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0. Introduction

Let H denote the Poincaré upper half plane endowed with its usual action of SL2(Z)
by Möbius transformations. The arithmetic quotient

X := SL2(Z)\H = Spec(C[j])

is equipped with a rich collection of cycles indexed by primitive integral binary quadratic 
forms

F (x, y) = ax2 + bxy + cy2 = a(x− τy)(x− τ ′y), τ ∈ H ∪R ∪ {∞}.

When F has negative discriminant D := b2 − 4ac, its root τ ∈ H is a CM point 
whose associated j-value generates an abelian extension of the imaginary quadratic field 
Q(

√
D). When F has positive discriminant, it gives rise to the oriented geodesic on H

going from τ to τ ′, where

τ = −b +
√
D

2a , τ ′ = −b−
√
D

2a ,
√
D > 0.

This open geodesic maps to a closed modular geodesic on X, which is of real dimension 
one. Since it is not an algebraic cycle on X, its relevance to the generation of class fields 
of Q(

√
D) is less immediately apparent.

The goal of this note is to propose an arithmetic intersection theory for modular 
geodesics, attaching to a pair of such geodesics certain numerical invariants that are 
rich enough to (ostensibly) generate class fields of real quadratic fields. The predicted 
algebraicity of these quantities is a by-product of the approach of [DV] to explicit class 
field theory based on the RM values of rigid meromorphic cocycles, but avoids the latter 
notion and offers a somewhat complementary perspective. The authors hope that this 
perspective might appeal to certain readers and, by casting a different light on the 
conjectures of [DV], make them more amenable to other types of generalisations.

Topological intersections. Let γ1 = (τ1, τ ′1) and γ2 = (τ2, τ ′2) be two distinct geodesics on 
H attached to a pair of indefinite binary quadratic forms F1 and F2. The fixing of an 
orientation on H determines the signed topological intersection of γ1 and γ2, defined as

(γ1 · γ2) :=

⎧⎪⎨
⎪⎩

0 if γ1 and γ2 do not intersect;
1 if γ1 and γ2 intersect positively;

−1 if γ1 and γ2 intersect negatively,

where the orientation conventions are illustrated in Fig. 1.
If Γ ⊂ SL2(Z) is any congruence subgroup, then the stabiliser subgroups Γ1 and Γ2 of 
τ1 and τ2 are infinite cyclic modulo torsion. Let Σ and Σ12 be the double coset spaces
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Fig. 1. The topological intersection number γ1 · γ2.

Σ := Γ\(Γ × Γ)/(Γ1 × Γ2), Σ12 := Γ1\Γ/Γ2,

which are in bijection via the map (g1, g2) �→ g−1
1 g2. The sum

(γ1 · γ2)Γ :=
∑

(g1,g2)∈Σ

(g1γ1 · g2γ2) =
∑

g ∈Σ12

(γ1 · gγ2) (1)

represents the topological intersection of the oriented closed geodesics arising from the 
image of γ1 and γ2 in the quotient Riemann surface XΓ := Γ\H . (In particular, this 
quantity vanishes when Γ = SL2(Z), since SL2(Z)\H has genus zero.) Although the 
index set Σ12 is infinite, the sums on the right of (1) involve only finitely many non-zero 
terms. Basic facts about modular geodesics and their topological intersections, when Γ
is any discrete subgroup of SL2(R) acting on H with compact or finite volume quotient, 
are recalled in Section 1.

Arithmetic intersections. The cross-ratio

(γ1 ; γ2) := (τ1, τ ′1 ; τ2, τ
′
2) := (τ1 − τ2)(τ ′1 − τ ′2)

(τ1 − τ ′2)(τ ′1 − τ2)
∈ R×

attached to γ1 = (τ1, τ ′1) and γ2 = (τ2, τ ′2) is negative if and only if γ1 · γ2 	= 0. Its 
logarithm can be envisaged as an arithmetic intersection between the degree zero divisors 
(τ1) − (τ ′1) and (τ2) − (τ ′2). Combining this quantity with the topological intersection of 
modular geodesics leads to the “multiplicative arithmetic intersection”

(γ1 � γ2) := (τ1, τ ′1 ; τ2, τ
′
2)(γ1·γ2) (2)

of γ1 and γ2. Replacing topological by arithmetic intersections in (1) yields a quantity

(γ1 � γ2)Γ :=
∏

(g1,g2)∈Σ

(g1γ1 � g2γ2) =
∏

g∈Σ12

(γ1 � gγ2), (3)

which can be viewed as an arithmetic (multiplicative) variant of the topological intersec-
tion of modular geodesics on the quotient Γ\H . When γ1 and γ2 are not Γ-equivalent, 
it belongs to Q(τ1, τ2)×, since the product in (3) is finite.

Section 2 associates an arithmetic intersection to any pair of distinct closed geodesics 
in Γ\H , when Γ is an arithmetic subgroup of SL2(R) arising from the multiplicative 
group of an order in an indefinite quaternion algebra over Q.
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p-Arithmetic intersections. A richer class of numerical invariants is obtained by choosing 
a prime p and replacing the arithmetic group Γ by a p-arithmetic counterpart Γp. The 
simplest instance, which was treated at length in [DV], is to replace SL2(Z) by Ihara’s 
p-modular group

Γp := SL2(Z[1/p]).

Such a Γp operates on the set of modular geodesics on H . Letting

Γp
1 := StabΓp(τ1), Γp

2 := StabΓp(τ2), Σp
12 := Γp

1 \Γp /Γp
2,

the formal product

(γ1 � γ2)Γp :=
∏

g∈Σp
12

(γ1 � gγ2) (4)

now involves infinitely many non-trivial factors.
Assume that the geodesics γ1 and γ2 are inequivalent under Γp. More strongly, it will 

be assumed that their associated discriminants D1 and D2 are fundamental and satisfy

gcd(D1, D2) = 1,
(
D1

p

)
=

(
D2

p

)
= −1.

The terms that appear (4) all belong to Q(
√
D1D2)×, and can be viewed as elements 

of Q×
p after choosing a p-adic square root of D1D2 in this field. The first main result of 

this note is:

Theorem 1. The infinite product in (4) converges absolutely p-adically.

This theorem is proved in Section 3 as a special case of a more general result involving 
p-arithmetic subgroups of indefinite quaternion algebras over Q. The p-adic number 
(γ1 � γ2)Γp is called the p-arithmetic intersection number of the geodesics γ1 and γ2.

The main interest of the p-arithmetic intersection number lies in its relevance to 
explicit class field theory for real quadratic fields. Let H1 and H2 be the narrow ring 
class fields attached to the discriminants D1 and D2 respectively, and let H12 denote 
their compositum, viewed as a subfield of Q̄p after fixing a p-adic embedding of this field.

Section 3 formulates a general conjecture on the algebraicity of p-arithmetic intersec-
tions, and Section 4 explains how it follows from the conjectures of [DV] in the following 
special case:

Conjecture 2. If p = 2, 3, 5, 7, or 13, i.e., if the modular curve X0(p) has genus zero, 
then (γ1 � γ2)Γp belongs to H12.
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For example, let τ1 = (1 +
√

5)/2 be the golden ratio, and let τ2 = (15 +
√

321)/8 be a 
real quadratic irrationality of discriminant 321 = 3 ·107. The discriminants 5 and 321 have 
narrow class numbers 1 and 6 respectively, and the primitive integral binary quadratic 
form with root τ2 generates the narrow class group of discriminant 321. The smallest 
prime p for which ( 5

p ) = (321
p ) = −1 is p = 7, and Conjecture 2 asserts the algebraicity of 

the 7-arithmetic intersection of γ1 = (τ1, τ ′1) and γ2 = (τ2, τ ′2). The quantity (γ1 � γ2)Γ7

was computed to 300 digits of 7-adic precision, and a rational recognition algorithm 
suggests that it is the square of a quantity satisfying the palindromic polynomial

g(t) = 7881253325449 · t12 + a11t
11 + . . . + a1t + 7881253325449, (5)

whose other coefficients are listed below:

n an = a12−n n an = a12−n n an = a12−n

1 16711393316898 2 15580968918207 3 1349942214176
4 −8232873610095 5 −7408349176266 6 −4016169195897

The fact that the splitting field of g(t) is contained in the compositum of Q(
√

5) and the 
narrow Hilbert class field of Q(

√
321) provides convincing evidence for Conjecture 2.

Experiments like this indicate that p-arithmetic intersection numbers are typically 
non-trivial. Theoretical insights into how often this happens can be obtained by seeking 
to understand the prime factorisations of p-arithmetic intersection numbers, a theme 
which is touched on in Section 6.

For instance, the constant coefficient in (5) factors as

a0 = 7881253325449 = 74 · 232 · 472 · 532.

It is no coincidence that the primes that occur in this factorisation are inert in both 
Q(

√
5) and Q(

√
321), and arise among the factors of the quantity (5 · 321 − t2)/(4 · 7)

when it is an integer, which are listed in the table below:

t (5 · 321 − t2)/(4 · 7) t (5 · 321 − t2)/(4 · 7)
3 3 · 19 11 53
17 47 25 5 · 7
31 23 39 3

This suggests that p-arithmetic intersection numbers ought to admit explicit factorisa-
tions just like those obtained by Gross and Zagier [GZ] for differences of singular moduli.

Let mp be a prime of Q(
√
D1D2) above p. Since (γ1 � γ2)Γp is defined p-adically, its 

mp-adic valuation can be understood directly by elementary manipulations, of the kind 
used to prove [DV, Thm. 3.26]. These arguments prove the identity

ordmp
((γ1 � γ2)Γp) = ordmp

((γ1 � γ2)Γ).
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The q-adic valuation of the p-arithmetic intersection when q 	= p lies deeper, and is 
ostensibly related to an arithmetic intersection on a discrete subgroup of a suitable 
indefinite quaternion algebra. More precisely, let B(pq) be the indefinite quaternion 
algebra ramified at p and q, and let R(pq) be a maximal order in B(pq), which is unique 
up to conjugation. After fixing an identification of B(pq) ⊗ R with M2(R), the group 
Γ(pq) := R(pq)×1 is a discrete subgroup of SL2(R). If the primes p and q are both 
non-split in Q(

√
D1) and Q(

√
D2), Section 6 explains how the geodesics γ1 and γ2, or 

their hyperbolic conjugacy classes, can be transferred to similar objects γ�
1, γ

�
2 for Γ(pq), 

depending on the choice of primes mp and mq of Q(
√
D1D2) above p and q respectively. 

One can then consider the arithmetic intersection number

(γ�
1 � γ

�
2)Γ(pq) ∈ Q(

√
D1D2)×.

Conjecture 3. Assume as before that Γp = SL2(Z[1/p]) with p = 2, 3, 5, 7, or 13, so that 
H2(Γ, Q) = 0. If at least one of D1 or D2 is a non-zero square modulo p or q, then

ordQ

(
(γ1 � γ2)Γp

)
= 0,

for all primes Q of H12 above mq. Otherwise, Q can be chosen so that

ordQ

(
(γ1 � γ2)Γp

)
= ordmq

(
(γ�

1 � γ
�
2)Γ(pq)

)
.

An extension of Conjecture 3 to the setting of general primes p and general p-
arithmetic groups arising from quaternion algebras over Q is described in Section 6, 
where it is formulated as a relation between arithmetic intersection numbers and certain 
conjectural “incoherent intersection numbers” between compatible systems of geodesics 
on an “incoherent collection” of Shimura curves.

1. Topological intersections

The topological intersections described in the introduction extend to more general 
discrete subgroups of SL2(R), such as those arising from indefinite quaternion algebras 
over Q, and the article will place itself in this more general setting throughout. This is 
not merely done for the sake of extra generality. Arithmetic intersections on quaternion 
algebras arise naturally in the factorisation of p-arithmetic intersections on SL2(Z) pre-
dicted by Conjecture 3 of the Introduction, and formulating the theory for all quaternion 
algebras at once leads to a richer, more coherent picture.

Let B be an indefinite quaternion algebra over Q, viewed as s subring of M2(R) by 
fixing an identification B⊗R = M2(R). The set S of rational primes p for which B⊗Qp

is a division ring is of finite, even cardinality. The Q-vector space B0 of elements of B
of trace zero, equipped with the trace form

〈b1, b2〉 = 1Trace(b1b2), for b1, b2 ∈ B0,
2
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is a non-degenerate quadratic space over Q of real signature (2, 1), on which the group 
B× acts isometrically by conjugation. Let R be a maximal order in B, which is unique 
up to conjugation by B×. The group Γ := R×

1 of elements of reduced norm one preserves 
the lattice R0 := R ∩ B0. It also acts discretely on H by Möbius transformations via 
the chosen inclusion of B in M2(R). The quotient Γ\H has finite volume, and is even a 
compact Riemann surface when B 	= M2(Q).

Let γ̃ = (τ, τ ′) be the open geodesic on H joining the endpoints τ, τ ′ ∈ R, and 
suppose that it maps onto a closed geodesic γ on Γ\H . Let Lτ and Lτ ′ be the lines in 

R2 spanned by the column vectors 
(
τ

1

)
and 

(
τ ′

1

)
. The ring

Oγ := {a ∈ R ⊂ M2(R) such that a preserves Lτ and Lτ ′ } (6)

is isomorphic to a real quadratic order and is equipped with a canonical map Oγ ↪→ R ⊕R

sending a ∈ Oγ to its eigenvalues on the two eigen-lines Lτ and L′
τ . The discriminant of 

Oγ is called the discriminant of the geodesic γ. The primes q ∈ S are non-split in Oγ , 
since Qq ×Qq is not a subring of B ⊗Qq when q ∈ S. It will be frequently assumed, in 
order to lighten the exposition, that the q ∈ S are inert, i.e., the ring Oγ/q is isomorphic 
to the field Fq2 with q2 elements.

For each q ∈ S, the set of elements whose norm is divisible by q is a maximal ideal in 
R, whose associated quotient is Fq2 . After choosing a reduction map νq : R −→ Fq2 for 
each q ∈ S, the collection

ηq(γ) := νq(
√
D) ∈ F×

q2

where 
√
D ∈ Oγ is the “positive” square root of D relative to the chosen real embedding, 

is an invariant of γ, called the orientation of γ at q ∈ S. After fixing, for each q ∈ S, 
an element δq ∈ F×

q2 satisfying δ2
q = D, we can then consider the set ΠD of geodesics of 

discriminant D in Γ\H having orientation δq at q, for each q ∈ S. The group Γ acts 
naturally on ΠD.

Lemma 4. The quotient Γ\ΠD has cardinality h(D) := #Pic+(OD).

Sketch of proof. The set ΠD is in bijection with the set of oriented optimal embeddings 
of OD into R. When D is a negative discriminant and R is a maximal order in a definite 
quaternion algebra, the set of such embeddings is endowed with a simply transitive 
action of the class group of OD, as described in [Gr1, §3]. These definitions adapt to our 
situation, with the following differences:

(1) Since B is an indefinite quaternion algebra, it satisfies the so-called Eichler condi-
tion and there is a single B× conjugacy class of maximal orders in B. Hence any 
embedding of OD into some maximal order can be conjugated into an embedding in 
R.



JID:YJNTH AID:6686 /FLA [m1L; v1.298] P.8 (1-23)
8 H. Darmon, J. Vonk / Journal of Number Theory ••• (••••) •••–•••
(2) The orientation on a geodesic is reversed when it is translated by a principal ideal 
of OD having a generator of negative norm, and hence it is the class group in the 
narrow sense that acts simply transitively on Γ\ΠD. �

Let γ1 and γ2 be two geodesics on Γ\H attached to (τ1, τ ′1) and (τ2, τ ′2). The topo-
logical intersection of γ1 and γ2 on Γ\H is given by formula (1) of the introduction:

(γ1 · γ2)Γ =
∑

g∈Σ12

γ1 · gγ2. (7)

The topological interpretation of this sum reveals that it involves only finitely many 
non-zero terms.

For each q ∈ S, the pair (γ1, γ2) of geodesics gives rise to a canonical invariant

ηq(γ1, γ2) := ηq(γ1)ηq(γ2) ∈ F×
q .

Unlike the invariants ηq(γ1), it does not depend on the choice of the reduction map 
νq : R −→ Fq2 that was made in order to define it. It determines a distinguished ideal 
of Q(

√
D1D2) above each prime q ∈ S. Note that these primes are split since they are 

assumed to be inert in both Q(
√
D1) and Q(

√
D2).

2. Arithmetic intersections

The definition of the arithmetic intersection rests on the following explicit expression 
for the cross-ratio attached to the pair (γ1, γ2) of modular geodesics of relatively prime 
discriminants D1 and D2. Let b1, b2 ∈ R0 denote the images of the positive square roots √
D1 ∈ Oγ1 and 

√
D2 ∈ Oγ2 respectively.

Lemma 5. The cross-ratio attached to (γ1, γ2) is given by

(γ1 ; γ2) := (τ1, τ ′1 ; τ2, τ
′
2) = 〈b1, b2〉 +

√
D1D2

〈b1, b2〉 −
√
D1D2

.

The two geodesics intersect if and only if 〈b1, b2〉2 ≤ D1D2, i.e., the elements b1 and b2
generate a positive definite subspace of B0 relative to the trace form.

Proof. This lemma follows from a direct calculation, as in [Ri] for example. For instance, 
the second assertion can be seen by noting that two geodesics on H intersect if and only 
if their associated cross-ratio is negative, by exploiting the SL2(R)-invariance of the 
cross-ratio to reduce to the case where γ1 = (0, ∞). �

Thanks to Lemma 5, the arithmetic intersection (γ1 � γ2)Γ generalises directly to the 
case where Γ is the group of norm one elements of the multiplicative group of a maximal 
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order in an indefinite quaternion algebra over Q, as in the previous section. Namely, 
with notations as in (7), we extend (2) and (3) by setting

(γ1 � γ2) := (τ1, τ ′1 ; τ2, τ
′
2)(γ1·γ2), (γ1 � γ2)Γ =

∏
g ∈Σ12

(γ1 � gγ2). (8)

Lemma 5 shows that (γ1 � γ2)Γ belongs to the real quadratic field Q(
√
D1D2), and is of 

norm one in this field.
Let Γ̃ := R×, which contains Γ with index two.

Lemma 6. The arithmetic intersection (γ1 � γ2)Γ satisfies the identities

(gγ1 � gγ2)Γ = (γ1 � γ2)sgn(det(g))
Γ for all g ∈ Γ̃,

(γ2 � γ1)Γ = (γ1 � γ2)−1
Γ

(γ′
1 � γ2)Γ = (γ1 � γ2)Γ.

(9)

Proof. The first identity follows from the observation that the cross-ratio of any quadru-
ple is invariant under the action of GL2(R), while γ1 ·γ2 is only invariant under the action 
of the orientation-preserving group SL2(R), and is negated by orientation-reversing 
elements. The second identity follows from the symmetry of the cross-ratio and the 
antisymmetry of the topological intersection, and the last follows from the fact that re-
placing γ1 by γ′

1 sends the resulting cross-ratio to its inverse, and negates the topological 
intersection of the modular geodesics. �
3. p-Arithmetic intersections

As explained in the introduction, the p-arithmetic intersection is obtained by replacing 
the arithmetic group Γ by its p-arithmetic counterpart Γp. With notations as in the 
previous section, if p is a prime which does not divide the discriminant of the indefinite 
quaternion algebra B, and Γ = R×

1 where R is an order of B of discriminant prime to p, 
then Γp := (R[1/p])×1 . The groups Γ and Γp are both viewed as subgroups of SL2(R) by 
fixing an identification of B ⊗R with M2(R), as before.

Let

Γp
1 := StabΓp(γ1), Γp

2 := StabΓp(γ2), Σp
12 := Γp

1\Γp/Γp
2

be the p-arithmetic analogues of Γ1, Γ2, and Σ12 attached to the geodesics γ1 and γ2. 
The p-arithmetic intersection of γ1 and γ2 is obtained by considering the infinite product

(γ1 � γ2)Γp :=
∏

g∈Σp
12

(γ1 � gγ2). (10)

In order to make sense of this infinite product, it is essential to view it as a p-adic 
quantity: to this end, fix an embedding of the real quadratic field Q(

√
D1D2) into Qp.
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Theorem 7. The infinite product (10) converges absolutely p-adically.

The proof of Theorem 7 rests on the study of the quantity

ng := 〈b1, gb2〉 ∈ Z[1/p]

attached to any g ∈ Σp
12. Let vp(n) := p−ordp(n) denote the normalised p-adic norm of 

n ∈ Q. We claim that the set

Σ≤N
12 := {g ∈ Σp

12 such that (γ1 ; gγ2) < 0 and vp(ng) ≤ pN}

is finite. Indeed, the inequality (γ1 ; gγ2) < 0 holds if and only if n2
g < D1D2. But there 

are finitely many such ng ∈ Z[1/p] with vp(ng) ≤ pN , and the finiteness of Σ≤N
12 is a 

consequence of the following lemma:

Lemma 8. Let n ∈ Z[1/p] be an element satisfying n2 ≤ D1D2. Then the set

Π(D1, D2, n) := {(a1, a2) ∈ R[1/p]2

with 〈a1, a1〉 = D1, 〈a2, a2〉 = D2, 〈a1, a2〉 = n}

is preserved by the conjugation action of Γp and is a union of finitely many orbits for 
this action.

Proof of lemma. Consider the definite quadratic form attached to (a1, a2) ∈ Π(D1,

D2, n):

F (X,Y ) = disc(Xa1 + Y a2)
= D1X

2 + 2nXY + D2Y
2.

Let B12 be the Clifford algebra of the quadratic space (Q2, F ). It is a quaternion algebra 
over Q with a basis {1, e1, e2, e1e2} satisfying

e2
1 = D1, e2

2 = D2, Tr(e1e2) = 2n.

Let R12 be the Z[1/p]-order in B12 generated by e1 and e2. The map sending ei to ai is 
an embedding of Z[1/p]-orders

ι : R12 ↪→ R[1/p],

and simultaneous conjugation of (a1, a2) by Γp = R[1/p]×1 corresponds to conjugation of 
the embedding. The index of any such embedding is bounded by D1D2 − n2, and hence 
there are at most finitely many Γp-conjugacy classes of such embeddings. In particular, 
there are only finitely many possible pairs (a1, a2) ∈ Π(D1, D2, n) up to Γp-equivalence. 
The result follows. �
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End of proof of Theorem 7. Lemma 8 and the discussion preceding it implies that Σ≤N
12

is finite. Furthermore, if g belongs to the complement of Σ≤N
12 , then vp(ng) > pN , and 

hence

(γ1 ; gγ2) = ng +
√
D1D2

ng −
√
D1D2

≡ 1 (mod pN ).

It follows that for any given N ≥ 1, all but finitely many factors in the infinite product 
(10) are congruent to 1 modulo pN . This infinite product therefore converges absolutely 
p-adically, as was to be shown. �

We now turn to the algebraicity properties of the quantity (γ1 �γ2)Γp of (10). Assume 
for simplicity that the discriminants D1 and D2 are fundamental and relatively prime, 
and let

F1 = Q(
√
D1), F2 = Q(

√
D2), F12 := Q(

√
D1D2)

be the real quadratic fields of discriminants D1, D2, and D1D2. Recall that H1 and H2
denote the narrow Hilbert class fields of H1 and H2, and that H12 is their compositum. 
(In particular, H12 is not the Hilbert class field of F12, in spite of what the notation 
might misleadingly suggest!)

Let Qp2 be the quadratic unramified extension of Qp, and let

ιp : H12 −→ Qp2

be a p-adic embedding extending the p-adic embedding of F12 that was made in defining 
(γ1 � γ2)Γp . Conjecture 2 of the introduction predicts that the p-arithmetic intersection 
belongs to ιp(H12), at least in some particular settings. In general, it needs not be alge-
braic, but the extent to which it may fail to be is well understood, at least conjecturally. 
Recall that S is the discriminant of the quaternion algebra that was used to define the 
arithmetic group Γ. Let T be the “good Hecke algebra” of level Sp, generated by oper-
ators Tn with index n prime to pS. It acts as correspondences on the formal Z-module 
generated by the modular geodesics, and the symbol (γ1 � γ2)Γp can be extended to such 
formal linear combinations by multiplicativity.

Conjecture 9. Let T ∈ T be any Hecke operator which annihilates the space of cusp forms 
of weight 2 on Γ0(Sp). Then the quantity (Tγ1 � γ2)Γp belongs to ιp(H12).

Remark 10. In particular, (γ1 � γ2)Γp is predicted to always be algebraic when there are 
no cusp forms of weight two and level Sp, which occurs precisely when the set S (of 
even cardinality) is empty and p = 2, 3, 5, 7, or 13. This is the setting that arises in 
Conjecture 2 and that was studied extensively in [DV]. Conjecture 9 has been explored 
in more general quaternionic settings in [GMX].
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Remark 11. The hypothesis on the Hecke operator T implies that (Tγ1 · γ2)Γ = 0. 
The p-arithmetic intersection in H12 might best be envisioned as a higher operation in 
cohomology, akin to a linking number or a Massey product.

Assuming Conjecture 9, the quantity (Tγ1 � γ2)Γp can be viewed as an element of 
H12, depending on the choice of a prime of H12 that lies above mp. To suppress the 
dependence on this choice, it is convenient to think of (Tγ1 � γ2)Γp as an element of 
H12/G12, where G12 := Gal(H12/F1F2). This is what shall be done from now on:

Definition 12. The p-arithmetic intersection of Tγ1 and γ2 is the element

(Tγ1 � γ2)Γp ∈ H12/G12,

whose image under a suitable embedding of H12 into Qp2 coincides with the infinite 
product of (10).

An appealing variant of Conjecture 9 occurs when Γp = SL2(Z[1/p]) arises from the 
globally split quaternion algebra, and γ1 is a geodesic joining a pair of cusps rather than 
a pair of conjugate real irrationalities. Suppose for instance that γ1 = γw := (0, ∞) is 
the so-called “winding element”: the geodesic corresponding to the imaginary axis in H , 
whose endpoints are the roots of the binary quadratic form F1 = XY of discriminant 1. 
Assume that γ2 = γ = (τ, τ ′) is the geodesic joining the roots of a binary quadratic form 
F whose discriminant D > 0 satisfies (Dp ) = −1. Letting

Πτ := {z ∈ Γτ satisfying zz′ < 0 and 0 ≤ ordp(z) < 2},

one has

(γw � γ)Γp =
∏

z∈Πτ

z

z′
=

∏ −b +
√
D

−b−
√
D
, (11)

where the second product ranges over the binary quadratic forms ax2 + bxy + cy2 of 
discriminant D with coefficients in Z[1/p] that are Γp-equivalent to F (x, y) and satisfy 
0 ≤ ordp(a) < 2.

For instance, when τ = −1 +
√

3, a real quadratic irrationality of discriminant 12 with 
ring class field Q(

√
3, 
√
−3), one finds experimentally that

(γw � γ)Γ5
?= −1 + 2i,

(γw � γ)Γ7
?= ((−13 + 3

√
−3)/2)1/3.

Note that the latter is not contained in the ring class field of τ , though its third power 
is. In the language of rigid meromorphic cocycles used in [DV], which we briefly discuss 
below, this phenomenon may be explained due to the presence of cohomological torsion.
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When τ = (−7 +
√

77)/2 of discriminant 77, we find

(γw � γ)Γ2
?= (−5983 + 2115

√
−7)/2,

(γw � γ)Γ3
?= −679 + 80

√
−11,

(γw � γ)Γ5
?= 3 + 36

√
−11.

Finally, we consider the discriminant 321 of narrow class number 6 that was also men-
tioned in the introduction. Here we compute that (γw � γ)Γ7 satisfies the polynomial

74x6 − 20976x5 − 270624x4 + 526859689x3 − 649768224x2 − 120922465776x + 716.

In conclusion, it appears that whenever the modular curve X0(p) has genus zero, the 
quantities (γw �γ)Γp are algebraic, and more precisely, that up to a small power they are 
p-units in the ring class field of discriminant D. This somewhat degenerate variant of 
Conjecture 9 has been proved in certain cases in [DPV1,DPV2] by studying the diagonal 
restrictions of p-adic deformations of Hilbert modular Eisenstein series.

When p = 11 or p > 13, i.e., when the modular curve X0(p) has genus strictly greater 
than zero, the p-arithmetic intersections are arguably even more interesting, because of 
the following conjecture:

Conjecture 13. The p-adic logarithm of (γw �γ)Γp is a finite linear combination of p-adic 
logarithms of a p-unit of H and of formal group logarithms of global points on J0(p)(H).

For instance, when τ := 3+
√

21
6 is a real quadratic irrationality of discriminant 21, it 

was verified to 100 digits of 11-adic precision that:

log11 (γw � γ)Γ11

?= 1
3 log11

(
3 + 4

√
−7

)
− 1

5 logE
(
−3 −

√
−7

2 ,
−3 −

√
−7

2

)
(12)

where logE is the 11-adic formal group logarithm on the elliptic curve E of conductor 
11 with Weierstraß equation

E : y2 + y = x3 − x2 − 10x− 20.

4. Real quadratic singular moduli

We briefly describe the relation between the p-arithmetic intersection number of (4)
and the “differences of real quadratic singular moduli” studied in [DV] and [GMX].

The real quadratic singular moduli of [DV] are obtained as the “RM values” of rigid 
meromorphic cocycles on the p-adic upper half plane

Hp := P1(Cp) − P1(Qp).
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This p-adic symmetric space is endowed with a natural action of SL2(Qp) by Möbius 
transformations and equipped with a canonical reduction map to the Bruhat-Tits tree T

of PGL2(Qp). The latter is a (p + 1)-regular graph which can be described as a disjoint 
union T := T0 � T1, where the set T0 of vertices of T is in bijection with homothety 
classes of Zp-lattices in Q2

p, and the set T1 of edges consists of pairs of vertices admitting 
representative lattices which are contained one in another with index p. The pre-image 
of a vertex under the reduction map is a so-called standard affinoid obtained by excising 
from P1(Cp) the (p + 1) “mod p residue discs” centered at the points of P1(Fp), relative 
to a suitable choice of coordinate on P1(Qp). Likewise, the preimage of an edge under 
the reduction map is an annulus identified with a Möbius translate of the region

{z ∈ Cp satisfying 1 < |z| < p} ⊂ Hp.

A subgraph G ⊂ T is said to be closed if it contains the endpoint vertices of any edge in 
G ∩T1, and is said to be finite if it contains finitely many vertices and edges. An affinoid 
subset of Hp is the inverse image under the reduction map of a closed finite subgraph of 
T . This notion of an affinoid subset, which is somewhat restrictive but suffices for our 
purpose, is what might be called “an affinoid subset defined over Qp” elsewhere in the 
literature.

A discrete divisor on Hp is a formal Z-linear combination D :=
∑

x∈Hp
mx · [x] of 

points x ∈ Hp, for which

D ∩ A :=
∑
x∈A

mx · [x]

is an actual divisor, for all affinoid subsets A ⊂ Hp. (I.e., the coefficients mx are equal 
to zero for all but finitely many x ∈ A.) Let Div†(Hp) denote the SL2(Qp)-module of 
discrete divisors. An element D ∈ Div†(Hp) is said to be of degree zero if D ∩ A is a 
degree 0 divisor, for all affinoids A ⊂ Hp.

The value of a rational function f on a divisor D =
∑

x mx · [x] it the quantity

f(D) :=
∏
x

f(x)mx .

The Weil symbol of two degree zero divisors D , D ′ ∈ Div0(P1(Cp)) with disjoint supports 
is the value fD′(D), where fD′ is any function having D as divisor. The Weil symbol can 
be extended to the case where D ∈ Div†(Hp) and D ′ ∈ Div(Hp) are both of degree zero 
(with disjoint supports), by choosing an admissible cover

A1 ⊂ A2 ⊂ · · ·An ⊂ · · · ,
⋃
n≥1

An = Hp

of Hp by an increasing sequence of affinoids, and setting
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[D ; D ′] := lim
n→∞

[D ∩ An ; D ′].

Choosing a base point η ∈ Hp, the rigid meromorphic function

fD(z) := [D ; (z) − (η)]

has divisor equal to D . Changing the base point η ∈ Hp has the effect of multiplying fD

by a non-zero scalar; hence fD should only be viewed as being determined by D up to 
such a scalar.

For simplicity, we begin by placing ourselves in the setting of [DV] where Γp =
SL2(Z[1/p]). In this setting, discrete divisors on Hp can be obtained from a pair r, s
of elements of P1(Q) and from a real quadratic irrationality τ ∈ Hp, by setting

Dτ (r, s) :=
∑

w∈Γpτ
((w,w′) · (r, s)) · [w],

where the simultaneous embeddings of Q̄ into C and into Q̄p are used to view (w, w′)
as a geodesic in H , and [w] as a point of Hp. Assume for simplicity that τ satisfies 
a quadratic equation with integer coefficients whose discriminant D is non-zero (and 
hence, a non-square) modulo p.

In the setting where Γp = SL2(Z[1/p]) and p � D, the discrete divisor Dτ (r, s) is always 
of degree zero, and the assignment (r, s) �→ Dτ (r, s) gives a Γp-invariant modular symbol
with values in the Γp-module Div†(Hp), i.e., a function

Dτ : P1(Q) × P1(Q) −→ Div†(Hp)

satisfying Dτ (r, t) + Dτ (t, s) = Dτ (r, s) for all r, s, t ∈ P1(Q), and

γDτ (r, s) = Dτ (γr, γs), for all γ ∈ Γp.

The element Dτ in the module MS(Div†(Hp))Γp of such Γp-invariant modular symbols 
gives an element J̄τ ∈ MS(M×/C×

p )Γp by setting

J̄τ (r, s)(z) := fDτ (r,s)(z), for all r, s ∈ P1(Q). (13)

The essential triviality of H2(SL2(Z), Q) can be used to lift the restriction of J̄τ (r, s)
to SL2(Z) to a class Jτ ∈ MS(M×)SL2(Z), which is essentially unique since there are no 
SL2(Z)-invariant Cp-valued modular symbols. One has

Jτ (r, s)(z) = c(r, s) · [Dτ (r, s) ; (z) − (η)] , for all r, s ∈ P1(Q),

where c(r, s) ∈ C×
p is a somewhat subtle constant that depends on (r, s), and on the base 

point η, but not on z which plays the role of a variable in the equation above.
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Given two real quadratic irrationalities τ1 and τ2 of discriminant D prime to p (viewed 
as elements of both P1(R) and Hp via the fixed embeddings of Q̄ into C and Cp) let α1

and α2 be generators modulo torsion for their stabilisers in Γp, normalised so that

lim
n→∞

αn
j r = τ ′j , lim

n→−∞
αn
j r = τj , for all r ∈ P1(R) − {τj , τ ′j}. (14)

We then set

Jp(τ1, τ2) := Jτ1(r, α2r)(τ2),

an expression which does not depend on the choice of base point r ∈ P1(Q). Conjectures 
1 and 2 of [DV] assert that, when p = 2, 3, 5, 7, or 13 (i.e., when the modular curve X0(p)
has genus zero), the quantities Jp(τ1, τ2) are algebraic numbers in the compositum of the 
Hilbert class fields attached to D1 and D2, and that, from the point of view of their prime 
factorisations, they enjoy many properties analogous to the differences J∞(τ1, τ2) :=
j(τ1) − j(τ2) of singular moduli, when τ1 and τ2 are CM points on SL2(Z)\H .

The following proposition explains why Conjecture 9 of the present work follows from 
the finer conjectures of [DV].

Proposition 14. Let γ1 = (τ1, τ ′1) and γ2 = (τ2, τ ′2) be a pair of real quadratic geodesics 
whose discriminants D1 and D2 are non-squares modulo p. Then

(γ1 � γ2)Γp = Jp(τ1, τ2) · Jp(τ ′1, τ2) · Jp(τ1, τ ′2) · Jp(τ ′1, τ ′2).

Proof. By definition,

Jp(τ1, τ2) = Jτ1(r, α2r)(τ2) = c(r, α2r) · [Dτ1(r, α2r) ; (τ2) − (η)] . (15)

Replacing τ2 by τ ′2 and r by α2r, we observe that the stabiliser of τ ′2, normalised as in 
(14), is α−1

2 , and hence that

Jp(τ1, τ ′2) = Jτ1(α2r, r)(τ ′2) = Jτ1(r, α2r)(τ ′2)−1

= c(r, α2r)−1 · [Dτ1(r, α2r) ; (τ ′2) − (η)]−1
. (16)

Multiplying (15) and (16) together leads to a simpler expression where the quantities 
c(r, α2r) and η have disappeared:

Jp(τ1, τ2) · Jp(τ1, τ ′2) = [Dτ1(r, α2r) ; (τ2) − (τ ′2)]. (17)

On the other hand,
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Dτ1(r, α2r) =
∑

γ∈Γp/αZ
1

((γτ1, γτ ′1) · (r, α2r))[γτ1]

=
∑

γ∈αZ
2 \Γp/αZ

1

⎧⎨
⎩

∞∑
j=−∞

((αj
2γτ1, α

j
2γτ

′
1) · (r, α2r))[αj

2γτ1]

⎫⎬
⎭ .

Substituting this equation into (17) and using the Γp-equivariance of the Weil symbol and 
of the intersection pairing, combined with the fact that α2 fixes the divisor (τ2) − (τ ′2), 
we obtain

Jp(τ1, τ2) · Jp(τ1, τ ′2)

=

⎡
⎣ ∑
γ∈αZ

2 \Γp/αZ
1

⎧⎨
⎩

∞∑
j=−∞

((γτ1, γτ ′1) · (α−j
2 r, α−j+1

2 r))

⎫⎬
⎭ [γτ1] ; (τ2) − (τ ′2)

⎤
⎦ . (18)

The sum inside the curly braces is telescoping and converges to

((γτ1, γτ ′1) · (τ2, τ ′2)) = (γγ1 · γ2),

by (14). It follows that

Jp(τ1, τ2) · Jp(τ1, τ ′2) =

⎡
⎣ ∑
γ∈αZ

2 \Γp/αZ
1

(γγ1 · γ2) · [γτ1] ; (τ2) − (τ ′2)

⎤
⎦ . (19)

A similar argument with τ1 replaced by τ ′1 (and hence, with the orientation of γ1 reversed) 
shows that

Jp(τ ′1, τ2) · Jp(τ ′1, τ ′2) =

⎡
⎣ ∑
γ∈αZ

2 \Γp/αZ
1

(γγ1 · γ2) · [γτ ′1] ; (τ2) − (τ ′2)

⎤
⎦
−1

. (20)

Multiplying (19) and (20) together yields the desired result. �
In the general case where p = 11 or p > 13, or, even more generally, where Γp

is the p-arithmetic group arising from a maximal Z[1/p]-order R in some indefinite 
quaternion algebra B, one can still associate to an RM point τ ∈ Γp\Hp a class Dτ,τ ′ in 
H1(Γp, Div†(Hp)). This is done by choosing a base point r ∈ H , in sufficiently general 
position so that it does not lie on any of the Γp-translates of the geodesic (τ, τ ′), and 
setting

Dτ,τ ′(γ) =
∑

((w,w′) · (r, γr))([w] − [w′]).

w∈Γpτ
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Since w and w′ always reduce to the same vertex on T , the discrete divisors Dτ,τ ′(γ)
are of degree zero for all γ ∈ Γp, and one obtains a class

J̄τ,τ ′ ∈ H1(Γp,M×/C×
p )

as in (13) by setting

J̄τ,τ ′(γ)(z) := fDτ,τ′ (γ)(z), for all γ ∈ Γp, z ∈ Hp. (21)

Although the class J̄τ,τ ′ need not lift to an M×-valued one-cocycle, one can still lift it 
to an M×-valued one-cochain Jτ,τ ′ . For any pair (τ1, τ2) of Γp-inequivalent RM points, 
the quantity

Jτ1,τ ′
1
[τ2] × Jτ1,τ ′

1
[τ ′2] :=

Jτ1,τ ′
1
(α2)(τ2)

Jτ1,τ ′
1
(α2)(τ ′2)

does not depend on the chosen lift, and is equal to the p-arithmetic intersection (γ1�γ2)Γp
of the associated modular geodesics.

One can then formulate the following refinement of Conjecture 9:

Conjecture 15. Let T ∈ T be any Hecke operator which annihilates the space of cusp 
forms of weight 2 on Γ0(Sp), where S = Disc(B). Then the one-cocycle J̄Tτ1,Tτ ′

1
lifts to 

a class JTτ1,Tτ ′
1

in H1(Γp, M×), and the RM value JTτ1,Tτ ′
1
[τ2] belongs to ιp(H12).

The work [GMX] of Guitart, Masdeu and Xarles gives an important refinement of this 
conjecture by showing that there are, up to torsion, well-defined classes

JTτ1 , JTτ ′
1

∈ H1(Γp,M×)

satisfying

JTτ1,Tτ ′
1

= JTτ1 × JTτ ′
1
,

and conjectures that the quantities

Jp(Tτ1, τ2) := JTτ1 [τ2] (22)

are also algebraic numbers in H1H2. As in Proposition 14, one has

(Tγ1 � γ2)Γp = Jp(Tτ1, τ2) · Jp(Tτ ′1, τ2) · Jp(Tτ1, τ ′2) · Jp(Tτ ′1, τ ′2). (23)

While the finer quantities Jp(Tτ1, τ2) are more subtle to define and to compute, they 
are the ones that enjoy the most direct analogy with the differences of singular moduli 
in the theory of complex multiplication.
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5. Incoherent intersections

Let D1 and D2 be a pair of positive discriminants. For ease of exposition, assume that 
they are fundamental and coprime. As in earlier sections, write

F1 := Q(
√
D1), F2 := Q(

√
D2), F12 := Q(

√
D1D2),

and let O1, O2, and O12 denote their respective rings of integers. Let

S :=
{

rational primes p such that
(
D1

p

)
=

(
D2

p

)
= −1

}
.

The primes in S are split in the intermediate field F12. For each p ∈ S, fix an ideal mp

of F1F2 above p. This determines, for each such p, an element δp ∈ Fp satisfying

δ2
p = D1D2.

Let S be a finite subset of S.

When S has even cardinality, it determines an arithmetic group Γ(S) ⊂ SL2(R)
consisting of the norm one elements in a maximal order

R(S) ⊂ B(S) ⊂ M2(R)

of the quaternion algebra B(S) ramified exactly at the primes of S. The group Γ := Γ(S)
depends only on S, up to conjugation in SL2(R). Let (γ1, γ2) be any pair of modular 
geodesics on Γ(S)\H . One may then consider the topological and arithmetic intersection 
numbers

(γ1 · γ2)S := (γ1 · γ2)Γ(S), (γ1 � γ2)S := (γ1 � γ2)Γ(S) ∈ F12.

Assume now that S ⊂ S has odd cardinality. For each prime p ∈ S, we may choose a 
pair (γ1, γ2) of modular geodesics on Γ(S − {p})\H satisfying the conditions

Oγ1 = O1, Oγ2 = O2, ηq(γ1, γ2) = δq, for all q ∈ S − {p}.

Let T be a good Hecke operator that annihilates the space of cuspidal newforms of weight 
2 and level S. Assuming Conjecture 9, one can consider the p-arithmetic intersection 
numbers

(Tγ1 � γ2)S,p := (Tγ1 � γ2)Γ(S−{p})p

as global invariants in H12/G12. These quantities can be factored as

(Tγ1 � γ2)S,p = JS,p(Tτ1, τ2) · JS,p(Tτ1, τ ′2) · JS,p(Tτ ′1, τ2) · JS,p(Tτ ′1, τ ′2),
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where JS,p(Tτ1, τ2) is defined as in (22). The finer invariant JS,p(Tτ1, τ2) appears to 
depend only on S and not on the choice of p ∈ S that was made to compute it p-adically:

Conjecture 16. There is an element JS(Tτ1, τ2) ∈ H12/G12 such that

JS(Tτ1, τ2) = JS,p(Tτ1, τ2), for all p ∈ S.

Remark 17. It would be tempting to conjecture, based on (23) that the p-arithmetic 
intersection number (Tγ1 � γ2)S,p is likewise independent of p, but the authors do not 
believe this to be the case. Indeed, Conjecture 16 predicts that, for p, q ∈ S,

JS,p(Tτ1, τ2) = σ1JS,q(Tτ1, τ2), JS,p(Tτ ′1, τ2) = σ2JS,q(Tτ ′1, τ2),

JS,p(Tτ1, τ ′2) = σ3JS,q(Tτ1, τ ′2), JS,p(Tτ ′1, τ ′2) = σ4JS,q(Tτ ′1, τ ′2),

where σ1, σ2, σ3 and σ4 are automorphisms in G12 which need not be the same. For a 
numerical illustration of this phenomenon in the setting of CM points on Shimura curves, 
see [Gi].

Remark 18. The set S of primes of odd cardinality can be viewed as the data for an 
incoherent indefinite quaternion algebra over Q in the sense of [Gr2] and [Gr3]. These 
references focus on incoherent definite data, where S contains the archimedean place, 
and explain how such data naturally corresponds to a Shimura curve over Q. When 
∞ /∈ S, the arithmetic quotients Γ(S − {p})\H for p ∈ S can be envisaged as an 
“incoherent collection of Shimura curves”. Conjecture 16 rests on the strong analogy 
between compatible systems of geodesics like Tγ1 and γ2 on {Γ(S − {p})\H }p∈S (with 
∞ /∈ S) and CM points on the Shimura curve attached to an odd cardinality set S
containing ∞.

Definition 19. The conjectural quantity

JS(Tτ1, τ2)
?
∈ H12/G12

of Conjecture 16 is called the incoherent intersection number attached to the pair of RM 
divisors (Tτ1, τ2).

Remark 20. Conjecture 16 adds nothing to Conjecture 9 when S = {p} is a singleton, 
since (γ1�γ2)p can then only be computed one way, as a p-arithmetic intersection number 
for SL2(Z[1/p]). This is the case that was considered in [DV]. The recent work [GMX] of 
Guitart, Masdeu and Xarles gives striking experimental confirmation of (a more general 
version of) Conjecture 16 in the case where S = {2, 3, 5}, observing that, for a few pairs 
(D1, D2) of discriminants in which 2, 3 and 5 are inert, and for suitable Hecke operators 
T annihilating S2(Γ0(30)), one indeed has a global invariant
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J30(Tτ1, τ2)
?
∈ H12/G12

which coincides with

JΓ(15)2(Tτ1, τ2)
?= JΓ(10)3(Tτ1, τ2)

?= JΓ(6)5(Tτ1, τ2),

at least up to the high level of 2-adic, 3-adic and 5-adic accuracies respectively with which 
these three quantities were computed numerically. The calculations in [GMX] involve the 
three neighbouring quaternion algebras, of discriminants 15, 10 and 6 respectively, in a 
way that evokes the Cerednik Drinfeld “interchange of invariants” occurring in the p-adic 
uniformisation theory of Shimura curves. What mathematical structure might underly 
the incoherent collections of Shimura curves and their compatible systems of modular 
geodesics in accounting for the global nature of J30(Tτ1, τ2) 

?
∈ H12/G12, remains to be 

elucidated.

6. Factorisation conjectures

To each finite subset S ⊂ S, we have associated quantities (γ1 �γ2)S whose arithmetic 
nature depends crucially on the parity of the cardinality of S.

• When S has even cardinality,

(γ1 � γ2)S := (γ1 � γ2)Γ(S) ∈ Q(
√
D1D2)

is an arithmetic intersection number on the indefinite quaternion algebra ramified at 
the places of S.

• When S has odd cardinality, and p ∈ S, the p-arithmetic intersection number

(γ1 � γ2)S,p
?
∈ H12/G12

lies significantly deeper. Conjecturally, it belongs to H12, and is well defined up to the 
action of G12, the dependency arising from the choice of an embedding H12 ↪→ Qp2 .

For any q ∈ S, the prime mq of F1F2 splits completely in H12, and the set of primes 
Q of H12 lying above mq is therefore a principal homogeneous space for G12. Define a 
map

Ordmq
: H×

12/G12 −→ Z[G12]/G12 (24)

by choosing a fixed Q above mq and setting

Ordmq
(x) =

∑
ordQ(xσ)σ−1. (25)
σ∈G12
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The value of Ordmq
does not depend on the choice of prime Q that was made to define 

it, since replacing Q by another prime above mq merely has the effect of multiplying the 
right hand side of (25) by a group-like element in G12 ⊂ Z[G12]×.

It is natural to seek to relate Ordmq
((γ1 � γ2)S,p), when S is of odd cardinality, to the 

mq-adic valuations of certain arithmetic intersection numbers.
Given q ∈ S, let

Sq :=
{

S − {q} if q ∈ S,

S ∪ {q} if q /∈ S.

The set Sq then has even cardinality, and the indefinite quaternion algebra B(Sq) rep-
resents a nearby quaternion algebra for the incoherent datum S.

Recall that the narrow class groups G1 := Pic+(Oγ1) and G2 := Pic+(Oγ2) act simply 
transitively on the set of geodesics on Γ(Sq)\H of discriminants D1 and D2 with the 
given orientations at q ∈ S. Since the extensions H1 and H2 are linearly disjoint over 
F1F2, one has a canonical identification of G1 ×G2 = G12. For each q ∈ S, let

Ordmq
((γ1 � γ2)Sq

) :=
∑

σ∈G12

(γσ
1 � γσ

2 )Sq
· σ−1 ∈ Z[G12]/G12.

Viewing the target as Z[G12] modulo the action of the group-like elements G12 ⊂ Z[G12]×
means that Ordmq

((γ1 � γ2)Sq
) is independent of the choice of geodesics γ1 and γ2, but 

depends only on their discriminants and on the orientations ηr(γ1, γ2) for r ∈ Sq.

Conjecture 21. Let S ⊂ S be a set of odd cardinality, let p ∈ S, and let T be a Hecke 
operator that annihilates the space of modular forms of weight two and level S. If q /∈ S
and q � D1D2, then

ordQ((Tγ1 � γ2)S,p) = 0,

for any prime Q of H12 above q.

This conjecture and the numerical experiments documented in [DV] and [GMX] sug-
gest the following natural question:

Question 22. For the primes q ∈ S, what relation is there between the elements 
Ordmq

((Tγ1 � γ2)S,p) and Ordmq
((Tγ1 � γ2)Sq

) of Z[G12]/G12?
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