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Abstract. This is a transcription of the author’s lecture at the Kyoto conference
“Profinite monodromy, Galois representations, and complex functions” marking Ya-
sutaka Ihara’s 80th birthday. Much of it, notably the material in the last section, is
the fruit of an ongoing collaboration with Jan Vonk.

In his important work on “congruence monodromy problems”, Professor Ihara pro-
posed that the group Γ := SL2(Z[1/p]) acting on the product of a Drinfeld and a
Poincaré upper half-plane provides a congenial framework for describing the ordinary
locus of the j-line in characteristic p. In Ihara’s picture, which rests on Deuring’s
theory of the canonical lift, the ordinary points of the j-line are essentially in bijection
with conjugacy classes in Γ that are hyperbolic at p and elliptic at ∞.

The present note explains how the classes that are elliptic at p and hyperbolic at
∞ form the natural domain for a kind of p-adic uniformisation of the modular curve
X0(p), leading to a conjectural analogues of Heegner points, elliptic units, and singular
moduli defined over ring class fields of real quadratic fields.
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Introduction

My first encounter with Professor Ihara dates back to the 1990 International Congress
of Mathematicians which took place right here in Kyoto when I was still a graduate
student. My most vivid memory from that congress was Ihara’s plenary lecture entitled
“Braids, Galois groups, and some arithmetic functions”. Its theme was the study of the
absolute Galois group of Q through its natural action on the étale fundamental groups
of curves and varieties. The subject was then in its early stages but has been very active
in the ensuing decades, notably in Japan. At the time, I was keenly interested in this
topic, having just finished taking the notes for a course given by Jean-Pierre Serre at
Harvard, which eventually led to the monograph “Topics in Galois theory”. One of the
highlights of Serre’s course was his exposition of the celebrated “rigidity method” of
Malle and Matzat for realising certain finite groups as Galois groups of Q by exhibiting
them as Galois groups of étale covers of P1 −{0, 1,∞}. With Serre’s course fresh in my
mind, Ihara’s plenary lecture made a tremendous impression on me.
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This was the first but certainly not the last time that I would derive inspiration
from Professor Ihara. The present note describes how his fundamental treatise [Ih] on
“congruence monodromy problems” motivates an approach to the p-adic uniformisation
of modular curves via the second cohomology of p-arithmetic groups, opening a natural
pathway to explicit class field theory for real quadratic fields.

In [Ih], Ihara proposed that congruence subgroups Γ ⊂ SL2(Z[1/p]) lead to a con-
venient framework for the “uniformisation” of modular curves in characteristic p. In a
suggestive re-interpretation of classical results of Deuring on the canonical lift, Ihara
observed that the conjugacy classes of Γ which are hyperbolic at p and elliptic at ∞
are essentially in bijection with the ordinary points on the characteristic p fiber of a
modular curve attached to Γ. The natural desire to reverse the roles of p and ∞ in
Ihara’s theory leads one to consider the conjugacy classes of Γ that are hyperbolic at
∞ and elliptic at p, whose characteristic polynomials split over real quadratic fields
in which the prime p is inert or ramified. Roughly speaking, suitable “canonical lifts”
attached to such classes yield invariants that are defined over ring class fields of real
quadratic fields. I will flesh out this statement by describing how groups like Γ provide
an amenable structure for the p-adic uniformisation of modular curves, and how this
uniformisation is rich enough to support a framework for “explicit class field theory”
and a theory of singular moduli for real quadratic fields.

1. The p-adic uniformisation of Shimura curves

As background and motivation, let us briefly recall some facts from the theory of
p-adic uniformisation of curves developped by Tate and Mumford. For this purpose, let
Γ be a discrete arithmetic subgroup of SL2(Qp). A protoypical example of such a group
is obtained by letting

H := Q[i, j, k]

be the algebra of Hamilton quaternions over the field Q of rational numbers, defined
by the usual multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

If p is an odd prime, then
H ⊗ Qp ' M2(Qp),

and one can therefore fix an algebra embedding of H into the matrix algebra M2(Qp).
The subring

R := Z[i, j, (1 + i + j + k)/2]

studied by Hurwitz is a maximal order in H, and is unique up to conjugation by H×.
The group

Γ := R[1/p]×1 ⊂ SL2(Qp)

of norm 1 elements in the associated maximal Z[1/p]-order acts discretely by Möbius
transformations on Drinfeld’s p-adic upper half plane

Hp := Cp − Qp.

The quotient Γ\Hp is a rigid analytic space, which is isomorphic to the Cp-points of a
“Mumford curve” XΓ over Qp.
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The following theorem, a special case of the Cerednik-Drinfeld theorem on the p-adic
uniformisation of Shimura curves, gives a modular description of XΓ, which shows in
particular that it has a model over Q.

Theorem 1 (Cerednik-Drinfeld). The curve XΓ is isomorphic to a Shimura curve
(classifying abelian surfaces with quaternionic multiplication by the quaternion algebra
ramified at 2 and p).

One would be remiss not to mention that Ihara’s work on “congruence monodromy
problems” plays a key role in the proof of this important result of Cerednik-Drinfeld.

Shimura curves are endowed with a plethora of interesting arithmetic structure, no-
tably an infinite supply of CM points attached to orders of quadratic imaginary fields
in which the prime p is either inert or ramified.

Let K ⊂ H be any maximal commutative subfield of H. It is isomorphic to a
quadratic imaginary field (in which 2 is either inert or ramified), and K ∩ R[1/p] is a
(not necessarily maximal) Z[1/p]-order in K – i.e., a subring of K which is free of rank
two as a Z[1/p]-module. Such an order is completely characterised by its conductor, an
integer c that is prime to p and satisfies

K ∩ R[1/p] = Z[1/p] + c · OK [1/p].

The theory of complex multiplication for the Shimura curve XΓ can be formulated
concretely as follows:

Proposition 2. Suppose that the prime p is either inert or ramified in K, so that K×

acting on Hp has two fixed points in Hp. Then these fixed points correspond to algebraic
points of XΓ, defined over the ring class field of K of conductor c.

Turrning to the function theory of XΓ, let M× denote the multiplicative group of
rigid meromorphic functions on Hp, and let A× denote the subgroup of rigid analytic
functions. Constructing non-zero meromorphic functions on XΓ(Cp) is tantamount to
constructing Γ-invariant elements of M×, i.e., elements of H0(Γ,M×).

The standard way to do this is via the theory of p-adic theta functions, as described
for instance in the monograph [GvdP] of Gerritzen and van der Put.

Given any divisor ∆ ∈ Div0(Hp), and a base point η ∈ Hp, let

tη∆(z) := unique function with divisor ∆ with tη
∆(η) = 1.

The p-adic theta-function atttached to ∆ is then defined by averaging tη
∆ over the

Γ-translates of ∆:
θ∆(z) :=

∏

γ∈Γ

tη
γ(∆)(z).

Since θ∆ has a Γ-invariant divisor, it belongs to H0(Γ,M×/C×
p ), i.e.,

θ∆(γz) = c∆(γ) · θ∆(z), for all γ ∈ Γ.

The automorphy factor c∆ : Γ −→ C×
p is a homomorphism, i.e., an element of H1(Γ, C×

p ),
which measures the obstruction to θη

∆ being Γ-invariant, and thereby, to the divisor ∆
being principal on XΓ.
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The group ΠΓ ⊂ H1(Γ, C×
p ) generated by the automorphy factors of elements of

H0(Γ,A×/C×
p ) plays an important role in describing the Jacobian of XΓ over Cp. It is

a lattice in H1(Γ, C×
p ) ' (C×

p )g, and there is a rigid analytic, Hecke-equivariant map

η : H1(Γ, C×
p )/ΠΓ −→ Jac(XΓ)(Cp),

which fits into the following commutative diagram:

(1) H0(Γ,A×/C×
p )

��

δ
// // ΠΓ� _

��

C×
p

� � // H0(Γ,M×)

Div
��
��

// H0(Γ,M×/C×
p )

Div
��
��

δ
// // H1(Γ, C×

p )

η

��

P (XΓ) � � // Div0(XΓ)
Φ

// // Jac(XΓ)(Cp).

Thus, for instance, the automorphy factor attached to the theta function of a CM
divisor ∆ is sent by η to an element of Jac(XΓ)(Cp) which is algebraic, and defined
over a ring class field of an imaginary quadratic field. This concrete description leads
to a rigid analytic approach for numerically computing Heegner points arising from
parametrisations of elliptic curves by Shimura curves. (See [Gr].)

2. The p-adic uniformisation of X0(p)

We now turn to the setting of classical modular curves, which, unlike Shimura curves,
do not seem to admit uniformisations via explicit arithmetic subgroups of SL2(Qp).
For example, the modular curve X0(p) is a Mumford curve — it has an integral model
whose special fiber is a union of two copies of the j-line intersecting transversally at
the supersingular points — hence Mumford’s p-adic uniformization theorem implies the
existence of some discrete subgroup Γ ⊂ SL2(Qp), for which

X0(p)(Cp) ' Γ\Hp.

To what extent can Γ be described explicitly? Is it arithmetic, for instance? Very little
seems to be known.

In his celebrated monographs on “Congruence monodromy problems”, Ihara proposed
that the group

Γ = SL2(Z[1/p])

in some sense “uniformises” the j-line in characteristic p. More precisely, the conjugacy
classes in Γ that are hyperbolic at p and elliptic at ∞, corresponding to orders in
quadratic imaginary fields where p is split, are essentially in bijection with ordinary
points on X(1) in characteristic p. This leads to an elegant, inspiring re-formulation of
the results of Deuring on complex multiplication and of his theory of the canonical lift.

Guided by Ihara’s vision, the same Γ can be used as the basis for a “p-adic uniformi-
sation” of X0(p). In this theory, a key role is played by conjugacy classes in Γ that are
hyperbolic at ∞ and elliptic at p, corresponding to orders in real quadratic fields where
p is non-split.

The group Γ acts on Hp with dense orbits in the rigid topology, and hence

H0(Γ,A×) = H0(Γ,M×) = C×
p .
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The key insight in extending Cerednik-Drinfeld theory to the group Γ is to replace
the (uninteresting) zero-th cohomology of Γ with values in A× and M× with its first
cohomology:

Definition 3 [DV1]. A rigid meromorphic cocycle is a class in H1(Γ,M×) which is
quasi-parabolic: i.e., its restriction to Γ∞ := StabΓ(∞) belongs to H1(Γ∞, C×

p ).

Definition 3 raises the question of constructing non-trivial elements of H1(Γ,M×),
and of classifying them. It turns out that rigid meromorphic cocycles are intimately
tied with certain quasi-periodic subsets of the set of real multiplication (RM) points of
Hp:

Definition 4. An RM point is an element of Hp which belongs to a real quadratic field
K ⊂ Cp.

All the real quadratic fields which shall arise are viewed as subfields of R as well as
of Cp, and the symbol w′ is used to denote the algebraic conjugate of a real quadratic
irrationality w. For any w in the set HRM

p of RM points in Hp, and r ∈ Q, one can thus
consider the sign function

s(w, r) :=







1 if w′ < r < w,
−1 if w < r < w′,
0 otherwise

Lemma 5. The set Πτ of w ∈ Γτ with s(w, r) 6= 0 is a discrete subset of Hp.

The subset of Γτ described in this lemma is somewhat reminiscent of the “almost
periodic” structures arising in the theory of quasi-crystals.

Lemma 5 makes it possible to define certain quasi-periodic theta functions whose
zeroes and poles are concentrated in Πτ :

Proposition 6. The infinite product

θτ [r](z) :=
∏

w∈Γτ

tηw−∞(z)s(w,r)

converges to a rigid meromorphic function on Hp.

The function θτ [r](z) is called the quasi-periodic theta function associated to τ and r.
Its divisor is supported on a small (discrete) subset of the full Γ-orbit of τ in Hp. The
collection of θτ [r] as r varies over P1(Q) can be packaged into a single rigid meromorphic
cocycle modulo scalars, according to the following definition:

Theorem 7 [DV1]. The function Jτ : Γ −→ M× given by

Jτ (γ) = θτ [γ∞]

is a one-cocycle with values in M×/C×
p . All elements of H1(Γ,M×/C×

p ) are multiplica-

tive combinations of the Jτ as τ ranges over HRM
p , and of elements of H1(Γ,A×/C×

p ).

The theory of rigid meromorphic cocycles seems intimately tied to the arithmetic of
real quadratic fields via this result.
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The cocycles
Jτ ∈ H1(Γ,M×/C×

p )

are called theta-cocycles. They are the direct analogues of the p-adic theta functions in
H0(Γ,M×/C×

p ) when Γ is a p-adic Schottky group. The analogue of the automorphy
factor associated to such a p-adic theta function is the invariant

δ(Jτ ) ∈ H2(Γ, C×
p )

arising from the long exact cohomology sequence

H1(Γ, C×
p ) −→ H1(Γ,M×) −→ H1(Γ,M×/C×

p )
δ−→ H2(Γ, C×

p ),

which measures the obstruction to lifting Jτ to a genuine rigid meromorphic cocycle.

The following basic fact about H2(Γ, C×
p ), which was first systematically exploited in

the work of Ihara and Serre, suggests that this p-adic torus might bear some connection
to the uniformisation of X0(p):

Proposition 8 (Ihara, Serre). There is a canonical identification

H2(Γ, C×
p ) = H1(Γ0(p), C×

p )

of p-adic tori which is compatible with the natural action of Hecke operators on source
and target.

The theory of theta-cocycles thus associates to each divisor ∆ on Γ\HRM
p a cocycle

J∆ ∈ H1(Γ,M×/C×
p ).

Definition 9. If J∆ lifts to a rigid meromorphic cocycle, then ∆ is called a principal
divisor.

Denote by P (Γ\HRM
p ) the group of principal divisors, and let M2(Γ0(p)) be the space

of weight two modular forms on Γ0(p). The following theorem implies that principal
divisors, and hence rigid meromorphic cocycles, exist in abundance:

Theorem 10 [DV1]. If T is any Hecke operator that annihilates M2(Γ0(p)), and τ any
element of Γ\HRM

p (or any divisor on this quotient), then T (τ) is principal.

Corollary 11. The quotient Div(Γ\HRM
p )/P (Γ\HRM

p ) is naturally a module for the
Hecke algebra of weight 2 and level p.

Pursuing the analogy with the p-adic uniformisation of Mumford curves, the group

ΠΓ := δ(H1(Γ,A×/C×
p ) ⊂ H2(Γ, C×

p )

should play the same role as the subgroup ΠΓ ⊂ H1(Γ, C×
p ) attached to the p-adic

Shottky group Γ in equation (1). Indeed, one has:

Theorem 12 (Dasgupta, D). The image of ΠΓ in

H2(Γ, C×
p ) = H1(Γ0(p), C×

p )

is commensurable to the direct sum of pZ with two copies of the Tate period lattice of
J0(p).
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The proof of this result, which is described in [Das], is far from formal and relies on
several deep ingredients, notably the “exceptional zero” conjecture of Mazur, Tate and
Teitelbaum, and its proof by Greenberg and Stevens [GS], which rests crucially on the
theory of deformations of p-adic Galois representations.

The discussion so far can be summarised in the following analogue of the commutative
diagram (1), in which the cohomology degrees have been shifted by one, and the rows
and columns are exact up to finite kernels and cokernels:

(2) H1(Γ,A×/C×
p )

��

δ
// // ΠΓ� _

��

H1(Γ,M×)

Div
��
��

// H1(Γ,M×/C×
p )

Div
��
��

δ
// H2(Γ, C×

p )

η

��

P (Γ\HRM
p ) � � // Div(Γ\HRM

p )
Φ

// J0(p)2(Cp) ⊕ C×
p /pZ.

Now, given τ ∈ HRM
p , let

Oτ = {γ ∈ M2(Z[1/p]) such that γτ = τ} ⊂ K := Q(τ).

Class field theory associates to the order Oτ a ring class field of K, denoted Hτ , with
Gal(Hτ/K) = Pic(Oτ ). One of the “main conjectures of real multiplication” can be
stated as follows [Dar]:

Conjecture 13. For all τ ∈ HRM
p , the point Φ(τ) belongs to J0(p)2(Hτ )⊕H×

τ /pZ (up
to torsion).

This conjecture suggests that the uniformisation Φ carries a great deal of arithmetic
structure, enabling the analytic construction of points on elliptic curves defined over
ring class fields of real quadratic fields, thus holding out the prospect for a natural
extension of the classical theory of complex multiplication.

3. Singular moduli for real quadratic fields

Of crucial importance to the notion of singular moduli in the theory of “real multi-
plication” is the fact that it is possible to evaluate a rigid meromorphic cocycle at an
RM point. This rests on the simple fact that an element τ ∈ Hp is an RM point if and
only if

StabΓ(τ) = 〈±γτ 〉
is an infinite group of rank one. One is thus led to make the following definition:

Definition 14. If J ∈ H1(Γ,M×) is a rigid meromorphic cocycle, and τ ∈ Hp is an
RM point, then the value of J at τ is

J [τ ] := J(γτ)(τ) ∈ Cp ∪ {∞}.
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The quantity J [τ ] is a well-defined numerical invariant, independent of the cocycle
representing the class of J , and

J [γτ ] = J [τ ], for all γ ∈ Γ.

We now turn to describing the field of definition of a rigid meromorphic cocycle:

Definition 15. If

J =

n
∏

i=1

Jni

τi

is a rigid meromorphic cocycle, then

HJ := Compositum(Hτi
)

is called the field of definition of J .

With these notions in hand, the “main conjectures” of “real multiplication” can be
stated loosely as follows:

Conjecture 16 [DV1]. Let J be a rigid meromorphic cocycle, and let τ ∈ Hp be an
RM point. The value J [τ ] belongs to the compositum of HJ and Hτ .

Conjecture 17 (“Shimura reciprocity”). If τ1, . . . , τh are representatives for
the h = #Pic+(O) distinct Γ-orbits of RM attached to O, the values {J [τj]}1≤j≤h are
permuted by Gal(HJHO/HJ).

In order to illustrate the above conjectures, we note that perhaps the simplest class
of rigid meromorphic cocycles can be obtained via the following proposition:

Proposition 18 [DV1]. For all τ ∈ HRM
p , the divisor (τ) − (pτ) is principal if p ∈

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}, (i.e., if p divides the cardinality of the
Monster sporadic simple group, i.e., the curve X0(p)/wp has genus zero.).

For a prime p as above, let

J+
τ := (unique) lift ofJτ/Jpτ to H1(Γ,M×).

For instance, assume that the prime p above satisfies the further condition p ≡ 2, 3
(mod 5), i.e., that

p ∈ {2, 37, 13, 17, 23, 47},
and let

ω :=
1 +

√
5

2
∈ Hp

be the golden ratio.

The cocycle J+
ω can in some sense be viewed as the “simplest” instance of a rigid

meromorphic cocycle. Since h+(Q(
√

5)) = 1, the field of definition of J+
ω is Q(

√
5).

Experiments suggest that J+
ω is in fact defined over Q. Here are some empirical values

of J+
ω , obtained by calculating them numerically to at least 100 digits of p-adic accuracy

and then recognising them as algebraic numbers of small height:



THE p-ADIC UNIFORMISATION OF MODULAR CURVES BY p-ARITHMETIC GROUPS 9

• If τ = 2
√

2, then Hτ = Q(
√

2,
√
−1), and

J+
ω [2

√
2]

?
= (33 + 56

√
−1)/(5 · 13) (in C3)

J+
ω [2

√
2]

?
= (1 + 2

√
−2)/3 (in C13).

• If τ = 2
√

6, then Hτ = Q(
√

6,
√
−1,

√
2), and

J+
ω [2

√
6]

?
= (3 + 8

√
2 + 12

√
−1 + 2

√
−2)/17 (in C7)

J+
ω [2

√
6]

?
= (2 + 3

√
2 +

√
−3 + 2

√
−6)/7 (in C17).

On the basis of the experiments above and of many more like them, we are led to
make the following conjecture:

Conjecture 19 [DV1]. The RM value J+
ω [τ ] belongs to H

σpσ∞=1
τ .

Here is a further numerical example illustrating Conjecture 19, in the case where τ
generates a real quadratic field K := Q(

√
223) of narrow class number 6, whose narrow

Hilbert class field H, a sextic extension of K, is therefore nonabelian over Q. In line
with Conjectures 17 and 18, the value J+

ω [
√

223] seems to satisfy the polynomials:

282525425x6 +27867770x5 +414793887x4− 128906260x3 +414793887x2 +27867770x+
282525425,

464800x6 + 1275520x5 + 1614802x4 + 1596283x3 + 1614802x2 + 1275520x + 464800,

and

4x6 + 4x5 + x4 − 2x3 + x2 + 4x + 4,

for p = 7, 13 and 47 respectively.

Although the algebraicity of the RM values of rigid meromorphic cocycles remains
elusive for now, good theoretical evidence is given in [DV2] for the algebraicity of the
so-called cuspidal values of rigid meromorphic cocycles, which are defined as follows.

Definition 20. If J is a rigid meromorphic cocycle, the quantity

J

(

p ∗
0 1/p

)

∈ C×
p

is called the value of J at ∞ and denoted J [∞].

Theorem 21 [DV2]. For all J , the value J [∞] is algebraic. More precisely, a power
of it belongs to (OHJ

[1/p])×.

The key ingredient in the proof of Theorem 21 is the fundamental recent progress
towards the refinements of the p-adic Gross Stark conjectures formulated in [DD] that
was made by Samit Dasgupta and Mahesh Kakde [DK], building on the methods of
[DDP]. A key role is played in [DDP] and [DK] by the deformation theory of p-adic
Galois representations, whose availability accounts for the fact that the p-adic Stark-
conjectures are more tractable than their original archimedean counterparts.
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It is worth insisting that rigid meromorphic cocycles do not arise from Hecke eigen-
forms, and their RM values have no direct relation to special values of L-functions with
Euler products. The approach to explicit class field theory based on these RM values
therefore represents something of a departure from the “traditional” framework of the
Stark conjectures which rest on the leading terms of motivic L-functions.

One would like a better geometric understanding of the p-adic uniformisation the-
ory described in this talk, dispensing with the seemingly ad-hoc techniques based on
deformations of Galois representations, and tying it more closely with the fascinating
perspectives opened up in Ihara’s treatise on “Congruence monodromy problems”.
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