is easily seen to factor through an injective I[[�$]]-linear map

ExpF+

w (T†
)

: J †
$D†

$ �! H1

Iw

(k1,F+

w (T†))

such that for every pair (⌫,�) 2 X
arith

(I)⇥X
arith

(⇤(�$)) as in the statement, the diagram

J †
$D†

$

Exp

F+

w (T†)
//

Sp⌫,�

✏✏

H1

Iw

(k1,F+

w (T†))

Sp⌫,�

✏✏

D
dR

(F+

w (V †
⌫,�)) // H1(Qp,F+

w (V †
⌫,�))

commutes, where the bottom horizontal arrow is given by

(�1)r⌫�`��1(r⌫ � `� � 1)!⇥

8
>>><

>>>:

⇣
1� pr⌫�1

⌫(ap)$
`�

⌘⇣
1� ⌫(ap)$

`�

pr⌫

⌘�1

exp if �
0

= 1,

⇣
⌫(ap)$

`�

pr⌫�1

⌘�t�
exp if �

0

6= 1,

where t� > 0 is the p-order in the conductor of �
0

.

Now if Y1 2 H1

Iw

(k1,F+

w (T†)) then � ·Y1 is in the image of ExpF+

w (T†
)

and so

LogF+

w (T†
)

(Y1) := ��1 · Exp�1

F+

w (T†
)

(� ·Y1)

is a well-defined element in I[��1] ⌦I J †
$D†

$ ⇢ I[��1] ⌦I D†
$. Finally, the chosen I-basis ⌘

of D induces an I[[�$]]-basis e⌘ of D†
$, and defining Log⌘

F+

w (T†
)

(Y1) to be the element in

I[[�$]]⌦I I[��1] determined by the relation

LogF+

w (T†
)

(Y1) = Log⌘
F+

w (T†
)

(Y1) · (e⌘ ⌦ 1),

the result follows. ⇤
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2.2.4. Explicit reciprocity formula. By construction, the big p-adic regulator map

Log⌘
F+

w (T†
)

of Theorem 2.2.6 interpolates the Bloch–Kato logarithm maps logV †
⌫,�

in a range

where `� < k⌫/2. However, the arithmetic applications in Section 2.4 will be entirely

concerned with cases where `� � k⌫/2, and hence knowing the interpolation property of

the map Log⌘
F+

w (T†
)

in this extended range will be important for us. This is the content

of the next result, based on the work of Shaowei Zhang [Zha04] adapting Colmez’s work

[Col98] on the p-adic regulator map of Perrin-Riou to a general height 1 Lubin–Tate formal

groups over Zp.

Recall that if V is a p-adic representation of GQp with coe�cients in a finite extension

L/Qp, the Bloch–Kato dual exponential map

exp⇤
V ⇤

(1)

: H1(Qp, V ) �! Fil0D
dR

(V )

is defined by the commutativity of the diagram

H1(Qp, V )

exp

⇤
V ⇤

(1)

✏✏

⇥ H1(Qp, V
⇤(1))

( , )
// L

Fil0D
dR

(V ) ⇥ D
dR

(V ⇤
(1))

Fil

0D
dR

(V ⇤
(1))

expV ⇤
(1)

OO

h , i
dR // L,

where ( , ) is the local Tate pairing.

Corollary 2.2.9. Let the notations be as in Theorem 2.2.8. For any non-exceptional

⌫ 2 X
arith

(I) of even weight k⌫ = 2r⌫ � 2, and any � 2 X
arith

(⇤(�$)) of weight `� ⌘ 0

(mod p� 1) with `� � r⌫, if Y1 2 H1

Iw

(k1,F+

w (T†)) then

⌫(Log⌘
F+

w (T†
)

(Y1))(�) = (`� � r⌫)!

⇥

8
>>><

>>>:

⇣
1� pr⌫�1

⌫(ap)$
`�

⌘�1

⇣
1� ⌫(ap)$

`�

pr⌫

⌘
hexp⇤(⌫(Y1)�), ⌘0⌫idR if �

0

= 1,

G(��1

0

)�1

⇣
⌫(ap)$

`�

pr⌫�1

⌘t�
hexp⇤(⌫(Y1)�), ⌘0⌫idR if �

0

6= 1.

Remark 2.2.10. Dualizing (the twist by #⌫ of) the diagram in Remark 2.2.7, we obtain

D
dR

(F+

w (V †
⌫,�))

✏✏

exp

⇤
F�

w (V
†
⌫,��1

)

// H1(Qp,F+

w (V †
⌫,�))

✏✏

D
dR

(V †
⌫,�)/Fil

0D
dR

(V †
⌫,�)

exp

⇤
V
†
⌫,��1

// H1(Qp, V
†
⌫,�).
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Hence, similarly as in Theorem 2.2.6, in the statement of Corollary 2.2.9 we let exp⇤ denote

either of the horizontal maps in the preceding diagram.

Proof of Corollary 2.2.9. From the combination of [Zha04, Thm. 3.6] and [loc.cit.,

Thm. 6.4] there exists an O⌫ [[�$]]-linear map

L⌘⌫
F+

w (V †
⌫ )

: H1

Iw

(k1,F+

w (V †
⌫ )) �! O⌫ [[�$]]

such that for any � 2 X
arith

(⇤(�$)) of weight `� ⌘ 0 (mod p� 1):

(i) if `� � r⌫ , then

L⌘⌫
F+

w (V †
⌫ )

(⌫(Y1))(�) = (`� � r⌫)!

⇥

8
>>>><

>>>>:

⇣
1� pr⌫�1

⌫(ap)$
`�

⌘�1

⇣
1� ⌫(ap)$

`�

pr⌫

⌘
hexp⇤

F�
w (V †

⌫,��1

)

(⌫(Y1)�), ⌘0⌫idR if �
0

= 1,

G(��1

0

)�1

⇣
⌫(ap)$

`�

pr⌫�1

⌘t�
hexp⇤

F�
w (V †

⌫,��1

)

(⌫(Y1)�), ⌘0⌫idR if �
0

6= 1,

(ii) if `� < r⌫ , then

L⌘⌫
F+

w (V †
⌫ )

(⌫(Y1))(�) =
(�1)r⌫�`��1

(r⌫ � `� � 1)!

⇥

8
>>><

>>>:

⇣
1� pr⌫�1

⌫(ap)$
`�

⌘�1

⇣
1� ⌫(ap)$

`�

pr⌫

⌘
hlogF+

w (V †
⌫,�)

(⌫(Y1)�), ⌘0⌫idR if �
0

= 1,

G(��1

0

)�1

⇣
⌫(ap)$

`�

pr⌫�1

⌘t�
hlogF+

w (V †
⌫,�)

(⌫(Y1)�), ⌘0⌫idR if �
0

6= 1.

Comparing these with the formulae in Theorem 2.2.8 for the map Log⌘
F+

w (T†
)

, we see

that the map Log⌘⌫
F+

w (V †
⌫ )

defined by the commutativity of the diagram

(2.2.9) H1

Iw

(k1,F+

w (T†))

⌫
✏✏

Log

⌘

F+

w (T†)
// I[[�$]]⌦I I[��1]

⌫

✏✏

H1

Iw

(k1,F+

w (V †
⌫ ))

Log

⌘⌫

F+

w (V
†
⌫ )

// O⌫ [[�$]]⌦O⌫ O⌫ [��1

⌫ ]

is such that Log⌘⌫
F+

w (V †
⌫ )

= L⌘⌫
F+

w (V †
⌫ )

, since both maps have the same interpolation properties

at all � 2 X
arith

(⇤(�$)) of weight `� ⌘ 0 (mod p� 1) with `� < r⌫ , and these are enough

to uniquely determine either of them. By the interpolation properties of the map L⌘⌫
F+

w (V †
⌫ )

in the range where `� � r⌫ , the result follows. ⇤
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2.3. Main result

Recall that K1/K denotes the anticyclotomic Zp-extension of K, and let K1,p be the

completion of K1 at the unique prime above p. Since K satisfies the hypotheses (ram) and

(spl) from the Introduction, the field K1,p is a totally ramified Zp-extension of Kp
⇠= Qp.

Moreover, if ⇡ 2 OK is a generator of the principal ideal phK (hK := #Pic(OK)), it follows

from local class field theory that the uniformizer

$ := ⇡/⇡̄

of OKp
⇠= Zp is a universal norm of K1,p/Qp. As explained in §2.2.2, it follows that the

Z⇥
p -extension K1,p(µp)/Qp can be obtained from the torsion points of a height 1 Lubin–

Tate formal group over Zp associated with $, and hence attached to this local situation

we have a big p-adic regulator map

Log⌘
F+

w (T†
)

: H1

Iw

(K1,p,F
+

w (T†)) �! I[[�$]]⌦I I[��1]

as constructed in Theorem 2.2.6. Also, in the following we will repeatedly use the resulting

identification D1 ⇠= �$, so that the local component at p of an anticyclotomic Hecke

character � of K of infinity type (`,�`), with ` � 0, will be identified with an arithmetic

prime � 2 X
arith

(⇤(�$)) of weight `.

Recall the big cohomology class Z1 2 eH1

f,Iw(K1,T†) constructed from Howard’s big

Heegner points, as in Theorem 2.1.2, and the big p-adic Rankin L-series Lp(f †) of Propo-

sition 2.1.4. Since eH1

f,Iw(K1,T†) ⇠= Sel
Gr

(Kt,T†) as recalled before, the image of Z1 under

the localization map at p lies in H1

Iw

(K1,p,F+

w (T†)).

In this section we prove the following result.

Theorem 2.3.1. Fix an I-basis ⌘ of D and a compatible system (⇣s)s�0

of primitive

ps-th roots of unity. There exists a unit ↵⌘ 2 I⇥ such that the composite map

eH1

f,Iw(K1,T†)
locp���!H1

Iw

(K1,p,F
+

w (T†))
Log

⌘

F+

w (T†)�������! I[[�$]]⌦I I[��1]

sends ↵⌘ · Z1 to Lp(f †).

Proof. Denote by X good

arith,2(I) the set of arithmetic primes of I of weight 2 and non-

trivial wild character. (Recall that if ⌫ 2 X
arith

(I) has weight 2, then the corresponding

p-stabilized newform f⌫ has nebentypus "f⌫ =  ⌫!
k�2 = #2

⌫ , where  ⌫ is the wild character

of ⌫.)

We divide the proof of Theorem 2.3.1 into the following three steps:
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I: For each ⌫ 2 X good

arith,2(I), there exists a class Z⌘1,⌫ 2 eH1

Iw

(K1, V †
⌫ ) such that

Log⌘⌫
F+

w (V †
⌫ )

(locp(Z
⌘
1,⌫)) = Lp(f

†
⌫),

where Log⌘⌫
F+

w (V †
⌫ )

is the O⌫-linear map (2.2.9) obtained from Log⌘
F+

w (T†
)

by special-

ization at ⌫.

II: The classes Z⌘1,⌫ from Step I can be patched together, i.e. there exists a class

Z⌘1 2 eH1

Iw

(K1,T†) such that

⌫(Z⌘1) = Z⌘1,⌫

for all ⌫ 2 X good

arith,2(I).
III: There exists a unit ↵⌘ 2 I⇥ such that Z⌘1 = ↵⌘ · Z1.

Their proof is given in the next three subsections, respectively.

2.3.1. Step I: Weight 2 specializations. For each ⌫ 2 X
arith

(I) of weight 2, denote
by f⇤⌫ the primitive form associated with the twist f⌫ ⌦ "�1

f⌫
, so that f †⌫ = f⇤⌫ ⌦ #⌫ , and for

each class [a] 2 Pic(OK), set x(a) := a ⇤ (A,↵A, ıA), where (A,↵A, ıA) is the trivialized

elliptic curve with �
1

(N)-level structure fixed in §2.1.3.

Proposition 2.3.2. Let ⌫ 2 X good

arith,2(I), let � = �
0

2 X
arith

(⇤(�$)) have weight 0, and

assume that t� > s⌫, where t� (resp. s⌫) is the p-order of the conductor of �
0

(resp. #⌫).

Then
X

[a]2Pic(OK)

��1(a)��1(Na) · d�1f †⌫ ⌦ �a(x(a)) = ± ⌫(ap)t�

G(��1

0

)
hlogV †

⌫,�
(locp(⌫(Z1))�),!†

f⇤⌫
i
dR

,

where ± = #⌫(�1), G(��1

0

) =
P

v mod p
t�+1 ��1

0

(v)⇣vt�+1

, is the Gauss sum of ��1

0

, and

!†
f⇤⌫
2 Fil0D

dR

(V †
⌫ ) is the class associated with the twist f⇤⌫ ⌦ #⌫.

Proof. This follows from a calculation similar to [Cas13a, §5.1], and all the references

in this proof are to that paper. In order to avoid a too clustered notation, we set s = s⌫

and t = t� in the following.

By Definition 2.2,

d�1f †⌫ ⌦ �a(x(a)) =
�(a)

pt+1

X

v mod pt+1

�(v)
X

H(a)

⇣�v
H(a) · d�1f †⌫(x(ap

t+1)/H(a)),(2.3.1)

where the second sum is over the étale cyclic subgroups H(a) ⇢ Aapt+1 [pt+1] of order pt+1,

and for each H(a), ⇣H(a) is the primitive pt+1-st root of unity determined as follows. The

trivialization ıAa defines an inclusion µpt+1

,�! Aa[pt+1] whose image (which gives the



62 2. p-ADIC VARIATION OF HEEGNER POINTS

canonical subgroup of Aa of order p
t+1, in the sense of [Buz03, Def. 3.4]) is identified with

Aa[pt+1] ⇢ Aa[pt+1]. Since Aapt+1 = Aa/Aa[pt+1], it follows that the kernel of the dual ⇡̌a,t+1

to the projection ⇡a,t+1

: Aa �⇣ Aapt+1 gives an inclusion

(2.3.2) |a,t+1

: Z/pt+1Z ,�! Aapt+1 [pt+1]

whose image is identified with Aapt+1 [pt+1] ⇢ Aapt+1 [pt+1]. Since ⇡̌a,t+1

is étale, it induces

the trivialization Âapt+1

⇠�! Âa
ıAa��! Ĝm, giving rise to an inclusion

(2.3.3) ıa,t+1

: µpt+1

,�! Aapt+1 [pt+1]

normalized so that ıa,t+1

(⇣t+1

) = ⇡a,t+1

(↵a), with ↵a 2 Aapt+1 [p̄t+1] such that

ept+1,a(↵a, |a,t+1

(m)) = ⇣mt+1

for all m 2 Z/pt+1Z,

where ept+1,a : Aapt+1 [pt+1]⇥Aapt+1 [pt+1] �! µpt+1

is the Weil pairing, and ⇣t+1

is our fixed

(in the statement of Theorem 2.3.1) primitive pt+1-st root of unity. The combination of

(2.3.2) and (2.3.3) gives an isomorphism

(2.3.4) µpt+1

⇥ Z/pt+1Z �! Aapt+1 [pt+1].

In particular, applied to the unit ideal a = OK , we may use (2.3.4) to define a bijection

between the above cyclic subgroups H(OK) ⇢ Apt+1 [pt+1] and the invertible elements

u 2 (Z/pt+1Z)⇥, so that

⇣Hu(OK)

= ⇣ut+1

.

For an arbitrary class [a] 2 Pic(OK), the subgroups H(a) ⇢ Aapt+1 [pt+1] are the image of

the subgroups H(OK) under the Na-isogeny 'a : Apt+1 �! Aapt+1 . Since

et+1,a(↵a, |a,t+1

(m)) = et+1,a('a(↵OK
),'a(|OK ,t+1

(m)))

= et+1,OK
(↵OK

, |OK ,t+1

(m))Na,

we see that ıa,t+1

(⇣t+1

) = ıOK ,t+1

(⇣Na�1

t+1

), where the inverse Na�1 is computed in (Z/pt+1Z)⇥,

and hence

⇣Hu(a) = ⇣u·Na�1

t+1

.

We have thus defined the units ⇣H(a) appearing in (2.3.1). Moreover, if b ⇢ K is a fractional

ideal such that (Aapt+1/H(a))(C) = C/b, it is easy to see that b is a proper Opt+1-ideal

such that bOK = ap̄t+1, and we let x(b) = x(apt+1)/H(a) denote the trivialized elliptic

curve with �
1

(N)-level structure deduced from (Aa,↵Aa , ıAa) after first dividing by Aa[pt+1]

and then the resulting quotient by H(a).
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Putting everything together, we thus see that (2.3.1) may be rewritten as

d�1f †⌫ ⌦ �a(x(a)) =
�(a)

pt+1

X

v mod pt+1

�(v)
X

[b]2Pic(Opt+1

)

bOK=a¯pt+1

⇣�ub·Na�1·v
t+1

· d�1f †⌫(x(b))

=
�(a)�(Na)

G(��1)

X

[b]2Pic(Opt+1

)

bOK=a¯pt+1

��1(ub) · d�1f †⌫(x(b)),

where the second equation follows from the relation G(�)G(��1) = �(�1)pt+1, and where

ub 2 (Z/pt+1Z)⇥ is such that b corresponds to Hub
(a) as described above. Summing over

the classes [a] 2 Pic(OK), we thus arrive at

(2.3.5)
X

[a]2Pic(OK)

��1(a)��1(Na) · d�1f †⌫ ⌦ �a(x(a)) =
1

G(��1)

X

[b]2Pic(Opt+1

)

��1(ub) · d�1f †⌫(x(b)).

If x = (E,↵E, ıE) is a trivialized elliptic curve with �
1

(N)-level structure, define

Frob(x) := (E/ı�1

E (µp),�E � ↵E, �̌E � ıE),

where �E : E �! E/ı�1

E (µp) is the natural projection. The Frobenius operator Frob

on the space M(N) of p-adic modular forms of tame level N is then defined by setting

Frob(g)(x) := g(Frob(x)) for all g 2M(N).

Now fix a class [b] 2 Pic(Opt+1), and let x(b) = (Ab,↵b, ıb) be the corresponding

trivialized elliptic curve with �
1

(N)-level structure. Again by Definition 2.2 of the character

twist, but applied to d�1f †⌫ = d�1f⇤[p]⌫ ⌦ #⌫ , we have

(2.3.6) d�1f †⌫(x(b)) =
1

ps

X

u mod ps

#⌫(u)
X

Cb

⇣�u
Cb

· Frobs(d�1f⇤[p]⌫ )(x(b)/Cb),

where the second sum is over the étale cyclic subgroups Cb ⇢ Ab[ps] of order ps. Similarly as

before, these subgroups are in one-to-one correspondence with the elements w 2 (Z/psZ)⇥,

and we set

(2.3.7) ⇣Cb
= ⇣ws

if Cb corresponds to w.

Let F!f⇤⌫
be the Coleman primitive of !f⇤⌫ which vanishes at 1 and satisfies

(2.3.8) F!f⇤⌫
� ⌫(ap)

p
Frob(F!f⇤⌫

) = d�1f⇤[p]⌫ .
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(See Corollary 2.8.) Using this relation, it is immediately seen that the equalities Up �
Frob = id as operators on M(N) and UpF!f⇤⌫

= ⌫(ap)

p
F!f⇤⌫

imply that

(2.3.9) Frobs(d�1f⇤[p]⌫ )(x(b)/Cb) =
ps

⌫(ap)s
d�1f⇤[p]⌫ (x(b)/Cb).

Writing (Ab/Cb)(C) = C/c for a fractional ideal c ⇢ K, we see that c is a proper Opt+1+s-

ideal such that cOpt+1 = b.

Writing x(b)/Cb = x(cw) if Cb corresponds to w, and substituting (2.3.7) and (2.3.9)

into (2.3.6), we thus arrive at

d�1f †⌫(x(b)) =
1

⌫(ap)s

X

u mod ps

#⌫(u)
X

w2(Z/psZ)⇥
⇣�uw
s · d�1f⇤[p]⌫ (x(cw))

= ±G(#⌫)

⌫(ap)s

X

w2(Z/psZ)⇥
#�1

⌫ (w) · d�1f⇤[p]⌫ (x(cw)),(2.3.10)

where ± = #⌫(�1).
For c = Opt+1+s , we have

d�1f⇤[p]⌫ (x(Opt+1+s)) = d�1f⇤[p]⌫ (hpt+1,s),

where hpt+1,s 2 Xs(C) is the CM point with �
0

(N) \ �
1

(ps)-level structure appeared in

§2.1.2, which by [How07b, Cor. 2.2.2] is rational over Lpt+1,s := Hpt+1+s(µps). Let Fs be

a finite extension of the closure of ıp(Lpt+1,s) ⇢ Qp such that the base change Xs ⇥Qp Fs

admits a stable model. The calculation in Proposition 2.9 applies to the pair f⇤⌫ and

�pt+1,s := (hpt+1,s)� (1) 2 Js(Fs), yielding the formula

log!f⇤⌫
(�pt+1,s) = F!f⇤⌫

(hpt+1,s).(2.3.11)

Let St+1

⇢ Gal(Lpt+1,s/Hpt+1) be a set of lifts of Gal(Hpt+1+s/Hpt+1) fixing ⇣s. Then,

for b = Opt+1 ,

(2.3.12)
�
d�1f⇤[p]⌫ (x(cw)) : w 2 (Z/psZ)⇥

 
=
�
d�1f⇤[p]⌫ (h�pt+1,s) : � 2 St+1

 
;

for an arbitrary [b] 2 Pic(Opt+1), taking a proper Opt+1+s-ideal c ⇢ K with cOpt+1 = b and

defining bhpt+1,s 2 Xs(C) by the triple (bApt+1,s, n
0
pt+1,s, ⇡

0
pt+1,s) where

• bApt+1,s(C) = C/c,

• n0pt+1,s = ker (C/c �! C/(N \ c)�1),

• ⇡0
pt+1,s generates the kernel of the cyclic ps-isogeny C/c �! C/b,
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the analogue of (2.3.12) with hpt+1,s replaced by bhpt+1,s holds, and hence (2.3.10) may be

rewritten as

d�1f †⌫(x(b)) = ±G(#⌫)

⌫(ap)s

X

�2St+1

��1

⌫ (�) · d�1f⇤[p]⌫ (bh
�
pt+1,s).(2.3.13)

Moreover, it is easily seen that

(2.3.14) Frob(bhpt+1,s) = bhpt,s.

Now for each class [b] 2 Pic(Opt+1) define

(2.3.15) bQ
�⌫

pt+1,s :=
X

�2St+1

b�
�
pt+1,s ⌦ ��1

⌫ (�) 2 Js(Lpt+1,s)⌦Z F⌫ ,

where b�pt+1,s := (bhpt+1,s)� (1). Combining (2.3.5) and (2.3.13), we obtain
X

[a]2Pic(OK)

��1(a)��1(Na) · d�1f †⌫ ⌦ �a(x(a))

= ±⌫(ap)
�s G(#⌫)

G(��1)

X

�2St+1

��1

⌫ (�)
X

[b]2Pic(Opt+1

)

��1(�b) · d�1f⇤[p]⌫ (bh
�
pt+1,s)

= ±⌫(ap)
�s G(#⌫)

G(��1)

X

�2St+1

��1

⌫ (�)
X

[b]2Pic(Opt+1

)

��1(�b) · F!f⇤⌫
(bh

�
pt+1,s)

= ±⌫(ap)
�s G(#⌫)

G(��1)

X

[b]2Pic(Opt+1

)

��1(�b) · log!f⇤⌫
(bQ

�⌫

pt+1,s),(2.3.16)

where the second equality follows from the combination of (2.3.8) and (2.3.14), since � has

conductor pt+1, and the last equality follows from (2.3.11).

Letting T⇤ := HomI(T, I) be the contragredient of T, the map T⇤ �! V ⇤
⌫ can be

factored as

T⇤ �! Taordp (Js) �! V ⇤
⌫ ,

and tracing through the definitions we see that the image of bQ
�⌫

pt+1,s under the induced

map

Js(Lpt+1,s)⌦Z F⌫
eord��! Jord

s (Lpt+1,s)⌦Z F⌫(2.3.17)

Kums���! H1(Lpt+1,s,Ta
ord

p (Js)⌦Z F⌫)

�! H1(Lpt+1,s, V
⇤
⌫ ) ⇠= H1(Lpt+1,s, V

†
⌫ ),
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is the same as the image of U s
p · ⌫(X�b

pt+1

) in H1(Lpt+1,s, V
†
⌫ ) under restriction, and hence

log!f⇤⌫
(bQ

�⌫

pt+1,s) = hlogV †
⌫
(Kums(e

ord(bQ
�⌫

pt+1,s))),!f⇤⌫ idR
= ⌫(ap)

s · hlogV †
⌫
(locp(⌫(X

�b
pt+1

))),!f⇤⌫ idR.(2.3.18)

Substituting (2.3.18) into (2.3.16) we conclude that
X

[a]2Pic(OK)

��1(a)��1(Na) · d�1f †⌫ ⌦ �a(x(a))

= ± G(#⌫)

G(��1)

X

[b]2Pic(Opt+1

)

��1(�b)hlogV †
⌫
(locp(⌫(X

�b
pt+1

))),!f⇤⌫ idR

= ± ⌫(ap)t

G(��1)
hlogV †

⌫,�
(U�t

p · locp(⌫(Xpt+1))�,!†
f⇤⌫
i
dR

= ± ⌫(ap)t

G(��1)
hlogV †

⌫,�
(locp(⌫(Zt))

�,!†
f⇤⌫
i
dR

,

where the last equality follows from the construction of Zt (see Theorem 2.1.2). Proposi-

tion 2.3.2 follows. ⇤

Definition 2.3.3. Let ⌘ be an I-basis of D, and let ⌘† denote its image in D†. For

each ⌫ 2 X
arith

(I), define the p-adic period ⌦⌘
⌫ 2 F⇥

⌫ to be the value

(2.3.19) ⌦⌘
⌫ := h⌘†⌫ ,!†

f⇤⌫
i
dR

under the de Rham pairing (2.2.7) (with `� = 0).

Remark 2.3.4. The period ⌦⌘
⌫ depends on the choice of a compatible system of prim-

itive p-power roots of unity, since the definition of the specialization maps (2.2.5) depend

on such choice.

Remark 2.3.5. For ⌫ 2 X
arith

(I) of weight 2 and trivial nebentypus, it can be shown

that ⌦⌘
⌫ is a p-adic unit. (See [Och06, Prop. 6.4].)

Corollary 2.3.6. Fix an I-basis ⌘ of D, and let ⌫ 2 X good

arith,2(I). The class

Z⌘1,⌫ := ±⌦⌘
⌫ · ⌫(Z1),

where ± = #⌫(�1), is such that

Log⌘⌫
F+

w (V †
⌫ )

(locp(Z
⌘
1,⌫)) = Lp(f

†
⌫).

Proof. From the specialization properties of the map Log⌘
F+

w (T†
)

of Theorem 2.2.8 and

the formula (2.1.3) for the values of Lp(f †⌫), we see that Proposition 2.3.2 amounts to the



2.3. MAIN RESULT 67

fact that for all but finitely many � 2 X
arith

(⇤(�$)) of weight 0, the values at � of either

of the two sides of the purported equality are the same. Since an element in O⌫ [[�$]] is

determined by these values, the equality follows. ⇤

2.3.2. Step II: A patching argument. The following result will be a key ingredient

in the argument.

Lemma 2.3.7. Fix a non-exceptional ⌫ 2 X
arith

(I). Then for all but finitely many

� 2 X
arith

(⇤(D1)) of weight 0, the localization map

Sel
Gr

(K,V †
⌫,�) �!

M

v|p
H1(Kv, V

†
⌫,�)

is injective.

Proof. This is similar to [Cas13a, Cor. 5.10], but we give here a complete argument.

We will show that the map locp : SelGr

(K,V †
⌫,�) �! H1(Kp, V

†
⌫,�) is injective, the argument

for loc
¯p being the same.

By [How07b, Cor. 3.1.2], the class ⌫(Z1) 2 eH1

f,Iw(K,T †
⌫ ) is not O⌫ [[D1]]-torsion,

and hence the image of ⌫(Z1)� in Sel
Gr

(K,V †
⌫,�) is nonzero for all but finitely many � 2

X
arith

(⇤(D1)). For � of weight 0, the proof of [Hsi13, Thm. 6.1] shows3 that the latter

nonvanishing implies that

Sel
Gr

(K,V †
⌫,�) = F⌫,� · ⌫(Z1)�,

where F⌫,� is the field extension of F⌫ generated by the values of �. Thus upon fixing

� 2 X
arith

(⇤(D1)) of weight 0, it su�ces to show that

(2.3.20) ⌫(Z1)� 6= 0 =) locp(⌫(Z1)�) 6= 0.

Let s (resp. t) be the p-order of the conductor of #⌫ (resp. �), so that V †
⌫,�
⇠= V ⇤

⌫ as

GLpt+1,s
-representations, where Lpt+1,s = Hpt+1+s(µps). The restriction map

H1(K,V †
⌫,�)

resL
pt+1,s������! H1(Lpt+1,s, V

†
⌫,�)
⇠= H1(Lpt+1,s, V

⇤
⌫ )

is easily seen to be injective. By construction, the class resLpt+1,s
(⌫(Z1)�) agrees with the

image of (a non-zero F⌫-multiple of) a point Qpt+1,s 2 Js(Lpt+1,s) under the composite map

s : Js(Lpt+1,s)
eord�Kums������! H1(Lpt+1,s,Ta

ord

p (Js)) �! H1(Lpt+1,s, V
⇤
⌫ )

3Note that loc.cit. works in fact with the Bloch–Kato Selmer group H1
f (K,V †

⌫,�), but since ⌫ is non-

exceptional, SelGr(K,V †
⌫,�) = H1

f (K,V †
⌫,�).
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as described in (2.3.17), and hence

(2.3.21) ⌫(Z1)� 6= 0 =) Qpt+1,s ⌦ 1 6= 0 2 Js(Lpt+1,s)⌦Q.

Letting Fpt+1,s denote the completion of ıp(Lpt+1,s) ⇢ Qp, the composite map

�s : Js(Lpt+1,s)⌦Q �! Js(Fpt+1,s)⌦Qp
eord��s����! H1(Fpt+1,s,Ta

ord

p (Js)⌦Zp Qp)

is an injection, where �s is the local Kummer map. Together with the commutativity of

the diagram

Js(Lpt+1,s)⌦Q
s //

�s
✏✏

H1(Lpt+1,s, V
⇤
⌫ )

locp

✏✏

H1(Fpt+1,s,Ta
ord

p (Js)⌦Zp Qp) // H1(Fpt+1,s, V
⇤
⌫ ),

we deduce that

Qpt+1,s ⌦ 1 6= 0 =) �s(Qpt+1,s ⌦ 1) 6= 0

=) locp(resLpt+1,s
(⌫(Z1)�)) 6= 0,

and combined with (2.3.21), we arrive at

⌫(Z1)� 6= 0 =) resLpt+1,s
(locp(⌫(Z1)�)) 6= 0.

By the injectivity of the map resLpt+1,s
, this shows that the implication (2.3.20) holds, as

was to be shown. ⇤

For our later reference, we record here the following immediate consequence.

Corollary 2.3.8. For any non-exceptional ⌫ 2 X
arith

(I), the kernel of the localization

map

Sel
Gr

(K1, T †
⌫ ) �!

M

v|p
H1(K1,v,F

+

w (T †
⌫ ))

is O⌫ [[D1]]-torsion.

Proof. Let Z be the kernel of this localization map. Since ⌫(Z1) is not O⌫ [[D1]]-

torsion, ⌫(Z1)� 6= 0 for all but finitely many � 2 X
arith

(⇤(D1)), and hence in particular

Sel
Gr

(K,T †
⌫,�) is torsion-free. By Lemma 2.3.7, it follows that the image of Z under the map

Sel
Gr

(K1, T †
⌫ ) �! Sel

Gr

(K,T †
⌫,�) is trivial for infinitely many �, and hence Z is necessarily

O⌫ [[D1]]-torsion, as was to be shown. ⇤
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Proposition 2.3.9. Let S ⇢ X good

arith,2(I) be a finite subset, and set

T†
n := T† ⌦I I/n, n := \⌫2Sker(⌫).

There exists a class Z⌘1,n 2 eH1

f,Iw(K1,T†
n) such that

(2.3.22) Log⌘⌫
F+

w (V †
⌫ )

(locp(⌫(Z
⌘
1,n))) = Lp(f

†
⌫), for all ⌫ 2 S,

where ⌫(Z⌘1,n) is the image of Z⌘1,n under the natural map induced by T†
S �! V †

⌫ .

Proof. We argue by induction on the cardinality of S, following the proof of [Och06,

Thm. 6.11] very closely. The base case |S| = 1 is the content of Corollary 2.3.6. Assume

that the proposition holds for a fixed S as in the statement; for any fixed ⌫ 0 2 X good

arith,2(I)rS,

we will show that the proposition holds for S [ {⌫ 0} as well.

Setting n0 = ker(⌫ 0), there is an exact sequence

0 �! H1

Iw

(K1,T†
n\n0)

↵��! H1

Iw

(K1,T†
n)�H1

Iw

(K1, T †
⌫0)

���! H1

Iw

(K1,T†
n�n0),

where

↵ : Yn\n0 7�! (Yn\n0 mod n,Yn\n0 mod n0),

� : (Yn,Y⌫0) 7�! (Yn mod n� n0)� (Y⌫0 mod n� n0).

Let � 2 X
arith

(⇤(D1)) have weight 0. Then by the definition (2.1.3) of Lp(f⌫00), we

have on the one hand that by Corollary 2.3.6 there exists a class Z⌘1,n0 such that

(2.3.23) Log
⌘⌫0

F+

w (V †
⌫0 )
(locp(Z

⌘
1,n0))(�) =

X

[a]2Pic(OK)

��1(a)��1(Na) · d�1f †⌫0 ⌦ �a(x(a)),

and on the other hand by assumption there exists a class Z⌘1,n such that

(2.3.24) Log⌘⌫
F+

w (V †
⌫ )

(locp(⌫(Z
⌘
1,n))(�) =

X

[a]2Pic(OK)

��1(a)��1(Na) · d�1f †⌫ ⌦ �a(x(a)),

for all ⌫ 2 S. Since the q-expansions of the twists d�1f †⌫ ⌦�a and d�1f †⌫0 ⌦�a are congruent

to each other modulo ker(⌫)+ker(⌫ 0), the same is true for their values at the ordinary CM

points appearing in (2.3.23) and (2.3.24), and hence the class (� � �)(Z⌘1,n,Z
⌘
1,n0) lies in

the kernel of the composite map

Sel
Gr

(K,T †
⌫,�)

locp���! H1(Kp,F
+

w (T †
⌫,�)) �! H1(Kp,F

+

w (V †
⌫,�))

hlog(�),⌘0⌫i�������! F⌫,�.

Since this map clearly factors through Sel
Gr

(K,T †
⌫,�) �! Sel

Gr

(K,V †
⌫,�), by Lemma 2.3.7

it follows that �(Z⌘1,n,Z
⌘
1,n0) = 0, and hence by the exactness of the above sequence, there
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exists a class Z⌘1,n\n0 2 H1

Iw

(K1,T†
n\n0) such that

(Z⌘1,n,Z
⌘
1,n0) = ↵(Z⌘1,n\n0).

By construction, this class satisfies

Log⌘⌫
F+

w (V †
⌫ )

(locp(⌫(Z
⌘
1,n\n0)) = Lp(f

†
⌫)

for all ⌫ 2 S [ {⌫ 0}, and the result thus follows by induction. ⇤

2.3.3. Step III: End of proof of Theorem 2.3.1. Denote by A the collection of

all finite subsets of X good

arith,2(I) ordered by inclusion, and for each S 2 A, let Z⌘1,n(S) be the

class constructed in Proposition 2.3.9. Note that if S ⇢ S 0 in A, there is a natural map

H1

Iw

(K1,T†
n(S0

)

) �! H1

Iw

(K1,T†
n(S)),

and that by construction the class Z1,n(S0
)

is sent to Z1,n(S) under this map.

Setting

(2.3.25) Z⌘1 := lim �
S

Z⌘1,n(S),

for S running over an infinite strictly ascending chain in A, we thus obtain a class Z⌘1 2
H1

Iw

(K1,T†) such that, for infinitely many ⌫ 2 X good

arith,2(I),

(2.3.26) ⌫(Z⌘1) 2 eH1

f,Iw(K1, V †
⌫ ),

and

(2.3.27) Log⌘⌫
F+

w (V †
⌫ )

(locp(⌫(Z
⌘
1))) = Lp(f

†
⌫).

In the proof of [How07b, Prop. 2.4.5] it is shown that the inclusion (2.3.26) for infinitely

many ⌫ 2 X
arith

(I) implies4 that Z⌘1 2 eH1

f,Iw(K1,T†) and from (2.3.27) it follows that

Log⌘
F+

w (T†
)

(locp(Z
⌘
1)) = Lp(f

†),

as was to be shown. ⇤

Corollary 2.3.10. Fix an I-basis ⌘ of D. There exists a unit ↵⌘ 2 I⇥ such that

Log⌘
F+

w (T†
)

(locp(↵⌘ · Z1)) = Lp(f
†).

Proof. Since Z1 is not I1-torsion by Theorem 2.1.2(2), eH1

f,Iw(K1,T†) is torsion-free

of rank 1 over I1 by [Fou13, Thm. 6.3], and hence the class Z⌘1 of Theorem 2.3.1 is

4With the notations of loc.cit., we have � = 1 by our assumption (heeg) from the Introduction.
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such that Z⌘1 = ↵⌘ · Z1 for some ↵⌘ lying in Frac(I1) a priori. Since the construction

(2.3.25) of the class Z⌘1 shows that ⌫(↵⌘) is a unit in O⇥
⌫ for some ⌫ 2 X

arith

(I) (see

Remark 2.3.5 and Corollary 2.3.6), we see that in fact ↵⌘ lies in I⇥, and the result follows

from Theorem 2.3.1. ⇤

2.3.4. Explicit reciprocity law. We can now deduce from Theorem 2.3.1 a result

that will be one of the key ingredients to the arithmetic applications of Section 2.4.

Theorem 2.3.11. Let ⌫ 2 X
arith

(I) be a non-exceptional arithmetic prime of weight

k⌫ = 2r⌫ � 2 with r⌫ ⌘ k/2 (mod p � 1) and trivial wild character, and let � be an

anticyclotomic Hecke character of K of conductor dividing N and infinity type (`,�`) with
` � r⌫ and ` ⌘ 0 (mod p� 1). Then

locp(⌫(Z1)�) 6= 0 () L(f⌫ ,�
�1, r⌫) 6= 0.

Proof. This follows from the combination of Corollary 2.2.9 and Corollary 2.3.10, not-

ing that since ⌫ is non-exceptional, neither of the factors
⇣
1� pr⌫�1

⌫(ap)$`

⌘
or
⇣
1� ⌫(ap)$`

pr⌫

⌘

appearing in the former result vanishes, and that since ` � r⌫ , the map exp⇤ (see Re-

mark 2.2.10) is bijective. ⇤

2.4. Arithmetic applications

In this section we bound the sizes of certain Selmer groups associated to the Rankin–

Selberg convolution of a cusp form with a theta series of higher weight.

2.4.1. Bounding Selmer groups. Let f 2 Sk(�0

(N)) be a normalized p-ordinary

newform of weight k � 2 and trivial nebentypus, and let ⇢f : GQ �! AutL(Vf ) be the

self-dual twist of its associated Galois representation. Let � be an anticyclotomic Hecke

character of K of conductor dividing N and of infinity type (`,�`) with ` � k/2, denote

by ✓� its associated theta series, and set

Vf,� := (Vf ⌦ V✓�)|GK
⇠= Vf |GK

⌦ �.

Since � is anticyclotomic, the representation Vf,� is conjugate self-dual, i.e.

V ⇤
f,�(1) ⇠= V c

f,�,

where V c
f,� denotes the conjugate of Vf,� by the non-trivial automorphism of K.

Let Tf ⇢ Vf be a GQ-stable lattice, set Tf,� := Tf |GK
⌦ �, and define Af,� by the

exactness of the sequence

(2.4.1) 0 �! Tf,� �! Vf,� �! Af,� �! 0.
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Definition 2.4.1. For every finite extension K/K define

(2.4.2) Selp(K, V c
f,�) = ker

 
H1(K, V c

f,�) �!
M

v

H1(Kv, V
c
f,�)

H1

f (Kv, V c
f,�)

!
,

where v runs over all places of K. Here for v - p we put

H1

f (Kv, V
c
f,�) = ker

�
H1(Kv, V

c
f,�) �! H1(Knr

v , V c
f,�)
�
,

whereas for v - p,

H1

f (Kv, V
c
f,�) =

8
><

>:

H1(Kv, V
c
f,�) if v|p̄,

0 if v|p.
ReplacingH1

f (Kv, V
c
f,�) by their images inH1(Kv, A

c
f,�) (resp. preimages inH1(Kv, T

c
f,�))

under the map induced by (2.4.1), define Selp(K, Ac
f,�) ⇢ H1(K, Ac

f,�) (resp. Selp(K, T c
f,�) ⇢

H1(K, Tf,�)c) by the corresponding analogue of (2.4.2).

In particular, the classes in Selp(K,V c
f,�) are unramified outside p, satisfy no specific

local condition at p̄, and they have trivial restriction at p.

For v|p, the above local subspaces H1

f (Kv, V
c
f,�) agree with

H1

f (Kv, V
c
f,�) := ker

�
H1(Kv, V

c
f,�) �! H1(Kv, V

c
f,� ⌦ B

cris

)
�
,

and hence Selp(K, V c
f,�) is the same as the Bloch–Kato Selmer group for theGK-representation

V c
f,�.

Conjecture 2.4.2 (Bloch–Kato). ords=k/2L(f,��1, s) = dimLSelp(K,V c
f,�).

Using our results in Section 2.3, we are going to show how certain “rank 0” cases of

Conjecture 2.4.2 follow from the following result.

Theorem 2.4.3. If ⌫f (Z1)� 6= 0, then Sel
Gr

(K,Tf,�) is free of rank 1 over O.

Proof. Since ⌫f is non-exceptional, this follows from [Fou13, Cor. 5.21]. ⇤

Consider the following modifications of the preceding Selmer groups, obtained by chang-

ing the local condition at the prime above p. If v|p, let

H1

a(Kv, Vf,�) :=

8
><

>:

H1(Kv, Vf,�) if a = ;,
H1(Kv,F+

w (Vf,�)) if a = Gr,

0 if a = 0,
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and define

Sela,b(K,Vf,�) := ker

✓
H1(G(Np)

K , Vf,�) �!
H1(Kp, Vf,�)

H1

a(Kp, Vf,�)

M H1(K
¯p, Vf,�)

H1

b (K¯p, Vf,�)

◆
,

where G
(Np)
K is the Galois group of the maximal extension of K unramified outside the

primes above Np. Define Sela,b(K,Tf,�) and Sela,b(K,Af,�) using (2.4.1) similarly as before,

and if a = b set Sela(K,M) = Sela,b(K,M). The same construction may be applied starting

with V c
f,�, so that Selp(K,V c

f,�) = Sel
0,;(K,V c

f,�).

Proposition 2.4.4. If locp(⌫f (Z1)�) 6= 0 then Selp(K,V c
f,�) = 0.

We will first need the following lemma.

Lemma 2.4.5. There is a noncanonical isomorphism of O-modules

Sel
Gr,;(K,T c

f,�) ⇠= O � Sel
0,Gr

(K,Tf,�).

Proof. Denote by � the quotient field of O, and let ⇡ 2 O be a uniformizer. Similarly

as in [AH06, Prop. 1.2.3], for every i > 0 we have a noncanonical isomorphism

(2.4.3) Sel
Gr,;(K,Ac

f,�)[⇡
i] ⇠= (�/O)r[⇡i]� Sel

0,Gr

(K,Af,�)[⇡
i],

where the integer r is given by

corankOH1(K
¯p,F

+

w (Af,�)) + corankOH1(K
¯p, Af,�)� corankOH0(Kv, Af,�)

in light of the Poitou–Tate duality as formulated in [Wil95] (see also [DDT94, §2.3]),
and where v denotes the unique archimedean place of K. Hence r = 1. Since the groups

Sela,b(K,Tf, ) are the ⇡-adic Tate module of Sela,b(K,Af, ) taking the projective limit in

(2.4.3) as i!1 the result follows. ⇤

Proof of Proposition 2.4.4. It su�ces to see that Selp(K,T c
f,�) is finite. The non-

vanishing assumption clearly implies that ⌫f (Z1)� 6= 0, and hence Sel
Gr

(K,Tf,�) ⇠= O by

Theorem 2.4.3. Also by the assumption, ⌫f (Z1)� /2 Sel
0,Gr

(K,Tf,�) and since ⌫f (Z1)� 2
Sel

Gr

(K,Tf,�), we see that Sel0,Gr

(K,Tf,�) is necessarily finite. By Lemma 2.4.5, it follows

that Sel
Gr,;(K,T c

f,�) has O-rank 1.

The class ⌫f (Zc
1)�

�1

lies in Sel
Gr

(K,T c
f ⌦��1) = Sel

Gr

(K,T c
f,�), and by the “functional

equation” [How07b, Prop. 2.3.5] we see that

locp(⌫f (Z1)�) 6= 0 () locp(⌫f (Z
c
1)�

�1

) 6= 0.
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Thus by our nonvanishing assumption ⌫f (Zc
1)�

�1

lies in the complement of Sel
0,;(K,T c

f,�)

in Sel
Gr

(K,T c
f,�) ⇢ Sel

Gr,;(K,T c
f,�), and since we have shown that the latter group has O-

rank 1, it follows that Sel
0,;(K,T c

f,�) is finite. ⇤

Theorem 2.4.6. Let f 2 Sk(�0

(N)) be a normalized p-ordinary newform of weight

k � 2 with k ⌘ 2 (mod p � 1) and trivial nebentypus, and let � be an anticyclotomic

Hecke character of K of infinity type (`,�`) with ` � k/2 and ` ⌘ 0 (mod p � 1) and of

conductor dividing N. If L(f,��1, k/2) 6= 0 then Selp(K,V c
f,�) = 0.

Proof. This is the combination of Corollary 2.3.11 and Proposition 2.4.4. ⇤

2.4.2. Iwasawa theory. Let f and ⇢f be as in §2.4.1. Let f 2 I[[q]] be the Hida family

of f , and let ⌫f 2 X
arith

(I) be the arithmetic prime such that ⌫f (f) gives the ordinary p-

stabilization of f . Then there are induced O-linear specialization maps I1 �! ⇤ :=

O[[D1]] and eH1

f,Iw(K1,T†) �! eH1

f,Iw(K1, Vf ), both also denoted by ⌫f in the following.

By Theorem 2.3.1, the “big” anticyclotomic p-adic L-function of Definition 2.1.3 is

given by an element Lp(f †) 2 I1⌦I I[��1]. In this section we give an interpretation of the

p-adic L-function

Lp(f) := ⌫f (Lp(f
†))

in terms of Iwasawa theory.

For a, b 2 {0,Gr, ;}, consider the finitely generated ⇤-modules

Sa,b(f) := lim �
t

Sela,b(Kt, Tf ), Xa,b(f) := HomZp(lim�!
t

Selb⇤,a⇤(Kt, A
c
f ),Qp/Zp),

where the groups appearing in the right-hand sides are defined as in § 2.4.1, setting 0⇤ = ;,
Gr⇤ = Gr and ;⇤ = 0. If a = b, set Xa(f) := Xa,b(f) and Sa(f) := Sa,b(f).

The following conjecture is suggested by the generalization of Iwasawa theory developed

by Greenberg in [Gre94]. If X is a finitely generated ⇤-module, we let char
⇤

(X) ⇢ ⇤

denote its characteristic ideal, with the convention that char
⇤

(X) = 0 if X is not ⇤-torsion.

Set Xp(f) := X
0,;(f).

Conjecture 2.4.7 (Iwasawa–Greenberg). Xp(f) is ⇤-torsion, and

char
⇤

(Xp(f)) = (Lp(f)
2)

in Qp ⌦Zp ⇤.

On the other hand, Howard’s extension of the Heegner point main conjecture of Perrin-

Riou [PR87a] predicts (cf. [How07b, Conj. 3.3.1]):
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Conjecture 2.4.8 (Perrin-Riou–Howard). S
Gr

(f) has ⇤-rank 1, and

char
⇤

(X
Gr

(f)
tors

) = char
⇤

✓
S
Gr

(f)

⇤ · ⌫f (Z1)

◆
2

in Qp ⌦Zp ⇤.

Following the work of Mazur–Rubin [MR04] and Howard [How04a], Fouquet has ex-

tended Kolyvagin’s methods to the context of Nekovář’s Selmer complexes, deducing one of

the divisibilities predicted by Conjecture 2.4.8. After Theorem 2.3.1, we can relate Conjec-

ture 2.4.7 to Conjecture 2.4.8, thus deducing from Fouquet’s result one of the divisibilities

predicted by the former conjecture.

Theorem 2.4.9. Xp(f) is ⇤-torsion, and

char
⇤

(Xp(f)) ◆ (Lp(f)
2)

in Qp ⌦Zp ⇤.

Proof. By Theorem 2.1.2(2), ⌫f (Z1) is not ⇤-torsion, and hence by [Fou13, Cor. 6.19],

S
Gr

(f) has ⇤-rank 1, and

char
⇤

(X
Gr

(f)
tors

) ◆ char
⇤

✓
S
Gr

(f)

⇤ · ⌫f (Z1)

◆
2

in Qp ⌦Zp ⇤.

By elementary properties of the characteristic ideal, it follows that

(2.4.4) char
⇤

(X
0,Gr

(f)
tors

) ◆ char
⇤

✓
S
Gr,;(f)

⇤ · ⌫f (Z1)

◆
2

in Qp ⌦Zp ⇤.

Arguing as in [AH06, Thm. 1.2.2] (see also Lemma 2.4.5) we find

rank
⇤

(S;,Gr

(f)) = rank
⇤

(X;,Gr

(f))(2.4.5)

= 1 + rank
⇤

(X
0,Gr

(f)) = 1 + rank
⇤

(S
0,Gr

(f)).

By Theorem 2.1.2(2) and Corollary 2.3.8, the class loc
¯p(⌫f (Z1)) is not ⇤-torsion. Since

S
Gr

(f) ⇢ S;,Gr

(f) is torsion-free of ⇤-rank 1, it follows from (2.4.5) that rank
⇤

(S
0,Gr

(f)) =

0 and that X
0,Gr

(f) = X
0,Gr

(f)
tors

.

Poitou–Tate duality gives rise to the exact sequence

(2.4.6) 0 �! S
Gr,;(f)
S
0,;(f)

locp��! H1

Iw

(K1,p,F
+

w (Tf )) �! Xp(f) �! X
0,Gr

(f) �! 0.
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Again by Theorem 2.1.2(2) and Corollary 2.3.8, locp(⌫f (Z1)) is not ⇤-torsion, and

hence from (2.4.6), it follows that S
0,;(f) = 0. Thus we arrive at the exact sequence

0 �! S
Gr,;(f)

⇤ · ⌫f (Z1)

locp��! H1

Iw

(K1,p,F+

w (Tf ))

⇤ · locp(⌫f (Z1))
�! Xp(f) �! X

0,Gr

(f) �! 0,

which shows that Xp(f) is ⇤-torsion, and together with (2.4.4) it implies that

(2.4.7) char
⇤

(Xp(f)) ◆ char
⇤

✓
H1

Iw

(K1,p,F+

w (Tf ))

⇤ · locp(⌫f (Z1))

◆
2

in Qp ⌦Zp ⇤.

Finally, by Theorem 2.3.1 the p-adic regulator map Log
⌘⌫f

F+

w (Vf )
sends locp(⌫f (Z1)) (times

a unit in ⇤) to Lp(f), thus inducing a ⇤-linear isomorphism

(2.4.8)
H1

Iw

(K1,p,F+

w (Tf ))

⇤ · locp(⌫f (Z1))
⇠��! ⇤

⇤ · Lp(f)
,

and combining (2.4.7) with (2.4.8), Theorem 2.4.9 follows. ⇤

Let � be as in §5.1, and let Tw��1 : ⇤
⇠�! ⇤ be the O-linear isomorphism given by

� 7! ��1(�)� for � 2 D1. Define

Lp(f,�) := Tw��1(Lp(f))

and

Xp(f,�) := HomZp(lim�!
t

Selp(Kt, A
c
f,�),Qp/Zp).

Corollary 2.4.10. Xp(f,�) is ⇤-torsion, and

char
⇤

(Xp(f,�)) ◆ (Lp(f,�)
2) in Qp ⌦Zp ⇤.

Proof. The module Xp(f,�) is the twist Xp(f)⌦ � as defined in [Rub00, §6.1], and
hence char

⇤

(Xp(f,�)) = Tw��1(char
⇤

(Xp(f))). Thus by the commutativity of the diagram

H1

Iw

(K1,p,F+

w (Tf ))

Log

⌘⌫f

F+

w (Tf )

// ⇤

Tw��1

✏✏
H1

Iw

(K1,p,F+

w (Tf ))⌦ � ⇠= H1

Iw

(K1,p,F+

w (Tf,�))

⌦��1

OO

Log

⌘⌫f

F+

w (Tf,�)

// ⇤,

the result follows from Theorem 2.4.9. ⇤



CHAPTER 3

Conclusion

Summary

In this last chapter we propose a few lines of investigation suggested by the problems

and ideas explored in this thesis, and rise a number of questions and conjectures. For some

of these, we are admittedly being rather speculative.

77
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Future directions

Many results are known on the arithmetic of Heegner points, both in the classical setting

of Gross–Zagier and in its subsequent generalizations, where the “Heegner hypothesis” (in

which we have placed ourselves throughout this thesis) is relaxed by working on Shimura

curves attached to an appropriate non-split quaternion algebra over Q. After Howard’s

construction of big Heegner points, and its extension by Longo–Vigni to the quaternionic

setting, a natural line of enquiry is the study of the extent to which these results may be

extended to their “big” counterparts over Hida families. Some key steps in this direction

were already undertaken by Howard in [How07b] and [How07a], and this thesis might

be seen as a further development of this study in which p-adic L-functions are introduced

in the form of two di↵erent I-adic Gross–Zagier formulae for big Heegner points, namely

Theorem 1.5.1 and Theorem 2.3.1.

In the following paragraphs we indicate some natural extensions of these results and

their potential arithmetic applications, as we would like to pursue in our future work.

3.1. Specializations at exceptional primes

The study of the specializations of the big Heegner point at exceptional primes of

the Hida family has been completely avoided throughout this thesis, but we expect that

such study will have applications to an anticyclotomic analogue of the p-adic Birch and

Swinnerton-Dyer conjecture of Mazur–Tate–Teitelbaum [MTT86] in the rank 1 case for

primes p of split multiplicative reduction. As we outline below, our approach is reminiscent

of the strategy taken in [GS93] in their proof of the rank zero case of the original (cyclo-

tomic) conjecture, with a twisted form of the I-adic Gross–Zagier formula of Theorem 1.5.1

playing the role of the “improved” p-adic L-function of Greenberg–Stevens.

Suppose for simplicity that the imaginary quadratic field K has class number 1. Let

⇡ 2 OK be a generator of the prime ideal p of K above p, and denote by  and � the

Hecke characters of K defined by

 (a) = ↵, �(a) = ↵/↵̄, if a = ↵OK ,

respectively. Denote by � : GK �! I[[D1]]⇥ the “universal” anticyclotomic character

sending each g 2 GK to the group-like element in I[[D1]]⇥ associated with ḡ1/2 2 D1,

where ḡ is the natural image of g in D1, and note that if ⌫ 2 X
arith

(I) has even weight

2r⌫ � 2, then �⌫ = �r⌫�1.

For r � 1, recall from Section 1.2 the generalised Heegner cycle�bdp

r 2 CH2r�1(Xr)0(K)

on the Kuga–Sato variety Xr = Wr ⇥A2r�2. For any 0  j < r, the cycle Wr ⇥Ar�1, seen
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as a subvariety of Wr ⇥Xr = Wr ⇥Wr ⇥ (A2)r�1 via the map

(idWr , idWr , (idA, idA)
j, (idA,

p
�D)r�1�j),

induces a correspondence

⇧j
r : CH

2r�1(Xr)0(K) �! CHr(Wr)0(K)

sending [�] 7�! [⇡W⇤⇡⇤
X�].

On the other hand, if ⌫ 2 X
arith

(I) has even weight k⌫ = 2r⌫ � 2, the non-vanishing of

⌫(Z) = ⌫(Z1)1 predicted by [How07b, Conj. 3.4.1] should hold if and only if

⌫(Z1)�
j 6= 0, for some �r⌫ < j < r⌫ .

In that case, the results and methods exploited in this thesis would lead to the following

“twisted” version of Theorem 1.4.12.

Proposed Theorem 3.1.1. Together with Assumptions 1.4.11, assume that

L0(1, f⌫0 ,�⌫0) 6= 0

for some ⌫ 0 2 X
arith

(I) of weight 2 and non-trivial nebentypus. Then for all but finitely

many ⌫ 2 X
arith

(I) of weight 2r⌫ > 2 with 2r⌫ ⌘ k (mod 2(p� 1)) and trivial nebentypus,

(3.1.1) h⌫(Z�

1)1, ⌫(Z�

1)1iK =

✓
1� ⇡̄2r⌫�2

⌫(ap)

◆
4

· h�ét

f ]⌫ ,K
(⇧r⌫�1

r⌫ �bdp

r⌫ ),�ét

f ]⌫ ,K
(⇧r⌫�1

r⌫ �bdp

r⌫ )iK ,

where h , iK is the cyclotomic p-adic height pairing on H1

f (K,Vf ]⌫
( 2r⌫�2)).

Notice that, as opposed to the p-adic multiplier appearing in (1.4.25), the factor

E⌫(f \ ⌦K) :=

✓
1� ⇡̄2r⌫�2

⌫(ap)

◆

appearing in (3.1.1) depends p-adic analytically on ⌫ 2 X
arith

(I) ⇢ Spf(I)(Qp).

As expressed in [BDP13, §2.4], one expects that the étale Abel–Jacobi images of the

generalised Heegner cycles �bdp

r bear a relation with the p-adic L-function Lp(f2r ⌦K) of

[Nek95] similar to that of the classical Heegner cycles in Nekovář’s p-adic Gross–Zagier

formula. In fact, under the simplifying assumptions of this section we propose the following.

Conjecture 3.1.2. Let f 2 S
2r(�0

(N)) be a p-ordinary eigenform of weight 2r � 2,

and let ↵p(f) be the root of X2 � ap(f)X + p2r�1 which is a p-adic unit. Then

d

ds
Lp(f ⌦K)(�r�1h⇢

cyc

is)|s=0

=

✓
1� ⇡̄2r�2

↵p(f)

◆
4

h�ét

f,K(⇧
r�1

r �bdp

r ),�ét

f,K(⇧
r�1

r �bdp

r )iK ,
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where h , iK is the cyclotomic p-adic height pairing on H1

f (K,Vf ]⌫
( 2r⌫�2)).

Now assume ⌫o 2 X
arith

(I) is exceptional with ⌫o(ap) = 1, so that in particular k⌫o = 2,

and set fo := ⌫o(f). Then

E⌫o(f \ ⌦K) = 0,

i.e. the left-hand side of (3.1.1) has an exceptional zero, and one then hopes to recover the

right-hand side of (3.1.1) from the second cyclotomic derivative of Lp(fo ⌦K) at 1K .

We believe that a proof of Conjecture 3.1.2 would follow without major di�culties from

an adaptation of the methods of [Nek95] to generalised Heegner cycles. As a consequence,

we could then show the following result.

Proposed Corollary 3.1.3. With notations and assumptions as in Theorem 1.4.12,

there is a factorization

L0
p(f

\ ⌦K) = E(f \ ⌦K)4 · eL0
p(f

\ ⌦K) (mod I⇥).

Moreover, the function eL0
p(f

\ ⌦K) is such that

⌫o( eL0
p(f

\ ⌦K)) = h�ét

fo,K(�
heeg

1

),�ét

fo,K(�
heeg

1

)iK .

In other words, eL0
p(f

] ⌦ K) is an “improved” derivative p-adic L-function, which one

would hope to exploit, in a similar fashion as in [GS93], to obtain progress towards an

anticyclotomic analogue of the following conjecture, deduced from the combination of the

classical Birch and Swinnerton-Dyer conjecture and its p-adic variant by [MTT86] in the

exceptional rank 1 case.

Conjecture 3.1.4. Let E/Q be an elliptic curve with split multiplicative reduction at

p, and assume ords=1

L(E, s) = 1. There exists a nontorsion point PE 2 E(Q) ⌦Q such

that
d2

ds2
LMTT

p (fE, s)|s=1

= L (fE)
hPE, PEip
hPE, PEi1

L0(E, 1),

where LMTT

p (fE, s) is the cyclotomic p-adic L-function constructed in [MTT86], h , ip and
h , i1 are the cyclotomic and Neron–Tate height pairings on E(Q) ⌦Q respectively, and

L (fE) is the L-invariant of E/Qp.

3.2. Big Heegner points and Kato elements

Let K be an imaginary quadratic field as in the Introduction to Chapter 2, and denote

by Kcyc

1 the unique Z2

p-extension of K, which can be obtained as the compositum of the
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anticyclotomic Zp-extension K1/K and the cyclotomic Zp-extension Kcyc/K. Set

G1 := Gal(Kcyc

1 /K).

We also let f , Vf , f , and T be as in the Introduction to Chapter 2, but we restrict now to

the case where the weight of f is k = 2. We begin by recalling the following conjecture,

largely motivated by the fascinating work [PR95] of Perrin-Riou.

Conjecture 3.2.1 (Loe✏er–Zerbes). There is a special class cf,1 2
V

2 H1

Iw

(Kcyc

1 , Vf )

such that

(LG1
p,Vf
^ LG1

¯p,Vf
)(cf,1) = Lp(f ⌦K) (mod O⇥

L ),

where for each v|p in K, LG1
v,Vf

is the two-variable p-adic regulator map of [LZ11, Thm. 4.7],

and Lp(f ⌦K) 2 OL[[G1]] is the two-variable p-adic L-function constructed in [PR87b].

The ongoing work [LLZ13] of Lei–Loe✏er–Zerbes on the construction of a cyclotomic

Euler system for the Rankin–Selberg convolution of two modular forms of weight 2 is

expected to yield substantial progress towards an eventual proof of Conjecture 3.2.1.

Inspired by a conjecture of Perrin-Riou [PR93] relating the Beilinson–Kato elements

to rational points on an elliptic curve, one expects a relation between the conjectural class

cf,1 and the Kummer images of Heegner points.

Conjecture 3.2.2. The class cf,1 predicted by Conjecture 3.2.1 satisfies

CorKcyc

1 /K1(cf,1) = ⌫f (Z
⌦2

1 )

up to an explicit element in L⇥.

It is natural to upgrade the preceding two conjectures over the entire Hida family:

Conjecture 3.2.3. There exists a big special class C1 2
V

2 H1

Iw

(Kcyc

1 ,T) such that

(LogG1
FpT ^ LogG1

F
¯pT)(C1) = Lp(f ⌦K) (mod I⇥),

where for each v|p in K, LogG1
FvT is a three-variable regulator map of the proof of The-

orem 2.2.8, and Lp(f ⌦ K) 2 I[[G1]] is the three-variable p-adic L-function of [SU13,

§12.3]. Moreover,

CorKcyc

1 /K1(Tw
⇥

1

(C1)) = Z⌦2

1

up to an explicit element in I⇥, where Tw
⇥

1

is defined as in (2.2.8).
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3.3. Quaternionic settings and others

Howard’s construction of big Heegner points has been generalized by Longo–Vigni

[LV11] to arbitrary quaternion algebras over Q. A remarkable feature of their work is

the ability to give constructions treating the definite and the indefinite cases on an equal

footing; as expressed by the authors themselves in loc.cit., this holds the promise of being

a first step towards an eventual development in a Hida-theoretic context of the program

carried out by Bertolini–Darmon in a series of papers1 where the interplay between the

definite and indefinite settings plays a crucial role in the arguments (cf. [How06]).

In an independent line of investigation, Fouquet [Fou13] has constructed an analogue

Howard’s big Heegner points for indefinite quaternion algebras over a totally real field F .

To briefly describe his construction, recall that the (2-dimensional) Galois representation

⇢f associated to Hilbert modular eigenforms f over F is not found in the étale cohomology

of a Hilbert modular variety, but rather on the étale cohomology of an appropriate Shimura

curve, at least when either of the following conditions is satisfied:

• [F : Q] is odd, or

• there exists a finite place v of F such that ⇡(f)v special or supercuspidal,

where ⇡(f) is the automorphic representation of GL
2

(AF ) associated with f .

Indeed, either of these conditions guarantees that ⇡(f) arises a the Jacquet–Langlands

lift of an automorphic form on an indefinite quaternion algebra over F . One can then

construct ⇢f from the étale cohomology of the associated Shimura curves, and Fouquet’s

construction (as well as that of Longo–Vigni in the indefinite case) is obtained by taking

certain twisted Kummer images of CM points over a tower of these Shimura curves with

growing �
1

(ps)-level structure, in complete analogy with Howard’s.

Let E be a CM field extension of F , and fix a CM type ⌃ for E/F , i.e. a set ⌃ of

embeddings F ,�! Q with the property that

⌃ [ ⌃ = Hom(F,Q) and ⌃ \ ⌃ = ;.

Under the assumption that ⌃ is ordinary at ıp : Q ,�! Qp, meaning that ıp �� 6= ıp � ⌧
for all � 2 ⌃, ⌧ 2 ⌃, the work of Hsieh [Hsi12] constructs in this level of generality an

analogue of the anticylotomic p-adic L-function Lp(f) of Theorem 2.1.4. On the other

hand, Howard has extended in [How04b] his anticyclotomic Kolyvagin system arguments

to prove an analogue of Perrin-Riou’s main conjecture for Heegner points on Hilbert mod-

ular varieties, assuming that there is a unique prime of F above p. Thus, at least under

1Starting with [BD96], and having perhaps [BD05] as one of its most beautiful landmarks.
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this assumption on p, it seems that many of the constructions from Section 2.2 and the ar-

guments from Sections 2.3 and 2.4 may be extended to prove analogues of Theorems 2.4.6

and Theorem 2.4.9 for ordinary Hilbert modular forms of parallel weights, with Fouquet’s

big cohomology classes (or a slight modification thereof) playing the role of Howard’s big

Heegner points in this thesis.

In light of the well-known absence of a direct analogue of modular units2 for Hilbert

modular varieties when F 6= Q, these hopefully future developments will represent the first

(at least to our knowledge) unconditional realizations of Perrin-Riou’s approach to p-adic

L-functions (see [PR95] and [Rub00, §7]) beyond the cases where the base field is Q or

an imaginary quadratic field.

Of course, motivated by Stark’s conjectures, there are further conjectural realizations

of this approach to p-adic L-functions over a general totally real base field F . In particular,

and not quite irrelevantly to the theme of this thesis, Darmon’s p-adic construction [Dar01]

of the so-called Stark–Heegner points attached to real quadratic fields where p stays prime

(and generalized by Matt Greenberg in [Gre09] to totally real fields with [F : Q] > 2), and

their higher dimensional analogue by Rotger–Seveso [RS12], the so-called Darmon cycles,

are expected to have a similar connection to p-adic L-functions as we have exhibited in

this thesis for classical Heegner points and Heegner cycles.

We thus feel naturally led to consider the following problem:

Give a p-adic construction of “big” Stark–Heegner points attached to Hida families,

and relate their arithmetic specializations to “classical” Stark–Heegner points and Darmon

cycles.

It seems to us that such a desirable construction will be preceded by an extension of

the constructions of [Dar01] and [RS12], which make crucial use of the special features

of the multiplicative reduction setting, to primes p of good reduction, and we would like

to believe that a study of this problem3 might lead to valuable insights into the elusive

properties that Stark–Heegner points and Darmon cycles are conjectured to share with the

objects of study in this thesis.

2And as a result, of Beilinson–Kato elements.
3And of related ones, such as the connection of these constructions to classical and p-adic L-functions.
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