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An Artin representation is a continuous representation

0: Gy — GL(C),  Gg:=Gal(Q/Q).

Artin L-function:

Lo.5) = [T det((1 — out )l ) ™
l

op= Frobenius element at /;
V,= complex vector space realising o;

ly= inertia group at {.



The Artin conjecture

Conjecture

The L-function L(p,s) extends to a holomorphic function of s € C
(except for a possible pole at s =1).

e One-dimensional representations factor through abelian
quotients, and their study amounts to class field theory for Q:

L(e,s) = L(x;s),
where x : (Z/nZ)* — C* is a Dirichlet character.

e This talk will focus mainly on two-dimensional representations
which are odd: p(0) has eigenvalues 1 and —1.



Modular forms of weight one

The role of Dirichlet characters in the study of odd two-dimensional
Artin representations is played by cusp forms of weight one:

Definition
A cusp form of weight one, level N, and (odd) character x is a

holomorphic function g : H — C satisfying

az+b
cz+d

8( ) = x(d)(cz + d)g(2)-

Such a cusp form has a fourier expansion:

g=>Y alg)d". q=e&""




The strong Artin conjecture

Conjecture

If 0 is an odd, irreducible, two-dimensional representation of Gg,
there is a cusp form g of weight one, level N = cond(p), and
character x = det(p), satisfying

L(e,s) = L(g,s)-

L(g,s) =) an(g)n*

is the Hecke L-function attached to g.



Let g be a weight one eigenform. There is an odd two-dimensional
Artin representation

0g : Gg — GL2(C)

satisfying

L(og,s) = L(g,s).




First vignette, cont'd: congruences

The first step of the proof relies crucially on congruences between
modular forms:

Proposition: For each prime ¢, there exists an eigenform
gr € Si(N, x) of weight ¢ satisfying

g=g (mod?Y).
Idea:

e Multiply g by the Eisenstein series E;_1 of weight £ — 1, to
obtain a mod £ eigenform with the right fourier coefficients;

o lift this mod ¢ eigenform to an eigenform with coefficients in Q.



First vignette, cont'd: étale cohomology

It was already known, thanks to Deligne, how to associate Galois
representations to eigenforms of weight £ > 2: they occur in the
étale cohomology of certain Kuga-Sato varieties.

& = universal elliptic curve over Xi(N);
Wy(N) =& Xx (V) X x vy € (¢ — 2 times);

Ve, := Het "(Wi(N)g, Q0)lgd].
Conclusion: For each ¢ there exists a mod /¢ representation
or: Gg — GLQ(I_:g)
satisfying
trace(or(op)) = ap(g) (mod £), for all p NZ.



First vignette, cont’'d: conclusion of the proof

Using a priori estimates on the size of a,(g), and some group
theory, the size of the image of g, is bounded independently of £.

Hence the g;y's can be pieced together into a ¢ with finite image
and values in GL2(C).



First vignette: conclusion

Note the key role played in this proof by:

e Congruences between weight one forms and modular forms of
higher weights;

e Geometric structures — Kuga-Sato varieties, and their
associated étale cohomology groups — which allow the
construction of associated ¢-adic Galois representations.



Second vignette: the Strong Artin Conjecture

Theorem

Let o be an odd, irreducible, two-dimensional Artin representation.
There exists an eigen-cuspform g of weight one satisfying

L(g,s) = L(e,s)-

e This theorem is now completely proved, over , thanks to the
proof of the Serre conjectures by Khare and Wintenberger.

e Prior to that, significant progress on the conjecture was achieved
based on a program of Taylor building on the fundamental
modularity lifting theorems of Wiles.

e The “second vignette” is concerned with the broad outline of
Taylor's approach.



Scond vignette: Classification of Artin representations

By projective image, in order of increasing arithmetic complexity:
A. Reducible representations (sums of Dirichlet characters).

B. Dihedral, induced from an imaginary quadratic field.

C. Dihedral, induced from a real quadratic field.

D. Tetrahedral case: projective image Aj.

E. Octahedral case: projective image S;.

F. lcosahedral case: projective image As.



Second vignette: the status of the Artin conjecture

Cases A-C date back to Hecke, while D and E can be handled via
techniques based on solvable base change.

The interesting case is the icosahedral case, where o has projective
image As.

Technical hypotheses: Asssume ¢ is unramified at 2, 3 and 5,
and that p(02) has distinct eigenvalues.



There exists a principally polarised abelian surface A with
Z[5] End(A) such that

o Al2] ~ V, as Gg-modules;

o A[V5] ~ E [5] for some elliptic curve E.




Second vignette: the propagation of modularity

Langlands-Tunnel: E[3] is modular.

Wiles’ modularity lifting, at 3: T3(E) :=lim_ , E[3"] is
modular.

Hence E is modular, hence E[5] = A[v/5] is as well.
Modularity lifting, at v/5: T z(A) is modular.
Hence A is modular, hence so is A[2] = V.

Modularity lifting, at 2: The representation g is 2-adically
modular, i.e., it corresponds to a 2-adic overconvergent modular
form of weight one.



Second vignette: from overconvergent to classical forms

The theory of companion forms produces two distinct
overconvergent 2-adic modular forms attached to p. (Using the
distinctness of the eigenvalues of p(037).)

Buzzard-Taylor. A suitable linear combination of these forms can
be extended to a classical form of weight one. (A key hypothesis
on p that is exploited is the triviality of o(h).)

This beautiful strategy has recently been extended to totally real
fields by Kassaei, Sasaki, Tian, ...



Brief summary

A dominant theme in both vignettes is the rich interplay between
Artin representations and /-adic and mod /¢ representations, via
congruences between the associated modular forms, (of weight
one, and weight > 2, where the geometric arsenal of étale
cohomology becomes available.)



Third vignette: the Birch and Swinnerton-Dyer conjecture

Let E be an elliptic curve over Q. Hasse-Weil-Artin L-series

L(E,o,s) = L(VL(E) ® V,,s).

Conjecture (BSD)

The L-series L(E, o, s) extends to an entire function of s and
ords—1 L(E, 0,5) = r(E, ) := dimc E(Q)?,

where

E(Q)? = hom g, (Vy, E(Q)®C).

Remark: r(E, ) is the multiplicity with which the Artin
representation V, appears in the Mordell-Weil group of E over the
field cut out by p.



Third vignette: the rank O case

A special case of the equivariant BSD conjecture is

Conjecture
If L(E,0,1) #0, then r(E, 0) =0.

e If o is a quadratic character, it follows from the work of
Gross-Zagier-Kolyvagin, combined with a non-vanishing result on
L-series due to Bump-Friedberg Hoffstein and Murty-Murty.

e If p is one-dimensional, it follows from the work of Kato.

e If p is induced from a non-quadratic ring class character of an
imaginary quadratic field, it follows from work of Bertolini, D.,
Longo, Nekovar, Rotger, Seveso, Vigni, Zhang,.... building on the
fundamental breakthroughs of Gross-Zagier and Kolyvagin.



Third vignette: recent progress

Assume that

® 0 = 01 ® 02, where p1 and p> are odd irreducible Artin
representations of dimension two.

e The conductors of E and g are relatively prime.

e det(p1) = det(02)~!, and hence in particular ¢ is self-dual.

Theorem (D, Victor Rotger)
If L(E, 0,1) # 0, then r(E, o) = 0.




Third vignette: local and global Tate duality

The Mordell-Weil group injects into a global Galois cohomology
group B
E@)? — HHQ, Vo(E) @ V,).

Local and global duality, and the Poitou-Tate sequence: In
order to bound r(E, o), it suffices to show that the natural map

HY(Qp, Vo(E) @ V)
H}H(Qp, Vo(E) @ Vp)

HY(Q, Vo(E) @ V,) —

is surjective.

Thus the problem of bounding E(Q)? translates into the problem
of constructing global cohomology classes with “sufficiently
singular” local behaviour at p.



Third vignette: modularity

Thanks to the modularity results alluded to in the first two
vignettes, one can associate to (E, o1, 02):

e An eigenform f of weight two, with L(f,s) = L(E,s).

e Eigenforms g and h of weight one, with L(g,s) = L(p1,s) and
L(h,s) = L(o2,5).

e We then have an identification
L(E, 01 ® 02,5) = L(f ® g ® h,s)

of the Hasse-Weil-Artin L-function with the Garret-Rankin triple
product L-function attached to (f, g, h).



Third vignette: the theme of p-adic variation

Theorem (Hida)

There exist Hida families

&= Zén(gv k)qn7 h= Zén(h, /()qn7

n

of modular forms, specialising to g and h in weight one.

The fourier coefficients a,(g, k) and a,(h, k) are rigid analytic
functions on weight space W :=7/(p — 1)Z x Zp.

For each integer k > 2, we obtain a pair (g, hx) of classical forms
of higher weight k. These converge to (g, h) p-adically as k — 1
in W.




Third vignette: generalised diagonal cycles

When k > 2, we can construct classes
w(F, gk, i) € HY(Q, Vi(E) @ Vo(gk) ® Vp(hie)(k — 1))
from the images of generalised Gross-Kudla-Schoen cycles in
CH*(Xo(N) x Wi(N) x Wi(N))o.
p-adic étale Abel-Jacobi map:

CH¥(Xo(N) x Wi(N) x Wi(N))o

— HNQ HEH(Xo(N) x Wi(N) x Wi(N))g, Qp)(K))

—  HNQ, Hoy(Xo(N)g, Qp)(1) ® Heg H(Wi(N)g, Qp) % (k — 1))
—  HNQ, V,(E) @ Vp(gk) ® Vp(hi)(k — 1)).



Third vignette: end of sketch of proof

The technical heart of the proof has two parts:

e The classes k(f, g, hx) interpolate to a p-adic analytic family of
cohomology classes, as k varies over WW. In particular, we can
consider the p-adic limit

K(f7g> h) = kml K“(fvgka hk)

Theorem (Reciprocity law)

The class k(f, g, h) is non-cristalline, i.e., has non-zero image in

HYQp,Vo(E)®V,) .
HL(Qp Vo E)®V,)’ if and only if L(E, 0,1) # 0.




Application to ring class fields of real quadratic fields

Of special interest is the case where V,, and V,, are induced from
finite order characters x; and x2 (of mixed signature) of the same
real quadratic field K:

Vo, @ Vy, = Indg(v) @ IndR (), Y =x1X2, U= X1X5b-

The characters 1 and 1) are ring class characters of K.

Theorem

Assume that (E, K) satisfies the analytic non-vanishing condition
of the next slide. Then, for all ring class characters
¥ : Gal(H/K) — C* of K of conductor prime to Ng,

L(E/K,,1) # 0= (E(H)® C)¥ =0.




The analytic non-vanishing condition

Given an elliptic curve E/Q and a (real) quadratic field K, the
non-vanishing condition is:

Non-vanishing condition: There exist even and odd quadratic
twists E’ of E such that

L(E'/K,1) #0.
Question: When is this condition satisfied for (E, K)?

Theorem (Bump-Friedberg-Hoffstein, Murty, Murty). There exist
infinitely many quadratic twists E’ of E for which L(E'/Q,1) # 0
and also infinitely many for which L'(E’/Q, 1) # 0.



Non-vanishing of L-series

I‘ Modern Birkhauser Classics

I Non-vanishing
of L-Functions
and Applications




Tetrahedral and Octahedral forms

Assume throughout that Ng is coprime to the discriminant of P(x).

Theorem

Let P be a polynomial of degree 4 with Galois group A4 and no
real roots, and let K be any subfield of its splitting field. Then
L(E/K,1) # 0= E(K) is finite.

Theorem

Let P be a polynomial of degree 4 with Galois group S, and at
least two non-real roots, and assume that L(E, ¢, 1) # 0, where € is
the quadratic character attached to the discriminant of P. Then,
for any subfield K of the splitting field of P,

L(E/K,1) # 0 = E(K) is finite.



An icosahedral application

Theorem

Let P be a polynomial of degree 5 with Galois group As and a
single real root, and let K be the quintic field generated by a root
of P. Then

ords—1 L(E,s) = ords—1 L(E/K,s) = rank(E(Q)) = rank(E(K)).
Explanation: Ind% 1=1® Vi ® Vo, where V; and V5 are odd
two-dimensional representations of the binary icosahedral group.

The method says nothing (as far as we can tell!) about the
arithmetic of E over the field generated by a root of Lagrange's
sextic resolvent of P(x).




Happy 60th Birthday, Ram!




