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Elliptic Curves
E= elliptic curve over a number field F
L(E/F,s) = its Hasse-Weil L-function.
Birch and Swinnerton-Dyer Conjecture.
ords—1 L(E/F,s) = rank(E(F)).
Theorem (Gross-Zagier, Kolyvagin)

Suppose ord,—1 L(E/Q,s) < 1. Then the Birch
and Swinnerton-Dyer conjecture is true.

Key special case: if L(E/Q,1) =0and L'(E/Q,1) #
0, then E(Q) is infnite.

Essential ingredient: Heegner points



Modularity
Write L(E/Q,s) = Y p>1ann™°.

Consider

f(r) = sumnane?™""  quadr € cH.

Theorem The function f is a modular form of
weight two on Mg(N), where N is the conduc-
tor of E.

Modular parametrisation attached to E':
b H/Tog(N) — E(C).

d*(w) = 2mif(7)dr

@)

l0g (D (7)) = /; orif(2)dz= Y %"e%im.

n=1



CM points

K = Q(v/—D)subsetC a quadratic imaginary
field.

Theorem. If 7 belongs to HnN K, then (1)
belongs to E(K?2b).

T his theorem produces a systematic and well-
behaved collection of algebraic points on E de-
fined over class fields of K.



Heegner points
Let D be a negative discriminant.
Heegner hypothesis: D = s2 (mod N).

fz()N) — {Aflﬂ'z-I-Bacy—l—Cy2 such thatB2—4AC =
D,N|A,B=s (mod N)}

Gaussian Composition:
N
ro(N)\fl() ) = SL>(Z)\Fp = Gp

IS an abelian group under composition, and is
identified with the class group of the order of
discrimiannt D.

Given F e FIV), the point

Pp := ®(tau), where F(r,1) =0,

is called the Heegner point (of discriminant D)
attached to F'.



Heegner points
Class field theory:
rec: Gp — Gal(Hp/K),
where Hp is the ring class field attached to D.
Write
Fro(N)FMY) = {7y, ... Fy}

Theorem The Heegner points ij belong to
E(Hp) and

PO'F = I’eC(O'_l)PF.

In particular, letting D = disc(K),

PK ::PFl_I_"'_l_PFh



belongs to E(K).

Theorem (Gross-Zagier)

L'(E/K,Ok,1) = h(Pg) - (period)



Kolyvagin’s theorem
Theorem (Kolyvagin)

If Py is of infinite order, then E(K) has rank
one and III(E/K) is finite. (Hence, BSD holds
for E/K.)

Main ingredient: P does not come alone,
but is part of a norm-compatible collection of
points in E(K%).

Corollary. Iford,—q1 L(E,s) < 1, then the Birch
and Swinnerton-Dyer conjecture holds for E.

Sketch of Proof. Choose a quadratic field K
satisfying the Heegner hypothesis, for which
ords—1 L(E/K,s) = 1.

By Gross-Zagier, Pg is of infinite order.

By Kolyvagin, the BSD conjecture holds for
E/K.

BSD for E/Q follows.



Totally real fields

Question: Does the above scheme generalise
to other number fields?

Suppose E is defined over a totally real field
F.

Definition: E is arithmetically uniformisable if
[F": Q] is odd or if N is not a square.

If £ is modular, and arithmetically uniformis-
able, there is a Shimura curve parametrisation

d: Jac(X) — E
defined over F.

Also, X is equipped with a collection of CM
points attached to orders in CM extensions of
F.

Theorem (Zhang, Kolyvagin). Suppose that
E is modular and arithmetically unifomisable.
If ords—1 L(E/F,s) < 1, then BSD holds for
E/F.



Non arithmetically uniformisable
curves

Theorem (Longo, Tian). Suppose that E is
modular. If ords—1 L(E/F,s) = 0, then BSD
holds for E/F.

Sketch of proof. Let f be the modular form on
GL>(F') attached to E. One can produce mod-
ular forms that are congruent to f, and cor-
respond to quotients of Shimura curves. For
each n > 1, there is a Shimura curve X, for
which J,[p"] has E[p"] as a constitutent.

Key formula: Relate Heegner points attached
to K, on X, to L(FEK,1) modulo p™.

Question. If E is not arithmetically uniformis-
able, and ords—1 L(E/F,s) = 1, show that rank(E(F"))
17

E.g. If £ has everywhere good reduction over
a real quadratic field.



Stark-Heegner points

Wish: There should be generalisations of Heeg-
ner points making it possible to

a) prove BSD for elliptic curves in analytic rank
< 1, for more general E/F,

b) Construct class fields of K;
Paradox: Sometimes we can write down pre-
cise formulae for points whose existence is not

proved.

General setting: E defined over a number
field F’;

K = auxiliary quadratic extension of F’;

I will present three contexts.



1. FF=Q, K = real quadratic field;

2. F = totally real field, K = ATR extension
(“Almost Totally Real”). (Logan)

3. F' = imaginary quadratic field. (Trifkovic)



Real quadratic fields
Set-up: FE has conductor N = pM, with p /M.
Hyp = Cp — Qp (A p-adic analogue of H)

K = real quadratic field, embedded both in R
and C,.

Naive motivation for Hp: HNK = 0, but HpyNK
need not be empty!

Goal: Define a p-adic “modular parametrisa-
tion”

& HD/Fo(M) - E(Hp),

for positive discriminants D.
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Modular symbols
Set wy 1= Re(2mif(z)dz).

Fact: There exists a real period 2 such that

1 rs
I[i{r — s} = 5/7“ w gmbozbeongsto,

for all r,s € P1(Q).
Mazur-Swinnerton-Dyer measure:

There is a measure on Z, defined by
up(a+p"Zp) = Ip{a/p" — oo},
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Systems of measures
Let

= {< CCL Z ) € SLy(Z) such that M|c}.

Proposition There exists a unique collection
of measures u{r — s} on P1(Qp) satisfying

1. p{r — stlz, = py.

2. gamma*u{yr — ~vs} = p{r — s}, for all
vyel.

3. pir — sp+pls =t = pi{r — t}.
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Rigid analytic functions

z — t.

f{?‘ — S}(Z) . — /ﬂl(Qp)dlu{z“—hSt)

Properties :

1. f{yr — ys}(vz) = (cz + d)?f{r — s}(z), for
all yer.

2. fir = st+ fs =ty = fir =t}
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Stark’s conjecture
K= number field.
v1,vo,...,vn = Archimedean place of K.

Assume: wvo,...,vn real.
s(z) = sign(va(z)) - - - sign(vn(z)).

C(K,A,s) =N(A)® > s(x)N(x) ™ °.
z€A/(OF)

H = Narrow Hilbert class field of K.
v1 . H — C extending v : K — C.
Conjecture (Stark) There exists u(A) € OF

such that

¢'(K, A, 0) = log|t1(u(A))|.
u(A) is called a Stark unit attached to H/K.

14



Is there a stronger form?

Stark Question: Is there an explicit analytic
formula for ©1(u(A)), and not just its absolute
value?

Some evidence that the answer is ‘Yes': Sczech-
Ren. (Also, ongoing work of Charollois-D.)

If vq is real,

71 (u(A)) = Lexp(C'(K, A, 0)).

If v1 is complex, it is harder to recover v1(u(A))
from its absolute value.

109(71 (u(A))) = log |51 (u(A))|+i0(A) € C/2miZ.

Applications to Hilbert's Twelfth problem =
Explicit class field theory for K.

The Stark Question has an analogue for el-
liptic curves.
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Elliptic Curves
E= elliptic curve over K
L(E/K,s) = its Hasse-Weil L-function.

Birch and Swinnerton-Dyer Conjecture. If
L(E/K,1) = 0, then there exists P € E(K)
such that

L'(E/K,1) = h(P) - ( explicit period).

Stark-Heegner Question: Fix v : K — C.
2 = Period lattice attached to v(F).

Is there an explicit analytic formula for P, or
rather, for

logp(v(P)) € C/Q7

A point P for which such an explicit analytic
recipe exists is called a Stark-Heegner point.
16



The prototype: Heegner Points

Modular parametrisation attached to E':
®:H/Tog(N) — E(C).
K = Q(+~/—D) c C a quadratic imaginary field.

@)

l0g (D (7)) = /; orif(2)dz= Y %"e%im.

n=1
Theorem. If 7 belongs to HN K, then (1)
belongs to E(K?2b).

This theorem produces a systematic and well-
behaved collection of algebraic points on E de-
fined over class fields of K.
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Heegner points

Given T e HN K, let
Fr(z,y) = Az? 4+ Bry + Cy?
be the primitive binary quadratic form with
Fr(r,1) =0, N|A.
Define Disc(r) := Disc(Fr).
HP = {r s.t. Disc(r) = D.}.
Hp = ring class field of K attached to D.
Theorem 1. If 7 belongs to HP, then
Pp := ®(7) belongs to E(Hp).
2. (Gross-Zagier)

L'(E/K,Ok,1) = h(Pp) - (period)

18



The Stark-Heegner conjecture
General setting: E defined over F;
K = auxiliary quadratic extension of F’;

The Stark-Heegner points belong (conjecturally)
to ring class fields of K.

So far, three contexts have been explored:

1. F = totally real field, K = ATR extension
(“Almost Totally Real").

2. FF = Q, K = real quadratic field

3. F = imaginary quadratic field.

(Trifkovic, Balasubramaniam, in progress).
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ATR extensions
E of conductor 1 over a totally real field F,

wp = associated Hilbert modular form on
(H1 X -+ x Hn)/SL2(OF).

K = quadratic ATR extension of F; (“Almost
Totally Real”): vy complex, v, ..., v, real.

D-Logan: A “modular parametrisation”

?
is constructed, and ®(H N K) C E(K?3P).
¢® defined analytically from periods of wg.
e Experimental evidence (Logan);

e Replacing wg with a weight two Eisenstein
series vields a conjectural affirmative answer to
the Stark Question for K (work in progress
with Charollois).
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Real quadratic fields
Set-up: F has conductor N = pM, with p [M.
Hp := Cp — Qp (A p-adic analogue of H)

K = real quadratic field, embedded both in R
and C,.

Motivation for Hy,: HNK =, but HpN K need
not be empty!

Goal: Define a p-adic “modular parametrisa-
tion”

& HY /ro(M) > E(Hp),

for positive discriminants D.

In defining &, I follow an approach suggested
by Dasgupta’s thesis.
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Hida Theory
U = p-adic disc in Qp with 2 € U;
A(U) = ring of p-adic analytic functions on U.

Hida. There exists a unique g-expansion

Joo = Z anna a, < .A(U),

n=1
such thatVk > 2, ke Z, k=2 (modp—1),

oo

Jr = Z Qn(k)qn
n=1
is an eigenform of weight k£ on Mg(N), and
fo = JE-

For k > 2, f,. arises from a newform of level
M, which we denote by f,;f.

22



Heegner points for
real quadratic fields

Definition. If 7 € Hy/Io(M), let v € To(M)
be a generator for Stabro(M)(T).

Choose r € P1(Q), and consider the “Shimura
period” attached to 7 and f,i:

VT
Ji(k) = 7t / (z — T)F2ff(2)dz.
This does not depend on r.
Proposition. There exist A\, € C* such that
A =1 and

Tr(k) 1= A Hap(k)? — 1) TH(k)

takes values in Q C C, and extends to a p-adic
anaytic function of £k € U.

23



T he definition of ¢

Note: J-(2) = 0. We define:

d
IogE CD(T) = %JT(ICNIC:Q-

There are more precise formulae giving ®©(7)
itself, and not just its formal group logarithm.

Conjecture 1. If 7 belongs to HEY, then
Pp := ®(7) belongs to E(Hp).

2. (“Gross-Zagier")

L'(E/K,O,1) = h(Pp) - (period)
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Computational Issues

The definition of ® is well-suited to numerical
calculations. (Green (2000), Pollack (2004)).

Magma package shp: software for calculat-
ing Stark-Heegner points on elliptic curves of
prime conductor.

http://www.math.mcgill.ca/darmon/programs/shp/shp.html

H. Darmon and R. Pollack. The efficient cal-
culation of Stark-Heegner points via overcon-
vergent modular symbols. Israel Math Journal,
submitted.

The key new idea in this efficient algorithm is
the theory of overconvergent modular symbols
developped by Stevens and Pollack.
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Numerical examples
E = Xo(11) : y2 4+ y = 23 — 22 — 10z — 20.

> HP,P,hD := stark_heegner_points(E,8,Qp);
The discriminant D = 8 has class number 1
Computing point attached to quadratic form (1,2,-1)

Stark-Heegner point (over Cp) =

(—2088624084707821,1566468063530870w +
2088624084707825) + O(111°)

This point is close to [9/2,1/8(7s — 4), 1]

(9/2:1/8(7s—4) :1) is a global point on E(K).

26



A second example

E=37TA:y?4+y=2a3—2, D=1297.
> ,,hD := stark_heegner_points(E,1297,Qp);

The discriminant D = 1297 has class number 11

© 00 N o0 00 W N B+

Computing point for quadratic form (1,35,-18)
Computing point for quadratic form (-4,33,13)
Computing point for quadratic form (16,9,-19)
Computing point for quadratic form (-6,25,28)
Computing point for quadratic form (-8,23,24)
Computing point for quadratic form (2,35,-9)

Computing point for quadratic form (9,35,-2)

Computing point for quadratic form (12,31,-7)
Computing point for quadratic form (-3,31,28)

10 Computing point for quadratic form (12,25,-14)

11 Computing point for quadratic form (14,17,-18)

Sum of the Stark-Heegner points (over Cp) =
(0:—1:1))+ (37199)
This p-adic point is close to [0, —1, 1]

(0:—1:1) is indeed a global point on E(K).

27



Polynomial hD satisfied by the x-ccordinates:

961z — 40352!° — 3868z° + 193762°% + 132292
— 27966x° — 216752° 4+ 11403z* + 1185923
4+ 13912° — 369z — 37

> G := GaloisGroup(hD);

Permutation group G acting on a set of cardinality 11
(1,2,3,4,5,6,7,8,9, 10, 11)

(1, 10)(2, 9)(3, 8)(4, 7)(5, 6)

> #G;

22
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A theoretical result

x - Gp = GaI(HD/K) — +1
C(K,x,s) = L(s,x1)L(s,x2).

P(x) = > x(o)®(r?), TeHb.
occGp

H(x) := extension of K cut out by x.
Theorem (Bertolini, D).
If ap(E)x1(p) = —sign(L(E, x1,s)), then

1. logg P(x) = logg P(x), with P(x) € E(H(x))-

2. The point P(yx) is of infinite order, if and
only if L'(E/K,x,1) # 0.

The proof rests on an idea of Kronecker ( “Kro-
necker’'s solution of Pell's equation in terms of
the Dedekind eta-function”).
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Kronecker’s Solution of Pell’s
Equation

D = negative discriminant.
Replace HE /To(N) by HP/SLy(Z).

Replace & by
n*(7) == |D|"Y*/Im(D) (D).

x = genus character of Q(+/D), associated to
D=D1Dy, D;>0, Dy<O.

Theorem (Kronecker, 1865).

I1 n*(r7)X(0) = (2hiha/wa
occeGp
where

h; = class number of Q(,/D;).

¢ = Fundamental unit of Ogl.
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Kronecker’s Proof
Three key ingredients:

1. Kronecker limit formula:

('(K,x,0) = Y_ x(o)logn*(r?).
occeGp

2. Factorisation Formula:

C(Kv X S) — L(Sa XDl)L(Sa XDQ)

In particular

C/(Ka X O) — L/(07 XDl)L(Oa XDQ)

3. Dirichlet’'s Formula.

L/(Oa XDl) = hi |Og(€), L(Oa XDQ) — 2h2/w2'

Note: Complex multiplication is not used!
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The Stark-Heegner setting
Assume y = trivial character.
Py = "trace” to K of Pp.

1. A “Kronecker limit formula”

2
L/ K k/2) = 4 100,(Pic + ap(B) Pr)?.
If ap(E) = —sign(L(E/Q,s), then
2

d
5 Lp(fr/ K, k/2) = log, (Pr)?.

2. Factorisation formula:

Lp(fr/K,k/2) = Lp(f, k/2) Lp(fx, xD:k/2).

Ly(fr, k/2) = specialisation to the critical line
s = k/2 of Lp(f,k,s) (Mazur's two-variable
p-adic L-function.)
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An analogue of Dirichlet’s Formula
Suppose ap = —sign(L(E/Q,s)) = 1.
Theorem over Q (Bertolini, D)

The function Ly(fy, k/2) vanishes to order > 2
at k = 2, and there exists Pq € F(Q) ® Q such
that

1. L L (fr, k/2) = —1092(PQ).

2. Pq is of infinite order iff L'(E/Q,1) # 0.
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Proof of theorem over Q

Introduce a suitable auxiliary imaginary quadratic
field K.

A “Kronecker limit formula”

d2 5
@Lp(fk/Ka k/2) = |09p(PK) ;
where Py is a Heegner point arising from a

Shimura curve parametrisation.
Key Ingredients: Cerednik-Drinfeld Theorem.

M. Bertolini and H. Darmon, Heegner points,
p-adic L-functions and the Cerednik-Drinfeld
uniformisation, Invent. Math. 131 (1998).

M. Bertolini and H. Darmon, Hida families and
rational points on elliptic curves, in prepara-
tion.
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End of Proof

We now use the factorisation formula

Ly (fi/K, k/2) = Ly(fx. k/2) Lp(fi, x> 1)

to conclude.

The structure of the argument
Heegner points + Cerednik-Drinfeld
= Theorem for K imaginary quadratic
= Theorem for Q

= T heorem for K real quadratic.

This argument seems to shed no light on the
rationality of the Stark-Heegner point Pp (un-
less the class group has exponent two).
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