Number Theory and Representation Theory

A conference in honor of the 60th birthday of Benedict Gross

Harvard University, Cambridge

June 2010

Elliptic curves over real quadratic fields, and the Birch and Swinnerton-Dyer conjecture

A survey of the mathematical contributions of Dick Gross which have most influenced and inspired me.

Henri Darmon

McGill University, Montreal

June 3, 2010

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

I became Dick's student in 1987, when the following was still new:

Theorem (Gross-Zagier (1985), Kolyvagin (1987))

Let E be a (modular) elliptic curve over \mathbb{Q} . If $\operatorname{ord}_{s=1} L(E, s) \leq 1$, then $\operatorname{I\!I\!I}(E/\mathbb{Q})$ is finite, and

 $\operatorname{rank}(E(\mathbb{Q})) = \operatorname{ord}_{s=1} L(E, s).$

In 1987, this result was tremendously exciting;

It is still the best theoretical evidence for the BSD conjecture.

- The Gross-Zagier Theorem;
- Ø Kolyvagin's descent.

I became Dick's student in 1987, when the following was still new:

Theorem (Gross-Zagier (1985), Kolyvagin (1987))

Let E be a (modular) elliptic curve over \mathbb{Q} . If $\operatorname{ord}_{s=1} L(E, s) \leq 1$, then $\operatorname{I\!I\!I}(E/\mathbb{Q})$ is finite, and

 $\operatorname{rank}(E(\mathbb{Q})) = \operatorname{ord}_{s=1} L(E, s).$

In 1987, this result was tremendously exciting;

It is still the best theoretical evidence for the BSD conjecture.

- The Gross-Zagier Theorem;
- Ø Kolyvagin's descent.

I became Dick's student in 1987, when the following was still new:

Theorem (Gross-Zagier (1985), Kolyvagin (1987))

Let E be a (modular) elliptic curve over \mathbb{Q} . If $\operatorname{ord}_{s=1} L(E, s) \leq 1$, then $\operatorname{I\!I\!I}(E/\mathbb{Q})$ is finite, and

 $\operatorname{rank}(E(\mathbb{Q})) = \operatorname{ord}_{s=1} L(E, s).$

In 1987, this result was tremendously exciting;

It is still the best theoretical evidence for the BSD conjecture.

- The Gross-Zagier Theorem;
- Ø Kolyvagin's descent.

I became Dick's student in 1987, when the following was still new:

Theorem (Gross-Zagier (1985), Kolyvagin (1987))

Let E be a (modular) elliptic curve over \mathbb{Q} . If $\operatorname{ord}_{s=1} L(E, s) \leq 1$, then $\operatorname{I\!I\!I}(E/\mathbb{Q})$ is finite, and

 $\operatorname{rank}(E(\mathbb{Q})) = \operatorname{ord}_{s=1} L(E, s).$

In 1987, this result was tremendously exciting;

It is still the best theoretical evidence for the BSD conjecture.

- The Gross-Zagier Theorem;
- Ø Kolyvagin's descent.

Modularity comes in two flavours:

• (General form) The elliptic curve E is modular if

L(E,s)=L(f,s),

for some normalised newform $f \in S_2(\Gamma_0(N))$ (with N = conductor(E)).

• (Stronger, geometric form): There is a non-constant morphism

 $\pi_E: J_0(N) \longrightarrow E,$

were $J_0(N)$ is the Jacobian of the modular curve $X_0(N)$.

Modularity comes in two flavours:

• (General form) The elliptic curve E is modular if

$$L(E,s)=L(f,s),$$

for some normalised newform $f \in S_2(\Gamma_0(N))$ (with N = conductor(E)).

• (Stronger, geometric form): There is a non-constant morphism

$$\pi_E: J_0(N) \longrightarrow E,$$

were $J_0(N)$ is the Jacobian of the modular curve $X_0(N)$.

Recall: $X_0(N)$ is the modular curve of level N.

•
$$X_0(N)(\mathbb{C}) = \Gamma_0(N) \setminus \mathcal{H}^*;$$

- $X_0(N)(F)$ = the set of pairs (A, C) where
 - A is a (generalised) elliptic curve over F;
 - C is a cyclic subgroup scheme of A[N] over F

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

(up to \overline{F} -isomorphism.)

K = imaginary quadratic field satisfying the

Heegner hypothesis (HH): There exists an ideal \mathfrak{N} of $\mathcal{O}_{\mathcal{K}}$ of norm N, with $\mathcal{O}_{\mathcal{K}}/\mathfrak{N} \simeq \mathbb{Z}/N\mathbb{Z}$.

Definition

The Heegner points on $X_0(N)$ of level c attached to K are the points given by pairs $(A, A[\mathfrak{N}])$ with $\operatorname{End}(A) = \mathbb{Z} + c\mathcal{O}_K$.

They are defined over the ring class field of K of conductor c.

$$P_{\mathcal{K}} := \pi_{\mathcal{E}}((A_1, A_1[\mathfrak{N}]) + \cdots + (A_h, A_h[\mathfrak{N}]) - h(\infty)) \in \mathcal{E}(\mathcal{K}).$$

K = imaginary quadratic field satisfying the

Heegner hypothesis (HH): There exists an ideal \mathfrak{N} of $\mathcal{O}_{\mathcal{K}}$ of norm N, with $\mathcal{O}_{\mathcal{K}}/\mathfrak{N} \simeq \mathbb{Z}/N\mathbb{Z}$.

Definition

The Heegner points on $X_0(N)$ of level *c* attached to *K* are the points given by pairs $(A, A[\mathfrak{N}])$ with $\operatorname{End}(A) = \mathbb{Z} + c\mathcal{O}_K$.

They are defined over the ring class field of K of conductor c.

$$P_{\mathcal{K}} := \pi_{\mathcal{E}}((A_1, A_1[\mathfrak{N}]) + \cdots + (A_h, A_h[\mathfrak{N}]) - h(\infty)) \in \mathcal{E}(\mathcal{K}).$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

K = imaginary quadratic field satisfying the

Heegner hypothesis (HH): There exists an ideal \mathfrak{N} of \mathcal{O}_K of norm N, with $\mathcal{O}_K/\mathfrak{N} \simeq \mathbb{Z}/N\mathbb{Z}$.

Definition

The Heegner points on $X_0(N)$ of level *c* attached to *K* are the points given by pairs $(A, A[\mathfrak{N}])$ with $\operatorname{End}(A) = \mathbb{Z} + c\mathcal{O}_K$.

They are defined over the ring class field of K of conductor c.

 $P_{\mathcal{K}} := \pi_{E}((A_{1}, A_{1}[\mathfrak{N}]) + \dots + (A_{h}, A_{h}[\mathfrak{N}]) - h(\infty)) \in E(\mathcal{K}).$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

K = imaginary quadratic field satisfying the

Heegner hypothesis (HH): There exists an ideal \mathfrak{N} of \mathcal{O}_K of norm N, with $\mathcal{O}_K/\mathfrak{N} \simeq \mathbb{Z}/N\mathbb{Z}$.

Definition

The Heegner points on $X_0(N)$ of level *c* attached to *K* are the points given by pairs $(A, A[\mathfrak{N}])$ with $\operatorname{End}(A) = \mathbb{Z} + c\mathcal{O}_K$.

They are defined over the ring class field of K of conductor c.

$$P_{\mathcal{K}} := \pi_{\mathcal{E}}((A_1, A_1[\mathfrak{N}]) + \cdots + (A_h, A_h[\mathfrak{N}]) - h(\infty)) \in \mathcal{E}(\mathcal{K}).$$

The Gross-Zagier theorem in its most basic form:

Theorem (Gross-Zagier)

For all K satisfying (HH), the L-series L(E/K, s) vanishes to odd order at s = 1, and

 $L'(E/K,1) = \langle P_K, P_K \rangle \langle f, f \rangle \pmod{\mathbb{Q}^{\times}}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In particular, P_K is of infinite order iff $L'(E/K, 1) \neq 0$.

Kolyvagin's Theorem

Theorem (Kolyvagin)

If P_K is of infinite order, then $\operatorname{rank}(E(K)) = 1$, and $\operatorname{III}(E/K) < \infty$.

- The Heegner point *P_K* is part of a norm-coherent system of algebraic points on *E*;
- This collection of points satisfies the axioms of an Euler system (a Kolyvagin system in the sense of Mazur-Rubin) which can be used to bound the p-Selmer group of E/K.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Kolyvagin's Theorem

Theorem (Kolyvagin)

If P_K is of infinite order, then $\operatorname{rank}(E(K)) = 1$, and $\amalg(E/K) < \infty$.

- The Heegner point P_K is part of a norm-coherent system of algebraic points on E;
- This collection of points satisfies the axioms of an Euler system (a Kolyvagin system in the sense of Mazur-Rubin) which can be used to bound the p-Selmer group of E/K.

(日)

Kolyvagin's Theorem

Theorem (Kolyvagin)

If P_K is of infinite order, then $\operatorname{rank}(E(K)) = 1$, and $\amalg(E/K) < \infty$.

- The Heegner point P_K is part of a norm-coherent system of algebraic points on E;
- This collection of points satisfies the axioms of an Euler system (a Kolyvagin system in the sense of Mazur-Rubin) which can be used to bound the p-Selmer group of E/K.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Theorem (Gross-Zagier, Kolyvagin)

If $\operatorname{ord}_{s=1} L(E,s) \leq 1$, then $\amalg(E/\mathbb{Q})$ is finite and

 $\operatorname{rank}(E(\mathbb{Q})) = \operatorname{ord}_{s=1} L(E, s).$

Proof.

1. Bump-Friedberg-Hoffstein, Murty-Murty \Rightarrow there exists a Ksatisfying (HH), with $\operatorname{ord}_{s=1} L(E/K, s) = 1$. 2. Gross-Zagier \Rightarrow the Heegner point P_K is of infinite order. 3. Koyvagin $\Rightarrow E(K) \otimes \mathbb{Q} = \mathbb{Q} \cdot P_K$, and $\mathbb{U}(E/K) < \infty$. 4. Explicit calculation \Rightarrow . the point P_K belongs to $\begin{cases} E(\mathbb{Q}) & \text{if } L(E, 1) = 0, \\ E(K)^- & \text{if } L(E, 1) \neq 0. \end{cases}$

Theorem (Gross-Zagier, Kolyvagin)

If $\operatorname{ord}_{s=1} L(E,s) \leq 1$, then $\amalg(E/\mathbb{Q})$ is finite and

$$\operatorname{rank}(E(\mathbb{Q})) = \operatorname{ord}_{s=1} L(E, s).$$

Proof.

1. Bump-Friedberg-Hoffstein, Murty-Murty \Rightarrow there exists a K satisfying (HH), with $\operatorname{ord}_{s=1} L(E/K, s) = 1$.

2. Gross-Zagier \Rightarrow the Heegner point P_K is of infinite order.

3. Koyvagin $\Rightarrow E(K) \otimes \mathbb{Q} = \mathbb{Q} \cdot P_K$, and $\mathbb{I}(E/K) < \infty$.

4. Explicit calculation \Rightarrow

the point P_K belongs to

 $E(\mathbb{Q})$ if L(E,1) =

 $\mathsf{E}(K)^-$ if L(E,1)
eq 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Theorem (Gross-Zagier, Kolyvagin)

If $\operatorname{ord}_{s=1} L(E,s) \leq 1$, then $\amalg(E/\mathbb{Q})$ is finite and

$$\operatorname{rank}(E(\mathbb{Q})) = \operatorname{ord}_{s=1} L(E, s).$$

Proof.

1. Bump-Friedberg-Hoffstein, Murty-Murty \Rightarrow there exists a K satisfying (HH), with $\operatorname{ord}_{s=1} L(E/K, s) = 1$. 2. Gross-Zagier \Rightarrow the Heegner point P_K is of infinite order. 3. Koyvagin $\Rightarrow E(K) \otimes \mathbb{Q} = \mathbb{Q} \cdot P_K$, and $\mathbb{U}(E/K) < \infty$. 4. Explicit calculation \Rightarrow . the point P_K belongs to $\begin{cases} E(\mathbb{Q}) & \text{if } L(E,1) = 0, \\ E(K)^- & \text{if } L(E,1) \neq 0. \end{cases}$

Theorem (Gross-Zagier, Kolyvagin)

If $\operatorname{ord}_{s=1} L(E,s) \leq 1$, then $\amalg(E/\mathbb{Q})$ is finite and

$$\operatorname{rank}(E(\mathbb{Q})) = \operatorname{ord}_{s=1} L(E, s).$$

Proof.

1. Bump-Friedberg-Hoffstein, Murty-Murty \Rightarrow there exists a K satisfying (HH), with $\operatorname{ord}_{s=1} L(E/K, s) = 1$.

- 2. Gross-Zagier \Rightarrow the Heegner point P_K is of infinite order.
- 3. Koyvagin $\Rightarrow E(K) \otimes \mathbb{Q} = \mathbb{Q} \cdot P_K$, and $\amalg(E/K) < \infty$.

4. Explicit calculation =

the point P_K belongs to

 $(\mathbb{Q}) \quad \text{if } L(\mathbb{Z}, 1) = 0$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − � Q Q Q

Theorem (Gross-Zagier, Kolyvagin)

If $\operatorname{ord}_{s=1} L(E,s) \leq 1$, then $\amalg(E/\mathbb{Q})$ is finite and

 $\operatorname{rank}(E(\mathbb{Q})) = \operatorname{ord}_{s=1} L(E, s).$

Proof.

1. Bump-Friedberg-Hoffstein, Murty-Murty \Rightarrow there exists a K satisfying (HH), with $\operatorname{ord}_{s=1} L(E/K, s) = 1$.

- 2. Gross-Zagier \Rightarrow the Heegner point P_K is of infinite order.
- 3. Koyvagin $\Rightarrow E(K) \otimes \mathbb{Q} = \mathbb{Q} \cdot P_K$, and $\amalg(E/K) < \infty$.
- 4. Explicit calculation \Rightarrow

the point $P_{\mathcal{K}}$ belongs to $\left\{ \right.$

$$E(\mathbb{Q})$$
 if $L(E,1) = 0$
 $E(K)^-$ if $L(E,1) \neq 0$

・ロト ・ 一下 ・ ・ ヨト ・ ヨト

э

Gross's advice

In 1988, Dick gave me the following advice:

- Ask Massimo Bertolini to explain Kolyvagin's ideas;
- Extend Kolyvagin's theorem to ring class characters.

Theorem (Bertolini, D (1989))

Let H be the ring class field of K of conductor c, let $P \in E(H)$ be a Heegner point of conductor c, and let

$$P_{\chi} := \sum_{\sigma \in \operatorname{Gal}(H/K)} \chi^{-1}(\sigma) P^{\sigma} \in (E(H) \otimes \mathbb{C})^{\chi}$$

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

Gross's advice

In 1988, Dick gave me the following advice:

Ask Massimo Bertolini to explain Kolyvagin's ideas;

② Extend Kolyvagin's theorem to ring class characters.

Theorem (Bertolini, D (1989))

Let H be the ring class field of K of conductor c, let $P \in E(H)$ be a Heegner point of conductor c, and let

$$P_{\chi} := \sum_{\sigma \in \operatorname{Gal}(H/K)} \chi^{-1}(\sigma) P^{\sigma} \in (E(H) \otimes \mathbb{C})^{\chi}$$

In 1988, Dick gave me the following advice:

- Ask Massimo Bertolini to explain Kolyvagin's ideas;
- Extend Kolyvagin's theorem to ring class characters.

Theorem (Bertolini, D (1989))

Let H be the ring class field of K of conductor c, let $P \in E(H)$ be a Heegner point of conductor c, and let

$$P_{\chi} := \sum_{\sigma \in \operatorname{Gal}(H/K)} \chi^{-1}(\sigma) P^{\sigma} \in (E(H) \otimes \mathbb{C})^{\chi}$$

・ロン ・雪 と ・ ヨ と

э

San

In 1988, Dick gave me the following advice:

- Ask Massimo Bertolini to explain Kolyvagin's ideas;
- Extend Kolyvagin's theorem to ring class characters.

Theorem (Bertolini, D (1989))

Let H be the ring class field of K of conductor c, let $P \in E(H)$ be a Heegner point of conductor c, and let

$$P_{\chi} := \sum_{\sigma \in \operatorname{Gal}(H/K)} \chi^{-1}(\sigma) P^{\sigma} \in (E(H) \otimes \mathbb{C})^{\chi}$$

Theorem (GZK for characters)

If $L'(E/K, \chi, 1) \neq 0$, then $(E(H) \otimes \mathbb{C})^{\chi}$ is a one-dimensional complex vector space.

Question

What if the imaginary quadratic field K is replaced by a real quadratic field?

The question is still open!

Question

Are there "Heegner points attached to real quadratic fields"?

・ 日 > ・ 一 戸 > ・ 日 > ・

Theorem (GZK for characters)

If $L'(E/K, \chi, 1) \neq 0$, then $(E(H) \otimes \mathbb{C})^{\chi}$ is a one-dimensional complex vector space.

Question

What if the imaginary quadratic field K is replaced by a real quadratic field?

The question is still open!

Question

Are there "Heegner points attached to real quadratic fields"?

・ 日 > ・ 一 戸 > ・ 日 > ・

Theorem (GZK for characters)

If $L'(E/K, \chi, 1) \neq 0$, then $(E(H) \otimes \mathbb{C})^{\chi}$ is a one-dimensional complex vector space.

Question

What if the imaginary quadratic field K is replaced by a real quadratic field?

The question is still open!

Question

Are there "Heegner points attached to real quadratic fields"?

・ 日 > ・ 一 戸 > ・ 日 > ・

Theorem (GZK for characters)

If $L'(E/K, \chi, 1) \neq 0$, then $(E(H) \otimes \mathbb{C})^{\chi}$ is a one-dimensional complex vector space.

Question

What if the imaginary quadratic field K is replaced by a real quadratic field?

The question is still open!

Question

Are there "Heegner points attached to real quadratic fields"?

日本《國本《法本》《法》

Let $\Psi: \mathcal{K} \hookrightarrow \mathcal{M}_2(\mathbb{Q})$ be an embedding of a quadratic algebra.

- If K is imaginary, $\tau_{\Psi} :=$ fixed point of $\Psi(K^{\times}) \circ \mathcal{H}$; $\Delta_{\Psi} := \{\tau_{\Psi}\}.$
- $\text{ (If } K \text{ is real, } \tau_{\Psi}, \tau'_{\Psi} := \text{fixed points of } \Psi(K^{\times}) \circlearrowleft (\mathcal{H} \cup \mathbb{R}); \\ \Upsilon_{\Psi} = \text{geodesic}(\tau_{\Psi} \to \tau'_{\Psi}). \\ \overbrace{\tau_{\Psi} \qquad \tau'_{\Psi}}^{\bullet}$

$\Delta_{\Psi} = \Upsilon_{\Psi} / \langle \Psi(\mathcal{O}_K^{\times}) \rangle \subset Y(\mathbb{C}).$

These "real quadratic cycles" have been extensively studied (Shintani, Zagier, Gross-Kohnen-Zagier, Waldspurger, Alex Popa) and related to special values of *L*-series.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Let $\Psi: \mathcal{K} \hookrightarrow \mathcal{M}_2(\mathbb{Q})$ be an embedding of a quadratic algebra.

• If K is imaginary, $\tau_{\Psi} :=$ fixed point of $\Psi(K^{\times}) \circlearrowleft \mathcal{H}$; $\Delta_{\Psi} := \{\tau_{\Psi}\}.$

② If *K* is real, $\tau_{\Psi}, \tau'_{\Psi} :=$ fixed points of $\Psi(K^{\times}) \circ (\mathcal{H} \cup \mathbb{R})$; $\Upsilon_{\Psi} = \text{geodesic}(\tau_{\Psi} \to \tau'_{\Psi}).$ τ_{Ψ}

 $\Delta_{\Psi} = \Upsilon_{\Psi} / \langle \Psi(\mathcal{O}_K^{\times}) \rangle \subset Y(\mathbb{C}).$

These "real quadratic cycles" have been extensively studied (Shintani, Zagier, Gross-Kohnen-Zagier, Waldspurger, Alex Popa) and related to special values of *L*-series.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Let $\Psi: \mathcal{K} \hookrightarrow \mathcal{M}_2(\mathbb{Q})$ be an embedding of a quadratic algebra.

- If K is imaginary, $\tau_{\Psi} :=$ fixed point of $\Psi(K^{\times}) \circlearrowleft \mathcal{H}$; $\Delta_{\Psi} := \{\tau_{\Psi}\}.$
- If K is real, $\tau_{\Psi}, \tau'_{\Psi} := \text{fixed points of } \Psi(K^{\times}) \bigcirc (\mathcal{H} \cup \mathbb{R});$ T_Ψ = geodesic($\tau_{\Psi} \to \tau'_{\Psi}$).

 $\Delta_{\Psi}=\varUpsilon_{\Psi}/\langle \Psi(\mathcal{O}_{K}^{ imes})
angle\subset Y(\mathbb{C}).$

These "real quadratic cycles" have been extensively studied (Shintani, Zagier, Gross-Kohnen-Zagier, Waldspurger, Alex Popa) and related to special values of *L*-series.

Let $\Psi : K \hookrightarrow M_2(\mathbb{Q})$ be an embedding of a quadratic algebra.

- If K is imaginary, $\tau_{\Psi} :=$ fixed point of $\Psi(K^{\times}) \circlearrowleft \mathcal{H}$; $\Delta_{\Psi} := \{\tau_{\Psi}\}.$

 $\Delta_{\Psi}=\varUpsilon_{\Psi}/\langle \Psi(\mathcal{O}_{K}^{ imes})
angle\subset Y(\mathbb{C}).$

These "real quadratic cycles" have been extensively studied (Shintani, Zagier, Gross-Kohnen-Zagier, Waldspurger, Alex Popa) and related to special values of *L*-series.

Another statement of the question

Question

What objects play the role of real quadratic cycles, when K is real quadratic and the sign in L(E/K, s) is -1?

graduated in 1991 with

- A thesis, containing a few (not so exciting) theorems;
- Questions about elliptic curves and class field theory for real quadratic fields, which have fascinated me ever since.

(日)

Another statement of the question

Question

What objects play the role of real quadratic cycles, when K is real quadratic and the sign in L(E/K, s) is -1?

graduated in 1991 with

- A thesis, containing a few (not so exciting) theorems;
- Questions about elliptic curves and class field theory for real quadratic fields, which have fascinated me ever since.

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Another statement of the question

Question

What objects play the role of real quadratic cycles, when K is real quadratic and the sign in L(E/K, s) is -1?

I graduated in 1991 with

- A thesis, containing a few (not so exciting) theorems;
- Questions about elliptic curves and class field theory for real quadratic fields, which have fascinated me ever since.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Another statement of the question

Question

What objects play the role of real quadratic cycles, when K is real quadratic and the sign in L(E/K, s) is -1?

I graduated in 1991 with

- A thesis, containing a few (not so exciting) theorems;
- Questions about elliptic curves and class field theory for real quadratic fields, which have fascinated me ever since.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

The mathematical objects exploited by Gross-Zagier and Kolyvagin continue to be available when \mathbb{Q} is replaced by a *totally real field* F of degree n > 1.

Definition

An elliptic curve E/F is modular if there is a Hilbert modular form $G \in S_2(N)$ over F such that

$$L(E/F,s)=L(G,s).$$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Modularity is often known, and will be assumed from now on.

The mathematical objects exploited by Gross-Zagier and Kolyvagin continue to be available when \mathbb{Q} is replaced by a *totally real field* F of degree n > 1.

Definition

An elliptic curve E/F is modular if there is a Hilbert modular form $G \in S_2(N)$ over F such that

L(E/F,s)=L(G,s).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Modularity is often known, and will be assumed from now on.

The mathematical objects exploited by Gross-Zagier and Kolyvagin continue to be available when \mathbb{Q} is replaced by a *totally real field* F of degree n > 1.

Definition

An elliptic curve E/F is modular if there is a Hilbert modular form $G \in S_2(N)$ over F such that

$$L(E/F,s)=L(G,s).$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Modularity is often known, and will be assumed from now on.

Geometric modularity

Geometrically, the Hilbert modular form G corresponds to a $(2^n$ -dimensional) subspace

$$\Omega_G \subset \Omega^n_{har}(V(\mathbb{C}))^G,$$

where V is a suitable *Hilbert modular variety* of dimension n.

Definition

The elliptic curve E/F is said to satisfy the Jacquet-Langlands hypothesis (JL) if either $[F : \mathbb{Q}]$ is odd, or $\operatorname{ord}_{P}(N)$ is odd for some prime P|N of F.

Theorem (Geometric modularity)

Suppose that E/F is modular and satisfies (JL). There there exists a Shimura curve X/F and a non-constant morphism

 $\pi_E: \operatorname{Jac}(X) \longrightarrow E.$

Geometric modularity

Geometrically, the Hilbert modular form G corresponds to a $(2^n$ -dimensional) subspace

$$\Omega_G \subset \Omega^n_{har}(V(\mathbb{C}))^G,$$

where V is a suitable *Hilbert modular variety* of dimension n.

Definition

The elliptic curve E/F is said to satisfy the Jacquet-Langlands hypothesis (JL) if either $[F : \mathbb{Q}]$ is odd, or $\operatorname{ord}_p(N)$ is odd for some prime p|N of F.

Theorem (Geometric modularity)

Suppose that E/F is modular and satisfies (JL). There there exists a Shimura curve X/F and a non-constant morphism

 $\pi_E: \operatorname{Jac}(X) \longrightarrow E.$

Geometric modularity

Geometrically, the Hilbert modular form G corresponds to a $(2^n$ -dimensional) subspace

$$\Omega_G \subset \Omega^n_{har}(V(\mathbb{C}))^G,$$

where V is a suitable *Hilbert modular variety* of dimension n.

Definition

The elliptic curve E/F is said to satisfy the Jacquet-Langlands hypothesis (JL) if either $[F : \mathbb{Q}]$ is odd, or $\operatorname{ord}_p(N)$ is odd for some prime p|N of F.

Theorem (Geometric modularity)

Suppose that E/F is modular and satisfies (JL). There there exists a Shimura curve X/F and a non-constant morphism

 $\pi_E : \operatorname{Jac}(X) \longrightarrow E.$

Shimura curves, like modular curves, are equipped with a plentiful supply of CM points.

Theorem (Zhang, 2001)

Let E/F be a modular elliptic curve satisfying hypothesis (JL). If $\operatorname{ord}_{s=1} L(E/F, s) \leq 1$, then $\operatorname{III}(E/F)$ is finite and

```
\operatorname{rank}(E(F)) = \operatorname{ord}_{s=1} L(E/F, s).
```

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Zhang, Shouwu. *Heights of Heegner points on Shimura curves.* Ann. of Math. (2) **153** (2001). Shimura curves, like modular curves, are equipped with a plentiful supply of CM points.

Theorem (Zhang, 2001)

Let E/F be a modular elliptic curve satisfying hypothesis (JL). If $\operatorname{ord}_{s=1} L(E/F, s) \leq 1$, then $\operatorname{III}(E/F)$ is finite and

 $\operatorname{rank}(E(F)) = \operatorname{ord}_{s=1} L(E/F, s).$

Zhang, Shouwu. *Heights of Heegner points on Shimura curves*. Ann. of Math. (2) **153** (2001).

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Shimura curves, like modular curves, are equipped with a plentiful supply of CM points.

Theorem (Zhang, 2001)

Let E/F be a modular elliptic curve satisfying hypothesis (JL). If $\operatorname{ord}_{s=1} L(E/F, s) \leq 1$, then $\operatorname{III}(E/F)$ is finite and

 $\operatorname{rank}(E(F)) = \operatorname{ord}_{s=1} L(E/F, s).$

Zhang, Shouwu. *Heights of Heegner points on Shimura curves*. Ann. of Math. (2) **153** (2001).

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Theorem (Matteo Longo, 2004)

Let E/F be a modular elliptic curve. If $L(E/F, 1) \neq 0$, then E(F) is finite and $\mathbb{U}(E/F)[p^{\infty}]$ is finite for almost all p.

Proof.

Congruences between modular forms \Rightarrow the Galois representation $E[p^n]$ occurs in $J_n[p^n]$, where $J_n = \text{Jac}(X_n)$ and X_n is a Shimura curve X_n whose level may (and does) depend on n. Use CM points on X_n to bound the p^n -Selmer group of E.

Theorem (Matteo Longo, 2004)

Let E/F be a modular elliptic curve. If $L(E/F, 1) \neq 0$, then E(F) is finite and $\mathbb{II}(E/F)[p^{\infty}]$ is finite for almost all p.

Proof.

Congruences between modular forms \Rightarrow the Galois representation $E[p^n]$ occurs in $J_n[p^n]$, where $J_n = \text{Jac}(X_n)$ and X_n is a Shimura curve X_n whose level may (and does) depend on n. Use CM points on X_n to bound the p^n -Selmer group of E.

Theorem (Matteo Longo, 2004)

Let E/F be a modular elliptic curve. If $L(E/F, 1) \neq 0$, then E(F) is finite and $\mathbb{II}(E/F)[p^{\infty}]$ is finite for almost all p.

Proof.

Congruences between modular forms \Rightarrow the Galois representation $E[p^n]$ occurs in $J_n[p^n]$, where $J_n = \text{Jac}(X_n)$ and X_n is a Shimura curve X_n whose level may (and does) depend on n. Use CM points on X_n to bound the p^n -Selmer group of E.

Theorem (Matteo Longo, 2004)

Let E/F be a modular elliptic curve. If $L(E/F, 1) \neq 0$, then E(F) is finite and $\mathbb{II}(E/F)[p^{\infty}]$ is finite for almost all p.

Proof.

Congruences between modular forms \Rightarrow the Galois representation $E[p^n]$ occurs in $J_n[p^n]$, where $J_n = \text{Jac}(X_n)$ and X_n is a Shimura curve X_n whose level may (and does) depend on n. Use CM points on X_n to bound the p^n -Selmer group of E.

Simplest case where (JL) fails to hold:

 ${\sf F}={\mathbb Q}(\sqrt{N})$, a real quadratic field,

E/F has everywhere good reduction.

Fact: E(F) has even analytic rank and hence Longo's theorem applies.

Consider the twist E_K of E by a quadratic extension K/F.

Proposition

1 If K is totally real or CM, then E_K has even analytic rank.

Simplest case where (JL) fails to hold:

$F = \mathbb{Q}(\sqrt{N})$, a real quadratic field,

E/F has everywhere good reduction.

Fact: E(F) has even analytic rank and hence Longo's theorem applies.

Consider the twist E_K of E by a quadratic extension K/F.

Proposition

1 If K is totally real or CM, then E_K has even analytic rank.

Simplest case where (JL) fails to hold:

 $F = \mathbb{Q}(\sqrt{N})$, a real quadratic field,

E/F has everywhere good reduction.

Fact: E(F) has even analytic rank and hence Longo's theorem applies.

Consider the twist E_K of E by a quadratic extension K/F.

Proposition

1 If K is totally real or CM, then E_K has even analytic rank.

Simplest case where (JL) fails to hold:

 $F = \mathbb{Q}(\sqrt{N})$, a real quadratic field,

E/F has everywhere good reduction.

Fact: E(F) has even analytic rank and hence Longo's theorem applies.

Consider the twist E_K of E by a quadratic extension K/F.

Proposition

1 If K is totally real or CM, then E_K has even analytic rank.

Simplest case where (JL) fails to hold:

 $F = \mathbb{Q}(\sqrt{N})$, a real quadratic field,

E/F has everywhere good reduction.

Fact: E(F) has even analytic rank and hence Longo's theorem applies.

Consider the twist E_K of E by a quadratic extension K/F.

Proposition If K is totally real or CM, then E_K has even analytic rank. If K is an ATR (Almost Totally Real) extension, then E_K has odd analytic rank.

Simplest case where (JL) fails to hold:

 $F = \mathbb{Q}(\sqrt{N})$, a real quadratic field,

E/F has everywhere good reduction.

Fact: E(F) has even analytic rank and hence Longo's theorem applies.

Consider the twist E_K of E by a quadratic extension K/F.

Proposition

1 If K is totally real or CM, then E_K has even analytic rank.

Simplest case where (JL) fails to hold:

 $F = \mathbb{Q}(\sqrt{N})$, a real quadratic field,

E/F has everywhere good reduction.

Fact: E(F) has even analytic rank and hence Longo's theorem applies.

Consider the twist E_K of E by a quadratic extension K/F.

Proposition

- **1** If K is totally real or CM, then E_K has even analytic rank.
- If K is an ATR (Almost Totally Real) extension, then E_K has odd analytic rank.

Conjecture (on ATR twists)

Let E_K be an ATR twist of an elliptic curve E of conductor 1 over F. If $L'(E_K/F, 1) \neq 0$, then $E_K(F)$ has rank one and $\amalg(E_K/F) < \infty$.

This is a very special case of the BSD conjecture.

It appears close to existing results, but presents genuine new difficulties.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Problem: Produce a point $P_K \in E_K(F)$, when (JL) fails and hence no Shimura curve is available.

Let Y be the (open) Hilbert modular surface attached to E/F:

 $Y(\mathbb{C}) = \mathbf{SL}_2(\mathcal{O}_F) \setminus (\mathcal{H}_1 \times \mathcal{H}_2).$

There are $h := \# \operatorname{Pic}^+(\mathcal{O}_K) / \operatorname{Pic}^+(\mathcal{O}_F)$ distinct \mathcal{O}_F -algebra embeddings

$$\Psi_1,\ldots,\Psi_h:\mathcal{O}_K\longrightarrow M_2(\mathcal{O}_F).$$

Problem: Produce a point $P_K \in E_K(F)$, when (JL) fails and hence no Shimura curve is available.

Let Y be the (open) Hilbert modular surface attached to E/F:

$$Y(\mathbb{C}) = \mathsf{SL}_2(\mathcal{O}_F) \setminus (\mathcal{H}_1 \times \mathcal{H}_2).$$

There are $h := \# \operatorname{Pic}^+(\mathcal{O}_K) / \operatorname{Pic}^+(\mathcal{O}_F)$ distinct \mathcal{O}_F -algebra embeddings

$$\Psi_1,\ldots,\Psi_h:\mathcal{O}_K\longrightarrow M_2(\mathcal{O}_F).$$

Problem: Produce a point $P_K \in E_K(F)$, when (JL) fails and hence no Shimura curve is available.

Let Y be the (open) Hilbert modular surface attached to E/F:

$$Y(\mathbb{C}) = \mathsf{SL}_2(\mathcal{O}_F) \setminus (\mathcal{H}_1 \times \mathcal{H}_2).$$

There are $h := \# \operatorname{Pic}^+(\mathcal{O}_K) / \operatorname{Pic}^+(\mathcal{O}_F)$ distinct \mathcal{O}_F -algebra embeddings

$$\Psi_1,\ldots,\Psi_h:\mathcal{O}_K\longrightarrow M_2(\mathcal{O}_F).$$

Problem: Produce a point $P_K \in E_K(F)$, when (JL) fails and hence no Shimura curve is available.

Let Y be the (open) Hilbert modular surface attached to E/F:

$$Y(\mathbb{C}) = \mathsf{SL}_2(\mathcal{O}_F) \setminus (\mathcal{H}_1 \times \mathcal{H}_2).$$

There are $h := \# \operatorname{Pic}^+(\mathcal{O}_K) / \operatorname{Pic}^+(\mathcal{O}_F)$ distinct \mathcal{O}_F -algebra embeddings

$$\Psi_1,\ldots,\Psi_h:\mathcal{O}_K\longrightarrow M_2(\mathcal{O}_F).$$

イロト 不得 トイヨト イヨト 三日

Sac

 $\Delta_{\Psi} = \Upsilon_{\Psi} / \langle \Psi(\mathcal{O}_K^{\times}) \rangle \subset Y(\mathbb{C}).$

 $\tau^{(1)}_{\Psi} :=$ fixed point of $\Psi(K^{\times}) \circ \mathcal{H}_1$;

 $\Delta_{\Psi} = \Upsilon_{\Psi} / \langle \Psi(\mathcal{O}_{K}^{\times}) \rangle \subset Y(\mathbb{C}).$

Key fact: The cycles Δ_{Ψ} are *null-homologous*.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

 $\Delta_{\Psi} = \Upsilon_{\Psi} / \langle \Psi(\mathcal{O}_K^{\times}) \rangle \subset Y(\mathbb{C}).$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● のへで

 $\Delta_{\Psi} = \Upsilon_{\Psi} / \langle \Psi(\mathcal{O}_{K}^{ imes})
angle \subset Y(\mathbb{C}).$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● のへで

 $\Delta_{\Psi} = \Upsilon_{\Psi} / \langle \Psi(\mathcal{O}_{K}^{ imes})
angle \subset Y(\mathbb{C}).$

Points attached to ATR cycles

For any 2-form $\omega_G \in \Omega_G$,

$$P_{\Psi}^{?}(G) := \int_{\partial^{-1}\Delta_{\Psi}} \omega_{G} \quad \in \quad \mathbb{C}/\Lambda_{G}.$$

Conjecture (Oda (1982))

For a suitable choice of ω_G , we have $\mathbb{C}/\Lambda_G \sim E(\mathbb{C})$. In particular $P^2_{\Psi}(G)$ can then be viewed as a point in $E(\mathbb{C})$.

Conjecture (Logan, D (2003))

The points $P_{\Psi}^{?}(G)$ belongs to $E(H) \otimes \mathbb{Q}$, where H is the ring class field of K of conductor 1. The points $P_{\Psi_{1}}^{?}(G), \ldots, P_{\Psi_{h}}^{?}(G)$ are conjugate to each other under $\operatorname{Gal}(H/K)$. Finally, the point $P_{K}^{?}(G) := P_{\Psi_{1}}^{?}(G) + \cdots + P_{\Psi_{h}}^{?}(G)$ is of infinite order iff $L'(E/K, 1) \neq 0$.

Points attached to ATR cycles

For any 2-form $\omega_{G} \in \Omega_{G}$,

$$\mathcal{P}^{?}_{\Psi}(G) := \int_{\partial^{-1}\Delta_{\Psi}} \omega_{G} \quad \in \quad \mathbb{C}/\Lambda_{G}.$$

Conjecture (Oda (1982))

For a suitable choice of ω_G , we have $\mathbb{C}/\Lambda_G \sim E(\mathbb{C})$. In particular $P^2_{\Psi}(G)$ can then be viewed as a point in $E(\mathbb{C})$.

Conjecture (Logan, D (2003))

The points $P_{\Psi}^{?}(G)$ belongs to $E(H) \otimes \mathbb{Q}$, where H is the ring class field of K of conductor 1. The points $P_{\Psi_{1}}^{?}(G), \ldots, P_{\Psi_{h}}^{?}(G)$ are conjugate to each other under $\operatorname{Gal}(H/K)$. Finally, the point $P_{K}^{?}(G) := P_{\Psi_{1}}^{?}(G) + \cdots + P_{\Psi_{h}}^{?}(G)$ is of infinite order iff $L'(E/K, 1) \neq 0$.

Points attached to ATR cycles

For any 2-form $\omega_{G} \in \Omega_{G}$,

$$\mathcal{P}^{?}_{\Psi}(G) := \int_{\partial^{-1}\Delta_{\Psi}} \omega_{G} \quad \in \quad \mathbb{C}/\Lambda_{G}.$$

Conjecture (Oda (1982))

For a suitable choice of ω_G , we have $\mathbb{C}/\Lambda_G \sim E(\mathbb{C})$. In particular $P^2_{\Psi}(G)$ can then be viewed as a point in $E(\mathbb{C})$.

Conjecture (Logan, D (2003))

The points $P_{\Psi}^{?}(G)$ belongs to $E(H) \otimes \mathbb{Q}$, where H is the ring class field of K of conductor 1. The points $P_{\Psi_{1}}^{?}(G), \ldots, P_{\Psi_{h}}^{?}(G)$ are conjugate to each other under $\operatorname{Gal}(H/K)$. Finally, the point $P_{K}^{?}(G) := P_{\Psi_{1}}^{?}(G) + \cdots + P_{\Psi_{h}}^{?}(G)$ is of infinite order iff $L'(E/K, 1) \neq 0$. ATR points are defined over abelian extensions of a quadratic ATR extension K of a real quadratic field F.

This setting is "overly complicated", and does not capture the more natural setting of Heegner points over ring class fields of real quadratic fields.

Simplest case: E/\mathbb{Q} is an elliptic curve of prime conductor p, and K is a real quadratic field in which p is inert.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

 $\mathcal{H}_{p} = \mathbb{P}_{1}(\mathbb{C}_{p}) - \mathbb{P}_{1}(\mathbb{Q}_{p})$

ATR points are defined over abelian extensions of a quadratic ATR extension K of a real quadratic field F.

This setting is "overly complicated", and does not capture the more natural setting of Heegner points over ring class fields of real quadratic fields.

Simplest case: E/\mathbb{Q} is an elliptic curve of prime conductor p, and K is a real quadratic field in which p is inert.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

 $\mathcal{H}_{p} = \mathbb{P}_{1}(\mathbb{C}_{p}) - \mathbb{P}_{1}(\mathbb{Q}_{p})$

ATR points are defined over abelian extensions of a quadratic ATR extension K of a real quadratic field F.

This setting is "overly complicated", and does not capture the more natural setting of Heegner points over ring class fields of real quadratic fields.

Simplest case: E/\mathbb{Q} is an elliptic curve of prime conductor p, and K is a real quadratic field in which p is inert.

 $\mathcal{H}_{p} = \mathbb{P}_{1}(\mathbb{C}_{p}) - \mathbb{P}_{1}(\mathbb{Q}_{p})$

ATR points are defined over abelian extensions of a quadratic ATR extension K of a real quadratic field F.

This setting is "overly complicated", and does not capture the more natural setting of Heegner points over ring class fields of real quadratic fields.

Simplest case: E/\mathbb{Q} is an elliptic curve of prime conductor p, and K is a real quadratic field in which p is inert.

 $\mathcal{H}_{\rho} = \mathbb{P}_1(\mathbb{C}_{\rho}) - \mathbb{P}_1(\mathbb{Q}_{\rho})$

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0, ∞_1	p, ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/p])ackslash(\mathcal{H}_p imes\mathcal{H})$
K/F ATR	K/\mathbb{Q} real quadratic, with p inert
ATR cycles	Cycles in $\mathbf{SL}_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p imes \mathcal{H}).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0 , ∞_1	p, ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/ ho])ackslash(\mathcal{H}_{ ho} imes\mathcal{H})$
K/F ATR	K/\mathbb{Q} real quadratic, with p inert
ATR cycles	Cycles in $\mathbf{SL}_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p imes \mathcal{H}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Ĭ.

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0, ∞_1	p, ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/ ho])ackslash(\mathcal{H}_{ ho} imes\mathcal{H})$
K/F ATR	K/\mathbb{Q} real quadratic, with p inert
ATR cycles	Cycles in $\mathbf{SL}_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p imes \mathcal{H}).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Ĭ.

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0, ∞_1	p, ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/ ho])ackslash(\mathcal{H}_{ ho} imes\mathcal{H})$
K/F ATR	K/\mathbb{Q} real quadratic, with p inert
ATR cycles	Cycles in $\mathbf{SL}_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p \times \mathcal{H}).$

Ĭ.

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0, ∞_1	p, ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/p])ackslash(\mathcal{H}_p imes\mathcal{H})$
K/F ATR	K/\mathbb{Q} real quadratic, with p inert
ATR cycles	Cycles in $\mathbf{SL}_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p \times \mathcal{H}).$

Ĭ.

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0 , ∞_1	p, ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/p])ackslash(\mathcal{H}_p imes\mathcal{H})$
K/F ATR	K/\mathbb{Q} real quadratic, with p inert
ATR cycles	Cycles in $\mathbf{SL}_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p \times \mathcal{H}).$

Ĭ.

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0 , ∞_1	p , ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/ ho])ackslash(\mathcal{H}_{ ho} imes\mathcal{H})$
K/F ATR	K/\mathbb{Q} real quadratic, with p inert
ATR cycles	Cycles in $\mathbf{SL}_2(\mathbb{Z}[1/\rho])ackslash(\mathcal{H}_{ ho} imes\mathcal{H}).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0 , ∞_1	p, ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/p])ackslash(\mathcal{H}_p imes\mathcal{H})$
K/F ATR	K/\mathbb{Q} real quadratic, with p inert
ATR cycles	Cycles in $\mathbf{SL}_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p imes \mathcal{H}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0 , ∞_1	p, ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/p])ackslash(\mathcal{H}_p imes\mathcal{H})$
K/F ATR	K/\mathbb{Q} real quadratic, with p inert
ATR cycles	Cycles in $SL_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p imes \mathcal{H}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0 , ∞_1	p, ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/ ho])ackslash(\mathcal{H}_{ ho} imes\mathcal{H})$
K/F ATR	K/\mathbb{Q} real quadratic, with p inert
ATR cycles	Cycles in $SL_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p imes \mathcal{H}).$

Ĭ.

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0 , ∞_1	p , ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/ ho])ackslash(\mathcal{H}_{ ho} imes\mathcal{H})$
K/F ATR	K/\mathbb{Q} real quadratic, with p inert
ATR cycles	Cycles in $SL_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p imes \mathcal{H}).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Ĭ.

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0 , ∞_1	p, ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/ ho])ackslash(\mathcal{H}_{ ho} imes\mathcal{H})$
K/F ATR	K/\mathbb{Q} real quadratic, with p inert
ATR cycles	Cycles in $SL_2(\mathbb{Z}[1/p])ackslash(\mathcal{H}_p imes\mathcal{H}).$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Ĭ.

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0 , ∞_1	p, ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/ ho])ackslash(\mathcal{H}_{ ho} imes\mathcal{H})$
K/F ATR	${\cal K}/{\mathbb Q}$ real quadratic, with p inert
ATR cycles	Cycles in $\mathbf{SL}_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p \times \mathcal{H}).$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0 , ∞_1	p, ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/ ho])ackslash(\mathcal{H}_{ ho} imes\mathcal{H})$
K/F ATR	${\cal K}/{\mathbb Q}$ real quadratic, with p inert
ATR cycles	Cycles in $\mathbf{SL}_2(\mathbb{Z}[1/\rho]) \setminus (\mathcal{H}_p \times \mathcal{H}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Ĭ.

ATR cycles	Real quadratic points
F real quadratic	Q
∞_0 , ∞_1	p, ∞
E/F of conductor 1	E/\mathbb{Q} of conductor p
$SL_2(\mathcal{O}_F)ackslash(\mathcal{H} imes\mathcal{H})$	$SL_2(\mathbb{Z}[1/ ho])ackslash(\mathcal{H}_{ ho} imes\mathcal{H})$
K/F ATR	${\cal K}/{\mathbb Q}$ real quadratic, with p inert
ATR cycles	Cycles in $SL_2(\mathbb{Z}[1/p]) ackslash (\mathcal{H}_p imes \mathcal{H}).$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

One can develop the notions in the right-hand column to the extent of

• Attaching to $f \in S_2(\Gamma_0(p))$ a "Hilbert modular form" G on $SL_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p \times \mathcal{H}).$

Ø Making sense of the expression

$$\int_{\partial^{-1}\Delta\Psi}\omega_G \quad \in \quad K_p^{\times}/q^{\mathbb{Z}} = E(K_p)$$

for any "*p*-adic ATR cycle" Δ_{Ψ} .

The resulting local points are defined (*conjecturally*) over ring class fields of K. They are called "Stark-Heegner points" ...

One can develop the notions in the right-hand column to the extent of

• Attaching to $f \in S_2(\Gamma_0(p))$ a "Hilbert modular form" G on $SL_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p \times \mathcal{H}).$

Ø Making sense of the expression

$$\int_{\partial^{-1}\Delta\Psi}\omega_G \quad \in \quad K_p^{\times}/q^{\mathbb{Z}} = E(K_p)$$

for any "*p*-adic ATR cycle" Δ_{Ψ} .

The resulting local points are defined (*conjecturally*) over ring class fields of K. They are called "Stark-Heegner points" ...

One can develop the notions in the right-hand column to the extent of

- Attaching to $f \in S_2(\Gamma_0(p))$ a "Hilbert modular form" G on $SL_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p \times \mathcal{H}).$
- Ø Making sense of the expression

$$\int_{\partial^{-1}\Delta\Psi}\omega_{\mathcal{G}} \quad \in \quad \mathcal{K}_{p}^{\times}/q^{\mathbb{Z}} = \mathcal{E}(\mathcal{K}_{p})$$

for any "*p*-adic ATR cycle" Δ_{Ψ} .

The resulting local points are defined (*conjecturally*) over ring class fields of *K*. They are called "Stark-Heegner points" ...

One can develop the notions in the right-hand column to the extent of

• Attaching to $f \in S_2(\Gamma_0(p))$ a "Hilbert modular form" G on $SL_2(\mathbb{Z}[1/p]) \setminus (\mathcal{H}_p \times \mathcal{H}).$

Making sense of the expression

$$\int_{\partial^{-1}\Delta\Psi}\omega_{G} \quad \in \quad \mathcal{K}_{p}^{\times}/q^{\mathbb{Z}} = \mathcal{E}(\mathcal{K}_{p})$$

for any "*p*-adic ATR cycle" Δ_{Ψ} .

The resulting local points are defined (*conjecturally*) over ring class fields of K. They are called "Stark-Heegner points" ...

- ロ ト - 4 回 ト - 4 □

Gross-Stark units are *p*-adic analogues of Stark-units (in which classical Artin *L*-functions at s = 0 are replaced by the *p*-adic *L*-functions attached to totally real fields by Deligne-Ribet.)

p-adic L-series at s = 0, J. Fac. Sci. Univ. of Tokyo 28 (1982), 979-994.

On the values of abelian L-functions at s = 0, J. Fac. Science of University of Tokyo, 35 (1988), 177-197.

Dasgupta, D, (2004) If one replaces the cusp form f of weight 2 (attached to an elliptic curve E/\mathbb{Q} , say) by a weight two Eisenstein series, one obtains *p*-adic logarithms of Gross-Stark units instead of Stark-Heegner points.

Gross-Stark units are *p*-adic analogues of Stark-units (in which classical Artin *L*-functions at s = 0 are replaced by the *p*-adic *L*-functions attached to totally real fields by Deligne-Ribet.)

p-adic L-series at s = 0, J. Fac. Sci. Univ. of Tokyo 28 (1982), 979-994.

On the values of abelian L-functions at s = 0, J. Fac. Science of University of Tokyo, 35 (1988), 177-197.

Dasgupta, D, (2004) If one replaces the cusp form f of weight 2 (attached to an elliptic curve E/\mathbb{Q} , say) by a weight two Eisenstein series, one obtains p-adic logarithms of Gross-Stark units instead of Stark-Heegner points.

Gross-Stark units are *p*-adic analogues of Stark-units (in which classical Artin *L*-functions at s = 0 are replaced by the *p*-adic *L*-functions attached to totally real fields by Deligne-Ribet.)

p-adic L-series at s = 0, J. Fac. Sci. Univ. of Tokyo 28 (1982), 979-994.

On the values of abelian L-functions at s = 0, J. Fac. Science of University of Tokyo, 35 (1988), 177-197.

Dasgupta, D, (2004) If one replaces the cusp form f of weight 2 (attached to an elliptic curve E/\mathbb{Q} , say) by a weight two Eisenstein series, one obtains p-adic logarithms of Gross-Stark units instead of Stark-Heegner points.

So really, "Stark-Heegner points" should be called "Gross-Stark-Heegner points"!

Motivated by the connection between Stark-Heegner points and Gross-Stark units, Samit Dasgupta, Robert Pollack and I have tried to make some progress on Gross's *p*-adic analogue of the Stark conjecture.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

SQA

So really, "Stark-Heegner points" should be called "Gross-Stark-Heegner points"!

Motivated by the connection between Stark-Heegner points and Gross-Stark units, Samit Dasgupta, Robert Pollack and I have tried to make some progress on Gross's *p*-adic analogue of the Stark conjecture.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

So really, "Stark-Heegner points" should be called "Gross-Stark-Heegner points"!

Motivated by the connection between Stark-Heegner points and Gross-Stark units, Samit Dasgupta, Robert Pollack and I have tried to make some progress on Gross's *p*-adic analogue of the Stark conjecture.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

So really, "Stark-Heegner points" should be called "Gross-Stark-Heegner points"!

Motivated by the connection between Stark-Heegner points and Gross-Stark units, Samit Dasgupta, Robert Pollack and I have tried to make some progress on Gross's *p*-adic analogue of the Stark conjecture.

Summary

The Gross-Zagier formula and the *p*-adic Gross-Stark conjectures are two fundamental contributions of Dick Gross which have been, and continue to be, tremendously influential.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thank you, Dick, and Happy 60th Birthday!!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●