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Artin representations

Definition

An Artin representation is a continuous representation

% : GQ −→ GLn(C), GQ := Gal(Q̄/Q).

Artin L-function:

L(%, s) =
∏
`

det((1− σ``−s)|
V

I`
%

)−1.

σ`= Frobenius element at `;

V%= complex vector space realising %;

I`= inertia group at `.



The Artin conjecture

Conjecture

The L-function L(%, s) extends to a holomorphic function of s ∈ C
(except for a possible pole at s = 1).

• One-dimensional representations factor through abelian
quotients, and their study amounts to class field theory for Q:

L(%, s) = L(χ, s),

where χ : (Z/nZ)× −→ C× is a Dirichlet character.

• This talk will focus mainly on two-dimensional representations
which are odd: %(σ∞) has eigenvalues 1 and −1.



Modular forms of weight one

The role of Dirichlet characters in the study of odd two-dimensional
Artin representations is played by cusp forms of weight one:

Definition

A cusp form of weight one, level N, and (odd) character χ is a
holomorphic function g : H −→ C satisfying

g(
az + b

cz + d
) = χ(d)(cz + d)g(z).

Such a cusp form has a fourier expansion:

g =
∑

an(g)qn, q = e2πiz .



The strong Artin conjecture

Conjecture

If % is an odd, irreducible, two-dimensional representation of GQ,
there is a cusp form g of weight one, level N = cond(%), and
character χ = det(%), satisfying

L(%, s) = L(g , s).

L(g , s) =
∑
n

an(g)n−s

is the Hecke L-function attached to g .



First vignette: the Deligne-Serre theorem

Theorem (Deligne-Serre)

Let g be a weight one eigenform. There is an odd two-dimensional
Artin representation

%g : GQ −→ GL2(C)

satisfying
L(%g , s) = L(g , s).



First vignette, cont’d: congruences

The first step of the proof relies crucially on congruences between
modular forms:

Proposition: For each prime `, there exists an eigenform
g` ∈ S`(N, χ) of weight ` satisfying

g ≡ g` (mod `).

Idea:

• Multiply g by the Eisenstein series E`−1 of weight `− 1, to
obtain a mod ` eigenform with the right fourier coefficients;

• lift this mod ` eigenform to an eigenform with coefficients in Q̄.



First vignette, cont’d: étale cohomology

It was already known, thanks to Deligne, how to associate Galois
representations to eigenforms of weight ` ≥ 2: they occur in the
étale cohomology of certain Kuga-Sato varieties.

E := universal elliptic curve over X1(N);

W`(N) = E ×X1(N) · · · ×X1(N) E (`− 2 times);

Vg`
:= H`−1

et (W`(N)Q̄,Q`)[g`].

Conclusion: For each ` there exists a mod ` representation

%` : GQ −→ GL2(F̄`)

satisfying

trace(%`(σp)) = ap(g) (mod `), for all p - N`.



First vignette, cont’d: conclusion of the proof

Using a priori estimates on the size of ap(g), and some group
theory, the size of the image of %` is bounded independently of `.

Hence the %`’s can be pieced together into a % with finite image
and values in GL2(C).



First vignette: conclusion

Note the key role played in this proof by:

• Congruences between weight one forms and modular forms of
higher weights;

• Geometric structures — Kuga-Sato varieties, and their
associated étale cohomology groups — which allow the
construction of associated `-adic Galois representations.



Second vignette: the Strong Artin Conjecture

Theorem

Let % be an odd, irreducible, two-dimensional Artin representation.
There exists an eigen-cuspform g of weight one satisfying

L(g , s) = L(%, s).

• This theorem is now completely proved, over Q, thanks to the
proof of the Serre conjectures by Khare and Wintenberger.

• Prior to that, significant progress on the conjecture was achieved
based on a program of Taylor building on the fundamental
modularity lifting theorems of Wiles.

• The “second vignette” is concerned with the broad outline of
Taylor’s approach.



Scond vignette: Classification of Artin representations

By projective image, in order of increasing arithmetic complexity:

A. Reducible representations (sums of Dirichlet characters).

B. Dihedral, induced from an imaginary quadratic field.

C. Dihedral, induced from a real quadratic field.

D. Tetrahedral case: projective image A4.

E. Octahedral case: projective image S4.

F. Icosahedral case: projective image A5.



Second vignette: the status of the Artin conjecture

Cases A-C date back to Hecke, while D and E can be handled via
techniques based on solvable base change.

The interesting case is the icosahedral case, where % has projective
image A5.

Technical hypotheses: Asssume % is unramified at 2, 3 and 5,
and that %(σ2) has distinct eigenvalues.



Second vignette: the Shepherd-Barron–Taylor construction

Theorem

There exists a principally polarised abelian surface A with

Z[ 1+
√

5
2 ] ↪→ End(A) such that

• A[2] ' V% as GQ-modules;
• A[
√

5] ' E [5] for some elliptic curve E .



Second vignette: the propagation of modularity

Langlands-Tunnel: E [3] is modular.

Wiles’ modularity lifting, at 3: T3(E ) := lim←,n E [3n] is
modular.

Hence E is modular, hence E [5] = A[
√

5] is as well.

Modularity lifting, at
√

5: T√5(A) is modular.

Hence A is modular, hence so is A[2] = V%.

Modularity lifting, at 2: The representation % is 2-adically
modular, i.e., it corresponds to a 2-adic overconvergent modular
form of weight one.



Second vignette: from overconvergent to classical forms

The theory of companion forms produces two distinct
overconvergent 2-adic modular forms attached to %. (Using the
distinctness of the eigenvalues of %(σ2).)

Buzzard-Taylor. A suitable linear combination of these forms can
be extended to a classical form of weight one. (A key hypothesis
on % that is exploited is the triviality of %(I2).)

This beautiful strategy has recently been extended to totally real
fields by Kassaei, Sasaki, Tian, . . .



Brief summary

A dominant theme in both vignettes is the rich interplay between
Artin representations and `-adic and mod ` representations, via
congruences between the associated modular forms, (of weight
one, and weight ≥ 2, where the geometric arsenal of étale
cohomology becomes available.)



Third vignette: the Birch and Swinnerton-Dyer conjecture

Let E be an elliptic curve over Q. Hasse-Weil-Artin L-series

L(E , %, s) = L(Vp(E )⊗ V%, s).

Conjecture (BSD)

The L-series L(E , %, s) extends to an entire function of s and

ords=1 L(E , %, s) = r(E , %) := dimC E (Q̄)%,

where
E (Q̄)% = homGQ(V%,E (Q̄)⊗ C).

Remark: r(E , %) is the multiplicity with which the Artin
representation V% appears in the Mordell-Weil group of E over the
field cut out by %.



Third vignette: the rank 0 case

A special case of the equivariant BSD conjecture is

Conjecture

If L(E , %, 1) 6= 0, then r(E , %) = 0.

• If % is a quadratic character, it follows from the work of
Gross-Zagier-Kolyvagin, combined with a non-vanishing result on
L-series due to Bump-Friedberg Hoffstein and Murty-Murty.

• If % is one-dimensional, it follows from the work of Kato.

• If % is induced from a non-quadratic ring class character of an
imaginary quadratic field, it follows from work of Bertolini, D.,
Longo, Nekovar, Rotger, Seveso, Vigni, Zhang,.... building on the
fundamental breakthroughs of Gross-Zagier and Kolyvagin.



Third vignette: recent progress

Assume that

• % = %1 ⊗ %2, where %1 and %2 are odd irreducible Artin
representations of dimension two.

• The conductors of E and % are relatively prime.

• det(%1) = det(%2)−1, and hence in particular % is self-dual.

Theorem (D, Victor Rotger)

If L(E , %, 1) 6= 0, then r(E , %) = 0.



Third vignette: local and global Tate duality

The Mordell-Weil group injects into a global Galois cohomology
group

E (Q̄)% −→ H1
f (Q,Vp(E )⊗ V%).

Local and global duality, and the Poitou-Tate sequence: In
order to bound r(E , %), it suffices to show that the natural map

H1(Q,Vp(E )⊗ V%) −→ H1(Qp,Vp(E )⊗ V%)

H1
f (Qp,Vp(E )⊗ V%)

is surjective.

Thus the problem of bounding E (Q̄)% translates into the problem
of constructing global cohomology classes with “sufficiently
singular” local behaviour at p.



Third vignette: modularity

Thanks to the modularity results alluded to in the first two
vignettes, one can associate to (E , %1, %2):

• An eigenform f of weight two, with L(f , s) = L(E , s).

• Eigenforms g and h of weight one, with L(g , s) = L(%1, s) and
L(h, s) = L(%2, s).

• We then have an identification

L(E , %1 ⊗ %2, s) = L(f ⊗ g ⊗ h, s)

of the Hasse-Weil-Artin L-function with the Garret-Rankin triple
product L-function attached to (f , g , h).



Third vignette: the theme of p-adic variation

Theorem (Hida)

There exist Hida families

g =
∑
n

an(g , k)qn, h =
∑
n

an(h, k)qn,

of modular forms, specialising to g and h in weight one.

The fourier coefficients an(g , k) and an(h, k) are rigid analytic
functions on weight space W := Z/(p − 1)Z× Zp.

For each integer k ≥ 2, we obtain a pair (gk , hk) of classical forms
of higher weight k . These converge to (g , h) p-adically as k → 1
in W.



Third vignette: generalised diagonal cycles

When k ≥ 2, we can construct classes

κ(f , gk , hk) ∈ H1(Q,Vp(E )⊗ Vp(gk)⊗ Vp(hk)(k − 1))

from the images of generalised Gross-Kudla-Schoen cycles in

CHk(X0(N)×Wk(N)×Wk(N))0.

p-adic étale Abel-Jacobi map:

CHk(X0(N)×Wk(N)×Wk(N))0

→ H1(Q,H2k−1
et ((X0(N)×Wk(N)×Wk(N))Q̄,Qp)(k))

→ H1(Q,H1
et(X0(N)Q̄,Qp)(1)⊗ Hk−1

et (Wk(N)Q̄,Qp)⊗2(k − 1))

→ H1(Q,Vp(E )⊗ Vp(gk)⊗ Vp(hk)(k − 1)).



Third vignette: end of sketch of proof

The technical heart of the proof has two parts:

• The classes κ(f , gk , hk) interpolate to a p-adic analytic family of
cohomology classes, as k varies over W. In particular, we can
consider the p-adic limit

κ(f , g , h) := lim
k−→1

κ(f , gk , hk).

Theorem (Reciprocity law)

The class κ(f , g , h) is non-cristalline, i.e., has non-zero image in
H1(Qp ,Vp(E)⊗V%)

H1
f (Qp ,Vp(E)⊗V%)

, if and only if L(E , %, 1) 6= 0.



Application to ring class fields of real quadratic fields

Of special interest is the case where V%1 and V%2 are induced from
finite order characters χ1 and χ2 (of mixed signature) of the same
real quadratic field K :

V%1 ⊗ V%2 = IndQ
K (ψ)⊕ IndQ

K (ψ̃), ψ = χ1χ2, ψ̃ = χ1χ
′
2.

The characters ψ and ψ̃ are ring class characters of K .

Theorem

Assume that (E ,K ) satisfies the analytic non-vanishing condition
of the next slide. Then, for all ring class characters
ψ : Gal(H/K ) −→ C× of K of conductor prime to NE ,

L(E/K , ψ, 1) 6= 0⇒ (E (H)⊗ C)ψ = 0.



The analytic non-vanishing condition

Given an elliptic curve E/Q and a (real) quadratic field K , the
non-vanishing condition is:

Non-vanishing condition: There exist even and odd quadratic
twists E ′ of E such that

L(E ′/K , 1) 6= 0.

Question: When is this condition satisfied for (E ,K )?

Theorem (Bump-Friedberg-Hoffstein, Murty, Murty). There exist
infinitely many quadratic twists E ′ of E for which L(E ′/Q, 1) 6= 0
and also infinitely many for which L′(E ′/Q, 1) 6= 0.



Non-vanishing of L-series



Tetrahedral and Octahedral forms

Assume throughout that NE is coprime to the discriminant of P(x).

Theorem

Let P be a polynomial of degree 4 with Galois group A4 and no
real roots, and let K be any subfield of its splitting field. Then
L(E/K , 1) 6= 0⇒ E (K ) is finite.

Theorem

Let P be a polynomial of degree 4 with Galois group S4 and at
least two non-real roots, and assume that L(E , ε, 1) 6= 0, where ε is
the quadratic character attached to the discriminant of P. Then,
for any subfield K of the splitting field of P,
L(E/K , 1) 6= 0⇒ E (K ) is finite.



An icosahedral application

Theorem

Let P be a polynomial of degree 5 with Galois group A5 and a
single real root, and let K be the quintic field generated by a root
of P. Then

ords=1 L(E , s) = ords=1 L(E/K , s)⇒ rank(E (Q)) = rank(E (K )).

Explanation: IndQ
K 1 = 1⊕ V1 ⊗ V2, where V1 and V2 are odd

two-dimensional representations of the binary icosahedral group.

The method says nothing (as far as we can tell!) about the
arithmetic of E over the field generated by a root of Lagrange’s
sextic resolvent of P(x).



Happy 60th Birthday, Ram!


