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Abstract. We study the action of the derived Hecke algebra in the
setting of dihedral weight one forms and prove a conjecture of the
second- and fourth- named authors relating this action to certain Stark
units associated to the symmetric square L-function. The proof ex-
ploits the theta correspondence between various Hecke modules as
well as the ideas of Merel and Lecouturier on higher Eisenstein ele-
ments.

1. Introduction

In the theory of modular forms, the case of weight one is exceptional in several
ways. The space of weight one forms, which can be interpreted as the global
sections of the Hodge line bundle ω on a modular curve X, does not admit a
simple dimension formula. This occurs precisely because the higher cohomology
group H 1(X,ω) can be nontrivial—that is to say, the space of weight one forms
manifests itself in two different cohomological degrees.

A conjecture proposed in [PV; GV18; Ven; HV] asserts that, in situations
where spaces of automorphic forms occur across multiple cohomological degrees,
the different degrees are related by means of a hidden action of a motivic coho-
mology group. The last mentioned paper [HV], in particular, formulates this story
in the context of weight one forms for the modular curve and translates the gen-
eral conjectures into a numerically testable statement. This statement, which is
summarized in what follows, is the main topic of this paper.
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1.1. The Shimura Class

Although the general definition of derived Hecke operators shall not be recalled
here, one crucial ingredient in their construction is to take the cup product with a
certain distinguished class in coherent cohomology, the so-called Shimura class.

As explained in detail in [HV, §3.1], the Shimura class attached to a prime
N ≥ 5 arises from the covering X1(N)→ X0(N) of classical modular curves,
which (at least away from elliptic points) is étale with deck group (Z/NZ)× and
thus furnishes an element

S× ∈H 1
et(X0(N), (Z/NZ)× ⊗Z[1/6]).

(Here, and in what follows, modular curves will be regarded as schemes over the
ring Z = Z[ 1

6N ] to avoid any technical issues.)
Let p > 3 be a prime, let pt be the highest power of p dividing N − 1, assume

t ≥ 1, and fix a surjective discrete logarithm

log : (Z/NZ)× → Z/ptZ. (1)

This choice determines a class S := log(S×) ∈ H 1
et(X0(N),Z/pt ). Restricting

to the fiber product of X0(N) over Spec(Z) with Spec(Z/ptZ), denoted by X̄ =
X0(N)/Z/ptZ, the resulting class can be pushed into Zariski cohomology using the
inclusion of Z/ptZ into the étale sheaf represented by Ga : in this way S can be
viewed as a class in coherent cohomology. It is called the Shimura class, denoted
(by a slight abuse of notation)

S ∈H 1(X̄,OX̄)=Hom(S2(N),Z/ptZ),

where the last identification is provided by Serre duality, and S2(N) is the space
of weight N cusp forms (with q-expansions integral at p). Note that S depends
on N , on p, and on the choice of discrete logarithm.

1.2. The Main Result

Let g ∈H 0(X1(d),ω) be a Hecke new cusp form of weight 1, level d , and Neben-
typus χ , and let g∗ ∈ H 0(X1(d),ω) be the dual newform whose Fourier expan-
sion is related to that of g by complex conjugation and whose automorphic rep-
resentation is obtained from that of g by twisting by χ−1. Assume for simplicity
that the primes N and p do not divide 6d .

Let ρg : GQ −→ GL2(L) � Aut(Vg) be the odd two-dimensional Artin rep-
resentation attached by Deligne and Serre to g, acting on a two-dimensional L-
vector space Vg for a suitable finite extension L of Q (containing the Fourier
coefficients of g and contained in a cyclotomic field). Let Ad(ρg) denote the
three-dimensional subrepresentation of EndL(Vg) consisting of L-linear endo-
morphisms of Vg of trace zero, equipped with the natural action of GQ by conju-
gation.

Let R be the ring of integers of L with 6N inverted. The product g(z)g∗(Nz)

is a weight 2 cuspidal modular form of level Nd with trivial nebentypus character
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and coefficients in R, and can thus be viewed as an element of the space S2(Nd)=
H 0(X0(Nd),�1) of global regular differential forms. Let

G(z) := TrNd
N (g(z)g∗(Nz)) ∈ S2(N;R)=H 0(X0(N)/R,�

1)

denote the trace of g(z)g∗(Nz) to the space of modular forms of weight 2 and
level N .

The pairing between G and the Shimura class S arising from Serre duality
gives rise to a numerical invariant

〈G,S〉 ∈R/pt ,
see Section 1.5 for details. The conjecture of [HV] relates this quantity to the
discrete logarithm of a suitable Stark unit attached to g, which we now proceed
to describe.

The image of the integral group ring R[GQ] in Ad(ρg) endows this space with
a Galois-stable R-sublattice, which is denoted by Ad(ρg)◦, and whose R-linear
dual is denoted by Ad∗(ρg)◦.

Let H denote the finite extension of Q which is cut out by Ad(ρg). Because
complex conjugation acts with eigenvalues 1, −1, and −1 on this representation,
Dirichlet’s unit theorem asserts that the R-module

Ug := (O×H ⊗Ad∗(ρg)◦)GQ

is of rank one (cf. Lemma 2.7 of [HV]). The choice of a prime N of H above
N gives rise to a Frobenius element σN , whose image under ρg is a natural el-
ement of Ad(ρg)◦ which is invariant under the conjugation action of σN . Eval-
uation at σN thus gives rise to a homomorphism from Ad∗(ρg)◦ to R which is
σN -equivariant (for the trivial σN action on R). Combining this evaluation with
the reduction modulo N gives a “mod N reduction map”

redN :Ug := (O×H ⊗Ad∗(ρg)◦)GQ −→ ((OH/N )× ⊗R)σN=1 = (Z/NZ)× ⊗R.

A version of the main conjecture of [HV] (Conjecture 3.1 in loc. cit.) may be
phrased as follows.

Conjecture 1.1. There exists an integer m=mg ≥ 1 and ug ∈Ug such that, for
all primes N and p as before,

m · 〈G,S〉 = log(redN(ug)).

Note that both sides of this conjectured identity belong to R/pt and that both
depend linearly on the choice of discrete logarithm made in (1). The validity of
Conjecture 1.1 is thus independent of this choice. Similarly, both sides of the
conjecture are independent of the choice of N . (In loc. cit. the conjecture was
formulated differently and was slightly more precise about the primes dividing
m; the version is more explicit and is what we will prove in certain cases.)

This article presents a proof of Conjecture 1.1 when g is dihedral under certain
simplifying assumptions on ramification. Recall that g is said to be dihedral if the
Galois representation ρg is induced from a ray class character ψ1 of the Galois
group of an (imaginary or real) quadratic extension K of Q. In that case g = θψ1
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is Hecke’s classical theta series associated to ψ1, that is, the modular form whose
L-series is given by L(K,ψ1). We assume throughout that ψ2

1 �= 1, as this implies
that θψ1 is cuspidal.

Let D denote the discriminant of K and δ = (
√
D) its different.

Theorem 1.2. If K is imaginary, then assume that D is an odd prime and that ψ1

is unramified. If K is real, then assume that D is odd and that ψ1 has conductor
dividing δ. Then Conjecture 1.1 is true for g = θψ1 .

Remark 1.3. The proof of Theorem 1.2 described in Section 5 shows that the
integer m of Conjecture 1.1 divides 24 in the real case and that it divides 6 in the
imaginary case unless the order of ψ2

1 is a power of a prime 
, in which case m
divides 6
. No claim is made that these bounds for m are optimal; they are merely
what comes directly out of the proofs.

The key idea in the proof of Theorem 1.2 is to express G as the theta lift of
an appropriate Heegner cycle, and to compute the image of S under the adjoint
of the theta lift as a combination of higher Eisenstein elements. Although the
latter computation is performed in full generality, the expression for G in terms
of Heegner cycles has only been worked out in a nontrivial simple scenario.

In particular, the ramification conditions force the following simplifying fea-
ture. Let ψ ′1 denote the Gal(K/Q)-conjugate of ψ1 and set ψ =ψ1/ψ

′
1. Then

ρg ⊗ ρg∗ = IndKQ (1)⊕ IndKQ (ψ) (2)

decomposes as the direct sum of the induced representations of two characters
of GK , the trivial character 1, and an unramified character ψ . R. Zhang’s forth-
coming Ph.D thesis [Zha] will contain a proof under less restrictive ramification
conditions for K imaginary. When K is real, we envisage a method for calculat-
ing G invoking Kudla–Millson theory, but in order to cover the general case, one
needs to solve some issues related to the regularization of the theta lift from the
split orthogonal group; see Section 1.4 for more details.

1.3. Trivial Cases

If K is imaginary quadratic and N =N ·N′ splits in K , then ug belongs to (O×H ⊗
IndKQ (ψ))

GQ , whereas σN belongs to IndKQ (1). If K is real quadratic and N is inert
in K , then ug belongs to the unit group o× of K , on which σN acts as −1. In both
cases the regulator redN(ug) of Conjecture 1.1 vanishes trivially.

This is consistent with the fact that the modular form G is identically zero
in these two scenarios. Indeed, the main theorem of [HK91] asserts that, for all
newforms f of weight two on �0(N),

〈G,f 〉2 = C ·L(f,g, g∗,1), (3)

where C is a product of local automorphic terms and L(f,g, g∗, s) is the triple
product L-series associated to f , g, and g∗. The Artin formalism applied to (2)
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implies that

L(f,g, g∗, s)= L(f/K, s) ·L(f/K,ψ, s), (4)

where the two L-functions appearing on the right-hand side are the ones as-
sociated to the base change of f to K , twisted by suitable characters. Since
(d,N)= 1, both L(f/K, s) and L(f/K,ψ, s) satisfy a functional equation with
s = 1 as the center of symmetry and the global sign (−N

K
). This sign is −1, and

hence

L(f/K,1)= L(f/K,ψ,1)= 0.

It follows that 〈G,f 〉 = 0 for all f , and hence that G= 0.

1.4. Outline of the Paper

The interesting cases of Theorem 1.2 occur when (−N
K
)= 1, that is, when

• K is imaginary quadratic and N is inert in K ;
• K is real quadratic and N is split in K .

The body of the article is devoted to the proof of Theorem 1.2 in these nontrivial
cases referred to as the definite and indefinite cases respectively. The main idea
is to transfer the computation to a suitable (definite, resp. indefinite) quaternion
algebra B over Q by means of a theta lift �:

� :modular forms on B → S2(N).

This allows the identity in Conjecture 1.1 to be recast on B . Indeed, G and S are
obtained via � from objects arising (respectively) from

(i) CM points or real quadratic closed geodesics;
(ii) Siegel units.

Let us examine these two key ingredients in further detail.
Ingredient (i), in general, takes the form

G=S �(ZK,ψ), (5)

where ZK, is a suitable Heegner cycle and the symbol “=S” means equality
up to modular forms that pair to 0 with the Shimura class (see Section 1.5 for
some details). More precisely, ZK, is a formal linear combination of supersin-
gular points in characteristic N , obtained as a weighted combination of the mod
N reductions of CM elliptic curves in the definite case (Theorem 2.2), and a linear
combination of real quadratic geodesics in the homology of X0(N) in the indefi-
nite case (Theorem 3.1). Equality (5) can be interpreted as coming from a certain
see-saw (Remark 1.4) although we give a rather direct proof.

The content of (ii) is the computation of the image of the Shimura class under
the adjoint (dual, in other words) of the theta lift. The outcome is an expression

�∗(S)= explicit higher Eisenstein element UN . (6)

In the definite case, UN is obtained by restricting a suitable Siegel unit to the
supersingular locus in characteristic N . In the indefinite case, UN is built out of
the modular symbol arising from the (logarithmic derivative of the) same Siegel



150 H. Darmon, M. Harris , V. Rotger, & A. Venkatesh

unit. In all cases, the basic idea of proof is that �∗(S) is uniquely characterized
by its behavior with respect to Hecke operators and so can be proved to equal UN ,
up to an irrelevant ambiguity, by a purely Hecke-theoretic computation. Most of
the work for the proof of (6) is given in Section 4, building on ideas of Mazur,
Merel, and Lecouturier on (higher) Eisenstein elements and the classical theory
of modular units and modular symbols.

Combining (5) and (6) leads to an identity of the form

〈G,S〉 = 〈�(ZK,ψ),S〉 = 〈ZK,ψ,�
∗(S)〉 = 〈ZK,ψ,UN 〉. (7)

In the definite setting, the right-hand quantity can be interpreted as the discrete
logarithm of an elliptic unit, obtained by evaluating the Siegel unit attached to
UN on the CM divisor attached to ZK,ψ . In the indefinite setting, the regulator
involves only the logarithm of the fundamental unit of K , and this fundamental
unit emerges in 〈ZK,ψ,UN 〉 from the eigenvalues of certain hyperbolic matrices
in �0(N). The details of these calculations, concluding with the proof of Theo-
rem 1.2, are supplied in Section 5.

It is worth insisting on a crucial feature of the dihedral case, namely, that the
desired units can be constructed explicitly as CM values of modular units in the
definite case or as eigenvalues of suitable matrices in SL2(Z) in the indefinite
case. This is what accounts for Stark’s conjecture being known for the adjoint L-
functions of dihedral forms. It remains open, however, for the adjoint L-functions
of so-called exotic weight one forms with nondihedral projective image. Although
the existence and essential uniqueness of the predicted unit is still guaranteed by
Dirichlet’s unit theorem, no analogue of the Kronecker limit formula relating it
to L-functions attached to g is available. The numerical experiments described in
[HV] test Conjecture 1.1 numerically, but only in CM dihedral cases that now fall
under the purview of Theorem 1.2. The article [Mar] provides numerical evidence
for Conjecture 1.1 in several more interesting instances where g is exotic.

Remark 1.4. It may be helpful to indicate the see-saw that underlies the crucial
computation (5). We emphasize, however, that the proofs in Sections 2 and 3 do
not use this in any explicit way.1 Here we will proceed purely formally.

Set

G(L(2)×L(2))= {(g1, g2) ∈GL(2)×GL(2),det(g1)= det(g2)}.
We examine the following see-saw:

θ
(N)

ψ
−1
1

� θ
ψ
−1
2
∈ [G(L(2)×L(2))] [GO(B)] ∼ (B× ×B×)/GL(1) ��(S)

S ∈ [GL(2)] [G(O(W1)×O(W2))]

j

�ψ12 ×ψ12′

The arrow �∗ from lower-left to upper-right is a realization of the Jacquet–
Langlands correspondence, and we denote its formal adjoint simply by �. Of

1However, the representation-theoretic perspective appears to be indispensable to treat cases in which
the Hecke characters have more general ramification.
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course, S is not in fact a characteristic zero modular form, but let us proceed as if
it were; in the end the proof uses integral normalizations of the θ -correspondence
to get around this. The see-saw principle and adjointness respectively give

〈θ(N)

ψ−1
1
θ
ψ−1

2
,S〉 = 〈ZK,ψ,�

∗(S)〉 = 〈�(ZK,ψ),S〉,
where ZK,ψ arises from pushing forward ψ12 ×ψ12′ under j . In the special case
ψ2 =ψ−1

1 , this recovers (5) from the point of view of the see-saw formalism.

1.5. Notation

We will fix here some notation that is used throughout the paper. This notation
will also be introduced where we use it; we have gathered some of it here as a
convenient reference.

Throughout the paper, K denotes a quadratic field with ring of integers o and
discriminant D. In Section 2 this field is imaginary, and in Section 3 it is real.
The symbol x �→ x′ denotes the nontrivial automorphism of K , and we will allow
ourselves to apply it to various associated constructions (elements of K , ideals,
characters, etc.)

The narrow class group of K (i.e., the usual class group in the imaginary case)
is denoted by C. In Section 3, CD will denote the ray class group of K allowing
level δ, the different ideal of K . The symbols ψ1 and ψ2 denote characters of CD
with inverse central characters, and we put

ψ12 :=ψ1ψ2, ψ12′ :=ψ1ψ
′
2, (8)

which in all cases descend to characters of C. In the special case ψ2 =ψ−1
1 which

is germane to the proof of Theorem 1.2, the definitions simplify to

ψ12 = 1, ψ12′ =ψ1/ψ
′
1 :=ψ, say. (9)

We will use L for a coefficient field for characters ψ as before, that is, L is
a number field containing the values of ψ : C or CD → L×. In this context, R
will denote a suitable ring of integers of L (possibly with denominators at some
primes).

We will often denote by g (respectively h) the dihedral forms associated to ψ1
(respectively ψ2) with associated Galois representation ρg : GQ→ GL(Vg). In
this situation, we will often denote

G := trace to level �0(N) of θ
ψ−1

1
(Nz)θ

ψ−1
2
(z),

which in particular becomes the trace of θψ1(z)θψ−1
1
(Nz) in the case ψ2 =ψ−1

1 .

The integer N > 3 always denotes a prime, and Z denotes the ring Z[ 1
6N ]. The

modular curves X0(N) and X1(N) are understood2 to be schemes over Z. We
write H 1

et(X0(N)) and H 1
B(X0(N)) to denote, respectively, the étale cohomology

2Note that the distinction between “stack” or the associated coarse moduli scheme will make very
little difference for our purposes; the cover X1(N)→X0(N) is étale only when considering the
stacks, but in any case we are interested only in the (Z/pt )-subcover which is also étale over the
scheme.
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of X0(N) as a scheme over Z, and the Betti cohomology of the Riemann surface
X0(N)(C).

We define the space of cusp forms S2(N) and the space of modular forms
M2(N) as (free) Z-modules accordingly and define

S2(N)∨ =Hom(S2(N),Z)

as their Z-linear duals. For R, a Z-algebra S2(N;R) := S2(N) ⊗Z R is simi-
larly defined as the space of cusp forms with coefficients in R, and likewise for
M2(N;R). For an element f ∈M2(N;R), we will denote by f (d) ∈M2(Nd;R)
the modular form with q-expansion f (qd).

Let p be an odd prime ≥ 5 and let pt be the largest power of p dividing N −1.
Fix a surjective “discrete logarithm”

log : (Z/NZ)× −→ Z/ptZ,

where pt is the largest power of p dividing N−1. Note that this logarithm factors
through the quotient GN of (10)

GN := (Z/NZ)×/〈±1〉, (10)

since p is assumed to be odd. This logarithm also extends uniquely to the mul-
tiplicative group of the quadratic extension FN2 and this extension will also be
denoted by log. All formulas will be independent of the choice of logarithm: both
sides will scale the same way if one alters it.

Remark 1.5. In the indefinite case the prime N splits in K and the correct defi-
nition of the discrete logarithm entails the choice of one of the two prime divisors
of N . This choice is denoted by N and the need to pin down a choice introduces
a “breaking of symmetry” in the final formula Proposition 5.11 as well as in the
intermediate calculations. The choice intervenes at the beginning of Section 3.2.

Given two modular forms F and G of level N , the notation

F =S G

means that “F and G have the same pairing with the Shimura class.” (Strictly,
the prime p should have been included in the notation, but the choice of p is
understood to be fixed.) More precisely, F =S G means that:

(1) F,G lie inside M2(N;R) for R the ring of p-integers in some algebraic num-
ber field, and

(2) the reductions F̄ , Ḡ ∈ M2(N;R/ptR) = H 0(X0(N)R,�
1) have the same

pairing with S under the Serre duality pairing

H 0(X0(N)R/pt ,�
1)⊗H 1(X0(N)R/pt ,O)→R/pt (11)

obtained by taking the cup product to H 1(X0(N)R/pt ,�
1) and using the

“trace” map on the latter. 3

3In the current setting, if t > 1, this can be defined using Grothendieck duality for the structural mor-
phism X0(N)R/pt → SpecR/pt , after for example adding auxiliary level structure to remove

any “stacky” structure. This identifies H 1(�1) with Hom(Rπ∗O,R/pt ), homomorphisms in
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This notion is readily seen to be independent of R, that is, compatible with exten-
sion of scalars in the obvious sense.

2. A Trace Identity for Definite Theta Series

In [Gro87] and [GZ86], Gross and Zagier proved a formula for the central critical
value (resp. derivative) of the L-function attached to the convolution of a cusp
form f of weight 2 and a theta series g of weight 1 associated to a character of
an imaginary quadratic field K . A substantial step in the proof of both formulas
is the computation, for a given prime N , of the trace of the product g(z)E(Nz) of
g and a suitable Eisenstein series E to the space of modular forms of level N .

In this note we need to carry the computation of the trace of the product
g(z)h(Nz) of two cuspidal theta series attached to ray class characters of K . We
did not attempt to adapt the computations of [Gro87, §7,8,9] to the present setting,
but rather follow a different method invoking the Weil representation of SL2(Af )

(where Af denotes the ring of finite adèles) on the space of Schwartz functions
on the adélic points of the underlying quadratic spaces.

2.1. Setup on Heegner Points

The computation will be carried out in slightly greater generality than in Theo-
rem 1.2 of the Introduction. Let K be an imaginary quadratic field of odd discrim-
inant D with maximal order o, and let C = Pic(o) denote the class group. For I
an ideal, note that the image I ′ by conjugation defines the same class in C as I−1.
Denote by a the number of distinct prime factors of D.

Let N be an odd prime with the property that −N is a square modulo D.
When D is prime, as assumed in the Introduction, this condition is equivalent to
N being inert in K ; in general it always implies that N remains inert but is a
stricter condition.

Fix an algebraic closure FN , and let FN2 be the subfield of size N2.
Choose an auxiliary odd prime q such that q ≡ −N(modD). An elementary

computation of quadratic symbols shows that q is split in K . Assume throughout
that q is such that the ideals q, q in K above q are principal. The existence of
such q is guaranteed by Cebotarev density theorem.

A calculation with Hilbert symbols (cf. [Vig80, §2.1]) shows that

B �K +Kj with j2 =−qN and zj = jz′ for all z ∈K (12)

is the definite quaternion algebra over Q of discriminant N . Let b �→ b′ denote
the canonical anti-involution on B; it coincides with complex conjugation when
restricted to K . Let n(b)= bb′ denote the reduced norm on B .

An orientation on a maximal order M in B is a choice of homomorphism

o :M→ FN2

the derived category of R/pt modules. In particular, each element of H 1(�1) induces (by pas-
sage to H 0) a map R/pt →R/pt , that is, an element of R/pt .
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onto FN2 . Note that M admits exactly two possible orientations. Two oriented
maximal orders �M1 = (M1,o1), �M2 = (M2,o2) are equivalent if there exists
an isomorphism i :M1→M2 satisfying o1 = o2 ◦ i.

Write Pic(B) for the set of equivalence classes of oriented maximal orders. By
a classical result of Deuring (cf. [Voi, §42.3]), Pic(B) is in bijection with the set
E of isomorphism classes of supersingular elliptic curves over FN as follows: we
associate to an elliptic curve E the order End(E), which acquires an orientation
by considering its action on the tangent space.

Fix a basepoint �M ∈ Pic(B) containing o⊕ oj . Define the map

ι : Pic(o)−→ Pic(B) (13)

that takes an ideal class I to the oriented maximal order ι(I )= I−1 �MI .

2.2. Statement of the Trace Identity

Define Div(E) to be the module of Z-valued functions on Pic(B), equipped with
its natural action of the Hecke algebra T as described for example in [Gro87,
§4]. If �M ∈ Pic(B), then let M denote the underlying unoriented order and set
w �M = 1

2 |M×|. Denote by ex ∈ Div(E) the characteristic function of x ∈ Pic(B)
and set as in the Introduction �0 =∑

x
ex
wx
∈ Div(E)⊗ Q. The space Div(E) is

endowed with a natural symmetric bilinear form

〈, 〉 :Div(E)×Div(E)→ Z, 〈ex, ey〉 :=wxδxy, (14)

relative to which the Hecke operators T
 are self-adjoint for all 
, including for

=N .

The Jacquet–Langlands correspondence identifies Div(E) and M2(�0(N)) as
Hecke modules. This identification can be described explicitly by means of the
�-correspondence, which is the Hecke-equivariant map

� :Div(E)⊗T Div(E)→M2(�0(N)) (15)

given by (cf. e.g. [Eme02] and [Gro87, Prop. 5.6])

�(φ1 ⊗ φ2)= 1

2
〈φ1,�0〉〈φ2,�0〉 +

∑
m≥1

〈φ1, Tmφ2〉qm. (16)

Remark 2.1. Formula (16) makes it clear that

�(φ1 ⊗ φ2)=�(φ2 ⊗ φ1),

because each Tm is self-adjoint, including for m=N .

Given a character ψ : Pic(o)→ L× with values in some finite field extension
L/Q, define

[ψ] := ι∗(ψ)=
∑

I∈Pic(o)

ψ(I )ι(I ) ∈Div(E)⊗L. (17)
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The main result of this section is the following. Let θψ denote the theta series
associated to ψ as recalled in (22). Note also that θψ = θψ−1 , because the char-
acters of Pic(o) are anticyclotomic in the sense that ψ ′ = ψ−1; this accounts for
the discrepancy in phrasing between the following statement and the analogous
Theorem 3.1 in the RM scenario.

Theorem 2.2. Let ψ1 and ψ2 be characters of C, and let θψi
be the newforms

associated to ψi (equivalently: to ψ−1
i ). Put ψ12 = ψ1ψ2,ψ12′ = ψ1ψ

′
2. Then

there exists p0 such that, for any N and any p ≥ p0 with p |N − 1,

TrND
N (θψ1(Nz)θψ2(z))=S 4 ·�([ψ12] ⊗ [ψ12′ ]), (18)

where, as in (5), the notation “f =S g” means that both modular forms have
the same pairing with the Shimura class of level N . If D is prime, (18) is a strict
identity (not just up to S) for all primes p.

We expect a similar trace identity to hold for general ray class characters ψ1, ψ2

of K with opposite central character, which amounts to allowing the ring class
characters ψ12, ψ12′ to have arbitrary conductor c ≥ 1. In such generality, how-
ever, we do not expect the constant to be as simple as C = 4 and (18) should hold
up to a suitable constant C = C(ψ1,ψ2) that depends on ψ1, ψ2 but not on N .
The reader is referred to R. Zhang’s forthcoming Ph.D thesis [Zha] for the proof
in greater generality in the adelic language.

Theorem 2.2 and Theorem 3.1 cover the simplest nontrivial settings in both
definite and indefinite cases. The proofs are different because we chose to be as
direct as possible in each case and avoid repetition, but the approaches in Sec-
tions 2 and 3 are in some ways complementary.

2.3. Summary of the Proof

Theorem 2.2 will be proved subject to three propositions given in what follows;
these will be proved in the remaining subsections.

Define O ⊂ B via

O =O(q) := o⊕ oj. (19)

An elementary computation using [Vig80, 1.4.7] shows that O = O(q) has
square-free discriminant DNq , and therefore (cf. [Vig80, 3.5.3]) O is an Eich-
ler order, that is to say, the intersection of two maximal orders. Let us fix now and
for the rest of this section a maximal order M⊃O as well as an orientation on it.
All other orders containing O can be obtained from M as

Md := d−1Md, (20)

where d ranges over positive divisors d | Dq and d is an ideal in o of norm d .
This is because locally at every prime 
 dividing Dq there are exactly two local
maximal orders containing O⊗Z
: one is obtained from the other by conjugating
by any element of norm 
 normalizing O⊗Z
 (cf. e.g. [Vig80, §3.5]).
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If I1, I2 are ideal classes for o, then we can form

I1OI2 = I1I2 ⊕ I1I
′
2j ⊂ B.

By definition, the left-hand side means the additive subgroup of B generated by
all threefold products i1 · o · i2.

We regard K and B as quadratic spaces by means of the norm and reduced
norm respectively. For every ideal I in either V =K or B , let

θI = θ(I )=
∑
a∈I

q
n(a)
n(I ) (21)

denote the theta series associated to I ; here n(I) stands for the single positive
generator of the ideal of Q spanned by the norms of all elements in I . The theta
series θI is a modular form of weight [V :Q]/2. With this normalization, θI only
depends, in the case V =K , on the class of I up to principal ideals, since θI = θIx
for any x ∈K×. Moreover, for any character of C,

θψ =
∑
I∈C

ψ(I)−1θI (22)

is the new theta series associated to ψ , a classical modular newform of weight 1,
level D, and nebentype character χK , the quadratic Dirichlet character associated
to K/Q. (As mentioned previously, in the current situation one could omit the
inverse on the right-hand side, but the formulas with this convention are valid
under less restrictive hypotheses, and this facilitates comparison with the RM
case.)

For any d ≥ 1, recall that θ(d)(q) := θ(qd). We will include forward references
to propositions in the RM case that play a similar role, although because of the
slightly different setups the statements are not entirely parallel.

Proposition 2.3 (See Section 2.4, cf. also Prop. 3.10). For any pair of classes
I1, I2 of C, we have

TrDNN θ(I1I2)θ
(N)(I1I

′
2)=

1

2

∑
d|Dq

θ(I1MdI2), (23)

where, on the left, Tr is the trace from level �0(DN) to level �0(N), and Md is
as in (20).

Proposition 2.4 (See Section 2.5, cf. also Prop. 3.4). For any pair of ideal classes
I, J , we have

θ(J ′MI )= 2 ·�(eI ⊗ eJ ). (24)

Here eI , eJ are as in Section 2.2, where we use ι of (13) to identify I, J with
elements of Pic(B).

For every quadratic character χ of C, set

GDN(χ)= θ
(N)

ψ−1
1 χ
· θ

ψ−1
2 χ

and GDN :=
∑

χ∈(C/C2)∗
GDN(χ). (25)
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In the case when D is prime, the only quadratic character is trivial, so GDN(χ)=
GDN , and the following proposition is vacuous.

Proposition 2.5 (See Section 2.6.). With the notation of (5),

TrDNN (GDN(χ))∼S TrDNN (GDN(χ
′)),

for all quadratic characters χ,χ ′ of C, so long as the prime p is sufficiently large
relative to D.

Let us see how these three results imply the theorem. For every choice of a qua-
dratic character χ , we have

GDN(χ)=
∑
I,J∈C

χ(IJ )ψ1(I )ψ2(J )θ
(N)
I θJ . (26)

But
∑

χ χ(IJ ) is zero unless IJ is a square inside C; in that case, it equals #C[2].
Moreover, any pair (I, J ) with IJ ∈ C2 is of the form (I1I

′
2, I1I2) for precisely

#C[2] pairs (I1, I2) and then ψ1(I )ψ2(J )=ψ12(I1)ψ12′(I ′2). It follows that

GDN =
∑

I1,I2∈C
ψ12(I1)ψ12′(I

′
2)θ(I1I2)θ

(N)(I1I
′
2). (27)

Using Proposition 2.3 we get

TrDNN (GDN)= 1

2

∑
I1,I2∈C

ψ12(I1)ψ12′(I
′
2)

(∑
d|Dq

θ(d−1I1MI2d)

)
. (28)

Note, however, that all terms for every fixed d in (28) are equal: this follows
after reindexing (I1, I2)↔ (d−1I1, I2d) and recalling that the class of the ideal d
has order 2 in C when d |D, whereas the class of q is trivial. The number of such
terms is equal to 2a+1 with a the number of prime factors of D. Hence

TrDNN (GDN)= 2a
∑
Ij

ψ12(I1)ψ12′(I
′
2)θ(I1MI2)

= 2a
∑
Ij

ψ12(I
′
1)ψ12′(I

′
2)θ(I

′
1MI2). (29)

Proposition 2.4, as well as the symmetry of � in its arguments, can be invoked to
transform the right-hand side to get

TrDNN (GDN)= 2a+1
∑

ψ−1
12 (I1)ψ

−1
12′ (I2)�(eI2 ⊗ eI1)

= 2a+1�([ψ−1
12 ] ⊗ [ψ−1

12′ ]).
This directly yields Theorem 2.2 when D is prime, as in that case the order of

C is odd and hence GDN =G. When D is composite, Proposition 2.5 shows that
we can replace GDN on the left with 2a−1GDN(1) if we are only interested in
pairing with the Shimura class, since C[2] has rank a− 1 by genus theory (cf. e.g.
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[Coh03, §13]). Unwinding the notation

TrND
N (θ

ψ−1
1
(Nz)θ

ψ−1
2
(z))∼S 4 ·�([ψ−1

12 ] ⊗ [ψ−1
12′ ]).

This proves Theorem 2.2 after recalling that θψi
= θ

ψ−1
i

.

2.4. Proof of Proposition 2.3

We must show that

TrDNN θ(I1I2)θ
(N)(I1I

′
2)=

1

2

∑
d|Dq

θ(I1MdI2). (30)

Let Tq denote the Hecke operator at q and TrN2
N1

the trace map from modular
forms of level N2 to level N1 for any N1 |N2. Then

Tr
DNq
DN θ

(Nq)
J = Tq · θ(N)

J = θ
(N)
Jq + θ(N)

Jq′ = 2θ(N)
J ,

where the second equality follows from, for example, [Kan12, §2] and the third
since we are supposing that q is principal. Hence

Tr
DNq
N θJ1θ

(Nq)
J2
= TrDNN θJ1(Tr

DNq
DN θ

(Nq)
J2

)= 2TrDNN θJ1θ
(N)
J2

.

Taking J1 = I1I2, J2 = I1I
′
2 and switching sides, we get

TrDNN θI1I2θ
(N)

I1I
′
2
= 1

2
Tr
DNq
N θI1OI2, (31)

where we noted that θI1OI2 = θI1I2⊕I1I
′
2j
= θI1I2θ

(Nq)

I1I
′
2

since j2 = −qN . So

Proposition 2.3 reduces to the following.

Proposition 2.6. For any pair of classes I1, I2 of Pic(o),

Tr
DNq
N (θI1OI2)=

∑
d|Dq

θ(I1MdI2). (32)

In order to prove Proposition 2.6, note that—with V = B or K as before—the
rule that associates to every lattice L a modular form θL of weight dim(V )/2 may
be extended to the space of Schwartz functions on V ⊗ Af where Af denotes
the ring of finite adèles of Q (cf. e.g. [GH11] for background). Namely, such a
function may be identified with a function � supported on some lattice L ⊂ V

and constant on the cosets of a sublattice of L. We can form the θ -function

θ� :=
∑
z∈V

�(z)qQ(z) (33)

with Q the norm form (or, as we will actually use, a rescaling of it). This is
compatible with the previous definition in the sense that θ[L] = θL, where [L] is
the characteristic function of the closure of a lattice L inside V ⊗Af .

The function � �→ θ� is equivariant for the action of SL2(Af ) on Schwartz
functions arising from the Weil representation on one side, and the natural action
on the space of modular forms on the other; this is a straightforward consequence
of the adelic interpretation of θ -series; we will give a more detailed sketch of
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a similar equivariance in the more complicated RM setting in Section 3.5. This
equivariance implies that the trace, from level DNq to N , of θI1OI2 can be com-
puted by first computing the corresponding trace

Tr
DNq
N of the Schwartz function [I1OI2]. (34)

Proposition 2.6 thus follows after computing the trace of [I1OI2] with reference
to the SL2(Af )-action on Schwartz functions, taking into account that we have an
equality of rescaling factors n(I1MdI2)= n(I1OI2) (this can be readily deduced
from the fact that I1, I2 are locally principal).

This Weil representation is a tensor product of representations of SL2(Q
) on
Schwartz functions on V ⊗Q
. We review the formulas in Section 3.5 and will
summarize them here. Given a prime 
, let μ :Q
→C× be the restriction of the
standard character of A/Q which is given by x �→ e2πix on R and is trivial on
each Zp . In particular μ is trivial on Z
 but not on 
−1Z
. For any t ∈Q
, denote
m(t)= (

1 t
0 1

)
and set w = (

0 1−1 0

)
. Given a Schwartz function �
 on V ⊗Q
:

m(t) ·�
(x)= μ(t〈x, x〉)�
(x) for any t ∈Q
,

w ·�
(y)= γ


∫
V⊗Q


�
(x)μ(〈y, x〉) dx, (35)

where, in particular, γ
 = 1 for 
 not dividing N . Here dx is taken to be the self-
dual Haar measure.

The desired trace from (34) can be calculated piecewise at every prime 
 |Dq
and then packaging together the local outputs.

Lemma 2.7. Let 
 be a prime divisor of Dq . Let (W, 〈, 〉) be the quadratic space
over Q
 given by K ⊗ Q
 equipped with the norm form divided by N(I1I2),
and let L⊂W be a maximal integral lattice. Let (W ′,L′, 〈, 〉′) be obtained from
(W,L, 〈, 〉) by multiplying the form 〈, 〉 by −qN .

Then—for the Weil representation action of SL2(Q
) on Schwartz functions on
W ⊕W ′—the characteristic function 1L⊕L′ of L ⊕ L′ is invariant by �0(
) ⊂
SL2(Z
), and

TrSL2(Z
)
�0(
)

1L⊕L′ = 1M+ + 1M− , (36)

where M± are the two self-dual integral lattices containing (L⊕L′).

Before we prove Lemma 2.7, we explain why it implies Proposition 2.6. There
is no loss of generality in choosing I1, I2 relatively prime to Dq . It follows from
(12) that W ⊕W ′ is isometric to B ⊗ Q
 with its reduced norm form, and this
identification carries L⊕ L′ to the closure of I1OI2. Thus, combining together
(37) at all primes 
 |Dq , Proposition 2.6 follows after noticing that if we take the
self-dual lattice M+ to be the localization at 
 of the global maximal order Md

for some d with 
 � d , then M− =Md
 ⊗Z
.
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Proof of Lemma 2.7. Write e for the characteristic function of L⊕L′ and e∗ for
the characteristic function of the dual lattice (L⊕L′)∗. Note that we have inclu-
sions

(L⊕L′)⊂M+,M− ⊂ (L⊕L′)∗,

with both inclusions of index 
, and indeed the quotient (L⊕L′)∗
L⊕L′ is isomor-

phic to (Z/
Z)2 where the induced Q
/Z
-valued quadratic form takes the form
(x1, x2) �→ 
−1(x2

1 − x2
2); in these coordinates M± corresponds to x1 =±x2. In-

variance of e by �0(
) follows readily from the definitions. Now a set of coset
representatives for �0(
) in SL2(Z
) is

{w} ∪ {wm(t)w : t ∈ Z/
Z}.
Note that we= 
−1e∗:
– for y /∈ (L⊕ L′)∗, we(y) is the integral on L⊕ L′ of the character μ(〈y, x〉),

which vanishes since that character is not trivial;
– for y ∈ (L⊕ L′)∗, we have we(y)= vol(L)vol(L′) = 
−1 (the self-dual Haar

measure on W ⊕W ′ assigns mass 
−1 to L⊕L′).
It thus follows that ( ∑

t∈Z/
Z
m(t)

)
we= 1S,

where S = {x ∈ (L⊕L′)∗ : 〈x, x〉 ∈ Z
}. But S is just the union of M+ and M−,
and also M+ ∩M− = L⊕L′. Thus 1S = 1M+ + 1M− − e, and we deduce that

Tre=we+w1M+ +w1M− −we= 1M+ + 1M− . (37)
�

2.5. Proof of Proposition 2.4

Let EI denote the supersingular elliptic curve associated to ι(I ) and eI for the
corresponding element in Div(E). Set wI =wι(I).

In order to prove (24), it suffices to show that both sides have the same Fourier
coefficients for all m≥ 1. The mth Fourier coefficient of the r.h.s. of (24) is

2am(�(eI ⊗ eJ ))= 2〈TmeI , eJ 〉 = 2wJBI,J (m). (38)

Here B(m) is the mth Brandt matrix and BI,J (m) is the entry in B(m) associated
to EI and EJ (cf. [Gro87, §1, §2]). The equalities in (38) follow from the defi-
nition of � in (16) and [Gro87, 4.4, 4.5, 4.6]. Since 2wJ = |Aut(EJ )|, it follows
from [Gro87, Prop. 2.3] that 2wJBI,J (m) is also equal to the number of isogenies
of degree m from the supersingular elliptic curve EI to EJ ; see also the proof of
[Gro87, Prop. 2.7 (6)] on p. 128 of loc. cit. The Z-module of such isogenies is
identified with J−1MI , where the degree is identified with z �→ n(z)n(J )/n(I )

(cf. [Gro87, 2.1] combined with the definition of Mij on p. 118 of loc. cit.). Con-
sequently,

2am(�(eI ⊗ eJ ))= |{z ∈ J−1MI : n(z)n(J )/n(I )=m}|.
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This in turn is the mth Fourier coefficient of the l.h.s. of (24), as J−1MI is
homothetic to J ′MI .

2.6. Proof of Proposition 2.5

Recall that this proposition is used only for the case of D composite, and thus is
not strictly necessary, for example, for the statement of Theorem 1.2.

Each quadratic character χ cuts out an extension Hχ/K which is the compo-
sition of K and a quadratic extension Qχ/Q of discriminant dividing D. Hence
χ may be regarded as the restriction to GK of the Dirichlet character of conduc-
tor dividing D attached to Qχ/Q that we still denote by the same symbol. As it
is readily seen by comparing the associated Galois representations, θ

ψ−1
1 χ

is the

twist of g = θ
ψ−1

1
by χ , and θ

ψ−1
2 χ

is the twist of h= θ
ψ−1

2
by χ .

Let π1,π2 be the automorphic representations for GL2 associated to g,h. Let
K0(D)⊂GL2(Af ) be the standard compact open subgroup, and let K1(D) be the
kernel of the natural “diagonal” maps K0(D)→ ((Z/DZ)×)2. Note that K1(D)

in the GL2 context is sometimes defined to only impose one constraint, but here
we understand that both the diagonal entries are congruent to 1 modulo D.

Set

X1(D)=GL2(Q)\H∗ ×GL2(Af )/K1(D),

whose set of connected components identified with

Q×\A×f /det(K1(D))= (Z/DZ)×.
There are embeddings

π
K1(D)
1,f and πK1(D)

2,f ↪→H 0(X1(D),ωX1(D))

carrying the new vectors to g and h respectively.
The new vectors are characterized, uniquely up to scalar, by the fact that they

transform under

k =
(
a b

c d

)
⊂K0(D)

by the character k �→ χK(a). For each χ as before, we can consider the “pseudo-
new” vector

gχ or hχ ∈ πK1(D)
1,f or π

K1(D)
2,f

uniquely characterized up to scalar by similarly transforming by the character
k �→ χK(a)χ(ad). (The uniqueness of such a vector follows by applying the usual
new vector theory to the representation π1,f ⊗ χ , which has the same conductor
as π1,f . Explicitly, we may construct a pseudo-new vector from a new vector by
multiplying the associated function in the Kirillov model by the character χ ; this
statement is the representation-theoretic manifestation of the fact that twisting by
χ multiplies coefficients of the q-expansion by χ . A nice short reference for basic
properties of the Kirillov model and new vectors is the paper [Sch02], and a more
encyclopaedic treatment is [JL70], in particular Theorem 2.13.)
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With this construction, we have the following properties:

(a) The standard newforms gχ and hχ in the twisted automorphic representation
correspond to the cup products:

gχ = gχ · χ,hχ = hχ · χ,
where we pull back χ to a complex-valued function on X1(D) by means of
the map X1(D)→ (Z/DZ)× to the group of connected components.

(b) 〈gχ ,hχ 〉 = 〈g,h〉 with reference to any nontrivial GL2(Af )-invariant pairing
π1,f × π2,f →C.

Let X10(D,N) be obtained from X1(D) by imposing a further K0(N)-level
structure. Let SDN ∈ H 1(X10(D,N),ω) ⊗ Z/ptZ denote the pull-back of the
Shimura class. Let π1,π2 :X10(D,N)−→X1(D) denote the two forgetful maps
intertwined by the Atkin–Lehner involution at N . It follows that

〈TrDNN GDN(χ),S〉 = 〈GDN(χ),SDN 〉 =
∫
π∗1 (gχ )∪ π∗2 (hχ )∪SDN

=
∫
π∗1 (gχ )∪ π∗2 (hχ )∪SDN,

where
∫ : H 1(X1(D)Z/ptZ,ω)→ Z/ptZ is the trace map. It remains to verify

that ∫
π∗1 (gχ )∪ π∗2 (hχ )∪SDN =

∫
π∗1 (g)∪ π∗2 (h)∪SDN. (39)

Now (b) implies that gχ ⊗ hχ and g ⊗ h have the same image in the diagonal
coinvariants on π1,f ⊗ π2,f . That is to say, considered inside π1,f ⊗ π2,f ,

gχ ⊗ hχ − g⊗ h=
∑
i∈I

ci[siv1 ⊗ siv2 − (v1 ⊗ v2)], (40)

where ci ∈ C and si ∈ ∏
v|D GL2(Qv). Moreover, a straightforward argument

with rational structures shows that we may even take ci to belong to the field
L=Q(ψ1,ψ2), and similarly v1 and v2 to be L-rational modular forms; and for
sufficiently large p, we can suppose ci , v1, v2, and D(D − 1) to be p-integral.
Then ∫

(siv1)∪ (siv2)∪S=
∫
v1 ∪ v2 ∪S,

where S is a Shimura class at a sufficiently deep level N ·Dr ; this follows from
the invariance of the Shimura class under the adèle group away from N after
pullback to a further cover. Therefore (40) implies the desired (39).

3. A Trace Identity for Indefinite Theta Series

The goal of this section is to prove the counterpart of Theorem 2.2 in the case
where (g,h)= (θ

ψ−1
1
, θ

ψ−1
2
) is a pair of new weight one θ -series associated to ray

class characters ψ1 and ψ2 of a common real quadratic field K , whose central
characters, denoted by χ1 and χ2 respectively, satisfy χ1 = χ−1

2 . Let D denote
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the discriminant of K , and let δ = (
√
D) be its different. We will assume that the

discriminant D is odd.
Since g and h are holomorphic, the characters ψ1 and ψ2, whose induced

representations are odd two-dimensional Artin representations, are necessarily of
mixed signature at ∞. This means that the hypotheses of Section 2, in which
ψ1 and ψ2 were assumed to be unramified, are restrictive to the point of being
vacuous: indeed, the presence of the unit−1 precludes the existence of unramified
idèle class characters of K of mixed signature. It will therefore only be assumed
that the conductors of ψ1 and ψ2 divide the different δ := (

√
D) of K , which

means that the levels of

g = θ
ψ−1

1
, h= θ

ψ−1
2

divide D2. In particular, these forms belong to the spaces M1(�1(D
2),χ−1) and

M1(�1(D
2),χ) respectively.

Because the θ -series for ψ2 and its Galois conjugate ψ ′2 coincide, it is harmless
to suppose that ψ1 and ψ2 both have the same signature at∞, namely the one for
which ψ1 and ψ2 are trivial relative to the standard real embedding of K .

Because the restrictions of ψ1 and ψ2 (viewed as characters of the idèles A×K
of K) to the group A×Q of idèles of Q are inverses of each other, it follows that,
for all primes v of K dividing D where ψ1 and ψ2 are possibly ramified,

ψ1,v|O×v =ψ−1
2,v |O×v .

But the Galois conjugation map x �→ x′ induces the identity on the residue fields
of Kv for such v, and hence the characters

ψ12 :=ψ1ψ2, ψ12′ :=ψ1ψ
′
2 (41)

appearing in Theorem 2.2 are trivial on O×v for all primes v, including those
dividing D. It follows that ψ12 and ψ12′ are everywhere unramified. The character
ψ12 is furthermore totally even, and ψ12′ is totally odd.

The existence of the odd unramified character ψ12′ implies that the narrow
class number of K is twice its class number, and hence that all the units of K
have positive norm. The fundamental unit ε is chosen so that ε > 1 relative to the
fixed standard real embedding K ↪→R of K evoked in the Introduction.

In fact, it will be shown in what follows that any pair of unramified characters
of K with trivial restrictions to A×Q and opposite pure signatures can be obtained
from a pair (ψ1,ψ2) as previously, in an essentially unique way; this fact plays
a crucial role in the proof of Theorem 3.1, because it eliminates the need for an
analogue of Proposition 2.5 and thus leads to a more precise result.

3.1. Setup on Heegner Cycles

As before, K is a real quadratic field of odd discriminant D, all of whose units
have norm 1. Let o be the maximal order of K . Let N �D be an odd prime that
splits in K .
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Choose δN ∈ Z satisfying

δ2
N ≡D (mod N).

This choice determines an ideal N= (N, δN −
√
D) of o of norm N . Also, let

M0(N) :=
{(

a b

Nc d

)
with a, b, c, d ∈ Z

}
⊂M2(Z)

be the standard Eichler order of level N in the matrix ring M2(Z). This Eichler
order is equipped with the standard orientation

o :M0(N)→ FN = (Z/NZ)

onto the field of N elements, sending a matrix to the mod N residue class of its
upper left-hand entry.

Let I ⊂ o be an ideal. Writing I ∩Z= (a) with a > 0, we can write

I =
(
a,
−b+√D

2

)
with b uniquely determined modulo a. The action of o on I with respect to the
basis (a, (−b+√D)/2) gives a homomorphism

α : o→M2(Z),
√
D �→

[
b −2c

2a −b
]
, (42)

where c is defined by stipulating that the binary quadratic form ax2 + bxy + cy2

has discriminant D.
An eigenvector v ∈K2 for the action of α(K) is given by

v =
(
(b+√D)/2

a

)
.

Write τ := b+√D
2a , and let v′ and τ ′ denote the algebraic conjugates of v and τ

respectively over K .
Suppose that I is divisible by N but not by N′. Then a is divisible by N , b is

congruent to δN modulo N , and α is an embedding of o into M0(N). Indeed, the
basis vector a ∈ I belongs to N′I since it is divisible by N , and its image in I/NI

generates the index N subgroup N′I/NI , which is preserved under multiplication
by o. Hence multiplication by any element of o is represented by a matrix in
M0(N) relative to the basis (a, (b +√D)/2). Moreover the composition o ◦ α :
o→ FN of α with the orientation o :M0(N)→ FN is reduction modulo N.

Replacing the basis (a, (b+√D)/2) of I with another positively oriented4 ba-
sis of the same form conjugates the resulting embedding by an element of �0(N),
hence the embedding α attached to I is independent of this choice of basis up to
conjugation in �0(N).

4Here, a basis (e1e2) is said to be positively oriented if it is in the SL2(Z)-orbit of the specified one,

or, said more intrinsically, e1 ∧ e2 equals the norm of I multiplied by 1∧√D/2.



Derived Hecke Algebras for Dihedral Weight One Forms 165

The standard real embedding K ↪→ R that was fixed previously yields a geo-
desic (τ, τ ′)⊂H in the upper half-plane. Recall the fundamental unit ε ∈ o×1 of
K of norm one, and let

γI = α(ε)Z\(τ, τ ′) (43)

denote the closed geodesics on �0(N)\H attached to I . We regard it as oriented
from τ to τ ′. This depends only on the class of I in

C := the narrow ideal class group of K, (44)

and correspondingly we will freely write γI for I ∈ C.
Note that τ ′ < τ and moreover the derivative of the fractional linear transfor-

mation of R induced by α(ε) at τ ′ (resp. τ ) is given by (ε′)−2 (resp. ε−2). Since
ε > 1 > ε′, we conclude that the action of α(ε) on (τ, τ ′) moves along the direc-
tion opposite to the orientation of the geodesic.

3.2. Statement of the Trace Identity

Given two narrow ideal classes, choose representatives I1 and I2 that are divisible
by N but not by N′. Let αi for i ∈ {1,2} denote the two embeddings attached to
I1 and I2 as in Section 3.1, and let vi, v′i ∈ K2 and τi, τ

′
i ∈ K be the associated

eigenvectors and fixed points, respectively.
Write 〈γI1 · TmγI2〉N for the topological intersection pairing of the homology

cycles γI1 and TmγI2 on the Riemann surface X0(N)(C). The generating series

�(γI1 ⊗ γI2) :=
∞∑
m=1

〈γI1 · TmγI2〉Nqm (45)

is a cusp form of weight two and level N . This definition can be extended by
linearity to arbitrary linear combinations of RM geodesics, notably the paths

γψ12(q)=
∑
I∈C

ψ12(I )γI , γψ12′ (q)=
∑
I∈C

ψ12′(I )γI (46)

associated to the unramified characters ψ12 and ψ12′ respectively.
The following theorem, which is the main result of this section, relates the trace

of products of binary theta series to modular generating series of real quadratic
geodesic cycles as in (45).

Theorem 3.1. For all theta series g = θ
ψ−1

1
and h= θ

ψ−1
2

of K as before,

TrND2

N (θ
ψ−1

1
(Nz)θ

ψ−1
2
(z))= C ·ψ1(N

′) ·�(γψ12 ⊗ γψ12′ ),

where

C =D
∑

D=D1D2

μ(D1) ·D2 ·ψ12ψ12′(jD1)=D
∏
p|D

(p−ψ12ψ12′(jp)), (47)

and jD1 is the order two element represented by the ideal (D1,
√
D) in the narrow

class group of K .
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The reader should compare this theorem to Theorem 2.2, which is less precise. It
turns out that allowing the ray class characters ψi to be ramified at primes dividing
the discriminant simplifies rather than complicates the situation. Transposing the
proof of Theorem 3.1 to the setting of Section 2 would presumably lead to a
refined and slightly more general variant of Theorem 2.2.

Remark 3.2. In the extension of the generating series (45) to linear combinations
of geodesics we are always taking representatives of I ∈ C that are divisible by
N but not by N′. This choice introduces an asymmetry that reappears throughout
this section and explains the appearance of the factor ψ1(N

′) on the right-hand
side of the identity in the theorem. Since the right-hand side is invariant under
exchange of N and N′, the second factor �(γψ12 ⊗ γψ12′ ) must also depend on
the choice of N.

The proof of Theorem 3.1 is summarized in Section 3.3, and the details of this
sketch are fleshed out in the remainder of the section.

3.3. Summary of the Proof

Let

C :=I (o)/P+(o), CD :=Iδ(o)/Pδ,+(o)

be the narrow class group and generalized class group of conductor δ, defined by
letting

• I (o), resp. Iδ(o), be the semi-group of ideals of o, resp. the ideals that are
prime to δ;
• P+(o) be the semi-group of principal ideals with a totally positive generator;
• Pδ,+(o) be the semi-group of principal ideals with a totally positive generator

that is congruent to 1 modulo δ.

Given ideals I1 and I2, let

A := {(x, y) ∈ (N′I1)+ × (I2)− satisfying x ≡ y (mod δ)}, (48)

and the + and − subscripts mean, respectively, positive and negative norm. The
group

U := {±(εa, εb) satisfying a ≡ b (mod 2)} (49)

operates naturally on A. Let

��(I1, I2) :=
∑

(x,y)∈A/(ε2Z×ε2Z)

sign(x) · sign(y) · q xx′
DN(I1)

− yy′
DN(I2)

= 4
∑

(x,y)∈A/U
sign(x) · sign(y) · q xx′

DN(I1)
− yy′

DN(I2) . (50)

The function ��(I1, I2)(e
2πiτ ) is a finite sum of suitable pairs of indefinite

binary theta series attached to certain cosets in I1 ⊕ I2, and is a modular form of
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weight two. It is readily verified that it depends only on the classes of I1 and I2 in
CD .

The proof of Theorem 3.1 follows from two key propositions. The first will be
proved in Section 3.6 and the second in Section 3.7.

Proposition 3.3 (See Section 3.6, also cf. (29)). There is an equality of modular
forms on �0(N):

TrND2

N (θ
ψ−1

1
(qN) · θ

ψ−1
2
(q))

=ψ1(N
′) · C

4
·
∑
C×C

ψ12(I1)ψ12′(I2) ·��(I1I2, I1I
′
2),

where C is as in (47).

Proposition 3.4 (See Section 3.7, also cf. Prop. 2.4). The generating series of
(45) is equal to

�(γI1 ⊗ γI2)(q)=
1

4
·��(I1I2, I1I

′
2)(q).

Taken together, these two propositions imply that the trace appearing in Proposi-
tion 3.3 is equal to

ψ1(N
′) ·C ·

∑
C×C

ψ12(I1)ψ12′(I2) ·�(γI1 ⊗ γI2),

and the sum appearing here, by definition, equals�(γψ12⊗γψ21). That is precisely
the statement of Theorem 3.1.

3.4. Setup on Class Groups

The running assumption that all units of K have norm one implies that equiva-
lence of ideals in the narrow sense is strictly finer than equivalence in the wide
sense, that is, that the narrow class number of K is twice its class number. It also
implies, by genus theory, that the odd discriminant D is a product of two negative
fundamental discriminants, and hence is not prime. Let a ≥ 2 be the number of
prime divisors of D.

Although K possesses no unramified idèle class characters of mixed signature,
such characters always appear in conductor dividing the different δ of K , since
the units of o which are 1 modulo δ are all totally positive.

Let

ι := the class of ε modulo δ.

It is one of the 2a−2 possible nontrivial ( �= ±1) square roots of 1 in o/δ = Z/DZ.
For if ι=±1, the fundamental unit±ε gives rise to a solution (x, y) ∈ Z2 of Pell’s
equation

x2 −Dy2 = 1, x ≡ 1 (mod D), x odd, y even or (51)

x2 −Dy2 = 4, x ≡ 2 (mod D), x, y odd. (52)
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In the second case, the factorization of Dy2 = (x−2)(x+2) into relatively prime
integers implies that

x + 2=±u2 and x − 2=±Dv2

for some (u, v) ∈ Z2, and hence (u, v) is a solution of the equation u2 −Dv2 =
±4 of height strictly smaller than that of (x, y). Likewise, a solution to (51) leads
to a pair (u, v) satisfying

x + 1=±2u2 and x − 1=±2Dv2,

and hence to a unit of o of smaller height, contradicting in both cases the assump-
tion that ε is a fundamental unit.

There is a natural exact sequence

0−→ 〈ι〉 −→ (Z/DZ)× −→ CD −→ C −→ 0,

where the first inclusion sends t ∈ (Z/DZ)× to the principal ideal generated by
any totally positive integer congruent to t modulo δ. Let

Z := ker(CD −→ C)� (Z/DZ)×/ι

be the kernel of the natural projection. Next, let W ⊂ (Z/DZ)× be the index 2
subgroup which is the kernel of the quadratic Dirichlet character associated to K ,
and

N : CD→W ⊂ (Z/DZ)× (53)

be the norm map sending the class of an ideal to the mod D residue class of
its norm. The triviality of the Herbrand quotient of the finite group CD as a
Gal(K/Q)-module implies that

C−D := kernel of N= {g/g′ with g ∈ CD},
where g �→ g′ is induced by the Galois automorphism of K over Q; thus W is
now identified with CD/C−D .

The groups Z and W have the same cardinality ϕ(D)/2, but the natural ho-
momorphism Z −→W obtained by composing the inclusion Z ↪→ CD with the
surjection CD→W is not an isomorphism; its kernel is the two-torsion subgroup
of Z, of cardinality 2a−1.

Global class field theory identifies C with the Galois group of the Hilbert class
field H over K , and CD with the Galois group of HD over K , where HD is the
ray class field of K of conductor δ, an extension of H of degree ϕ(D)/2. The
subgroup C−D is identified with the Galois group of HD over the maximal subfield
of HD which is Galois and abelian over Q, namely, the cyclotomic field Q(ζD).
The group W is identified with the Galois group of Q(ζD) over K , an index two
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subgroup of (Z/DZ)×. The situation is summarized in the field diagram.

HD

2a−1
Z

C−D

CD

H(ζD)

H

C

Q(ζD)

W

H ∩Q(ζD)
2a−1

K

We can now state and prove the crucial lemma.

Lemma 3.5. There is an isomorphism

ξ : C2 −→ (CD ×W CD)/Z, (I1, I2) �→ (I1I2, I1I
′
2), (54)

where the target is defined after choosing lifts I1 and I2 of the eponymous ideal
classes I1, I2 ∈ C to the ray class group CD .

The validity of this lemma is the main reason that the current (RM) section obtains
a more precise result than the CM section.

Proof. Observe, first, that the map is well defined, since the kernel of CD→ C is
the image of (Z/DZ)×, represented by principal ideals (t) for t ∈ Z, and multiply-
ing I1 or I2 by such a principal ideal of norm prime to D only changes (I1I2, I1I

′
2)

by an element of the diagonally embedded Z. The two groups have the same car-
dinality by the previous discussion; so it is enough to prove that ξ is surjective.
But clearly a pair (J1, J2) lies in the image if and only if J2J

−1
1 has the form

I2/I
′
2, that is, belongs to C−D . �

3.5. Setup on Binary θ Series

For the lack of a reference, let us briefly sketch the general situation before spe-
cializing to the case of a quadratic space arising from the quadratic field K .

Consider a 2n-dimensional anisotropic quadratic space (V , q) over Q. The
space of Schwartz functions on V ⊗ Af is endowed with an action of SL2(Af )

via the Weil representation which at any finite prime of Q is given by the following
formulas:

rμ

(
1 a

0 1

)
f (x)= μ(aq(x))f (x),
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rμ

(
a 0
0 a−1

)
f (x)= |a|ω(a)f (ax), (55)

rμ

(
0 1
−1 0

)
f (x)= γ f̂ (x).

Here μ is a chosen additive character, ω is the quadratic discriminant character
corresponding to the space V , the function f̂ is Fourier transform of f relative to
μ and a self-dual Haar measure on V , and γ is an eighth root of unity. We apply
this only in the case when V ⊗Q
 is a split 4-dimensional quadratic space; in this
case ω= 1 and also γ = 1 (for the latter, see [Wei64, p. 176]).

Now suppose dimV = 2, that (V , q) has signature (1,1), and suppose that f

is a Schwartz function on V ⊗Af with stabilizer � ≤ SOq(Q).

Proposition 3.6. Let

θf
(z) :=

∑
v∈�\V,
q(v)>0

sign(v)e2πiq(v)zf (v), (56)

where sign(v) is positive on one connected component of q(v) > 0 and negative
on the other. Then θf

(z) is a modular form on SL2, and the association f �→
θf

is equivariant for the action of SL2(Af ) via the Weil representation. The same

conclusion applies replacing the condition q(v) > 0 with q(v) < 0 and e2πiq(v)z

with e−2πiq(v)z.

Sketch of Proof. To check this, we use the dual pair SOq × SL2. Fix an iso-

morphism (V ⊗ R, q) � (R2, xy), let ∞(x, y) = (x + y)e−π(x2+y2), and let
 = ∞ ⊗ f be the associated Schwartz function on V ⊗ A. The function
∞ is chosen so that its average ∞ over the connected component of SOq(R)
is explicitly computable:

∞(x, y)=
∫
λ∈R×+

(λx + λ−1y)e−π(λ2x2+λ−2y2) dλ

λ

=
{

sign(x)e−2πxy if xy > 0,

0 otherwise.

In particular, fixing h ∈ SOq(A), the rule

g �→ θ̃(g,h) :=
∑
x∈V

(g,h) ·(x),

where (g,h) · refers to the actions of g ∈ SL2(A) on  via the Weil representa-
tion, and of h ∈ SOq(A) via translation on the arguments, defines an automorphic
form on SL2(A). The rule  �→ θ̃ is equivariant for the SL2(A)-actions on both
sides. We now integrate over h ∈ �\SOq(R) to check that

(g∞, gf ) ∈ SL2(A) �→ θ :=
∑

x∈�\V

g∞
∞ (x) ·gf

f (x)

is again a modular form for SL2(A). This gives the claimed statement. �
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Now, we will explicitly take V to be K together with a suitable rescaling of the
norm as quadratic form and explicate the above construction when f is given
by suitable characteristic functions.

Given any fractional ideal I of o of norm N(I ) ∈ Q>0, which is relatively
prime to δ, the group ε2Z preserves the intersection I+ (resp. I−) of I with the
cone of elements of positive (resp. negative) norm in K⊗R, as well as the subsets

I+1 := {x ∈ I+ with x ≡ 1 (mod δ)},
I−1 := {x ∈ I− with x ≡ 1 (mod δ)}.

Taking f to be the characteristic function of {x ∈ I ⊗ Ẑ : x ≡ 1(δ)}, we recover
Hecke’s partial theta series

ϑ+(I )(q) :=
∑

x∈I+1 /ε2Z

sign(x) · qxx′/DN(I ),

ϑ−(I )(q) :=
∑

x∈I−1 /ε2Z

sign(x) · q−xx′/DN(I ).

These theta series depend only on the image of I in the ray class group CD and are
modular forms of weight one on a suitable congruence subgroup. More precisely,
by (55) or [HIM86, §1] we have the following:

Lemma 3.7. For all
(
a b
c d

) ∈ �0(D),

ϑ+(I )
(
aτ + b
cτ + d

)
=

(
D

|d|
)
e
−2πiab
DN(I ) (cτ + d) · ϑ+(aI)(τ ),

ϑ−(I )
(
aτ + b
cτ + d

)
=

(
D

|d|
)
e

2πiab
DN(I ) (cτ + d) · ϑ−(aI)(τ ).

Lemma 3.8. We have

2θ
ψ−1

1
=

∑
I∈CD

ψ1(I )ϑ
+(I )(qD), (57)

2θ
ψ−1

2
=

∑
I∈CD

ψ2(I )ϑ
−(I )(qD). (58)

Here, by convention, ψ1(J ) simply means the value of ψ1 applied to the image of
J in the ray class group CD .

Proof. Rewrite the right-hand side of (57) as

θ+
ψ−1

1
:=

∑
I∈CD,

x∈I+1 /ε2Z

ψ1(I ) · sign(x) · qxx′/N(I ), (59)

where we have made the slight abuse of notation of choosing a representative I for
each class in CD , and I+1 consists of elements in I of positive norm and congruent
to 1 modulo δ. The set I+1 is the union of its totally positive and totally negative
elements. Sending a pair (I, x) in the range of summation of the right-hand side
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of (59), where x is totally positive (resp. totally negative), to the integral ideal
I−1x determines two bijections:

(I, x ∈ I+1 totally positive) �→ I−1x, (60)

(I, x ∈ I+1 totally negative) �→ I−1x, (61)

to the set of integral prime-to-δ ideals. These two bijections are interchanged by
precomposing with the involution (I, x) �→ ((z)I, z · x), where z is any totally
negative element congruent to 1 modulo δ. Therefore, for a given integral prime-
to-δ ideal J , the preimages (I, x) and (I ′, x′) under these two bijections do not
coincide; rather, the classes of I and I ′ in CD differ by the image of (−1) ∈
(Z/DZ)× in CD . Being of mixed signature, the character ψ1 sends this element to
−1, and reindexing via J = I−1x allows us to rewrite (59) as 2

∑
J ψ
−1
1 (J )qN(J ),

which is (up to the factor of 2) the standard expression for the θ -series θ
ψ−1

1
(q)

attached to ψ−1
1 . This proves (57), and the proof of (58) is essentially the same.

�

3.6. Proof of Proposition 3.3

With preliminaries on θ -series in hand, we proceed the proof of the first key step,
Proposition 3.3.

Recall that N is a prime that splits in K as a product NN′ of two prime ideals
of norm N . If I1 and I2 are (representatives of) elements of CD , thus, fractional
ideals of K , the modular form

�(I1, I2)= ϑ+(N′I1)(q
N) · ϑ−(I2)(q) (62)

is of weight two on �(D)∩ �0(N). Define

�(1)(I1, I2)= trace of �(I1, I2) to level �0(N)∩ �1(D),

�(0)(I1, I2)= trace of �(I1, I2) to level �0(N)∩ �0(D),

�(∅)(I1, I2)= trace of �(I1, I2) to level �0(N).

The superscripts here are intended to remind the reader of the level structure at D.

Lemma 3.9. For all ideals I1 and I2 of CD ,

�(1)(I1, I2)=
{
D · ϑ+(N′I1)(q

N) · ϑ−(I2)(q), if N(I1)=N(I2),

0 otherwise.
(63)

Here, N is the norm of (53). Moreover �(0)(I1, I2), which therefore vanishes
unless (I1, I2) belongs to the fiber product

CD ×W CD := {(I1, I2) ∈ CD × CD satisfying N(I1)=N(I2)},
depends only on the image of (I1, I2) in the quotient (CD ×W CD)/Z.
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Proof. The nonzero terms in the Fourier expansion of ϑ+(N′I1)(q
N) ·ϑ−(I2)(q)

are concentrated at powers of the form qm/D , where

m≡ 1/N(I1)− 1/N(I2) (mod D),

and the result follows, since the trace from �(D) to �1(D) annihilates any term
of the form qm/D with D not dividing m and multiplies the others by a factor of
D. The final assertion follows from the explicit formula

�(0)(I1, I2)=
∑

a∈(Z/DZ)×
�(1)(aI1, aI2), (64)

which is an immediate consequence of Lemma 3.7. �

Note that if (I1, I2) belongs to (CD ×W CD), then the same is true of (I1, eI2),
where e is any element of K× whose associated fractional ideal is prime to δ and
satisfies e2 = 1 (mod δ).

Proposition 3.10 (cf. Prop. 2.3). For all (I1, I2) ∈ (CD ×W CD)/Z, we have

�(∅)(I1, I2)=D ·
∑

D=D1D2

μ(D1) ·D2 ·��(I1, εD1I2), (65)

where μ is the Möbius function, and

(1) ��(I1, I2) is the modular form defined in (50);
(2) The sum on the right is taken over all factorizations of D into (relatively

prime) fundamental discriminants D1,D2;
(3) εD1 is a totally positive element which is congruent to−1 (resp 1) modulo the

primes dividing D1 (resp. D2).

Proof. By Lemma 3.9, it may be assumed that I1 and I2 have the same norm and
are represented by ideals that are relatively prime to δ. We must prove an equality
of the form

Trace of �(I1, I2) from �(D)∩ �0(N) to �0(N)= sum of �′s.
We will do this in a fashion very similar to the proof of Proposition 2.6, that is,

by reducing it to a local question about Weil representations. Both �(I1, I2) and
��(I1, I2) have the general form

�(q) :=
∑

(x,y)∈V±
(x,y) sign(x) · sign(y) · qQ(x,y), (66)

where:

• V = K ⊕ K is considered as a quadratic space over Q: we consider it as a
Q-vector space and endow it with the quadratic form

Q(x,y)= xx′

DN(I1)
− yy′

DN(I2)
.

• V± are elements (x, y) with xx′ > 0 and yy′ < 0.
•  is a Schwartz function on V ⊗Af (with Af the ring of finite adeles), invari-

ant by the action of the subgroup U of the unit group o
×
1 o
×
1 .
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In the situation of (66) the map  �→� is equivariant for the Weil representation
action of SL2(Af ) on Schwartz functions on V ⊗ Af ; this action preserves the
invariance condition on  . Indeed this is a product of two copies of the situation
already discussed in Section 3.5, and the Weil representation for a direct sum of
quadratic spaces is simply the tensor product of the individual factors.

The action of SL2(Af ) on Schwartz functions just mentioned factors as a (re-
stricted) tensor product of actions of SL2(Qp) on the space of Schwartz functions
on V ⊗Qp . The factor at p is the Weil representation of SL2(Qp) on the Schwartz
functions on the quadratic space (Vp,Qp), where

Vp = (K ⊕K)⊗Qp, Qp(x, y)= xx′

DN(I1)
− yy′

DN(I2)
.

In this way, we are reduced to a problem in explicitly computing with this
Weil representation: the question of computing the trace of ��(I1, I2) from
�0(N) ∩ �(D) to �0(N) reduces, thereby, to a product of local computations
over p dividing D, which we will spell out in what follows. �

Lemma 3.11 (cf. Lemma 2.7). Let 
 divide D.
Let (W,L, 〈, 〉) be the quadratic space over Q
 given by K ⊗ Q
 equipped

with the norm form, multiplied by (DN(I1))
−1 and L be the ring of integers. Let

(W ′,L′, 〈, 〉′) be similarly defined but multiplying the form by −(DN(I2))
−1 and

taking L′ to be the ring of integers.
Call e1 the characteristic function of

{(x ∈ L,x′ ∈ L′) : x ≡ x′ ≡ 1 ∈ (Z/
)},
considered as a Schwartz function on W ⊕W ′. (Here the map from L to Z/
 is
given by reduction at the maximal ideal.)

Then, for the Weil representation action of SL2(Q
) on Schwartz functions on
W ⊕W ′, the trace

TrSL2(Z
)
�(
) e1 = 
(
1M+ − 1M−),

where M± are the two self-dual integral lattices contained in (L⊕L′), is defined
in (68).

Proposition 3.10 follows readily from this lemma. Indeed, from (62) we can write
�(I1, I2) in the notation of (66) as the series � with  =⊗
 and 
 simply
the characteristic function of N′I1 ⊕ I2 for 
 not dividing D, and 
 = e1 for

 dividing D. We must only observe that, given a factorization D = D1D2, the
value of the corresponding � series where we replace the role of e1 with M+
for 
|D1 and with M− for 
|D2 is exactly ��(I1, I2) but replacing x ≡ y(δ)

with x ≡ εD1y(δ), and this in turn coincides with ��(I1, εD1I2) by means of the
substitution y← εD1y.

Proof of Lemma 3.11. First we define M±. Let (L⊕L′)∗ be the dual lattice with
respect to the quadratic form Q on W ⊕W ′ and similarly define L∗, (L′)∗. Then
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L∗ corresponds simply to the maximal ideal inside L, and similarly for L′, so
there are canonical identifications

(L/L∗)� (Z/
)� L′/(L′)∗, (L⊕L′)
(L⊕L′)∗

� (Z/
)2. (67)

We let

M± = preimages of the lines x1 ≡±x2 in (Z/
Z)2. (68)

The function e1 is readily verified, using the formulas in (55), to be invariant by
the principal congruence subgroup �(
) of level 
 inside SL2(Z
). Indeed, using
the Iwahori factorization of �(
), it suffices to prove this for upper triangular
unipotent elements, diagonal elements, and lower triangular unipotent elements
congruent to the identity modulo 
. For the first two, this is obvious from the first
two lines of (55); to conclude, we write the lower triangular unipotent subgroup
with the conjugate of the upper triangular subgroup by the element

w =
(

0 1
−1 0

)
that appears on the last line of (55). Since the Weil constant γ = 1, it suffices to
observe that w−1 acts as the inverse of the Fourier transform.

We must compute its trace to SL2(Z
)-invariants. Clearly, this projection is the
same as if we first average over the diagonal subgroup, which has the effect of

replacing e1 with
∑

j �=0 ej

−1 where ej is the Schwartz function defined similarly to

ej but now considering x1 ≡ x2 ≡ j modulo 
. Now 1M+ =
∑

j ej , and so∑
j �=0

ej = 1M+ − e0.

Now this is in fact invariant by K0(
)⊂ SL2(Z
). Indeed 1M+ is already in-
variant by SL2(Z
) since it is self-dual and integral for the quadratic form, and e0

is the characteristic function of (L⊕L′)∗, on which the quadratic form is integral.
We will prove that (cf. (36))

traceSL2(Z
)
K0(
)

e0 = 1M+ + 1M− . (69)

From this it follows that the corresponding trace of
∑

j �=0 ej equals 
1M+ −1M−
and the lemma follows from this, taking into account the index [K0(
) :K(
)] =
(
− 1)
.

The proof of (69) is very similar to the computation carried out in Proposi-
tion 2.6 of the previous section and, more specifically, to (37). The role of M±
arises from the fact that

{x ∈ L⊕L′ :Q(x) ∈ Z
} =M+ ∪M−,

and indeed the function induced by the quadratic form upon the right-hand group
of (67) is proportional to (x1, x2) ∈ (Z/
Z)2 �→ 
−1(x2

1 − x2
2) ∈ 
−1Z/Z. Let

notation be as in (35); as discussed there, a system of coset representatives for
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SL2(Z
)/K0(
) is given by w together with wm(t)w, where 1 ≤ t ≤ 
. We get
we0 = 
−11L⊕L′ , and thus∑

t

m(t)we0 = 1M+ + 1M− − e0.

Therefore, (w
∑

t m(t)w)e0 = 1M+ + 1M− − we0, and so the trace of e0 is
1M+ + 1M− as desired. �

We will now parlay Proposition 3.10 into an expression for the trace of the prod-
uct θ

ψ−1
1
(qN)θ

ψ−1
2
(q) of weight one theta series. The following result immedi-

ately implies the desired Proposition 3.3 after performing a change of variables
via the isomorphism C2 −→ (CD ×W CD)/Z of Lemma 3.5, given explicitly by
(I1, I2) �→ (I1I2, I1I

′
2).

Proposition 3.12. Let

GND2(q) := θ
ψ−1

1
(qN) · θ

ψ−1
2
(q),

which belongs to the space M2(�0(ND2)) of modular forms of level ND2 with
trivial nebentypus character. Then

TrND2

ND (GND2)=ψ1(N
′)1

4

∑
(CD×WCD)/Z

ψ1(I1)ψ2(I2) ·�(0)(I1, I2),

TrND2

N (GND2)=ψ1(N
′) · C

4
·

∑
(CD×WCD)/Z

ψ1(I1)ψ2(I2) ·��(I1, I2),

where

C :=D
∑

D=D1D2

μ(D1) ·D2 ·ψ1(εD1)=D
∏
p|D

(p−ψ1(εp))

is a constant that depends on (ψ1,ψ2) and D but not on N .

Proof. By Lemma 3.8,

GND2(q)= 1

4

∑
(I1,I2)∈C2

D

ψ1(N
′I1)ϑ

+(N′I1)(q
ND) ·ψ2(I2)ϑ

−(I2)(q
D),

where we re-indexed the sum for θ
ψ−1

1
via I←N′I .

Because the restrictions to Z of the characters ψ1 and ψ2 are inverses of each
other, the right-hand side can be rewritten as

1

4

∑
C2
D/Z

ψ1(N
′I1)ψ2(I2)

∑
j∈Z

ϑ+(jN′I1)(q
ND)ϑ−(jI2)(q

D),

where Z ⊂ C2
D is embedded diagonally. It follows from (64) and (63) that

GND2(q)= 1

4D

∑
C2
D/Z

ψ1(N
′I1)ψ2(I2) ·�(0)(I1, I2)(q

D). (70)
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Both the left- and right-hand sides in this identity are modular forms on �0(ND2).
Let UD be the Hecke operator which on q-expansions is given by

UD

(∑
anq

n

)
=

∑
n∈Z

anDq
n.

The trace from level D2 to level D amounts to an application of D ·UD , and by
the same reasoning as in Lemma 3.9, we have

UD(�
(0)(I1, I2)(q

D))=
{
�(0)(I1, I2)(q) if N(I1)≡N(I2),

0 otherwise.

Applying the trace to level ND to both sides of (70) therefore gives

TrND2

ND (GND2)=ψ1(N
′) · 1

4
·

∑
(CD×WCD)/Z

ψ1(I1)ψ2(I2)�
(0)(I1, I2)(q),

and the first equation in Proposition 3.12 follows directly. The second follows
from this and (65), taking into account that ψ2 and ψ1 agree on εp . �

3.7. Proof of Proposition 3.4

Recall now the setup of Section 3.2. We choose narrow ideal classes I1 and I2 and,
by choosing representatives by ideals that are divisible by N but not N′, obtain
a pair of real quadratic geodesics γ1 := γI1 and γ2 := γI2 in �0(N)\H with the
same discriminant D. We also obtain embeddings αi for i ∈ {1,2} attached to I1
and I2; similarly, we get eigenvectors vi, v′i ∈K2 and fixed points τi, τ ′i ∈K for
the action of αi(K×).

Proposition 3.4 asserts that the generating series of (45) is equal to

�(γ1 ⊗ γ2)(q)= 1

4
·��(I1I2, I1I

′
2)(q).

The proof proceeds, much as in the proof of the Gross–Zagier formula, by the
most powerful technique known to number theory—compute and compare.

Examining the definition of ��(I1, I2) from (50), we see that

mth Fourier coefficient of �� = 4
∑

(x,y)∈Am/U
sign(xy), (71)

where Am consists of the pairs (x, y) ∈N′I1I2 × I1I
′
2 satisfying

xx′ > 0, yy′ < 0,
xx′ − yy′
a1a2

=Dm, (72)

where a1 = N(I1), a2 = N(I2) and U is the subgroup of o×1 ×o×1 introduced in
(49).

Now we turn to the left-hand side, which is more involved, and will take up the
remainder of the subsection. We must compute the mth Fourier coefficient

am := 〈γ1 · Tmγ2〉N.
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Letting M0(N)m be the set of elements of M0(N) of determinant m, and letting

�1 := α1(o
×
1 ), �2 := α2(o

×
1 ),

this intersection number can be rewritten as

am =
∑

A∈�1\M0(N)m/�2

〈(τ1, τ
′
1) · (Aτ2,Aτ

′
2)〉. (73)

(Note that in (73) the intersection numbers are now being computed on the upper
half-plane and not on the modular curve.) The calculation proceeds by rewriting
the coefficient am of (73) as a sum over certain ideals of K , by exploiting the map

η :M2(Q) ↪→K ⊕K, η(A) := (det(v1,Av2),det(v1,Av
′
2)).

The map η sets up a K ⊗ K-module isomorphism from M2(Q) to K ⊕ K , the
module structures being given by

(a⊗ b)M := α1(a
′)Mα2(b) and (a⊗ b)(x, y)= (abx, ab′y) (74)

respectively.
It is also an isomorphism of quadratic spaces, after equipping K ⊕K with the

quadratic form Q(x,y)= xx′−yy′
Da1a2

.

Lemma 3.13. If η(A)= (x, y), then

det(A)= xx′ − yy′
Da1a2

.

Proof. The source and the target of η are both cyclic (K ⊗ K)-modules, as in
(74), and both sides transform the same way, which reduces us to verifying the
assertion for a single generator; taking A to be the identity and using Da1a2 =
det(v1, v

′
1)det(v2, v

′
2) this follows from the identity

det(v1, v
′
1)det(v2, v

′
2)− det(v1, v2)det(v′1, v′2)+ det(v1, v

′
2)det(v′1, v2)= 0,

which can be derived by considering the determinant of the 4× 4 matrix whose
rows are two copies of [v1, v

′
1, v2, v

′
2]. �

Proposition 3.14. The image of M0(N) under η is equal to

η(M0(N))= {(x, y) ∈N′I1I2 × I1I
′
2 with x ≡ y (mod δ)},

and η induces a bijection between �1\M0(N)m/�2 and Am/U .

Proof. Note that K⊗K is naturally identified with K⊕K via the map � sending
a⊗ b to

�(a⊗ b)= (ab, ab′).
For 1 ≤ i, j ≤ 2, let Eij be the elementary matrix having a 1 in the ij entry and
0s elsewhere, and set βj = (−bj +

√
D)/2. By the definition of η,

η(E11)= �(−a1 ⊗ β2) η(E12)= �(−a1 ⊗ a2),

η(E21)= �(β1 ⊗ β2), η(E22)= �(β1 ⊗ a2).
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It follows that η(M2(Z)) is contained in the index D subgroup of I1I2 × I1I
′
2

consisting of pairs that are congruent modulo δ. The fact that this containment is
an equality follows by comparing the determinants of the pairing matrices for the
two lattices relative to the quadratic forms det(A) and xx′−yy′

Da1a2
respectively. Fur-

thermore, the lattice η(M0(N)) is obtained by replacing the Z-module generator
η(E21) with Nη(E21). A local analysis at N shows that

η(M0(N))⊂N′I1I2 × I1I
′
2.

Since it is of index at most N in η(M2(Z)), it must be equal to

{(x, y) ∈N′I1I2 × I1I
′
2 with x ≡ y (mod δ)},

as claimed. In particular, the map η identifies M0(N)m with Am, and the last
assertion follows from the fact that η transforms the left action of ε ∈ �1 (resp. the
right action of ε ∈ �2) into multiplication by (ε, ε) (resp. by (ε, ε−1)), which
together generate U . �

It is also crucial to interpret the intersection pairing 〈γ1 · Aγ2〉 ∈ {−1,0,1} in
terms of η(A).

Lemma 3.15. If det(A)=m> 0, then the intersection 〈γ1 ·Aγ2〉 is nonzero if and
only if xx′ > 0 and yy′ < 0, where η(A) = (x, y). In that case, it is given (after
suitable choice of orientation conventions for the intersection) by sign(xy).

Proof. Given any four distinct elements t1, t
′
1, t2, t

′
2 of P1(R), the hyperbolic

geodesics (t1, t ′1) and (t2, t
′
2) intersect nontrivially if and only if the cross-ratios

[t1, t ′2; t2, t ′1] and [t1, t2; t ′2, t ′1] belong to the open interval (0,1)⊂R. This can be
seen by exploiting the invariance of the cross ratio under Möbius transformations
to reduce this statement to the special case in which (t1, t

′
1, t2, t

′
2)= (0,∞,1, t),

where it can be verified directly. In particular, the geodesics (γ1,Aγ2) intersect
precisely when the following cross ratios belong to (0,1)⊂R:

xx′

mDa1a2
= det(v1,Av2)det(v′1,Av′2)

det(v1, v
′
1)det(Av2,Av

′
2)
= [τ1,Aτ

′
2;Aτ2, τ

′
1], (75)

−yy′
Da1a2

= det(A)
det(τ1,Aτ

′
2)det(τ ′1,Aτ2)

det(τ1, τ
′
1)det(Aτ ′2,Aτ2)

= det(A)[τ1,Aτ2;Aτ ′2, τ ′1]. (76)

The first assertion follows. As to the second, the sign of

xy = det(v1,Av2)det(v′1,Av2)

determines whether or not τ1 lands inside or outside of the geodesic from Aτ2 to
Aτ ′2, and hence determines the sign of the nonzero intersection, given a suitable
choice of orientation on H. �

Recall that U acts naturally on the set Am from (72). By combining Lemmas 3.13,
3.14, and 3.15, we obtain the following.
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Proposition 3.16. For all m≥ 1,

am =
∑

(x,y)∈Am/U
sign(xy).

Comparing this proposition with (71) shows that

�(γI1 , γI2)=
1

4
��(I1I2, I1I

′
2),

and Proposition 3.4 follows.

4. Higher Eisenstein Elements

This section is devoted to a review of “higher Eisenstein elements” in the sense
of Merel and Lecouturier [Mer96; Lec], that is, elements in suitable spaces of
modular forms that are not killed by the Eisenstein ideal but by its square, see
Definition 4.6. We will provide explicit formulas for Eisenstein and higher Eisen-
stein elements in

• the space M of modular forms (Proposition 4.1);
• the dual space M∗ to modular forms (Theorem 4.9);
• the positive part of cohomology H+ of the modular curve (Theorem 4.8);
• the negative part of cohomology H− of the modular curve (Section 4.4; here

we do not need higher elements), and finally
• the supersingular module D (Theorem 4.11).

Each of these spaces M,H+,H−,D is the completion of a suitable Hecke module
at Mazur’s Eisenstein ideal in the Hecke algebra.

4.1. Higher Eisenstein Series

As in Section 1.5, let N > 3 be a prime, let M2(N) be the module of weight two
modular forms with Fourier coefficients in Z = Z[ 1

6N ] for the Hecke congruence
group �0(N), and let S2(N)⊂M2(N) denote the submodule of cusp forms. De-
note by T(N) the ring generated by the Hecke operators Tn (with N � n) together
with TN :=UN , acting faithfully on M2(N).

The vector space M2(N)⊗Q is generated by S2(N)⊗Q along with the weight
two Eisenstein series whose q-expansion is given by

E
(N)
2 (q)= N − 1

24
+
∞∑
n=1

σ
(N)
1 (n)qn where σ (N)

1 (n)=
∑
d|n,
N�d

d. (77)

The homomorphism

ϕEis : T(N)−→ Z, ϕEis(Tn) := σ
(N)
1 (n)

by which T(N) acts on E(N)
2 is called the Eisenstein homomorphism, and its ker-

nel IEis is called the Eisenstein ideal.
For any maximal ideal m of T(N) and any T(N)-module M , let Mm de-

note the completion of M at m. The maximal ideal m is said to be Gorenstein if
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T := T(N)m is a Gorenstein ring. It is known that all maximal ideals of T(N) con-
taining a prime p > 3 are Gorenstein by a result of Mazur [Maz77, cor. II.16.3].

Let p > 3 be a prime divisor of N − 1. The maximal ideal m := (p, IEis) of
T(N) is called the p-Eisenstein ideal. Let

T := T(N)m, M :=M2(N)m

denote the completions of T(N) and M2(N) relative to this ideal. The ring T is a
complete local ring which is free of finite rank as a Zp-module. The module M is
canonically dual to T via the pairing M× T−→ Zp given by 〈f,T 〉 = a1(Tf ),
and hence M is free of rank one as a T-module, since T is Gorenstein. The Zp-
rank of T is strictly greater than one because p divides N − 1. We fix a discrete
log (Z/NZ)× → Z/ptZ as in Section 1.5.

The following proposition is due to Lecouturier [Lec], but the details of the
proof have been provided for the sake of being self-contained.

Proposition 4.1. There is a modular form E′ ∈ M2(N) ⊗ (Z/ptZ) having
Fourier expansion of the form

E′ =M−
∞∑
n=1

(∑
d|n′

log(d2/n′)d
)
qn

for some M ∈ Z/ptZ, where n′ denotes the prime-to-N part of n. It satisfies
(UN − 1)E′ = 0 and, for all primes 
 �=N ,

(T
 − (
+ 1))E′ = (
− 1) log(
)E(N)
2 .

The modular form E′ mod pt is called the higher Eisenstein series of weight 2
and level N . We will discuss abstractly such elements in other Hecke modules in
Section 4.2.

Proof. Recall that Z := Z[1/6N ] and let I denote the augmentation ideal in the
group ring Z[GN ], where GN is as in (10). For d an integer prime to N , we shall
denote by σd the corresponding element of GN , arising from d by means of the
homomorphism Z→ (Z/N)× → GN . Let E and F be the formal q-expansions
with coefficients in Z[GN ] given by

E :=M−
∞∑
n=1

(∑
d|n,
N�d

dσd

)
qn, F := −

∞∑
n=1

( ∑
d|n,
N�n/d

dσn/d

)
qn, (78)

where

M := 1

2

N−1∑
j=1

θj · σj with θj := N

2
B2(j/N),B2(x) := x2 − x + 1/6.

These formal q-expansions satisfy, for every Dirichlet character χ of modulus N ,

χ(E)=
{
E
(N)
2 =E2(1,1N) if χ = 1;

E2(1, χ) otherwise,
χ(F)=

{
E2(1N,1) if χ = 1;
E2(χ,1) otherwise,
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where 1N denotes the trivial character, but viewed as having modulus N , and
E2(1, χ) and E2(χ,1) are the usual Eisenstein series associated to the Galois
representations χω⊕ 1 and ω⊕ χ respectively with ω the cyclotomic character,
whose Fourier expansions are given by

E2(1, χ)(q)=−L(−1, χ)/2−
∞∑
n=1

(∑
d|n

χ(d)d

)
qn,

E2(χ,1)(q)=−
∞∑
n=1

(∑
d|n

χ(n/d)d

)
qn.

These Eisenstein series are classical modular forms of weight two on the congru-
ence group �1(N), with the exception ofE2(1N,1). The latter is (the holomorphic
part of) a nearly holomorphic form in the sense of Shimura, as we see via

E2(1N,1)=E2(q)−E2(Nq)+ const

y

with E2 = (8πy)−1 − 1

24
+

∑
n

(∑
d|n

d

)
qn.

Denote by Mnh
2 (�1(N);Z) the abelian group of q-expansions of such nearly holo-

morphic forms, so that E2(1N,1) ∈Mnh
2 .

It follows that E is a classical modular form with coefficients in Z[GN ]. As for
F :=∑

σ∈GN
Fσ · σ , although the individual coefficients Fσ ∈Mnh

2 (�1(N);Z)
are merely nearly holomorphic, their pairwise differences Fσ1 − Fσ2 are in fact
holomorphic, since they lie in the linear span of the E2(χ,1) with χ nontrivial. It
follows that one can write

F= F0 + η ·N,
where

F0 ∈M2(�1(N);Z[GN ]), η ∈Mnh
2 (�1(N);Z), N=

∑
σ∈GN

σ.

Since the q-series E2(1,1N) and E2(1N,1) agree modulo pt , and the image of
the norm element N in Z/ptZ[GN ] belongs to I 2, the mod pt reduction of the
difference E − F belongs to M2(�1(N);Z/ptZ)⊗ I . It follows that its natural
image, denoted by E− F, inM2(�1(N);Z/ptZ)⊗(I/I 2) gives rise to an element

E− F ∈M2(�1(N);Z/ptZ)⊗ (I/I 2)=M2(�1(N);Z/ptZ)⊗GN,

which is invariant under the diamond operators. At the last stage we have used the
isomorphism (I/I 2)�GN⊗Z uniquely characterized by the fact that

∑
ajσj �→∏

jaj ⊗ 1 when aj ∈ Z. Consequently, E− F arises from a unique element of
M2(�0(N);Z/ptZ) ⊗ GN , to be denoted by the same letter. One then readily
checks that the modular form E′ given by

E′ := log(E− F)
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has all the properties claimed in the proposition. For instance, since E and F are
eigenvectors for T
 with eigenvalue (1+ 
σ
) and (σ
 + 
) respectively,

(T
 − (
+ 1))(E− F)= (
σ
 − 
)E− (σ
 − 1)F

= (
− 1)(σ
 − 1)E(N)
2 (mod I 2[[q]]),

and therefore, after reducing modulo I 2 and taking the discrete logarithms on both
sides,

(T
 − (
+ 1))E′ = (
− 1) log(
)E(N)
2 ,

as claimed. �

Remark 4.2. The proof of Proposition 4.1 yields an explicit formula for the con-
stant term M of E′. It is attached to the Mazur–Tate, or Stickelberger element M,
which is characterized as the unique element of Z[GN ] satisfying

χ(M)=
{
(1−N)/24 if χ = 1;
−L(−1, χ)/2 otherwise,

for all χ :GN −→C×.

This Mazur–Tate element belongs to the augmentation ideal I of the group ring
(Z/ptZ)[GN ], and its natural image in I/I 2 =GN ⊗ (Z/ptZ), denoted by M′,
is called the “Mazur–Tate derivative” of M. The constant term M is the discrete
logarithm of this Mazur–Tate derivative

M= log(M′). (79)

This explicit formula for M, which was first obtained (under a slightly different
guise) by Loic Merel [Mer96], will play no role in the argument.

4.2. General Higher Eisenstein Elements

From now on, the symbol IEis shall also be used to denote the Eisenstein ideal in
the completed Hecke algebra T, whose associated quotient T/IEis is isomorphic
to Zp .

Mazur has proved that T is generated by a single element as a Zp-algebra, that
is, T= Zp[x] for suitable x ∈ T. Indeed, one may take x = T
− 
−1 for suitable

, and x may be taken to generate IEis. See [Maz77, §II, Prop. 18.10], as well
as the discussion at the start of Section 19 therein. The following result is also
proved by Mazur (loc. cit. Proposition 18.8); we sketch a direct proof.

Corollary 4.3. There is an isomorphism

η : IEis/I
2
Eis = Zp ⊗ (Z/NZ)× � (Z/ptZ)

sending the element (T
−(
+1)) to (
−1)⊗
 for all primes 
 �=N , and sending
UN to 1.
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Sketch of proof. The modular form E
(N)
2 + εE′ with coefficients in the ring

Z/ptZ[ε] of dual numbers is a Hecke eigenform on �0(N) and gives rise to a
surjective homomorphism with kernel I 2

Eis

ϕ̃Eis : T−→ Z/ptZ[ε], ϕ̃(UN)= 1,

ϕ̃(T
)= (
+ 1)+ (
− 1) log(
)ε.
(80)

The quantity ϕ̃(T
 − (
+ 1)) is equal to log◦η(T
 − (
+ 1)), and the corollary
follows. �

Let X be a free T-module of rank one.

Lemma 4.4. The module X[IEis] of elements m ∈X satisfying

(T
 − (
+ 1))m= 0 for all primes 
 �=N, UNm=m,

is free of rank one over Zp .

Proof. Since the localization of T at IEis is Gorenstein, the IEis-torsion submodule
of X is isomorphic to X/IEisX, and the result therefore follows from the fact that
T/IEis is isomorphic to Zp . �

A generator of the Zp-module X[IEis] is called an Eisenstein element in X. Al-
though such generators are only well defined up to scaling by Z×p , the concrete
Hecke modules that arise in practice are frequently equipped with a distinguished
choice of Eisenstein element m0. Corollary 4.3 implies the following lemma.

Lemma 4.5. There is an element m1 ∈X/ptX satisfying UNm1 =m1 and

(T
 − (
+ 1))m1 = (
− 1) log(
)m0 (mod pt)

for every prime 
 �=N, (81)

and the choice of m0 uniquely specifies m1 up to the addition of a multiple of m0.

The element m1 depends linearly on the choice of discrete logarithm, namely,
replacing log with a · log with a ∈ (Z/ptZ)× has the effect of replacing m1 with
am1.

Definition 4.6. The element m1 is called the higher Eisenstein element in X/pt

(associated to m0 and to the choice of discrete logarithm).

For example, (the Eisenstein completion) M =M2(N)m of the module of mod-
ular forms has a distinguished Eisenstein element m0 = E

(N)
2 . Proposition 4.1

supplies an explicit description of the higher Eisenstein element m1 = E′ in
M ⊗ (Z/ptZ). The proof of Conjecture 1.1 for dihedral forms rests crucially
on similar explicit expressions of the higher Eisenstein element in various other
Hecke modules, which will be described in the forthcoming sections.
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Remark 4.7. When M≡ 0 (mod pu) with u ≤ t , there is also a second higher
Eisenstein element m2 ∈X⊗ (Z/puZ) satisfying, for all primes 
 �=N ,

(T
 − (
+ 1))m2 = (
− 1) log(
)m1 (mod m0X).

In fact, in X⊗ (Z/pZ) there is an entire sequence m0,m1, . . . ,mr ∈X⊗ (Z/pZ)
of higher Eisenstein elements obeying similar inductive relations, where r + 1 is
the Zp-rank of T. These higher Eisenstein elements have been studied system-
atically in [Lec], but only the first higher Eisenstein elements will play a role
in this work. Henceforth, the terminology “higher Eisenstein series” or “higher
Eisenstein element” shall always refer to what might be called the “first higher
Eisenstein element” in [Lec].

4.3. The Betti Cohomology Relative to the Cusps

One of the settings which turns out to be relevant to the proof of Conjecture 1.1
for RM dihedral forms occurs when X := H+ is the p-Eisenstein completion
of the relative cohomology H 1

B(X0(N); {0,∞};Z)+ with coefficients in the ring
Z := Z[1/6N ], where the superscript + denotes the subspace which is fixed by
complex conjugation. As discussed in Section 1.5, the subscript B means that we
take the singular cohomology of the complex points of X0(N). This relative coho-
mology is dual to H 1

B(Y0(N),Z)−, which is isomorphic, after tensoring with C,
to the space of weight two modular forms on �0(N) via integration. In particular,
the ring generated by the Hecke operators acting on H 1

B(X0(N); {0,∞};Z)+ is
naturally identified with T(N).

The module H 1
B(X0(N); {0,∞};Z)+ fits into the short exact sequence

0−→ Z
∂∗−→H 1

B(X0(N); {0,∞};Z)+ i∗−→H 1
B(X0(N),Z)+ −→ 0 (82)

of T(N)-modules, where ∂∗ is dual to the boundary homomorphism

∂ :H1,B(X0(N); {0,∞};Z)−→ Z · (0−∞)= Z. (83)

The relative cohomology group H 1
B(X0(N); {0,∞};Z) can be described con-

cretely in terms of Z-valued modular symbols: �0(N)-invariant functions m from
P1(Q)× P1(Q) to Z which are additive in the sense that they satisfy

m{a, b} +m{b, c} =m{a, c} for all a, b, c ∈ P1(Q).

The image of the class ∂∗(1) in H+, denoted by κ+0 , is a distinguished Eisen-
stein element in H+, which corresponds to the boundary symbol sending (a, b)

to f∞(b)− f∞(a), where f∞ is the unique �0(N)-invariant function on P1(Q)
which sends∞ to 1 and 0 to 0. Let

κ̄+1 : �0(N)−→ (Z/ptZ),

(
a b

c d

)
�→ log(a).

Since it is trivial on parabolic elements, it can be viewed as an element of
H 1

B(X0(N),Z/ptZ)+. Let κ+1 ∈H+⊗(Z/ptZ) be the class obtained by choosing
a preimage of κ̄+1 under i∗ in the exact sequence obtained from (82) by replac-
ing Z with (Z/ptZ) and projecting it to H+. This class depends on the choice
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of preimage, but only up to the addition of a multiple of κ+0 . Furthermore, it is
annihilated by I 2

Eis, since κ̄+1 is annihilated by IEis, and therefore, for all rational
primes 
 �= N , the class (T
 − (
+ 1))κ+1 is a multiple of the boundary symbol
κ+0 .

Theorem 4.8. The class κ+1 is the higher Eisenstein element in H+ ⊗ (Z/ptZ)

attached to κ+0 .

Proof. The modular symbol attached to κ+1 admits an explicit description when
restricted to �0(N)0 × �0(N)0. Namely, if r/s and t/u (viewed as fractions in
lowest terms, with the convention that ∞= 1/0, so that, in particular, s and u

belong to (Z/NZ)×) are elements of this �0(N)-orbit, we have

κ+1 ({r/s, t/u})= log(s/u).

This fact is proved by observing that the matrix

γ :=
(
u′ t

∗ u

)(
s −r
∗ s′

)
∈ �0(N), uu′ ≡ ss′ ≡ 1 (mod N)

sends r/s to t/u, and hence κ+1 ({r/s, t/u})= κ̄+1 (γ )= log(su′). To calculate the
constant of proportionality relating (T
− (
+1))κ+1 and κ+0 , we exploit the usual
formula for the action of the Hecke operators on modular symbols (cf. [Maz77,
Prop 18.9]):

(T
 − (
+ 1))κ+1 ({0,∞})= κ+1
(
{0,∞}+


−1∑
i=0

{i/
,∞}− (
+ 1){0,∞}
)

=

−1∑
i=1

κ+1 ({i/
,0})= (
− 1) log(
)

= (
− 1) log(
) · κ+0 ({0,∞}).
The result follows. �

4.4. The Betti Cohomology of the Open Modular Curve

Consider now the case where

X=H− =H 1
B(Y0(N),Z)−m.

The exact sequence

0−→H 1
B(X0(N),Z)−−→H 1

B(Y0(N),Z)− −→ Z −→ 0

produces an explicit rank one quotient of H 1
B(Y0(N),Z)− which is Eisenstein.

The Eisenstein element κ−0 in H− is described by the Dedekind–Rademacher ho-
momorphism on �0(N) described in [Maz79, §II.2]:

κ−0 (γ )=
1

2πi
(log(#N)(γ z)− log(#N)(z)),#N(z) :=#(Nz)/#(z),
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which encodes the periods of the modular unit #N ∈ O×Y0(N). It is given by the
formula

κ−0
(
a b

Nc d

)
=

{
(N − 1)b/d if c= 0;
(N−1)(a+d)

cN
+ 12 sign(c)DN( a

N |c| ) if c �= 0,

where DN(x)=D(x)−D(Nx) and D is the Dedekind sum

D(a/m)=
m−1∑
j=1

B1(j/m)B1(aj/m) for m> 0, gcd(a,m)= 1.

The homomorphism κ−0 can also be written as

κ−0
(
a b

Nc d

)
= ϕ

(
a b

Nc d

)
− ϕ

(
a Nb

c d

)
, (84)

where ϕ : SL2(Z)−→ Z is the Rademacher ϕ-function given by

ϕ

(
a b

c d

)
=

{
−b/d if c= 0;
−(a+d)

c
+ 12 sign(c)D( a

|c| ) if c �= 0.
(85)

In [Lec], a formula for the higher Eisenstein element attached to κ−0 is given,
which we omit because it shall not be needed in this work.

4.5. The Dual of the Modular Forms

This section considers the case where X :=M∗ is the completion of

M2(N)∨ = hom(M2(N),Z)

at the p-Eisenstein ideal. It is a free T-module of rank one, and is also equipped
with an Eisenstein element S0 defined by

S0(f )= a0(f ),

where a0(f ) denotes the constant term of the modular form f at the cusp ∞∈
X0(N). Let S1 denote the higher Eisenstein element in M̄∗ :=M∗ ⊗ (Z/ptZ)
attached to S0. It turns out to be related to the Shimura class S described in the
Introduction.

More precisely, the inclusion S2(N) ↪→M2(N) induces a surjection M∗ → S∗.
Fix any lift of S to M̄∗ =M∗ ⊗ (Z/ptZ) via this surjection denoted by S1. Note
that S1 is not completely well defined, but that any two choices of lift differ by a
multiple of S0 (mod pt ).

Theorem 4.9. The class S1 is the higher Eisenstein element in M∗ ⊗ (Z/ptZ)
attached to the Eisenstein class S0.

Proof. The class S1 arises from the κ̄+1 described in the discussion preceed-
ing Theorem 4.8 by means of the “étale to coherent” morphism H 1

et(X0(N),

Z/ptZ)−→H 1(X0(N)/Z/ptZ,Ga).
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For reasons that will become clear in what follows, instead of working with
X0(N) over the spectrum of Zp , we will use an unramified extension W of Zp

containing the N th roots of unity. Clearly, it is enough to prove the claimed state-
ment in M∗ ⊗ (W/ptW) instead of M∗ ⊗Z/pt since Z/pt ↪→W/ptW .

Let ι : cusps ↪→ X0(N) be the inclusion of the cuspidal divisor, a relative di-
visor over Z. Let j : Y0(N)→ X0(N) be the complementary open immersion.
Now, there are compatible short exact sequences of étale sheaves on X0(N)W/pt ,
the base change of X0(N) along Z→W/pt :

j!(Z/pt ) O(−cusps)

(Z/pt ) O

i∗(Z/pt ) Ocusps

(86)

Note that we are dealing here with étale sheaves whose order is not prime to the
residual degrees, but all we are using is the existence of this diagram. Taking
cohomology now gives the following commutative diagram which is compatible
with Hecke operators:

H0
et(cuspsW ;Z/ptZ) H0(cusps

W/pt
,O)

H1
et(X0(N)W , cuspsW ;Z/ptZ) H1(X0(N)

W/pt
,O(−cusps)) Hom(M2(N),W/pt )

H1
et(X0(N)W ,Z/ptZ)(0) H1(X0(N)

W/pt
,O) Hom(S2(N),W/pt ).

(87)

Here, the groups in the middle column are Zariski cohomology groups; the
map from left to middle column arises from, first of all, restricting to W/pt , then
using (86) and the fact that coherent sheaves have the same cohomology in Zariski
and étale topology. The zero superscript in the bottom left of (87) refers to classes
that are trivial when pulled back to the cusps. The maps from middle to right are
induced by the Serre duality pairings as in (11).

The Shimura class S ∈H 1
et(X0(N)Zp ,Z/p

t ) gives rise to a class in the group
H 1

et(X0(N)W ,Z/p
t )(0) in the lower left of (87) (which we also denote by S),

that is, S becomes trivial when pulled back to the cusps—because the cusps are
defined over W . Fix a lift

S̃ ∈H 1
et(X0(N)W , cuspsW ;Z/ptZ)

to the middle left group in (87). Now this left-hand term can be compared with
(82) via restriction to the geometric generic fiber, that is, the fiber over Qp , and it
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follows from Theorem 4.8 that

(T
 − 
− 1)S̃= (
− 1) log(
)S

holds after restriction to this geometric generic fiber.
We claim that “restriction to the geometric generic fiber” is injective on the

group H 1
et(X0(N)W , cuspsW ;Z/pt ). To see this, let E =W ⊗Qp be the quotient

field of W . In view of diagram (87), it is enough to check that the kernel of the
map

q :H 1
et(X0(N)W ,Z/p

t )→H 1
et(X0(N)Qp

,Z/pt )

is precisely the image of H 1
et(SpecW,Z/pt ) on the left.

A class in the kernel of q amounts to an étale Z/pt -cover of X0(N)W which
becomes trivial on the geometric generic fiber. This cover is uniquely determined
by its restriction to X0(N)E (see [SGA1, Théorème 3.8, Exposé X]) where it
becomes trivial on passage to a finite field extension of E, that is, the cover
on X0(N)E necessarily arises from a character Gal(Qp/E)→ Z/pt . For such
a cover to extend over X0(N)W , the character χ must be unramified. (For in-
stance, this can be seen by restricting to the cuspidal sections.) This implies the
claim regarding ker(q) and concludes the proof. �

Remark 4.10. Theorem 4.9 implies Merel’s theorem that 〈S1,E
(N)
2 〉 =M,

where M is the Merel constant of (79), since, letting E′ be the mod pt modu-
lar form defined in Proposition 4.1, 〈S1,E

(N)
2 〉 = 〈S0,E

′〉 = a0(E
′)=M.

4.6. Supersingular Divisors and Modular Units

Recall from Section 2.2 the module Div(E) of Z-linear combinations of isomor-
phism classes of supersingular elliptic curves over FN .

The Jacquet–Langlands correspondence shows that Div(E)⊗ C is abstractly
isomorphic to M2(N;C) as a module over the ring of Hecke operators, and in
particular the Hecke ring for Div(E) can be identified with T(N). In this section
we consider the case where X :=D is the p-Eisenstein completion of Div(E).

The vector (in the notation of Section 2.2)

�0 :=
n∑
i=1

ei

wi

∈D (88)

satisfies T
�0 = (
+ 1)�0 for all 
 �=N , and is thus an Eisenstein element in D.
Let �1 ∈D⊗ (Z/ptZ) denote the higher Eisenstein element associated to �0,

as specified in Definition 4.6. The main goal of this section is to give an explicit
construction of �1 in terms of the restrictions of certain modular units to the
supersingular locus. This construction is inspired from [Lec] and involves the
Eisenstein series EN+1 of weight N + 1, and the cusp form # of weight 12,
viewed as modular forms mod N of level 1.

Let ON denote the ring of (meromorphic) modular functions on the modular
curve of level one over Spec(Z/NZ) that are regular at its supersingular points.
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Since p is odd and p � N + 1, the discrete logarithm log extends uniquely to the
multiplicative group F×

N2 , and can therefore be used to define a homomorphism

Log :O×N −→Div(E)⊗ (Z/ptZ), Log(U) :=
n∑
i=1

log(U(ei)) · ei
wi

. (89)

It shall be useful to introduce multiplicative Hecke operators acting on the
multiplicative monoid in the graded ring of modular forms mod N . To describe
these operators, we shall adopt Katz’s point of view to describe modular forms
over a ring. Recall that a Katz test object over FN = Z/NZ is a pair (A,ω)/R ,
where

(i) A is an elliptic curve over an FN -algebra R;
(ii) ω in an R-module generator of H 0(A,�1

A).

A weakly holomorphic modular form of weight k and level 1 over FN is a rule f
which to any such test object associates an invariant f (A,ω) ∈R, satisfying

(1) f (A,ω) depends only on the R-isomorphism class of (A,ω);
(2) f commutes with base change with respect to any homomorphism R→ R′

of FN -algebras, in the obvious sense;
(3) f (A,uω)= u−kf (A,ω) for any u ∈R×.

Let (Aq,ωcan) denote the “Tate test object” over FN((q)), whose points over this
local field are identified with FN((q))

×/qZ, equipped with its canonical differen-
tial ωcan = dt/t . If f (Aq,ωcan) lies in FN [[q]] (resp. qFN [[q]]), then f is called
a modular form (resp. a cusp form). The space of modular forms and cusp forms
of weight k and level 1 over FN shall simply be denoted by Mk and Sk respec-
tively.

Let 
 �=N be a prime. The multiplicative Hecke operator

T ×
 :Mk −→Mk(
+1)

is defined by setting

(T ×
 f )(A,ω)=
∏
ϕ

f (A′,ω′), (90)

where the product is taken over the distinct isogenies ϕ : A→ A′ of degree 
,
with ω′ determined by ω := ϕ∗ω′. Up to language this is already in [Hur81]. One
readily checks that T ×
 maps Mk to M(
+1)k , as claimed. Of course, T ×
 is not
additive but it is compatible with multiplication on the graded ring of modular
forms over FN :

T ×
 (fg)= T ×
 (f )T ×
 (g).
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In particular, it induces homomorphisms T ×
 :O×N −→O×N for which the diagram

O×N
T ×


Log

O×N
Log

Div(E)⊗ (Z/ptZ)
T


Div(E)⊗ (Z/ptZ)

(91)

commutes.
Consider the meromorphic modular function

�× := E12
N+1

#N+1
(92)

of level one. By a result of Katz ([Kat, Theorem 3.1]), EN+1 has no common
zero with the Hasse invariant. Since the Hasse invariant has simple zeroes at the
supersingular points, it follows that �× belongs to O×N and therefore that the
vector

�1 := 1

12
Log(�×) ∈ (Z/ptZ)⊗Div(E) (93)

is well defined. Note that the class of �1 mod Z/ptZ ·�0 does not depend on the
way one normalizes the constant term of EN+1.

Theorem 4.11. For all primes 
 �=N ,

(T
 − (
+ 1))�1 = (
− 1) log(
)�0,

and �1 is therefore equal to the higher Eisenstein element attached to �0 ∈D.

Proof. While the Eisenstein series EN+1 presumably exhibits a complicated be-
havior under the multiplicative Hecke operators, a result of G. Robert ([Rob80,
Théorème B]) asserts that if (A,ω) and (A′,ω′) are marked supersingular elliptic
curves and ϕ :A−→A′ is an isogeny of degree 
 satisfying ϕ∗(ω′)= ω, then

EN+1(A
′,ω′)= 
EN+1(A,ω) for all A ∈ E . (94)

It follows that

T ×
 EN+1 = 

+1E
+1
N+1. (95)

In addition, for every prime 
 �=N ,

T ×
 #= 
12#
+1. (96)

This follows by noting that

T ×
 (#)(Eq,ωcan)=#(Eq
, 

−1ωcan)×

∏
ζ∈μ


#(Eζq1/
 ,ωcan)= 
12#(q)
+1.

Combining (95) and (96), we obtain

T ×
 (�×)= 
12(
−1)(�×)
+1.

It follows that

T
(Log(�×))= 12(
− 1) log(
)�0 + (
+ 1)Log(�×),
as claimed. �
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Example 4.12. Take N = 23 and p = 11. The supersingular j -invariants mod N
are {1,728,19,0}, and we have �0 = (6,1,4) with respect to this basis. Normal-
ize log : (Z/NZ)× −→ Z/pZ by setting log(5)= 1. Vector �1 = 1

12 Log(�∗)=
Log(E24

#2 ) ∈ Fpe1,728 ⊕ Fpe19 ⊕ Fpe0 is then computed to be

�1 = (−1,−1,−3).

This can readily be checked for instance by means of the identity

E24

#2
= (aj2 + b(j2 − 1,728j)+ c(j − 1,728)2)/d,

where

a = 49,679,091, b= 176,400,000,

c= 10,285,000, d = 236,364,091,

which follows by comparing the q-expansions of E4, E6, and E24. A computation
with Brandt matrices allows to verify numerically the identity of Theorem 4.11.

The description of �1 given in Theorem 4.11 makes it possible to relate some of
its pullbacks to modular units. More precisely, let q �= N be an auxiliary prime,
let E (q) denote the set of supersingular points of the modular curve X0(q) in
characteristic N (i.e. over FN ), and let Div(E (q)) and D(q) denote (respectively)
the space of Z- and (Z/ptZ)-linear combinations of elements of E (q). Note that
in carrying over constructions from E to E (q) we must take account of the fact that
the weights wx for x ∈ E (q) take into account the level structure and thus will not
in general coincide with the weight wx̄ of the image x̄ ∈ E .

The two degeneracy maps

π1,π2 :X0(q)−→X(1), π1(A,C)=A, π2(A)=A/C (97)

induce maps π1,π2 : E (q) −→ E and correspondingly push-forward maps

π1∗,π2∗ :Div(E (q))−→Div(E).
The dual of these maps are pullback maps π∗1 ,π∗2 , defined so as to satisfy

〈π∗j a, b〉q = 〈a,πj∗b〉 for all a ∈Div(E), b ∈Div(E (q)),
where 〈−,−〉q and 〈−,−〉 are the natural pairings (cf. (14)). In particular we get

π∗1 ,π∗2 :D−→D(q),

which is, now, compatible with the corresponding pullback of functions on the
ambient modular curves by means of map (89).

Just as in (89) we have a homomorphism

Log :O×q,N −→Div(E (q))⊗ (Z/ptZ), (98)

where now O×q,N denotes the multiplicative group of (meromorphic) modular
functions on X0(q)FN regular at the supersingular points. This applies to the case
where f = π∗1 (#)/π∗2 (#)=#(z)/#(qz), which is a modular unit of level q .
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Theorem 4.13. For any auxiliary prime q �=N , denote by

uq :=#(z)/#(qz) (99)

the modular unit of level q , considered as an element of O×q,N (see (98)). Then

π∗1 (�1)− π∗2 (�1)=−1

6
Log(uq) (mod �

(q)

0 ),

where �(q)

0 = π∗1 (�0)= π∗2 (�0) is an Eisenstein eigenvector on D(q).

The use of the auxiliary prime q simplifies the situation: the map (π∗1 − π∗2 ) kills
�0; thus (π∗1 −π∗2 )�1 is independent of the choice of �1 and is strictly Eisenstein,
rather than higher Eisenstein. In fact, in the case q = 2, this general idea appears
in the work of Lecouturier; the role of the modular unit (99) is replaced in his
work with the λ-invariant, see [Lec, Prop 3.25].

Proof. Equation (94) shows that π∗1 (EN+1)/π
∗
2 (EN+1) is constant on E (q), and

hence

Log(π∗1 (EN+1)/π
∗
2 (EN+1))∼�

(q)

0 ,

where ∼ indicates that the two vectors are proportional to each other. It follows
from definition (92) of �× and N ≡ 1 modulo pt that

Log(π∗1 (�×)/π∗2 (�×))= 2 Log(#(qz)/#(z)) (mod �
(q)

0 ),

and the claim follows from definition (93) of �1. �

4.7. Tensor Products

Let M and N be any two free modules of rank one over T. The tensor product
M⊗TN is still free of rank one. If m0 and m1 (resp. n0 and n1) are Eisenstein and
higher Eisenstein elements in M (resp. N ), there seems to be no simple expression
for the higher Eisenstein element in M ⊗T N in terms of these elements. (For
instance, the vector m0⊗ n0 fails to generate the Eisenstein subspace in M ⊗T N

in general.)
Since T is Gorenstein, the Zp-dual M∗ = Hom(M,Zp) is again a free T-

module of rank 1, and hence it makes sense to consider (higher) Eisenstein el-
ements on it.

Proposition 4.14. If m∗0 and m∗1 (resp. n∗0 and n∗1) are the Eisenstein and higher
Eisenstein elements of M∗ and N∗ respectively, then

(1) The element m∗0 ⊗ n∗0 is an Eisenstein element of (M ⊗T N)∗.
(2) The element m∗0 ⊗ n∗1 +m∗1 ⊗ n∗0 is the higher Eisenstein element of (M ⊗T

N)∗/pt associated to m∗0 ⊗ n∗0.

Note that there is a natural module homomorphism M∗ ⊗Zp N
∗ −→ (M⊗Zp N)∗

sending m∗ ⊗ n∗ to the functional defined by (m∗ ⊗ n∗)(a ⊗ b) = m∗(a)n∗(b).
The meaning of the first statement is, then, that the displayed expressions in fact
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belong to (M⊗TN)∗ ⊂ (M⊗Zp N)∗ and, moreover, are Eisenstein/higher Eisen-
stein considered in the former group. Similarly for the second statement (see what
follows for details).

Proof. As for (1), we first check that m∗0 ⊗ n∗0 belongs to the submodule (M ⊗T

N)∗ of (M ⊗Zp N)∗. The kernel of the surjection M ⊗Zp N −→ M ⊗T N is
generated by (T ⊗ 1− 1⊗ T )(M ⊗N) for T ∈ T. Hence it suffices to verify that
(T ⊗ 1 − 1 ⊗ T )(m∗0 ⊗ n∗0) = 0 for all T ∈ T, and this follows because T is a
simple algebra over Zp generated by an element of IEis. Now (1) follows, as it is
obvious that m∗0 ⊗ n∗0 is a generator of the Zp-module (M ⊗T N)∗[IEis].

As for (2), write M̄ :=M/ptM and N̄ := N/ptN . Note that M∗/pt � M̄∗
where, on the right, ∗ denotes Hom(−,Z/pt ). The expression m∗0⊗n∗1+m∗1⊗n∗0
lies in

(M∗ ⊗Zp N
∗)/pt = M̄∗ ⊗Z/pt N̄

∗.

We argue as before that m∗0 ⊗ n∗1 +m∗1 ⊗ n∗0 lies in (M̄ ⊗T N̄)∗. The T-module
structure is given by applying T ∈ T to either the first or second argument. Ap-
plying T
 − 
− 1 to the first argument gives

(T
 − 
− 1)[m∗0 ⊗ n∗1 +m∗1 ⊗ n∗0]
= (T
 − 
− 1)m∗0 ⊗ n∗1 + (T
 − 
− 1)m∗1 ⊗ n∗0
= (
− 1) log(
)m∗0 ⊗ n∗0,

as desired. �

5. Proof of the Main Theorem

This section proves Conjecture 1.1 for dihedral modular forms.

5.1. Elliptic Units

We put ourselves in the situation of Sections 2.1 and 2.2 with ψ2 = ψ−1
1 and

ψ2 �= ψ1. In particular: K is an imaginary quadratic field of odd discriminant
D < 0 and a ring of integers o; the level N is prime, p > 3 is a prime dividing
N − 1, and ψ1 : C −→ L× is a class group character into some cyclotomic field
L. Let R be the ring of integers of L.

Finally, put

ψ =ψ1/ψ
′
1 =ψ2

1 : C→ L×. (100)

When N splits in K , Conjecture 1.1 reduces to the equality 0= 0, as explained
in Section 1.3 of the Introduction. Hence it shall be assumed throughout that N is
inert in K .

Let FN2 be the quotient o/N , a finite field of size N2, and fix an algebraic
closure FN of FN2 .

In the current section only ψ will be relevant (and the discussion would be
valid for an arbitrary character ψ , not just one of the form (100)). We will con-
struct an elliptic unit uψ associated to ψ and explain how its discrete logarithm at
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various primes is related to the geometry of supersingular points. We will use the
setup of Section 2.1 regarding double coset spaces attached to definite quaternion
algebras, but will now use the incarnation of these spaces in terms of supersingular
elliptic curves.

More precisely, global class field theory identifies C with the Galois group of
an abelian extension H of K : the Hilbert class field of K , generated over K by
the j -invariants of elliptic curves over K̄ with endomorphism ring equal to o. The
set of all such elliptic curves up to K̄-isomorphism, denoted by Eo, is a principal
transitive C-set and the choice of a base point A ∈ Eo identifies the two sets

a ∈ C �→Aa ∈ Eo
via tensoring with the inverse of a.

The prime N , which is inert in K/Q, splits completely in H/K , and the choice
of a prime N of H above N determines the reduction maps

ι : Eo −→ E, ι : Pic(o)−→ E,

where E is the set of isomorphism classes of supersingular curves over FN . Since
the end result we are proving is independent of the choice of N, we can and
will choose N in such a way that the reduction ι(A) ∈ E matches one of the
basepoints for E chosen before (13), that is, to reprise, the endomorphism ring of
the reduction of A at N should contain an order of the form o⊕ oj .

The map ι coincides with the map (13) after identifying E with maximal orders
in the associated quaternion algebras, as specified prior to (13). As in (17), the
image of ψ under the pushforward map ι∗ :R[Pic(o)] −→Div(E)⊗R is denoted
by [ψ] := ι∗(ψ) ∈Div(E)⊗R.

Let q be an auxiliary rational prime which does not divide DN . A Heegner
point on X0(q)(K̄) attached to o is a pair (A,C) where A is an elliptic curve over
K̄ equipped with a cyclic subgroup C ⊂A of order q , for which both A and A/C
belong to Eo. The set E (q)o of Heegner points on X0(q)(K̄) is nonempty precisely
when the prime q �D is split in K/Q, that is, when q = qq̄. It is then contained in
X0(q)(H). Just as before, the choice of a prime N of OH induces reduction maps
E (q)o → E (q).

The set E (q)o is equipped with the two degeneracy maps

π1,π2 : E (q)o −→ Eo; π1(A,C)=A, π2(A,C)=A/C,

obtained by restricting the corresponding degeneracy maps X0(q)→ X(1). The
choice of a prime divisor q of q determines a section ηq : Eo −→ E (q)o of π1 by
setting

ηq(A)= Ã := (A,A[q]).
Observe that the action of Pic(o) on Eo satisfies

Aaq = π2(ηq(Aa)). (101)



196 H. Darmon, M. Harris , V. Rotger, & A. Venkatesh

Definition 5.1. The elliptic unit attached to ψ and q is the element

uψ,q =
∑

a∈Pic(o)

uq(ηq(Aa))⊗ψ(a) ∈H× ⊗R, (102)

with uq the modular unit defined in (99).

If ψ is nontrivial, then uψ,q belongs to O×H ⊗ R and more precisely to its ψ -
isotypical component; that is to say:

g · uψ,q =ψ−1(g)uψ,q for all g ∈Gal(H/K). (103)

(Cf. [KL81, §11, Thms. 1.1. and 1.2].) Note that on the left-hand side of (103),
g acts on H in the natural way. On the right-hand side, ψ is understood as a
character of Gal(H/K) through the isomorphism Gal(H/K)� C through which
this Galois group acts on Eo, and ψ−1(g) ∈ R× acts by multiplication on the
second factor in the tensor product O×H ⊗R. If ψ = 1 then uψ,q may fail to be a
unit at the primes above q , but this case will not arise.

The following proposition plays a key role in the proof of Conjecture 1.1 for
CM forms described in the next section, since it is via this result that the relevant
Stark unit makes its appearance.

Proposition 5.2. For all characters ψ : C→ R× and all split primes q = qq̄ as
given previously, we have an equality in R/pt :

(1−ψ(q̄))× 〈�1, [ψ]〉 = −1

6
log(uψ,q),

where �1 ∈ Div(E)⊗ Z/ptZ is the higher Eisenstein element of Theorem 4.11,
and we wrote log :O×H ⊗ R −→ R/pt for the composition of the reduction map
O×H → (OH/N)× � F×

N2 with discrete logarithm fixed at the outset.5

Proof. Recall that A is a fixed basepoint for Eo and [ψ] =∑
I∈C ψ(I)AI . We

may write

(1−ψ(q̄))〈�1, [ψ]〉 =
∑

I∈Pic(o)

(ψ(I)−ψ(I q̄))〈�1,AI 〉

=
∑

I∈Pic(o)

ψ(I )〈�1,AI −AIq〉.

Letting ÃI := ηq(AI ), we have, by (101),

AI −AIq = (π1 − π2)∗(ÃI ),

and hence, by invoking Theorem 4.13,

(1−ψ(q̄))〈�1, [ψ]〉 =
∑

I∈Pic(o)

ψ(I )〈(π∗1 − π∗2 )�1, ÃI 〉

5This discrete logarithm was defined on (Z/NZ)× but uniquely extends to F×
N2 .
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=−1

6
·

∑
I∈Pic(o)

ψ(I )〈Log(uq), ÃI 〉

with the pairings the natural ones on Div(E (q)). The latter expression is equal to
− 1

6 〈Log(uq), [ψ]〉 = − 1
6 log(uψ,q), the equality taking place in R/pt :

〈Log(uq), [ψ]〉 (98)=
∑
I∈C

loguq(ι ◦ ηq(AI ))ψ(I)

= log

(∑
I∈C

uq(ι ◦ ηq(AI ))⊗ψ(I)

)
= log redN

∑
I∈C

uq(ηq(AI ))⊗ψ(I)= log(uψ,q).
�

Remark 5.3. One can replace the algebra M2(Q) with a nonsplit, indefinite
quaternion algebra DM over Q, of discriminant M > 1 say, which is associated
to a Shimura curve XM arising from a co-compact subgroup of SL2(R). Given a
prime N �M , the module EM,N of supersingular points of XM in characteristic
N is identified with the space of functions on a finite double coset space attached
to the definite quaternion algebra DMN of discriminant MN . If ψ is a charac-
ter of the class group of a quadratic imaginary field K in which all the primes
dividing MN are inert, one can define an associated vector [ψ] ∈ XM,N much
as in the case where M = 1. The space XM,N contains an Eisenstein eigenvector
�0, whose value on a double coset is equal to the cardinality of its stabilizer sub-
group. Theorems 1.2 and 1.3 of [Yoo] show that the Hecke algebra TMN acting
on XM,N is equipped with an Eisenstein homomorphism ϕ̃Eis as in (80) with T
replaced with TMN , and suggest that, if p > 3 is a prime with pt ||N − 1, then
the module XM,N ⊗ (Z/ptZ) contains a generalized Eisenstein eigenvector �1

attached to a choice of discrete logarithm log : F×N −→ Z/ptZ, satisfying

(T
 − (
+ 1))�1 = (
− 1) log(
)�0.

Does such �1, when it exists, satisfy an analogue of Proposition 5.2 relating
〈�1, [ψ]〉 to the discrete logarithm of the elliptic unit uψ , which does not de-
pend on N? Such a relationship would be intriguing in light of the fact that the
arithmetic subgroup of SL2(R) defining XM has no parabolic elements and hence
there are no modular units on XM that could be parlayed into a direct construction
of �1.

5.2. Proof of Conjecture 1.1 for Definite Theta Series

We now restrict to the case D prime; however, as we comment in the statements,
the proofs verbatim give results for D odd under further restrictions on N .

We let g = θψ1 be the associated θ series. It is a cusp form by virtue of the
assumption that ψ1 �= ψ−1

1 . The Galois representation ρg is the induction to GQ

of the finite order character ψ1. Let

G ∈M2(�0(N))= TrND
N g(z)g∗(Nz)
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denote the modular form defined as the trace to the space of modular forms of
weight 2 and level N of the product g(z)g∗(Nz)= θψ1(z)θψ−1

1
(Nz).

Recall from (15) the �-correspondence

� :Div(E)⊗T(N) Div(E)→M2(�0(N)).

In particular, this induces a map on localizations at the Eisenstein ideal m, and it
follows from [Eme02, Theorem 0.5] that the resulting map is an isomorphism of
free T= T(N)m-modules of rank one. Write

T= T/pt , D̄=Div(E)m/pt , M̄=M2(�0(N)m/p
t ,

S̄= S2(�0(N))m/p
t .

Then, reducing � modulo pt , we obtain an isomorphism

� : D̄⊗T D̄� M̄ (104)

with associated adjoint

�∗ : M̄∗ � (D̄⊗T D̄)∗. (105)

Here ∗ denotes Hom(−,Z/pt ).
The strategy of the proof of Conjecture 1.1, as outlined in Section 1.4, is to

express the inner product 〈G,S〉 as an inner product on D̄⊗ D̄ via �. It follows
from Theorem 2.2 that

〈G,S〉 = 4 · 〈�([1] ⊗ [ψ]),S〉 = 4〈[1] ⊗ [ψ],�∗(S)〉. (106)

Here we regard the equality as occurring inside R/pt , and we regard S ∈ M̄∗ and
[1] ⊗ [ψ] ∈ D̄⊗T D̄. We now need the following:

Theorem 5.4. Let S0 and S1 ∈ M̄∗ denote the Eisenstein and higher classes
described in Section 4.5, and let �0 and �1 denote the analogous classes in D̄
described in Section 4.6. Then

(1) �∗(S0)= 1
2�0 ⊗�0;

(2) �∗(S1)≡ 1
2 (�1 ⊗�0 +�0 ⊗�1) modulo �0 ⊗�0.

Here we used the pairing 〈, 〉 given in (14) to identify D̄ � (D̄)∗; we also used
the inclusion (D̄⊗T D̄)∗ ⊂ (D̄∗ ⊗Z/pt D̄

∗) to describe elements of the left-hand
group, just as was done in Proposition 5.2.

Proof. The first part of the theorem follows directly from the definition of � given
in (15). The second follows from the Hecke equivariance of �∗, in light of the fact
that �1 ⊗�0 +�1 ⊗�0 is the higher Eisenstein element in (D̄⊗T D̄)∗ attached
to �0 ⊗�0, by Proposition 4.14. �

We now choose an auxiliary prime ideal q so that ψ(q) is a primitive root of unity
of order equal to the order of ψ .
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Proposition 5.5. There is an equality inside R/pt

(1−ψ(q̄))〈G,S〉 = −h(o)
3

log(uψ,q), (107)

where uψ,q is the elliptic unit defined in (5.1), and h(o) is the order of the class
group C.

Note that, for D odd but not assumed prime, the same conclusion holds true with
the following caveats: we suppose not merely that N is inert in Q(

√−D), but that
−N is a square modulo D; and, owing to the denominators potentially introduced
in Section 2.6, it is only valid for p sufficiently large in the sense of Theorem 2.2.

Proof. By (106) and part (2) of Theorem 5.4,

〈G,S〉 = 2〈[1] ⊗ [ψ],�0 ⊗�1 +�1 ⊗�0〉 = 2〈�0, [1]〉〈�1, [ψ]〉,
where we have used the fact that 〈�0, [ψ]〉 = 0 since ψ is nontrivial. Since
〈�0, [1]〉 = h(o) by definition, the theorem now follows from Proposition 5.2. �

To prove Theorem 1.2 of the Introduction for CM weight one forms, it remains
to relate the right-hand side of (107) to the expression redN(ug) occurring in this
theorem; this is done by the following lemma.

Lemma 5.6. Let Ug := (O×H ⊗Ad∗(ρg)◦)GQ . There exists ug ∈Ug with the prop-
erty that, for all N as before,

log(redN(ug))= 2 log(uψ,q).

This lemma concludes the proof of Theorem 1.2 after multiplying equality (107)
by −6n

1−ψ(q̄) ∈R with n the norm of 1−ψ(q̄):

(−6n)〈G,S〉 = log(u′g), u′g :=
−h(o)n

(1−ψ(q)) · ug,
where, in the last equality, we are implicitly using the R-module structure on Ug

to form the product.

Proof. For typographical simplicity, we write just uψ instead of uψ,q.
Let e1 be an eigenvector in Vg for the action of GK , on which GK acts via the

character ψ1. Since N is inert in K , the associated Frobenius automorphism σN ∈
GQ sends e1 to a complementary vector e2 = σN(e1), on which GK acts via the
character ψ ′1. Since σN has determinant −1, it then sends e2 to e1. Representing
the elements of Ad(Vg) as matrices relative to the basis (e1, e2), so that

ρg(x)=
(
ψ1(x) 0

0 ψ1(x)
−1

)
for x ∈GK and ρg(σN)=

(
0 1
1 0

)
,

and using the trace form to identify Ad(Vg) with its dual Ad∗(Vg), we define
ug ∈Ug via

ug := uψ ⊗
(

0 1
0 0

)
+ σN(uψ)⊗

(
0 0
1 0

)
. (108)
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Note that the matrices do indeed define functionals on Ad(Vg) that send the im-
age of R[GQ] to R. We readily see that ug is in fact GQ-invariant, for example,
ρg(GK) acts on the uψ through ψ−1 and on the upper nilpotent matrix through
ψ =ψ2

1 . We then compute an equality inside O×H ⊗R:

redN(ug)= 〈ug,ρg(σN)〉 = Trace

(
uψ 0
0 σN(uψ)

)
= uψ + σN(uψ).

(The reader is cautioned that additive notation for the group law in O×H⊗R/pt has
been used in this last equation.) Since the discrete logarithm mod N is equivariant
for the action of σN , which acts trivially on (Z/NZ)×, we obtain the desired
equality

log(redN(ug))= log(uψ + σNuψ)= 2 log(uψ).
�

5.3. Proof of Conjecture 1.1 for Indefinite Theta Series

We now turn to proving Conjecture 1.1 when g is an RM form. We will be in the
situation of Section 3 with ψ2 = ψ−1

1 . More precisely, let ψ1 : GK −→ R× be
the finite order character of mixed signature as in the beginning of Section 3, with
values in the ring of integers of a finite extension L of Q, such that g = θψ1 is
the theta series associated to ψ1 as described in (22). Let N be an odd prime, and
define G ∈ S2(�0(N)) as the trace to the space of modular forms of level N of
θψ1(z)θψ−1

1
(Nz). As explained in the Introduction, the conjecture we address in

this note becomes trivial when N remains inert, and hence we assume throughout
that it splits in K as N =N · N̄.

The proof of Conjecture 1.1, which computes the pairing of G with the
Shimura class, again relies crucially on the �-correspondence, namely the Hecke-
equivariant map

� :H1,B(X0(N), cusps;Z)+ ⊗T(N) H1,B(Y0(N),Z)− →M2(N)

given by

�(γ+ ⊗ γ−)= −1

24
κ+0 (γ

+) · κ−0 (γ−)+
∑
m≥1

〈Tmγ+, γ−〉qm. (109)

Here κ±0 are as defined in Sections 4.3 and 4.4. Note that the sign of −1
24 depends

on orientation conventions implicit in the definition of the intersection pairing.
For the lack of a suitable reference, we sketch a proof. We identify the

relative homology group H1,B(X0(N), cusps;Z)+ with H 1
B(Y0(N),Z)−, a free

T(N)-module of rank one, and thus with T(N) itself. We can similarly iden-
tify H1,B(Y0(N),Z)− with its dual M2(N;Z). Adjusting these identifications if
necessary, we can suppose that the Poincaré pairing 〈−,−〉 corresponds to the
pairing on T(N)×M2(N;Z) given by (T ,f ) �→ a1(Tf ), and � corresponds to
(T ,f ) �→ Tf . Formula (109) follows from this up to the identification of the con-
stant −1

24 . To compute the constant, we take γ+ the element represented by the
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geodesic from 0 to∞, and γ− a small loop around∞, and we fix orientations so
that 〈γ+, γ−〉 = 1. In particular,

〈Tmγ+, γ−〉 =
∑

d|m,(d,N)=1

d, κ+0 (γ
+)= 1, κ−0 (γ

−)=N − 1.

The expansion on the right-hand side of (109) must represent E(N)
2 , and therefore

this fixes the constant as −1
24 .

We note in particular that κ+0 vanishes on the image of H1,B(X0(N)), and so
the formula above in fact matches with (45) used in an earlier section.

As in the CM setting, we can observe that—with m the Eisenstein ideal as
before—

• the modules H+ :=H1,B(X0(N), cusps;Z)+m and H− =H1,B(Y0(N),Z)−m, ob-
tained from completing the singular homology of the complex modular curves,
are again free T-modules of rank 1.6

• the map �m is an isomorphism: (H+ ⊗TH−)−→M, and so (cf. (104), (105))
we have adjoint maps

� : H̄+ ⊗T H̄− � M̄, �∗ : M̄∗ � (H̄+ ⊗T H̄−)∗. (110)

Here bars denote tensoring with Z/pt and ∗ denotes Hom(−,Z/pt ).
The strategy of the proof of Conjecture 1.1 is, much as in the case of CM theta
series, to express the inner product 〈G,S〉 as an inner product on H+ ⊗T H− via
�.

We will follow the notation of Section 3.2; in particular C is the narrow class
group of K , and we have introduced Heegner cycles γI attached to I ∈ C as well
as weighted combinations γψ in (46). The following proposition plays a key role
in the proof of Conjecture 1.1 for RM forms, since it is via this result that the
relevant Stark unit—in this case, a fundamental unit of the real quadratic field—
makes its appearance.

Proposition 5.7. For all even characters ψ of the narrow Picard group C,

κ+0 (γψ)= 0 and κ+1 (γψ)=
{
−h log(uK) if ψ = 1,

0 if ψ �= 1,

where κ+0 and κ+1 ∈H 1
B(X0(N), cusps;Z)+ are the Eisenstein and higher Eisen-

stein elements described in Section 4.3, h is the order of the narrow class group C,
and log(uK) refers to the logarithm of the reduction of uK at the chosen divisor
N of N .7

6Note that we get, by duality, an isomorphism of these with the (sign-altered) cohomological ana-
logues: H+ �H− and H− �H+ , so this result follows from its cohomological analogue.

7The definition of γψ also depends on the choice of divisor of N , although this is not indicated in the
notation. One checks that the identity remains valid upon replacing N with N′ on both sides.
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Proof. The assertion about κ+0 follows from the fact that the Heegner cycles γI ,
viewed as cycles in the integral homology of X0(N) relative to the cusps, are in
the kernel of the boundary map ∂ of (83) and hence are orthogonal to κ0.

To show the second assertion, recall that the class κ+1 was defined modulo pt

by choosing a discrete logarithm log : (Z/NZ)× −→ Z/ptZ and setting

κ+1
(
a b

c d

)
= log(a).

With this choice we have

κ+1 (γI )=− log(uK), (111)

where uK is a fundamental unit of norm 1 of the real quadratic field K , log(uK)
refers to the logarithm of the reduction of uK at N. This is because (notation
of Section 3.2) the cycle γI arises from an embedding o→M0(N) with respect
to which the ring homomorphism sending a matrix in M0(N) to the mod N re-
duction of upper left-hand entry restricts to reduction modulo N on o (see the
discussion before (43)); the sign arises for the orientation reason noted after (44).
Equation (111) therefore implies that κ+1 (γψ) = −(

∑
aψ(a)) log(uK), and the

result follows. �

Proposition 5.8. For all totally odd ring class characters ψ ,

κ−0 (γψ)= (1−ψ(N))Lalg(ψ),

where κ−0 ∈H 1
B(Y0(N),Z)− is as defined in Section 4.4, and Lalg(ψ) ∈R will be

defined in (112) and is in particular independent of N.

Recall that κ−0 arises from the Dedekind–Rademacher function ϕ of (85) which
encodes the periods of the (complex!) logarithm of the modular unit#(Nz)/#(z).
The proposition shows that κ−0 (γψ) exhibits a mild dependence on N through the
factor (1−ψ(N)).

Proof. The issue to be dealt with here is, essentially, passage from level 1 to level
N . Let I ∈ C. Choose a representative that is relatively prime to N and an oriented
basis (e1, e2). The element

ηI =
(
a b

c d

)
∈ SL2(Z) where

uKe1 = ae1 + ce2,

uKe2 = be1 + de2,

has conjugacy class in SL2(Z) that does not depend on the choice of oriented
basis, and in particular ϕ(ηa) is well defined. Choose (e1, e2) so that e2 belongs
to I ∩N, and observe then that (e′1, e′2) := (Ne1, e2) is an oriented basis for IN
and that uK acts on this basis according to the rule uKe

′
1 = ae′1 + (cN)e′2 and

uke
′
2 = (b/N)e′1 + de′2. By (84) as well as definition (42) of cycles γJ , we get

κ−0 (γIN)= ϕ(ηIN)− ϕ(ηI ), and it follows that

κ−0 (γψ)=
∑

ψ(IN)(ϕ(ηIN)− ϕ(ηI ))
= (1−ψ(N))

∑
I

ψ(I)ϕ(ηI ),
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and we obtain the result upon defining

Lalg(ψ) :=
∑
I

ψ(I)−1ϕ(ηI ). (112)

�

Remark 5.9. As is implicit in the notation, Lalg(ψ) is closely related to the “al-
gebraic part” of the L-series L(ψ, s) =∑

a�oK
ψ(a)(Na)−s attached to ψ at

s = 1. The justification for this is given by Meyer’s analogue of the Kronecker
limit formula for real quadratic fields (cf. [Zag75, §4]) which asserts that, at least
for all unramified, totally odd characters ψ of the narrow Hilbert class field of K ,

Lalg(ψ)= 12
√
D

π2 L(ψ−1,1).

Note that if x2− aN(g)+χK(N)= (x− αN)(x− βN) is the N th Hecke polyno-
mial attached to g, then we may order αN and βN in such a way that

αN =ψ1(N), βN =ψ1(N
′) and so ψ(N)=ψ1(N)/ψ ′1(N)= αN/βN,

where we use definition (9). Proposition 5.8 can then be rewritten as

κ−0 (γψ)= (1− αN/βN)×Lalg(ψ). (113)

Let S0 and S=S1 ∈ M̄∗ denote the Eisenstein and higher classes described
in Section 4.5. It follows from Theorem 3.1 applied to the pair (ψ1,ψ

−1
1 )—so by

(41) ψ12 = 1 and ψ12′ =ψ1/ψ
′
1 =ψ—that there exists Cg ∈R independent of N

such that

〈G,S〉 = βNCg〈�([γ1] ⊗ [γψ ]),S〉
= βNCg · 〈[γ1] ⊗ [γψ ],�∗(S)〉, (114)

where we understand [γ1] ⊗ [γψ ] as an element of (H̄+ ⊗T H̄−) and �∗(S) as
an element of the Z/pt -dual, see (110). Here we regard � as normalized as in
(109); the Cg that appears in the equation only agrees with that constant appearing
in Theorem 3.1 up to sign, arising from the fact that the choice of orientation
convention for (109) was not compared with the choice of orientation convention
used in Theorem 3.1. This sign may be computed by the enthusiastic reader.

The next theorem, which determines the image of S under �∗, plays exactly
the same role in the RM proof as Theorem 5.4 in the CM setting.

Theorem 5.10. We have

(1) �∗(S0)= −1
24 κ
+
0 ⊗ κ−0 ;

(2) �∗(S)≡ −1
24 (κ

+
1 ⊗ κ−0 + κ+0 ⊗ κ−1 ) modulo κ+0 ⊗ κ−0 ,

where κ+ are the Eisenstein classes of Section 4.3, or rather their image in (H+)∗
or (H+)∗, and similarly κ− are similarly defined from the Eisenstein classes of
Section 4.4.

The statements should be interpreted just as in Theorem 5.4: we use

(H+ ⊗T H−)∗ ⊂ (H+ ⊗Z/pt H−)∗ = (H+)∗ ⊗Z/pt (H−)∗,
where ∗ means Hom(−,Z/pt ).
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Proof. The first part of the theorem follows directly from the definition of � given
in (109). The second follows from the Hecke equivariance of �∗, in light of the
fact that κ+1 ⊗ κ−0 + κ+1 ⊗ κ−0 is the higher Eisenstein element in (H+ ⊗T H−)∨
attached to κ+0 ⊗ κ−0 , by Proposition 4.14. �

We can now prove Conjecture 1.1 in the RM setting.

Proposition 5.11. We have

〈G,S〉 = 1

24
h(o)Cg ·Lalg(ψ) · (βN − αN) · log(uK). (115)

Proof. Applying (114) and part (2) of Theorem 5.10,

〈G,S〉 = −βNCg

24
· 〈γ1 ⊗ γψ, κ

+
0 ⊗ κ−1 + κ+1 ⊗ κ−0 〉

= −βNCg

24
· κ+1 (γ1) · κ−0 (γψ),

where we have used the fact that κ+0 (γ1) = 0 to ignore the term arising from
〈γ1 ⊗ γψ, κ

+
0 ⊗ κ−1 〉. The theorem now follows from Proposition 5.7 and (113),

which imply that

κ+1 (γ1)=−h log(uK), κ−0 (γψ)= (1− αN/βN) ·Lalg(ψ). �

To prove Theorem 1.2 of the Introduction when K is a real quadratic field, it re-
mains, as before, to relate the right-hand side of (115) to the expression redN(ug)
occurring in this theorem.

Lemma 5.12 (cf. Lemma 5.6). Let Ug := (O×K ⊗Ad∗(ρg)◦)GQ . There exists ug ∈
Ug with the property that, for all N as before,

log(redN(ug))= (αN − βN) log(uK).

As before, Theorem 1.2 will follow from this: we have

24〈G,S〉 = log(redN(u
′
g))

with u′g =−h(o)Lalg(ψ)Cg · ug .

Proof. Let e1 and e2 be eigenvectors in Vg for the action of GK , on which GK

acts via the charactersψ1 andψ ′1 respectively. SinceN is split inK , the associated
Frobenius automorphism σN ∈GQ is a diagonal matrix with entries αN and βN .
Representing the elements of Ad(Vg) as matrices relative to the basis (e1, e2), so
that ρg(σN)= (

αN 0
0 βN

), and using the trace form to identify Ad(Vg) with its dual
Ad∗(Vg), we define

ug := uK ⊗
(

1 0
0 −1

)
,

which is clearly GQ-invariant: it is fixed by GK , and the nontrivial automorphism
of K negates both factors. As after (108) this indeed defines an element of Ug .
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One then finds

redN(ug)= 〈ug,ρg(σN)〉 = Trace

(
uK ⊗ αN 0

0 uK ⊗ (−βN)
)

= uK ⊗ (αN − βN).
Therefore,

log(redN(ug))= (αN − βN) log(uK).

The lemma follows. �
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