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Abstract. — This volume comprises four interrelated articles whose unifying theme
is the study of Heegner and Stark-Heegner points, and their connections with the
p-adic logarithm of certain global cohomology classes attached to a pair of weight one
theta series of a common (imaginary or real) quadratic field. These global classes are
obtained from p-adic deformations of diagonal classes attached to triples of modu-
lar forms of weight > 1, and naturally generalise a construction of Kato which one
recovers when the two theta series are replaced by Eisenstein series of weight one. Un-
derstanding the extent to which such classes obtained via the p-adic interpolation of
motivic cohomology classes are themselves motivic is a key motivation for this study.
A second is the desire to show that Stark-Heegner points, whose global nature is still
poorly understood theoretically, arise from classes in global Galois cohomology.

Résumé. — Ce volume est constitué de 4 articles interdépendants dont le théme
unificateur est I’étude des points de Heegner et de Stark-Heegner, et leurs relation
avec certaines classes de cohomologie Galoisienne globales associées a une paire de
séries theta de poids un du méme corps quadratique (imaginaire ou réel). Ces classes
proviennent de déformations p-adiques des classes diagonales associés a des triplets
de formes modulaires de poids > 1, et généralisent une construction de Kato que
I’on récupere quand les deux séries theta sont remplacés par des séries d’Eisenstein
de poids un. Une des motivations pour cette étude est de comprendre dans quelle
mesure de telles classes, obtenues par interpolation p-adique a partir de familles de
classes motiviques, restent elles-mémes motiviques. Ces résultats permettent aussi de
démontrer que les points de Stark-Heegner, dont les propriétés d’algébricité sont en-
core complétement conjecturales, proviennent tout au moins de classes de cohomologie
globales.
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Over the last three decades, the method of Fuler systems has been honed into a
powerful and versatile technique for relating the arithmetic of a motive to its associ-
ated L-function, in the spirit of the conjectures of Deligne, Bloch-Beilinson, Bloch-
Kato and Perrin-Riou. Among its most notable successes is the proof of the weak
Birch and Swinnerton-Dyer conjecture asserting the equality of the algebraic and an-
alytic rank of an elliptic curve over Q when the latter invariant is < 1, as well as
the finiteness of the associated Shafarevich-Tate group. These statements are partic-
ularly striking in the rank one setting, given the dearth of systematic techniques for
constructing rational or algebraic points on elliptic curves with direct connections to
L-function behaviour.

An important precursor of the Euler System concept is the seminal work of Coates
and Wiles [CW77] in the mid 1970’s, where certain global cohomology classes con-
structed from norm-compatible collections of elliptic units in Z,—extensions of an
imaginary quadratic field are used to prove the finiteness of Mordell-Weil groups
of elliptic curves with complex multiplication, when the L-function of the associated
Grossencharakter does not vanish at its center. The stronger method of Euler systems
parlays their tame deformations, arising from objects defined over tamely ramified
abelian extensions of finite, p-power degree, into an efficient approach for establish-
ing the finiteness of Selmer and Shafarevich-Tate groups in addition to Mordell-Weil
groups. The genesis of this approach occurs with the work of Francisco Thaine on
circular units [Th88] in the late 1980’s, whose inspiration can be traced back even
further to Kummer. The subsequent transposition of Thaine’s approach to the set-
ting of elliptic units is the basis for Karl Rubin’s remarkable strengthening [Ru87]
of the approach of Coates-Wiles, with dramatic consequences for the finiteness of
Shafarevich-Tate groups of elliptic curves with complex multiplication. Kolyvagin’s
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almost simultaneous but independent breakthrough [Ko89| exploits Heegner points
and their connection with special values of L-series exhibited earlier by Gross and
Zagier [GZ86] to prove the equality of analytic and algebraic ranks and the finiteness
of the Shafarevich-Tate group for all (modular) elliptic curves over Q of analytic
rank < 1.

Shortly afterwards, Kazuya Kato [Ka04| pioneered an entirely different Euler sys-
tem approach in which Heegner points are replaced by Beilinson elements in the
second K-groups of modular curves — more accurately, by their p-adic deformations
arising from norm-compatible systems in towers of modular curves, echoing the theme
of p-adic variation that was already present in the work of Coates and Wiles. Some
20 years later, it was realised that Kato’s approach could be profitably adapted to
other closely related settings, in which Beilinson elements are replaced by so-called
Beilinson-Flach elements [BDR15] and diagonal cycles on a triple product of modu-
lar curves [DR14], whose p-adic deformations — particularly, those that are germane
to the study of the Birch and Swinnerton-Dyer conjecture—are referred to as gen-
eralised Kato-classes in the articles by Darmon-Rotger ([DR.v1] and [DR.v2]) or
as (specialisations of) balanced diagonal classes in the contributions by Bertolini—
Seveso—Venerucci ([BSV.v3] and [BSV.v4]) to this collection. These classes are the
key to proving the weak Birch and Swinnerton-Dyer conjecture in analytic rank zero
for Mordell-Weil groups of elliptic curves over ring class fields of quadratic fields,
both imaginary and real [DR17] (see also [BSV20] for a simpler variant to this
method, applied in greater generality). For instance, if H is the Hilbert class field of
a quadratic field K, then the implication

(1) “L(E/H,1) #0 = E(H) is finite”

is known unconditionally via these methods. When K is imaginary, the original
pathway to such a result, as described in [BDO05], rests crucially on the existence of
compatible families of Heegner points, as well as building on the theory of congruences
between modular forms and on the p-adic uniformisation of Shimura curves. The route
to the same result when K is real quadratic is entirely different and makes no use of
the theory of complex multiplication, for the simple but compelling reason that no
such theory is currently available in the setting of real quadratic fields.

Extending the theory of complex multiplication to real quadratic fields represents
the simplest open case of Hilbert’s twelfth problem aiming to adapt the Jugendtraum of
Kronecker to ground fields other than the rational numbers or CM fields. A systematic
attempt was initiated around 2000 to formulate a theory of “real multiplication”,
involving p-adic rather than complex analytic objects. The resulting real quadratic
analogues of Heegner points, defined in [Dar01] in terms of Coleman’s theory of p-adic
integration, are referred to as Stark-Heegner points. They are expected to give rise
to a systematic norm-compatible supply of global points (on suitable elliptic curves
over Q) defined over ring class fields of real quadratic fields. Because of their strong
analogy with Heegner points, they form the basis for a purely conjectural extension
of the approach of Kolyvagin described in [BDO5| for proving (1) when K is real
quadratic, which is discussed for instance in [BDDO7].
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The article [BD09] introduces a different approach to Stark—Heegner points, by
realising them as derivatives of Hida—Rankin p-adic L-functions. This point of view
leads to the proof in loc. cit. of the rationality of Stark—Heegner points attached to
genus characters of real quadratic fields. It also provides the crucial bridge to connect
Stark—Heegner points to generalised Kato classes arising from suitable p-adic families
of diagonal cycles. The results of [BD07| can likewise be exploited to make a similar
comparison with Heegner points. The explicit comparison between Heegner or Stark-
Heegner points and generalised Kato classes, with a view to broadening the scope of
the conjecture of Perrin-Riou on rational points on elliptic curves [PR93], is the main
goal of this volume.

Comparisons of this type between different Euler systems and Heegner points have
a number of fruitful antecedents, among which it may be worthwhile to mention the
following:

1. A pioneering early work by Rubin [Ru92| examines the global Selmer class
arising from the Euler system of elliptic units and finds that the logarithm of
such a class is proportional to the square of the logarithm of a global point
arising from a Heegner point construction. This comparison of elliptic units
and Heegner points has intriguing consequences for the construction of rational
points on CM elliptic curves via the special values of the Katz p-adic L-function
of an imaginary quadratic field.

2. In an attempt to extend Rubin’s theorem to elliptic curves without complex
multiplication, Bernadette Perrin-Riou conjectured in [PR93] that the p-adic
logarithm of the global Selmer class arising from p-adic families of Beilinson
elements via Kato’s method should likewise be expressed in terms of the square
of the logarithm of a Heegner point. This is proved in [Vel6] for elliptic curves
with multiplicative reduction at p, and in [BDV] in the general case. One of
the key ingredients in the latter work are the articles [BDP13| and [BDP12],
the latter of which proposes an alternate approach to Rubin’s formula based
on special values of p-adic Rankin L-series rather than of the Katz p-adic L-
function.

3. The systematic study of “p-adic iterated integrals” undertaken in [DLR15]
leads to a general conjectural formula relating the p-adic logarithms of gen-
eralised Kato classes to certain regulators which are linear combinations with
algebraic coefficients of products of two logarithms of global points on elliptic
curves. This formula is conceptualised in the framework of a p-adic Birch and
Swinnerton-Dyer conjecture in [BSV21]. The cases where this conjecture is
proved unconditionally (thanks to Heegner points) are an important ingredient
in the proof of Perrin-Riou’s conjecture described in [BDV].

The present volume collects four interrelated articles, partially motivated by the
goal of systematically studying the p-adic logarithm of the balanced diagonal class
attached to a pair of weight one theta series of an imaginary (resp. real) quadratic
field, and of relating it to the product of logarithms of two Heegner (resp. Stark—
Heegner) points. More precisely, the first article [DR.v1] gives an overview of the
theory of Stark—Heegner points and of Hida—Rankin p-adic L-functions attached to
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elliptic curves, and explains the general strategy used to relate Stark—Heegner points
to generalised Kato classes. The second article [DR.v2] studies the problem of the
p-adic interpolation of the image of diagonal cycles under the étale Abel-Jacobi map,
leading to a 3-variable A-adic class in Iwasawa cohomology. It establishes moreover
an explicit reciprocity law, connecting this class to a Hida-Garrett—Rankin p-adic
L-function attached to a triple of Hida families of cusp forms. The third article
[BSV.v3| undertakes the construction of a so-called balanced diagonal class in three
variables from a different standpoint, by exploiting the invariant theory of the diagonal
embedding of GLs into its triple product, combined with the Ash—Stevens theory of
p-adic distributions. This analytic approach, formulated in the context of Coleman
families of modular forms, lends itself to generalisations to higher groups. It allows to
establish an explicit reciprocity law in this context, which is at the base of the results
of the subsequent article. In turn the constructions of [DR.v2] deal more directly
with the geometry of diagonal cycles and have been investigated further for example
in [CS21]. The fourth article [BSV.v4] gives detailed proofs of the formulae relating
the product of the p-adic logarithms of two Heegner points or Stark—Heegner points
to the specialisation at the weight (2,1,1) of the balanced diagonal class. We refer to
the extensive introductions of the various chapters for further details.

At present, the collection of Heegner points on a modular elliptic curve, arising
from the combination of modularity and of the theory of complex multiplication,
still represents the “gold standard” for understanding the Birch and Swinnerton-Dyer
conjecture, particularly in analytic rank one, where the crucial issue of producing
non-trivial algebraic points of infinite order on elliptic curves becomes inescapable.
By contrast, generalised Kato classes, as well as their forebearers arising from elliptic
units make a priori only tenuous contact with these central issues, upon which further
progress on the Birch and Swinnterton-Dyer conjecture would seem to be crucially
dependent. Obtaining tight connections between generalised Kato classes and global
points on elliptic curves, such as those proved in this volume, is worthwhile for at least
two reasons. Firstly, it seems important to understand the extent to which Selmer
classes constructed via a p-adic limiting process are related to “motivic” extensions
attached to genuine global points on elliptic curves (or more general algebraic cycles
on higher dimensional varieties). The results of the present monograph combine
with those of [Ru92], [Vel6], [BDV]|, [DLR15] and [BSV21] to present a coherent
picture in the setting of generalised Kato classes arising from diagonal cycles on triple
products. Secondly, it lends some theoretical support for the theory of Stark—Heegner
points, towards the hope of extending the available constructions of rational points
on elliptic curves beyond the theory of Heegner points.

This monograph owes a tremendous debt to the vision of Perrin-Riou, whose conjec-
ture of [PR93] is a basic prototype for the results that are proved here. Perrin-Riou’s
insights into the connection between Euler systems and p-adic L-functions through
her fundamental “dual exponential map in p-adic families” also provides a key ingre-
dient for the proofs of our main results. It is therefore a pleasure to dedicate this
collection to Bernadette Perrin-Riou on her 65th birthday.
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STARK-HEEGNER POINTS AND DIAGONAL CLASSES

by

Henri Darmon and Victor Rotger

Abstract. — Stark-Heegner points are conjectural substitutes for Heegner points
when the imaginary quadratic field of the theory of complex multiplication is replaced
by a real quadratic field K. They are constructed analytically as local points on
elliptic curves with multiplicative reduction at a prime p that remains inert in K,
but are conjectured to be rational over ring class fields of K and to satisfy a Shimura
reciprocity law describing the action of Gk on them. The main conjectures of [Da01]
predict that any linear combination of Stark-Heegner points weighted by the values
of a ring class character 1 of K should belong to the corresponding piece of the
Mordell-Weil group over the associated ring class field, and should be non-trivial
when L'(E/K,4,1) # 0. Building on the results on families of diagonal classes
described in the remaining contributions to this volume, this note explains how such
linear combinations arise from global classes in the idoneous pro-p Selmer group,
and are non-trivial when the first derivative of a weight-variable p-adic L-function
2Zp(f/K, ) does not vanish at the point associated to (E/K,).
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1. Introduction

Let E be an elliptic curve over Q of conductor IV and let K be a quadratic field
of discriminant D relatively prime to N, with associated Dirichlet character x .

When yg(—N) = —1, the Birch and Swinnerton-Dyer conjecture predicts a sys-
tematic supply of rational points on E defined over abelian extensions of K. More
precisely, if H is any ring class field of K attached to an order O of K of conductor
prime to DN, the Hasse-Weil L-function L(E/H, s) factors as a product

(1.1) L(E/H,s) = [[ L(E/K,1, )
P

of twisted L-series L(E/K, 1, s) indexed by the finite order characters
¥:G=Gal(H/K)— L™,

taking values in some fixed finite extension L of Q. The L-series in the right-hand
side of (1.1) all vanish to odd order at s = 1, because they arise from self-dual Galois
representations and have sign xx(—N) in their functional equations. In particular,
L(E/K,1,1) = 0 for all ¥». An equivariant refinement of the Birch and Swinnerton-
Dyer conjecture predicts that the i-eigenspace E(H)Y C E(H) ® L of the Mordell-
Weil group for the action of Gal (H/K') has dimension > 1, and hence, that E(H)®Q
contains a copy of the regular representation of G.

When K is imaginary quadratic, this prediction is largely accounted for by the
theory of Heegner points on modular or Shimura curves, which for each 1 as above
produces an explicit element P, € E(H )¥. The Gross-Zagier formula implies that
P, is non-zero when L'(E/K,1,1) # 0. Thus it follows for instance that E(H) ® Q
contains a copy of the regular representation of G when L(E/H, s) vanishes to order
[H : K] at the center.

When K is real quadratic, the construction of non-trivial algebraic points in E(H)
appears to lie beyond the scope of available techniques. Extending the theory of
Heegner points to this setting thus represents a tantalizing challenge at the frontier
of our current understanding of the Birch and Swinnerton-Dyer conjecture.

Assume from now on that D > 0 and there is an odd prime p satisfying
(1.2) N =pM withpt M,  xk(p)=-1, xx(M)=1

A conjectural construction of Heegner-type points, under the further restriction
that xyx(¢) = 1 for all ¢|M, was proposed in [Da01l], and extended to the more
general setting of (1.2) in [Gr09], [DG12|, [LRV12|, [KPM18] and [Rel5|. It
leads to a canonical collection of so-called Stark-Heegner points

P, € E(H®Q,) =[] E(H,),
elp
indexed by the ideal classes a of Pic(O), which are regarded here as semi-local points,
ie., [H : K]-tuples Py = { Py} p|p of local points in E(K),). This construction, and its
equivalence with the slightly different approach of the original one, is briefly recalled
in §2.
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As a formal consequence of the definitions (cf. Lemma 2.1), the semi-local points
P, satisfy the Shimura reciprocity law

Py = Piec(o).a forall o €@,

a

where G acts on the group E(H ® Q) in the natural way and rec : G — Pic(O) is
the Artin map of global class field theory.

The construction of the semi-local point P, € [ olp E (Hy,) is purely p-adic analytic,
relying on a theory of p-adic integration of 2-forms on the product H x H,, where
‘H denotes Poincaré’s complex upper half plane and #, stands for Drinfeld’s rigid
analytic p-adic avatar of H, the integration being performed, metaphorically speaking,
on two-dimensional regions in H, x H bounded by Shintani-type cycles associated
to ideal classes in K. The following statement of the Stark-Heegner conjectures of
loc.cit. is equivalent to [Da01, Conj.5.6, 5.9 and 5.15], and the main conjectures in
[Gr09], [DG12], [LRV12], [KPM18] and [Rel5]| in the general setting of (1.2):

Stark-Heegner Conjecture. The semi-local points P, belong to the natural image
of E(H) in E(H ® Qp), and the 1-component

Py = Z v Ha)P, € E(H®Q,)Y
acePic(0)

is non-trivial if and only if L'(E/K,,1) # 0.

The Stark-Heegner Conjecture has been proved in many cases where v is a
quadratic ring class character. When 92 = 1, the induced representation

V"/’ = Indgw = X1 EB X2

decomposes as the sum of two one-dimensional Galois representations attached to
quadratic Dirichlet characters satisfying

x1(p) = —xa(p), x1(M) = x2(M),

and the pair (x1,x2) can be uniquely ordered in such a way that the L-series
L(E,x1,s) and L(E, x2,s) have sign 1 and —1 respectively in their functional
equations.

Define the local sign « := a,(E), which is equal to either 1 or —1 according to
whether E has split or non-split multiplicative reduction at p. Let p be a prime
of H above p, and let 0, € Gal(H/Q) denote the associated Frobenius element.
Because p is inert in K/Q, the unique prime of K above p splits completely in H/K
and o, belongs to a conjugacy class of reflections in the generalised dihedral group
Gal (H/Q). It depends in an essential way on the choice of p, but, because v cuts
out an abelian extension of Q, the Stark-Heegner point

does not depend on this choice. It can in fact be shown that

po _ 2P, if x2(p) =
v 0 if x2(p) = —a.
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The recent work [Mo17] of Mok and [LMY 17| of Longo, Martin and Yan, building
on the methods introduced in [BD09, Thm. 1], [Mo11], and [LV14], asserts:

Stark-Heegner theorem for quadratic characters. Let ¥ be a quadratic ring
class character of conductor prime to 2DN. Then the Stark-Heegner point Py belongs
to E(H) ® Q and is non-trivial if and only if

(14) L(E7X17 1) 7é O’ L/(Ea X2, 1) 7é 07 and XQ(p) = Q.

The principle behind the proof of this result is to compare Pj to suitable Heegner
points arising from Shimura curve parametrisations, exploiting the fortuitous circum-
stance that the field over which Py is conjecturally defined is a biquadratic extension
of Q and is thus also contained in ring class fields of imaginary quadratic fields (in
many different ways).

The present work is concerned with the less well understood generic case where
1% # 1, when the induced representation Vi is irreducible. Note that v is either
totally even or totally odd, i.e., complex conjugation acts as a scalar €, € {1, —1} on
the induced representation V.

The field which % cuts out cannot be embedded in any compositum of ring class
fields of imaginary quadratic fields, and the Stark-Heegner Conjecture therefore seems
impervious to the theory of Heegner points in this case.

The semi-local point Pj of (1.3) now depends crucially on the choice of p, but it
is not hard to check that its image under the localisation homomorphism

Jp it E(H ®Qp) — E(H,) = E(K))

at p is independent of this choice, up to scaling by L* (cf. Lemma 2.4). It is the local
point
Pg, = jp(PS) € E(H,) ® L = E(K,) @ L

which will play a key role in Theorems A and B below.

Theorems A and B are conditional on either one of the two non-vanishing hypothe-
ses below, which apply to a pair (F, K) and a choice of archimedean sign € € {—1,1}.
The first hypothesis is the counterpart, in analytic rank one, of the non-vanishing for
simultaneous twists of modular L-series arising as the special case of [DR17, Def. 6.8|
discussed in (168) of loc.cit., where it plays a similar role in the proof of the Birch
and Swinnerton-Dyer conjecture for L(E/K, 1, s) when L(E/K,1),1) # 0. The main
difference is that we are now concerned with quadratic ring class characters for which
L(E/K,1,s) vanishes to odd rather than to even order at the center.

Analytic non-vanishing hypothesis: Given (E, K) as above, and a choice of a
sign € € {1, —1}, there exists a quadratic Dirichlet character x of conductor prime to
DN satisfying

X(_l) = -6 XXK(p) =, L(E’X7 1) 7é Ov LI(E7XXKa 1) 7é 0.
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The second non-vanishing hypothesis applies to an arbitrary ring class character &
of K.

Weak non-vanishing hypothesis for Stark-Heegner points: Given (E,K) as
above, and a sign € € {1,—1}, there exists a ring class character & of K of conductor
prime to DN with e¢ = —€ for which P¢, # 0.

That the former hypothesis implies the latter follows by applying the Stark-Heegner
theorem for quadratic characters to the quadratic ring class character £ of K attached
to the pair (x1,x2) := (X, XXk ) supplied by the analytic non-vanishing hypothesis.
The stronger non-vanishing hypothesis is singled out because it has the virtue of
tying in with mainstream questions in analytic number theory on which there has
been recent progress [Mul2]. On the other hand, the weak non-vanishing hypothesis
is known to be true in the classical setting of Heegner points, when K is imaginary
quadratic. In fact, for a given F and K, all but finitely many of the Heegner points P,
(as a ranges over all ideal classes of all possible orders in K) are of infinite order, and
P and P¢ are therefore non-trivial for infinitely many ring class characters ¢, and for
at least one character of any given conductor, with finitely many exceptions. It seems
reasonable to expect that Stark-Heegner points should exhibit a similar behaviour,
and the experimental evidence bears this out as one can readily verify on a software
package like Pari or Magma. In practice, efficient algorithms for calculating Stark-
Heegner points make it easy to produce a non-zero P, for any given (E, K), and
indeed, the extensive experiments carried out so far have failed to produce even a
single example of a vanishing P¢ when ¢ has order > 3. Thus, while these non-
vanishing hypotheses are probably difficult to prove in general, they are expected to
hold systematically. Moreover, they can easily be checked in practice for any specific
triple (E, K, €) and therefore play a somewhat ancillary role in studying the infinite
collection of Stark-Heegner points attached to a fixed E and K.

Let V,(E) = (1&11 E[p”]) ® Qp denote the Galois representation attached to E
and let
Sel, (E/H) = H}(H, V,(E))

be the pro-p Selmer group of E over H. The -component of this Selmer group is an
L,-vector space, where L,, is a field containing both Q,, and L, by setting

Sel,(E/H)" = {k € H{ (H,V,(E))®q, Ly s.t. ok =1(0)-x for all o € Gal (H/K)}.
Since F is defined over Q, the group
Selp(E/H) =~ @,H¢ (Q,V,(E) ® o)

admits a natural decomposition indexed by the set of irreducible representations g of
Gal (H/Q). In this note we focus on the isotypic component singled out by %, namely

(1.5) Sel,(E, ) := H(Q, V,(E) ® Vi) = Sel,(E/H)? & Sel,(E/H)"

where Shapiro’s lemma combined with the inflation-restriction sequence gives the
above canonical identifications.
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It will be convenient to assume from now on that E[p] is irreducible as a Gq-
module. This hypothesis could be relaxed at the cost of some simplicity and trans-
parency in some of the arguments.

Theorem A. Assume that the (analytic or weak) non-vanishing hypothesis holds for
(E,K,e). Let ¢ be any non-quadratic ring class character of K of conductor prime
to DN, for which ey = €. Then there is a global Selmer class

Ky € Sel,(E, )
whose natural image in the group E(Hy) ® L, of local points agrees with Py,
The Selmer class mentioned in the statement above is constructed as a p-adic limit
of diagonal classes. In particular, it follows from Theorem A that

(1.6) Py, #0 = dimg, Sel(T),(E/H)Y > 1.

As a corollary, we obtain a criterion for the infinitude of Sel,(E/H)¥ in terms of the
p-adic L-function Z,(f/K,v) constructed in [BDO09, §3|, interpolating the square
roots of the central critical values L(fr/K, ¢, k/2), as fi ranges over the weight k > 2
classical specializations of the Hida family passing through the weight two eigenform f
associated to E. The interpolation property implies that .Z,(f/K, 1) vanishes at k =
2, and its first derivative %, (f/K,1)(2) is a natural p-adic analogue of the derivative
at s = 1 of the classical complex L-function L(f/K,,s). The following result can
thus be viewed as a p-adic variant of the Birch and Swinnerton-Dyer Conjecture in
this setting.

Theorem B. If £,/(f/K,¢)(2) #0, then dimy,, Sel(T),(E/H)¥ > 1.

Theorem B is a direct corollary of (1.6) in light of the main result of [BD09],
recalled in Theorem 4.1 below, which asserts that P, is non-trivial when

L (8K, 0)(2) £ 0.

Remark 1. Assume the p-primary part of (the v-isotypic component of) the Tate-
Shafarevich group of E/H is finite. Then Theorem A shows that Pj , arises from a
global point in E(H) ® L,, as predicted by the Stark-Heegner conjecture. Moreover,
Theorem B implies that dimy, E(H)¥ > 1 if %, (f/K,)(2) # 0.

Remark 2. The irreducibility of Vi, when 1 is non-quadratic shows that Py is
non-trivial if and only if the same is true for P,. The Stark-Heegner Conjecture
combined with the injectivity of the map from E(H) ® L to E(H,) ® L suggests
that P, never vanishes when Py, =% 0, but the scenario where Pj is a non-trivial
element of the kernel of j, seems hard to rule out unconditionally, without assuming
the Stark-Heegner conjecture a priori.

Remark 3. Section 2 is devoted to review the theory of Stark-Heegner points. For
notational simplicity, §2 has been written under the stronger Heegner hypothesis

xx() =—-1,  xx(f) =1 for all {{M



STARK-HEEGNER POINTS AND DIAGONAL CLASSES 7

of [Da01]. This section merely collects together the basic notations and principal
results of [Da01], [BD09], [Mo17] and [LMY17]. Exact references for the analogous
results needed to cover the more general setting of (1.2) are given along the way.
The remaining sections §3, 4, 5, 6 and 7, which form the main body of the article,
adapt without change to proving Theorems A and B under the general assumption
(1.2). In particular, while quaternionic modular forms need to be invoked in the
general construction of Stark-Heegner points of [Gr09], [DG12] and [LRV12]|, the
arguments in loc. cit. only employ classical elliptic modular forms in order to deal with
the general setting.

Remark 4. The proof of Theorems A and B summarized in this note invokes several
crucial results on families of diagonal classes that are proved in the remaining contri-
butions to this volume. In particular the articles [BSVa] and [BSVb] supply essential
ingredients in the extension of the Perrin-Riou style reciprocity laws in settings where
the idoneous p-adic L-function admits an “exceptional zero". In a previous version of
this article it was wrongly claimed that one of the key inputs, namely formula (7.7)
in the text, follows from one of the main results in Venerucci’s paper [Vel6]; the
authors are grateful to Bertolini, Seveso and Venerucci for pointing out this error and
supplying a proof of this important formula in their contributions to this volume.

History and connection with related work. The first two articles in this volume
are the culmination of a project which originated in the summer of 2010 during a
two month visit by the first author to Barcelona, where, building on the approach
of [BDP13], the authors began collaborating on what eventually led to the p-adic
Gross-Zagier formula of [DR14] relating p-adic Abel-Jacobi images of diagonal cycles
on a triple product of modular curves to the special values of certain Garrett-Rankin
triple product p-adic L-functions. In October of that year, they realized that Kato’s
powerful idea of varying Galois cohomology classes in (cyclotomic) p-adic families
could be adapted to deforming the étale Abel Jacobi images of diagonal cycles, or
the étale regulators of Belinson-Flach elements, along Hida families. The resulting
generalised Kato classes obtained by specialising these families to weight one seemed
to promise significant arithmetic applications, notably for the Birch and Swinnerton-
Dyer conjecture over ring class fields of real quadratic fields — a setting that held a
special appeal because of its connection with the still poorly understood theory of
Stark-Heegner points. This led the authors to formulate a program, whose broad
outline was already in place by the end of 2010, and whose key steps involved
— In the setting of “analytic rank zero", a proof of the “weak Birch and Swin-
nerton Dyer conjecture" for elliptic curves over Q twisted by certain Artin
representations ¢ of dimension < 4 arising in the tensor product of a pair of
odd two-dimensional Artin representations, i.e., the statement that

L(E,0,1) #0 = (E(H)® )% =0.

This was carried out in [DR17] and [BDR15] by showing that the generalised
Kato classes fail to be crystalline precisely when L(E, g, 1) # 0.

— In the setting of “analytic rank one", when L(FE, g, 1) = 0 it becomes natural to
compare the relevant generalised Kato class to algebraic points in the g-isotypic
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part of E(H), along the lines of conjectures first formulated by Rubin (for CM
elliptic curves) and by Perrin-Riou (in the setting of Kato’s work). Several
precise conjectures were formulated along those lines, notably in [DLR15],
guided by extensive numerical experiments conducted with Alan Lauder. In
general, the independent existence of such global points is tied with deep and
yet unproved instances of the Birch and Swinnerton-Dyer conjecture, but when
o is induced from a ring class character of a real quadratic field K and p
is a prime of multiplicative reduction for E which is inert in K, it becomes
natural to compare the resulting generalised Kato class (a global invariant in
the Selmer group, albeit with p-adic coefficients) to Stark-Heegner points (which
are defined purely p-adic analytically, but are conjecturally motivic, with Q-
coefficients).
Starting roughly in 2012, the idea of exploiting p-adic families of diagonal cycles and
Beilinson-Flach elements was taken up by several others, motivated by a broader range
of applications. While the authors were fleshing out their strategy for writing the
two papers appearing in this volume, they thus benefitted from several key advances
made during this time, which have simplified and facilitated the work that is described
herein, and which it is a pleasure to acknowledge, most importantly:

— The construction of three variable cohomology classes was further developed
and perfected, in the setting of Beilinson-Flach elements by Lei, Loeffler and
Zerbes [LLZ14] and several significant improvements were subsequently pro-
posed, notably in the article [KLZ17] in which Kings’ A-adic sheaves play an
essential role. These provide what are often more efficient and general ap-
proaches to constructing p-adic families of cohomology classes.

— The article [BSVa] by Bertolini, Seveso and Venerucci that appears in this
volume constructs a three-variable A-adic class of diagonal cohomology classes
by a different method, building on the work of Andreatta-Iovita-Stevens, and
makes a more systematic study of such classes in settings where there is an
exceptional zero, surveying a wider range of scenarios. Although there is some
overlap between the two works as far as the general strategy is concerned,
both present a different take on these results. Indeed, the approach in this
note eschews the methods of Andreatta-lovita-Stevens in favour of an approach
based on the study of a collection of cycles on the cube of the modular curve
X (N) of full level structure. These cycles are of interest in their own right,
and shed a useful complementary perspective on the construction of the A-adic
cohomology classes for the triple product. Indeed, their study forms the basis
for the ongoing PhD thesis of David Lilienfeldt [Li|, and has let to interesting
open questions (cf.e.g. those that are explored in [CS20]).

— Families of cohomology classes based on compatible collections of Heegner
points are of course a long-standing theme in the subject, and have been
taken up anew, for instance in the more recent works of Castella-Hsieh [CS18],
Kobayashi [Ko20] and Jetchev-Loeffler-Zerbes [JLZ20].

Acknowledgements. The first author was supported by an NSERC Discovery grant.
The second author also acknowledges the financial support by ICREA under the
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ICREA Academia programme. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 682152). It is a pleasure to thank M.L.
Hsieh and M. Longo for detailed explanations of their respective recent preprints, and
M. Bertolini, M. Seveso, and R. Venerucci for their complementary works [BSVa],
[BSVb] appearing in this volume.

2. Stark-Heegner points

This section recalls briefly the construction of Stark-Heegner points originally pro-
posed in [Da01l] and compares it with the equivalent but slightly different presen-
tation given in the introduction. As explained in Remark 3, we provide the details
under the running assumptions of loc. cit.,and we refer to the references quoted in
the introduction for the analogous story under the more general hypothesis (1.2).

Let E/Q be an elliptic curve of conductor N := pM with p f M. Since E has
multiplicative reduction at p, the group E(Q,2) of local points over the quadratic
unramified extension Q2 of Q, is equipped with Tate’s p-adic uniformisation

Drrage : Q;2/qz — E(sz)'

Let f be the weight two newform attached to E via Wiles’ modularity theorem, which
satisfies the usual invariance properties under Hecke’s congruence group I'g(N), and
let

I {( o’ ) € SLy(Z[1/p]), ¢=0 (mod M)}

denote the associated p-arithmetic group, which acts by M&bius transformations both
on the complex upper-half plane % and on Drinfeld’s p-adic analogue H,, := P1(C,) —
P1(Qp). The main construction of Sections 1-3 of [Da01] attaches to f a non-trivial
indefinite multiplicative integral

Try
Hy % PL(Q) X Py(Q) — CX /g%, (ra.y) Hf/ s

satisfying

T Y Ty
(2.1) ][ / wy zf/ wy, forall y € T,
yx T

along with the requirement that

o Lo () FloFlo AT

This function is obtained, roughly speaking, by applying the Schneider-Teitelbaum
p-adic Poisson transform to a suitable harmonic cocycle constructed from the modu-
lar symbol attached to f. It is important to note that there are in fact two distinct
such modular symbols, which depend on a choice of a sign w,, = +1 at co and are
referred to as the plus and the minus modular symbols, and therefore two distinct
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multiplicative integral functions, with different transformation properties under ma-
trices of determinant —1 in GL2(Z[1/p]). More precisely, the multiplicative integral
associated to we, satisfies the further invariance property

fe= ()

See sections 1-3 of loc. cit., and §3.3. in particular, for further details.
Let K be a real quadratic field of discriminant D > 0, whose associated Dirichlet
character yx satisfies the Heegner hypothesis

xx(P)=-1,  xx(¢) =1 for all £|M.

It follows that D is a quadratic residue modulo M, and we may fix a 6 € (Z/MZ)*
satisfying 62 = D (mod M). Let K, ~ Q,2 denote the completion of K at p, and let
VD denote a chosen square root of D in K.

Fix an order O of K, of conductor c relatively prime to DN. The narrow Picard
group G := Pic(0O) is in bijection with the set of SLa(Z)-equivalence classes of binary
quadratic forms of discriminant Dc?. A binary quadratic form F = Az? + Bxy + Cy?
of this discriminant is said to be a Heegner form relative to the pair (M,¢) if M
divides A and B = dc (mod M). Every class in Go admits a representative which is
a Heegner form, and all such representatives are equivalent under the natural action
of the group I'o(M). In particular, we can write

Go =To(M)\ {Az* + Bzy + Cy*  with (4,B) = (0,6c) (mod M)}.
For each class a := Az? + By + Cy? € G as above, let

B+ /D r-Bs 20
Ta::Ter_QPCHP7 qu::( 2As T+BS),

where (7, s) is a primitive solution to the Pell equation 22 — Dc?y? = 1. The matrix
vYa € I' has 7, as a fixed point for its action on H,,. This fact, combined with properties
(2.1) and (2.2), implies that the period

Tﬂ ’YD:E
Ja ::f/ wy € K /q*

does not depend on the choice of x € P1(Q) that was made to define it. Property (2.1)
also shows that J, depends only on a and not on the choice of Heegner representative
that was made in order to define 74 and v,. The local point

y(u) = (I>Tate(<]a) c E(Kp)

is called the Stark-Heegner point attached to the class a € Gp.

Let H denote the narrow ring class field of K attached to O, whose Galois group is
canonically identified with G via global class field theory. Because p is inert in K/Q
and Gal (H/K) is a generalised dihedral group, this prime splits completely in H/K.
The set P of primes of H that lie above p has cardinality [H : K| and is endowed
with a simply transitive action of Gal (H/K) = Go, denoted (a,p) — a * p.
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Set K := Hom(P, E(K,)) ~ KI[)H:K]. There is a canonical identification
(2.3) H®Q,=K",

sending € H ® Q,, to the function p — x(p) := z,, where z, denotes the natural
image of x in H, = K. The group Gal (H/K) acts compatibly on both sides of (2.3),
acting on the latter via the rule

(2.4) ox(p) = z(c ! xp).

Our fixed embedding of H into Q, determines a prime pg € P. Conjecture 5.6
of [Da01] asserts that the points y(a) are the images in E(K,) of global points
P! € E(H) under this embedding, and Conjecture 5.9 of loc. cit. asserts that these
points satisfy the Shimura reciprocity law

P!, =rec(b)~ P!, for all b € Pic(O),
where rec : Pic(O) — Gal (H/K) denotes the reciprocity map of global class field
theory.

It is convenient to reformulate the conjectures of [Da01] as suggested in the intro-
duction, by parlaying the collection {y(a)} of local points in E(K,) into a collection
of semi-local points

P, € E(H®Q,) = E(K,)”
indexed by a € Gp. This is done by letting P, (viewed as an E(K,)-valued function
on the set P) be the element of E(H ® Q,) given by

(Pa) (b * po) := y(ab),
so that, by definition
(2.5) Poa(p) = Pa(b*p).
This point of view has the pleasant consequence that the Shimura reciprocity law

becomes a formal consequence of the definitions:

Lemma 2.1. — The semi-local Stark-Heegner points Py € E(H ® Q) satisfy the
Shimura reciprocity law
rec(b) ' (P,) = Ppq.

Proof. — By (2.4),
rec(b) " (Py)(p) = Pa(rec(b) * p) = Py(b * p), for all p € P.
But on the other hand, by (2.5)
Po(b#p) = Poa(p)-
The result follows from the two displayed identities. O

The modular form f is an eigenvector for the Atkin-Lehner involution Wy acting
on Xo(N). Let wy denote its associated eigenvalue. Note that this is the negative
of the sign in the functional equation for L(FE, s) and hence that E(Q) is expected to
have odd (resp. even) rank if wy =1 (resp. if wy = —1). Recall the prime pg of
H attached to the chosen embedding of H into Qp. The frobenius element at pg in
Gal (H/Q) is a reflection in this dihedral group, and is denoted by oy, .



12 HENRI DARMON AND VICTOR ROTGER

Proposition 2.2. — For all a € Go,

UpDPa = wNP —1.
Proof. — Proposition 5.10 of [Da01] asserts that

opoy(a) = wny(ca)

for some ¢ € Go. The definition of ¢ which occurs in equation (177) of loc.cit. directly
implies that

opy(1) = wny(1),  opey(a) = wyy(a™),
and the result follows from this. O
Lemma 2.1 shows that the collection of Stark-Heegner points P, is preserved under

the action of Gal (H/K), essentially by fiat. A corollary of the less formal Proposition
2.2 is the following invariance of the Stark-Heegner points under the full action of

Gal (H/Q):
Corollary 2.3. — For all 0 € Gal (H/Q) and all a € Go,
oP, = wf\?Pb, for some b € Gp,

where
5 — 0 ifoeGal(H/K);
711 ifo ¢ Gal(H/K).

Proof. — This follows from the fact that Gal (H/Q) is generated by Gal (H/K) to-
gether with the reflection oy, . 0

To each p € P we have associated an embedding j, : H — K, and a frobenius
element o, € Gal (H/Q). If p’ = o * p is another prime in P, then we observe that

. . 1 1 . . 1
(2.6) Jp=Jpo0 ", Op =00p0 ", JprO0p =Jp00p00 .

Let ¢ : Gal (H/K) — L* be a ring class character, let

1 _
ey = e Uezcow(a)a e L[Go]

be the associated idempotent in the group ring, and denote by
Pw = e¢P1 S E(H ® Qp) ®L

the i-component of the Stark-Heegner point. Recall from the introduction the sign
a € {—1,1} which is equal to 1 (resp. —1) if F has split (resp. non-split) multiplicative
reduction at the prime p. Following the notations of the introduction, write

P,L(; = (1+C¥UP)P¢.

Lemma 2.4. — The local point j, (P$) 1s independent of the choice of prime p € P
that was made to define it, up to multiplication by a scalar in Y(Go) C L*.
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Proof. — Let p’ = o x p be any other element of P. Then by (2.6),
Jpr(L+aoy )Py = jooo (14 acoyo MeyPr =jpo (14 aoy)o teyPr
= P(0) 'p o (1 +aoy)Py.
The result follows. O

Examples. This paragraph describes a few numerical examples illustrating the scope
and applicability of the main results of this paper. By way of illustration, suppose
that F is an elliptic curve of prime conductor N = p, so that M = 1. In that special
case the Atkin-Lehner sign wy is related to the local sign a by

wWN = —Q.

The following proposition reveals that the analytic non-vanishing hypothesis fails in
the setting of the Stark-Heegner theorem for quadratic characters of [BD09] when
e=—1:

Proposition 2.5. — Let ¢ be a totally even quadratic ring class character of K of
conductor prime to N. Then Py is trivial.

Proof. — Let (x1,x2) = (X, XXk ) be the pair of even quadratic Dirichlet characters
associated to 1, ordered in such a way that L(FE, x1,s) and L(F, x2,s) have signs 1
and —1 respectively in their functional equations. Writing sign(F, x) € {—1,1} for the
sign in the functional equation of the twisted L-function L(E, x, s), it is well-known
that, if the conductor of y is relatively prime to N,

sign(E, x) = sign(E)x(—N) = —wnx(=1)x(p) = ax(p)x(-1).
It follows that
axi(p) =1,  axa(p) = -1,
but equation (1.4) in the Stark-Heegner theorem for quadratic characters implies
Py =0. O

The systematic vanishing of Py for even quadratic ring class characters of K can
be traced to the failure of the analytic non-vanishing hypothesis of the introduction,
which arises for simple parity reasons. The failure is expected to occur essentially
only when E has prime conductor p, i.e., when M = 1, and never when M satisfies
ordg(M) = 1 for some prime g. Because of Proposition 2.5, the main theorem of
[BDO09]| gives no information about the Stark-Heegner point P} attached to even
quadratic ring class characters of conductor prime to p, on an elliptic curve of con-
ductor p.

On the other hand, in the setting of Theorem A of the introduction, where v has
order > 2, this phenomenon does not occur as the non-vanishing of Py and PJ * are
equivalent to each other, in light of the irreducibility of the induced representation
Vi The numerical examples below show many instances of non-vanishing P for ring
class characters of both even and odd parity.

Example. Let E : y?> +y = 23 — z be the elliptic curve of conductor p = 37, whose
Mordell-Weil group is generated by the point (0,0) € F(Q). Let K = Q(+/5) be the
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real quadratic field of smallest discriminant in which p is inert. It is readily checked
that L(E/K, s) has a simple zero at s = 1 and that E(K) also has Mordell-Weil rank
one. The curve F has non-split multiplicative reduction at p and hence &« = —1 in
this case. It is readily verified that the pair of odd characters (x1, x2) attached to the
quadratic imaginary fields of discriminant —4 and —20 satisfy the three conditions
in (1.4), and hence the analytic non-vanishing hypothesis is satisfied for the triple
(E,K,e = 1). In particular, Theorem A holds for E, K, and all even ring class
characters of K of conductor prime to 37.

Let O be an order of O with class number 3, and let H be the corresponding
cubic extension of K. The prime p of H over p and a generator o of Gal (H/K) can
be chosen so that the components

P =P, Py = Pyy, P3:= P,z
in E(H,) = E(K,) of the Stark-Heegner point in E(H ® Q,,) satisfy
Py =Py, Py = P3, Py = Ps.
Letting v be the cubic character which sends o to ¢ := (1 ++/—3)/2, we find that
Jp(Py) = Pi+(P+ (P,
op(Jp(Py)) = Pi+(Pas+(*Py= P+ (P + (P,
Gp(P3) = V=3x(Py—P3)=V=3x (P~ Py).

The following table lists the Stark-Heegner points P;, Py, and P, — Py attached to the
first few orders O C Og of conductor ¢ = ¢(O) and of class number three, calculated
to a 37-adic accuracy of 2 significant digits. (The numerical entries in the table below
are thus to be understood as elements of (Z/372Z)[\V/5].)

C(O) P1 P2 P2 — Fg
18 | (=635, —256) (319 + 678v/5, —481230+/5) (—360, 684 + 27+/5)
38 | (—154,447) | (—588+ 1237v/5,367 4 386v/5) | (—437,684 + 87/5)
46 | (223,12-37) | (=112 +629v/5, (=6 + 34V/5) - 37) 00
47 | (610, —229) (539 + 711/5, 10 + 439+/5) (—293,684 + 1132/5)
54 | (533,-561) (679 + 984+/5, 391 + 8621/5) (93,684 + 673v/5)

Since the Mordell-Weil group of E(K) has rank one, the data in this table is enough
to conclude that the pro-37-Selmer groups of E over the ring class fields of K attached
to the orders of conductors 18, 38, 47 and 54 have rank at least 3. As for the order
of conductor 46, a calculation modulo 372 reveals that P, — P, is non-trivial, and
hence the pro-37 Selmer group has rank > 3 over the ring class field of that conductor
as well. Under the Stark-Heegner conjecture, more is true: the Stark-Heegner points
above are 37-adic approximations of global points rather than mere Selmer classes.
But recognising them as such (and thereby proving that the Mordell-Weil ranks are
> 3) typically requires a calculations to higher accuracy, depending on the eventual
height of the Stark-Heegner point as an algebraic point, about which nothing is known
of course a priori, and which can behave somewhat erratically. For example, the x-
coordinates of the Stark-Heegner points attached to the order of conductor 47 appear
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to satisfy the cubic polynomial
z? — 3192% + 190z + 420,

while those of the Stark-Heegner points for the order of conductor 46 appear to satisfy
the cubic polynomial

23523470012° — 3477269879122 + 138835821427z — 136501565573

with much larger coefficients, whose recognition requires a calculation to at least 7
digits of 37-adic accuracy.

The table above produced many examples of non-vanishing Py for ¢ even, and in
particular it verifies the non-vanishing hypothesis for Stark-Heegner points stated in
the introduction, for the sign ¢ = —1. This means that Theorem A is also true for
odd ring class characters of K, even if the premise of (1.6) is never verified for odd
quadratic characters of K.

3. p-adic L-functions associated to Hida families

Let
£= 3 an(H)" € Aellg]
n>1

be the Hida family of tame level M and trivial tame character passing through f;
cf. [BD09| and [DRD, §1.3] for more details on the notations chosen for Hida families.

Let 9 € Wy denote the point of weight 2 such that f,, = f. Note that f;, € Sz(N)
is new at p, while for any = € W§ with wt(x) = k > 2, £,(q) = £2(q) — B£2(¢P) is the
ordinary p-stabilisation of an eigenform f7 of level M = N/p. We set f; = f,, = f.

Let K be a real quadratic field in which p remains inert and all prime factors of M
split, and fix throughout a finite order anticyclotomic character ¢ of K of conductor
¢ coprime to DN, with values in a finite extension L,/Q,. Note that ¢(p) =1 as the
prime ideal pOg is principal.

Under our running assumptions, the sign of the functional equation satisfied by
the Hasse-Weil-Artin L-series L(E/K, v, s) = L(f, 1, s) is

5(E/K7¢) = 713

and in particular the order of vanishing of L(E/K,1,s) at s =1 is odd. In contrast,
at every classical point x of even weight k& > 2 the sign of the functional equation
satisfied by L(f,/K,, s) is
e(fy/K,¢) =+1
and one expects generic non-vanishing of the central critical value L(f,/K, v, k/2).
In [BDO09, Definition 3.4], a p-adic L-function

jp(f/Ka ’l/}) € Af

associated to the Hida family f, the ring class character ¥ and a choice of collection
of periods was defined, by interpolating the algebraic part of (the square-root of) the
critical values L(f,/K,,k/2) for x € W§ with wt(z) = k =k +2 > 2. See also



16 HENRI DARMON AND VICTOR ROTGER

[LMY17, §4.1] for a more general treatment, encompassing the setting considered
here.

In order to describe this p-adic L-function in more detail, let ®¢, ¢ denote the
classical modular symbol associated to f, with values in the space Pj (C) of homo-
geneous polynomials of degree £, in two variables with coefficients in C. The space
of modular symbols is naturally endowed with an action of GLy(Q) and we let @E e

and ;¢ denote the plus and minus eigencomponents of ®¢ ¢ under the involution

at infinity induced by ws, = ((1) 5 )

As proved in [KZ84, §1.1] (with slightly different normalizations as for the powers
of the period 27 that appear in the formulas, which we have taken into account
accordingly), there exists a pair of collections of complex periods

{Qi,c}xewf‘% {Qf;,c}:vewg ccx
satisfying the following two conditions:

(i) the modular symbols

¢ 0
(I)ft =, ®p = = take values in Q(f;) = Q({an(fz)}n>1),
Qfm,c Qf,‘l}yc

(ii) and QE’C ~Qf;p = A2 (£2, £2).

Note that conditions (i) and (ii) above only characterize Qi c up to multiplication
by non-zero scalars in the number field Q(f.).

Fix an embedding Q — Q, C C,, through which we regard @i as C,-valued
modular symbols. In [GS93]|, Greenberg and Stevens introduced measure-valued
modular symbols ,u;f and pg interpolating the classical modular symbols @g and @
as x ranges over the classical specializations of f.

More precisely, they show (cf. [GS93, Theorem 5.13] and [BD07, Theorem 1.5])
that for every x € Wy, there exist p-adic periods
(3.1) of .9 €C,
such that the specialisation of uf and pp at @ satisfy
(3.2) o) =f - 0F,  wlup) =9f - 0.

:cap

Since no natural choice of periods Q ¢ Presents itself, the scalars Q+ and Qg »
are not expected to vary p- adically contlnuoubly However, conditions (1) and (ii)
above imply that the product Q 97 € C, is a more canonical quantity, as it
may also be characterized by the formula

of - Pp
+ -\ _ O+ R f,,C
(33) ) wlpe) = O, » % Am2(f2,£2)
which is independent of any choices of periods.

This suggests that the map = — Q+ Qf » may extend to a p-adic analytic func-

tion, possibly after multiplying it by sultable Euler-like factors at p. And indeed, the
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following theorem is proved in one of the contributing articles of Bertolini, Seveso and
Venerucci to this volume, and we refer to [BSVb, §3] for the proof.

Theorem 3.1. — There exists a rigid-analytic function £,(Sym*(f)) on a neigh-
borhood Ug of We around xo such that for all classical points x € Ug N W§ of weight
k>2:

(3.4) Zp(Sym*(f))(z) = Eo(£2)E () - O

2P fz,p?

where E(f,;) and & (£,) are as in [DR14, Theorem 1.3]. Moreover, Z,(Sym?(f))(xo) €
Q.

Remark 3.1. — The motivation for denoting fp(Sme(f)) the p-adic function ap-
pearing above relies on the fact that Qi p are p-adic analogues of the complex periods

Qi,c- As is well-known, the product QEAC'Qf_I,c = 42 (£2,£2) is essentially the near-
central critical value of the classical L-function associated to the symmetric square of
fo. In addition to this, as M. L. Hsieh remarked to us, it might not be difficult to show
that Z,(Sym?(f)) is a generator of Hida’s congruence ideal in the sense of [Hs20),

§1.4, p.4].

The result characterizing the p-adic L-function .Z,(f/K, ) alluded to above is
[BDO09, Theorem 3.5], which we recall below. Although [BDO09, Theorem 3.5] is
stated in loc. cit. only for genus characters, the proof has been recently generalized
to arbitrary (not necessarily quadratic) ring class characters ¢ of conductor ¢ with
(¢, DN) = 1 by Longo, Martin and Yan in [LMY17, Theorem 4.2|, by employing
Gross-Prasad test vectors to extend Popa’s formula [Po06, Theorem 6.3.1] to this
setting.

Let f. € K denote the explicit constant introduced at the first display of [LMY17,
§3.2]. It only depends on the conductor ¢ and its square lies in Q*.

Theorem 3.2. — The p-adic L-function L,(f/K,1) satisfies the following interpo-
lation property: for all x € Wg of weight wt(x) =k =k, +2 > 2, we have

L8/ K. ) (@) = frp (2) x L(E /K, 1, k/2)"/?

where
Ko+l ke €4
. fo- (D)5 (%)) %
= ]_— 2 ko . 2 : I’p'
few(r) = (1—ag"p*) (2mi)ke /2 O c

4. A p-adic Gross-Zagier formula for Stark-Heegner points

One of the main theorems of [BD09] is a formula for the derivative of £, (f/K, )
at the point xg, relating it to the formal group logarithm of a Stark-Heegner point.
This formula shall be crucial for relating these points to generalized Kato classes and
eventually proving our main results.
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Theorem 4.1. — The p-adic L-function £,(f/K, 1) vanishes at the point xo of
weight 2 and

d 1 o
(41) %gp(f/K7 ’L/))\:D::ro = 5 10gp<Pw )

Proof. — The vanishing of %,(f/K,vy) at * = x¢ is a direct consequence of the
assumptions and definitions, because x = x( lies in the region of interpolation of the
p-adic L-function and therefore Z,(f/K,1)(xo) is a non-zero multiple of the central
critical value L(f/K,1,1). This L-value vanishes as remarked in the paragraph right
after (1.1).

The formula for the derivative follows verbatim as in the proof of [BD09, Theorem
4.1]. See also [LMY17, Theorem 5.1] for the statement in the generality required
here. Finally, we refer to [LV14] for a formulation and proof of this formula in
the setting of quaternionic Stark-Heegner points, under the general assumption of
(1.2). O

5. Setting the stage

In this section we set the stage for the proofs of Theorems A and B by introducing
a particular choice of triplet of eigenforms (f, g, h) of weights (2,1,1). Let E/Q be an
elliptic curve having multiplicative reduction at a prime p and set o = a,(E) = £1.
Let

Y:Gal(H/K) — L*
be an anticyclotomic character of a real quadratic field K satisfying the hypotheses
stated in the introduction.

In particular we assume that a prime ideal p above p in H has been fixed and either
of the non-vanishing hypotheses stated in loc. cit. holds; these hypotheses give rise to
a character £ of K having parity opposite to that of ¢ that we fix for the remainder
of this note, satisfying that the local Stark-Heegner point P, is non-zero.

As shown in [DR17, Lemma 6.9], there exists a (not necessarily anti-cyclotomic)
character 9 of finite order of K and conductor prime to DNg such that

(5.1) Yo/vo = &/

Since by hypothesis £/ is totally odd, it follows that ¥y has mixed signature (4, —)
with respect to the two real embeddings of K.

Let ¢ C Ok denote the conductor of 1y and let x denote the odd central Dirichlet
character of ¢y. Let xi also denote the quadratic Dirichlet character associated to

K/Q.
Let f € Sa(pMy) denote the modular form associated to E by modularity. Like-
wise, set
My = Dc* Ngq(c) and M, =D Ng/q(c)

and define the eigenforms
9=0(oy) € S1(Mg,xxx) and h=0(;") €81 (M, x "xk)

to be the theta series associated to the characters 1oy and 1y ! respectively.
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Recall from the introduction that E[p] is assumed to be irreducible as a Gq-module.
This implies that the mod p residual Galois representation attached to f is irreducible,
and thus also non-FEisenstein mod p. The same claim holds for g and h because ¥ and
¢ have opposite signs and p is odd, hence ¢ # *! (mod p).

Note that p { My MyMj,. Asin previous sections, we let M denote the least common
multiple of My, M, and Mj. The Artin representations V, and V}, associated to g
and h are both odd and unramified at the prime p. Since p remains inert in K, the
arithmetic frobenius Fr, acts on Vj; and V}, with eigenvalues

{agvﬁg} = {Cv _C}v {ah75h} = {C_lv _C_l}a

where ( is a root of unity satisfying x(p) = —¢>.

In light of (5.1) we have ¥g/1o = ¢ and Yo/ = &, hence the tensor product
of V, and V}, decomposes as
(5.2) Voh =V, @ Viy =~ IndR(¢) ® Ind$(€)  as Gq-modules
and

Vo=V a Vi, Vi=Vo VI Vo = @ Vil as Gq,-modules
(asb)

where (a,b) ranges through the four pairs (ay, an), (o, Br), (B, @), (Bg, Br). Here
V', say, is the Gq,-submodule of V; on which Fr, acts with eigenvalue g, and
similarly for the remaining terms.

Let W), be an arbitrary self-dual Artin representation with coeflicients in L, and

factoring through the Galois group of a finite extension H of Q. Assume W, is
unramified at p. There is a canonical isomorphism

(5.3) HY(Q,Vy(E)@W,) =~ (Hl(H7Vp(E))®Wp)Ga1(H/Q)
= Homga (r/q)(Wp, H' (H, V,(E))),

where the the second equality follows from the self-duality of W,. Kummer theory
gives rise to a homomorphism

(54)  6: E(H)"» := Homgu (n/q)(Wp, E(H) ® L,) — HY(Q,V,(E) @ W,).
For each rational prime ¢, the maps (5.3) and (5.4) admit local counterparts
HY Qe Vp(B)@W,) =~ Homga (11/Q) (Wp, ©xjcH' (Hx, Vo (E))),
Wp
de: (®reE(H))) — HY(Qu, V,(E) @ Wy),
for which the following diagram commutes:

(5.5) E(H)W» —— HY(Q,V,(E) ® W,)

l resy lresz

(@A\ZE(HA))Wp SN HY (Qq, V,(E) @ Wp).

For primes ¢ # p, it follows from [Ne98, (2.5) and (3.2)] that H'(Qe, V,(E) @
W,) = 0. (We warn however that if we were working with integral coefficients, these
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cohomology groups may contain non-trivial torsion.) For ¢ = p, the Bloch-Kato
submodule H} (Q,, V,(E) ® W,) is the subgroup of H'(Q,, V,(E) ® W,,) formed by
classes of crystalline extensions of Galois representations of V,(E) ® W, by Q,. It
may also be identified with the image of the local connecting homomorphism 6,,.

Lemma 5.1. — There is a natural isomorphism of L,-vector spaces
H (Qp, Vip(E) @ Wy) = Hi (Qp, Vim @ W =) & HY(Qp, VT @ Wy, /W, =),
where recall @ = a,(E) = £1.

Proof. — We firstly observe that H{ (Q,, V,(E) ® W) = HL(Q,, Vp(E) @ W,) by
e.g. [Be09, Prop. 2.0 and Ex. 2.20|, because V,(E) ® W, contains no unramified
submodule. As shown in [F190, Lemma , p.125|, it follows that

Hfl(Qp» VP(E) ® Wp) = Ker(Hl(Qp, Vp(E) ® Wp) — Hl(Ip» Vp_(E) ® Wp))

is the kernel of the composition of the homomorphism in cohomology induced by
the natural projection V,(E) — V,7(E) and restriction to the inertia subgroup
Ip C GQP'
The long exact sequence in Galois cohomology arising from the exact sequence
0— V:(E) — Vp(E) — V, (E) =0

shows that the kernel of the map H'(Q,, V,(E) @ W) — H'(Qy, V, (E) ® W) is
naturally identified with H'(Q,, V" (E) ® W,). We have H'(I,, Q,(¢ecye)) = 0 for
any nontrivial unramified character . Besides, it follows from e.g. [DRb, Example

1.4] that H} (Qp, Qp(ecye)) = ker (H(Qp, Qp(Ecye)) = H (I, Qp(ecyc))) is a line in
the two-dimensional space H'(Qp, Qp(ccyc)), which Kummer theory identifies with

Z; ®zp Q, sitting inside Q) ®Zp Q,.
Note that V,"(E) = Ly(¢fecyc) and V7 (E) = L, (1) where 1)y is the unramified
quadratic character of Gq, sending Fr;, to a. The lemma follows. O
The Selmer group Sel(T),(E, W,) is defined as
Sel(T)y(B,Wy) == {\ € H'(Q, V,(E) @ W,,) : res,(\) € Hi (Qp, Vy(E) @ Wy)}.

Here res, stands for the natural map in cohomology induced by restriction from
Gq to GQP'

6. Factorisation of p-adic L-series

The goal of this section is proving a factorisation formula of p-adic L-functions
which shall be crucial in the proof of our main theorems.

Keep the notations introduced in the previous section and recall in particular the
sign « := ap,(f) € {£1} associated to E. Let g and h,c-1 denote the ordinary
p-stabilizations of g and h on which the Hecke operator U, acts with eigenvalue

(6.1) ag:=C and o :=al?,

respectively.
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Let f, g and h be the Hida families of tame levels My, My, M), and tame characters
1, XXx, X ‘X passing respectively through f, g¢ and h,e-1. The existence of these
families is a theorem of Wiles [Wi88], and their uniqueness follows from a recent result
of Bellaiche and Dimitrov [BeDil6] (note that the main theorem of loc. cit. indeed
applies because oy # By, oy, # By and p does not split in K'). Let xg, yo, 20 denote
the classical points in W, Wy and Wh, respectively such that £, = f, gy, = g¢ and
h,, = hgc-1.

As e)qglained in [DR14], [DR17] and recalled briefly in [DRb, (5.1)] in this vol-
ume, associated to a choice

feSRM)f], e STUM, xxx)lgl, heSTHM, x " xk)h]
of A-adic test vectors of tame level M there is a three-variable p-adic L-function
2,7 (f,8,h). Among such choices, Hsieh [Hs20] pinned down a particular choice of
test vectors with optimal interpolation properties (cf.loc. cit.and [DRb, Prop.5.1]

for more details), which we fix throughout this section.
Define

(6.2) L (£, Gcy hac—1) € Ag

to be the one-variable p-adic L-function arising as the restriction of fpf (f‘ , €, fl) to
the rigid analytic curve W x {yo, 20}

In addition, recall the p-adic L-functions described in §3 associated to the twist
of E/K by an anticyclotomic character of K, and set fo(k ) := (DCQ)% /§2, where
fo is the constant introduced at the first display of [LMY17, §3.2]. Note that the
rule k — fo(k) extends to an Iwasawa function, that we continue to denote fo,
because p does not divide De?. Recall also the rigid-analytic function ., (Sym?(f))
in a neighborhood Uy C Wk of zy introduced in (3.4).

Theorem 6.1. — The following factorization of p-adic L-functions holds in As:
Zy(Sym?(£)) x L)) (£, ¢, hac-1) = fo - L(£/ K, ) x Z,(£/ K, €).

Proof. — Tt follows from [DRb, Prop. 5.1] that .pr(f', gcs 7104471) satisfies the follow-

ing interpolation property for all € Wy of weight k > 2:

y k 1—ap2pf  L(£°, g, h,%)1/2
f M _ N —k o 1\2 fo I D
zp (fngahagfl)(x) - (271'1) ’ (5') ’ 1 — Bfg‘xplfk ’ <f§7f§>
Besides, it follows from Theorem 3.2 that the product of .%,(f/K,v) and
Z,(f/ K, €) satisfies that for all z € Wy of weight k > 2:

L8/ K, )Ly (£/ K, ) () = e (@) - fre (@) x LIET /K 0, k/2)Y? - L(E7 /K, €,k /2)"/2

where

9

2-(Dc2)k°2+1 ,(’Lo)!z 0Fr Or

. S 1%2.](6 2 L fep fep

(o) - fe(e) = (1 — %) e .

A direct inspection to the Euler factors shows that for all z € W¢ of weight k& > 2:

(6.3) L(f),g,h,k/2) = L(£) /K, ¥, k/2) - L(£) /K, &, k/2).
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Recall finally from Theorem 3.1 that the value of .Z,(Sym?(f)) at a point 2 €
Us N WY is

fp(Sme(f))(x) =(1- ﬁépl_k)(l — af_fpko )Q}" ,pr_I,p'

Combining the above formulae together with the equality
Of ¢ Qo =4n%(E7, 1),
described in §3, it follows that the following formula holds for all z € Wf of weight
k> 2:
Z,(Sym?*(£)) () x LI (£, Gc, hac-1) () = Ao (k) - L, (£/ K, ) (x) x L, (£/ K, €)(x).

Since Wy is dense in Wk for the rigid-analytic topology, the factorization formula

claimed in the theorem follows. O
Recall from Theorem 3.2 that .Z,(f/K, ) and .Z,(f/K, £) both vanish at x( and
d 1 o d 1 o
(64) %gp(f/Ka 'l/))|:c=9c0 = 5 ’ logp(Pw )7 %gp(f/Ka g)\x:wo = 5 ) logp(PE )

By Theorem 3.1, .%,(Sym?(f))(xo) € Q*. It thus follows from Theorem 6.1 that
the order of vanishing of fpf(f'v,gc, FLaC—l) at x = x is at least two and

d? N
(65) @gpf<fv7 9¢, hoc(—l)\z:zo =Cr- Ing(quy) ) Ing(Pga)a
where (1 is a non-zero simple algebraic constant.

As recalled at the beginning of this article, P¢, is non-zero. We can also suppose
that Pi?,p is non-zero, as otherwise there is nothing to prove. Hence (6.5) shows that

the order of vanishing of fpf(f'v,gg, i/lagfl) at x = z¢ is exactly two.

7. Main results

Let us now explain the proofs of the main theorems stated in the introduction by
invoking the results proved in previous sections in combination with some of the main
statements proved in the remaining contributions to this volume.

Let

K(f,g,h) € H'(Q, Vi, (M))
be the A-adic global cohomology class introduced in [DRb, Def. 5.2].
Define Vttgh(M) as the Af[Gql-module obtained by specialising the Agn[Gql-

module V;gh(M ) at (yo, 20). Let
(71) ’%(f’ 9¢» haC*l) = l/yoyzoli(ﬂ g, h) € Hl(Q7 Vlgh(M))
denote the specialisation of k(f, g, h) at (yo, 20), and

K(f5 9¢: hac—1) € HY(Q, Vign(M))

denote the class obtained by specializing (7.1) further at xg.
Let us analyze the above class locally. According to the discussion preceding
Lemma 5.1, it follows that res; (k(f, g¢c, hac-1)) = 0 at every prime £ # p.
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In order to study it at p, write k,(f,gc,hac-1) = respr(f,g¢,hac-1) €

HY(Qp, Vi @ Vgn(M)).
After setting Vga,f’ =Vi® V}i’ , we find that there is a natural decomposition

(7.2) HY(Qp. Vo (B) ® Vyn) = €D H'(Qp, Vo (E) @ Vi)
(a,b)
where (a,b) ranges through the four pairs (o, an), (g, Br), (Bg: an), (B¢, Br). Anal-
ogous decompositions hold for the various Galois cohomology groups appearing in
this section. Given a class k € H'(Qy, V,(E) ® Vi (M)), we shall denote 2 for its
projection to the corresponding (a,b)-component.
Note that

(7.3) agap = B¢0n = a, agfn = Bgap = —a.
Hence, according to Lemma 5.1, (f, g¢, hac-1) lies in the Bloch-Kato finite submodule
of HY(Q, Vygn(M)) if and only if

(i) ’{p(fv 9¢5 hoz(_l)agﬂh and ﬁp(fv 9¢s haC—l)ﬁgah lie in Hl(va Ver(E) ® Vgh(M))a

(i) Kp(f,g¢, hac-1)** and ky,(f, g¢, hac—l)ﬁgﬂh lie in H} (Q,, V;(E) ® Von(M)).

By [DRb, Proposition 1.5.8], the local class ,(f,g¢, hac-1) is the specialization
at (zo, Yo, 20) of a A-adic cohomology class with values in the A-adic representation
V:fgh(M ), which recall is defined as the span in Vlgh(M ) of (suitably twisted) triple
tensor products of the form Vfi ® V:gt ® Vﬁ, with at least two +’s in the exponents.

Since V5? = V' and V) = V", and similarly for Vj,, it follows from the very
definition of V}"gh(M) that the (ag, ap)-component of Ky (f, g, hac-1) in HH(Qy, Vi ®
V;;Lgah' (M)) vanishes —this yields a fortiori claim (ii) for the (g, s )-component. The
same reasoning also yields that the (ay, 8,) and (8,4, o )-components of the projection
of kp(fy9¢, hac—1) to H(Q,, Vi ® Vgn(M)) vanish, and hence (i) holds.

It only remains to analyze the (8,4, 8n)-component x,(f, g¢, hac-1). For this pur-
pose we define the A¢[Gq,]-modules

W = Ve 55 (M) := Ve(M) (e /) ® V2™ (),

W™ o=V (M) := Vg (M)(g; /%) @ Ve (M),

It follows from (6.1) that Vﬁf = L,(«) is the one-dimensional representation af-

forded by the character of Gal (K,/Q,) sending Fr, to o = a,(E). Hence W~ is the

1/2)

sub-quotient of V} ,n (M) that is isomorphic to several copies of Ag (U] hef where

as in [DRb, (1.5.5)], \Ilgh denotes the unramified character of Gq, satisfying
U (Fry) = ap(f)a, " (g1)a, ' () = a- a,(f).
Let
(74) K’g(fmg@ho(*l) € Hl(Q;D)W): K’;{:(fagﬁyhozg"*l)_ EHl(vaw_)

denote the image of k,(f,g¢, hoc-1) under the map induced by the projection
V;‘gh(M) — W = V¢ g3(M), and further to W= = Vi 55(M) respectively.
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Equivalently and in consonance with our notations, ng (f,9¢, hac-1)~ is the spe-
cialization at (yo, z0) of the local class ng(f, g,h)” introduced in [DRb, (1.5.8)] and
invoked in [DRb, Theorem 1.5.1]. Hence [DRb, Theorem 1.5.1] applies and asserts
that the following identity holds in Ag¢ for any triple (f’ , &, fl) of A-adic test vectors:

> = gpf(f'\/?g@ﬁa(_l)'

—1

(7.5) <£f7gh(h‘/£(f, gc, h,ac—l)i), Mg @ Wyz & WfL*C

Let now /@]J;(f, 9¢> hac—1) and /-;]J;(f, 9¢> hac—1)~ denote the specializations at g of
the classes in (7.4). According to our previous definitions, we have

(7.6) /ip(f,gg,hac—l)ﬁgﬁh = ng(f,gc,hac_l).

Since a,(f) = a € {£1} and ge(xp) = 1, it follows from the above description
of W and the character \Ilgh that W(zo) ~ V,(E;)(M) as Gq,-modules, where
E, is the (trivial or quadratic) twist of E given by a. Hence ng(f, g¢,hac-1) €
HY(Qy. Vy(E+)(M)).

The Bloch-Kato dual exponential and logarithm maps associated to the p-adic
representation V,,(E4)(M) take values in a space L, (M) consisting of several copies
of the base field L,. Given a choice of test vectors, it gives rise to a projection
L,(M) — L,. We shall denote by a slight abuse of notation

loggy : Hi (Qp, Vp(E4+)(M)) — Ly

the composition of the Bloch-Kato logarithm with the projection to L.

The following fundamental input comes from the main results due to Bertolini,
Seveso and Venerucci in this volume, and we refer to [BSVa] and [BSVDb] for the
detailed proof; here we just content to point out to precise references in loc. cit. As
explained in the introduction, in a previous version of this paper formula (7.7) below
was wrongly attributed to [Vel6|.

Theorem 7.1. — (Bertolini, Seveso, Venerucci) The local class ng(f, 9¢>hac—1) is
crystalline and

d? N
(77) @fpf(f\/7 g¢, ha(—l)\z:mo = CV2 : IOgBK(Hg(fu 9gc¢, ha(—l))
for some nonzero rational number Cy € Q.

Indeed, the first claim of the above theorem follows from [BSVa, Theorem BJ: since
L(f,g,h,1) = 0 it follows from the equivalence between (a) and (c) of [BSVa, §9.4]
that the dual exponential map vanishes on /{5( [, 9¢, hac—1) —note that the improved
class kj(f, g¢, hac—1) of loc. cit. is simply a non-zero multiple of x(f, g¢, hac-1) in our
setting, because of (7.3). This amounts to saying that the class is crystalline. Formula
(7.7) follows from [BSVb, Proposition 2.2] combined with (7.5).

In light of (7.6) and the above discussion, the above theorem implies that
K(f,9¢s hac-1) belongs to the Selmer group H{ (Q, Vign(M)), as conditions (i) and
(ii) above are fulfilled.
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Recall from (5.2) that Vg, = Vi, @ Ve decomposes as the direct sum of the induced
representations of ¢ and . Write

(7.8) K (f, 9¢, hag—1) € Hi (Q, Vy(B) ® Vyy(M)),
ke(f,9¢, hac—1) € Hi (Q, Vo (E) @ V(M)

for the projections of the class x(f,gc, hac-1) to the corresponding quotients. We
denote as in the introduction

K3 (fs 9 hac—1) = (1 + aop)ky (f, 9¢, hac—1) € HE(H, Vy(E)(M))¥®%

the component of sy (f, g¢, hac-1) on which o, acts with eigenvalue a, and likewise
with 1 replaced by the auxiliary character &.

Lemma 7.1. — We have
1OgE,p K’%(fa g¢,s haC_l) = IOgE,p K’?(f’ g¢, haC_l)'
Proof. — We may decompose the local class
Kp = K‘P(f7 9¢s haCfl) = (Kggahvﬁggﬁha Hggahvﬁggﬁh)

in H'(Qy, Vy ® V,,**"(M)) as the sum of four contributions with respect to the
decomposition (7.2) afforded by the eigen-spaces for the action of o,. In addition to
that, s, also decomposes as

Kp = (Kyp; Kep) € Hfl(va Vp(E) @ Vy(M)) & Hfl(Qp7 Vp(E) @ Ve(M)),

where Ky p, K¢ p are the local components at p of the classes in (7.8). An easy exercise
in linear algebra shows that

(7.9) Rp? ™" = K p = KEp Hggﬁh = Kyp T K p-
Since we already proved that x,**" = 0, the above display implies that Ky = Ke,p

are the same element. The lemma follows.

Let
105, 5, ¢ H} (Qp Vs @ Von (M) 5" HH(Qy, Vy 0 V™ (M) 25 L,
g g

denote the composition of the natural projection to the (84, 81)-component with the
Bloch-Kato logarithm map associated to the p-adic representation Vy ® Vﬁfﬁ "(M) ~
Vi, (M) and the choice of test vectors. Note that H} (Q,, V,(E1)) = HH(Q,, Qp(1)),
which as recalled in [DRb, Example 1.1.4 (¢)] is naturally identified with the comple-
tion of Z, and the Bloch-Kato logarithm is nothing but the usual p-adic logarithm
on Z; under this identification. Lemma 7.1 together with the second identity in (7.9)
imply that

(7’) 1ogE,p Hq?;(fv g¢, haﬁfl) = 1ogﬁgﬁh (’V‘:;D(fa g¢s ha(*l))'

Thanks to (7.7) we have

. d? oo ¥
(”) logﬁgﬁh (Hp(f, 9¢s haC_l)) = Egpf(fvmgQ hozC—l)\z:zo (mOd LX)
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Finally, fix (f' , g, ﬁ) to be Hsieh’s choice of A-adic test vectors satisfying the prop-
erties stated in Theorem 6.1. Recall from (6.5) that, with this choice, we have

2

d r v 1 [} e}
(“7’) @gpf(fva gc¢, ha(_1)|?1::m0 = logp(Pw) ' logp(Pf ) (mOd LX)

Define
Ky 1= log;E’p(Pg“)*1 X Ky, (f; Gous Pa)-
It follows from the combination of (i)-(ii)-(iii) that k. fulfills the claims stated in
Theorem A, and hence the theorem is proved.
Theorem B also follows, because the non-vanishing of the first derivative
L Z,(f/K, )|z, implies that Py, # 0. Theorem A then implies that the

class ry € H} (H, V,(E)(M))¥®¥ is non-trivial.

References

[Be09] Joel Bellaiche, An introduction to the conjecture of Bloch and Kato, available at
http://www.people.brandeis.edu/ jbellaic/BKHawaiib.pdf. 20

[BeDil16] Joel Bellaiche and Mladen Dimitrov, On the eigencurve at classical weight one
points, Duke Math. J. 165 (2016), no. 2, 245-266. 21

[BDO7] Massimo Bertolini and Henri Darmon, Hida families and rational points on elliptic
curves, Invent. Math. 168 (2007), no. 2, 371-431. 16

[BD09] Massimo Bertolini and Henri Darmon, The rationality of Stark-Heegner points over
genus fields of real quadratic fields, Annals Math. 170 (2009) 343-369. 4, 6, 7, 13, 15, 17,
18

[BD14] Massimo Bertolini and Henri Darmon, Kato’s Fuler system and rational points on
elliptic curves I: a p-adic Beilinson formula Israel J. Math. 199 (2014), 163-188.

[BDP13] Massimo Bertolini, Henri Darmon, and Kartik Prasanna, Generalised Heegner cy-
cles and p-adic Rankin L-series, Duke Math J. 162, No. 6, (2013) 1033-1148. 7

[BDR15] Massimo Bertolini, Henri Darmon, and Victor Rotger. Beilinson-Flach elements
and Euler systems II: the Birch-Swinnerton-Dyer conjecture for Hasse- Weil-Artin L-series
J. Algebraic Geom. 24 (2015), no. 3, 569-604. 7

[BSVa] Massimo Bertolini, Marco Seveso, and Rodolfo Venerucci, Reciprocity laws for bal-
anced diagonal classes, in this volume. 7, 8, 9, 24

[BSVb| Massimo Bertolini, Marco Seveso, and Rodolfo Venerucci, Balanced diagonal classes
and rational points on elliptic curves, in this volume. 7, 9, 17, 24

[CS18] Francesc Castella and Ming-Lun Hsieh, Heegner cycles and p-adic L-functions, Math.
Annalen 370 (2018), 567-628. 8

[CS20] Francesc Castella and Ming-Lun Hsieh, On the non-vanishing of generalized Kato
classes for elliptic curves of rank two, preprint available at https://web.math.ucsb.edu/
“castella. 8

[CWTT7] John Coates and Andrew Wiles. On the conjecture of Birch and Swinnerton-Dyer.
Invent. Math. 39 (1977), no. 3, 223-251.

[Da01] Henri Darmon, Integration on Hp X H and arithmetic applications. Ann. of Math.
154 (2001), 589-639. 1, 2, 3, 7, 9, 11, 12


https://web.math.ucsb.edu/~castella
https://web.math.ucsb.edu/~castella

STARK-HEEGNER POINTS AND DIAGONAL CLASSES 27

[DLR15] Henri Darmon, Alan Lauder, and Victor Rotger, Stark points and p-adic iterated
integrals attached to modular forms of weight one. Forum of Mathematics, Pi, (2015), Vol. 3,
e8, 95 pages. 8

[DR14] Henri Darmon and Victor Rotger, Diagonal cycles and Euler systems I: a p-adic
Gross-Zagier formula, Annales Scientifiques de I’'Ecole Normale Supérieure 47, n. 4 (2014),
779-832. 7, 17, 21

[DR16] Henri Darmon and Victor Rotger, Elliptic curves of rank two and generalised Kato
classes, Research in Mathematics, Special issue in memory of Robert Coleman, 3:27 (2016).

[DR17] Henri Darmonand Victor Rotger, Diagonal cycles and Euler systems II: the Birch
and Swinnerton-Dyer conjecture for Hasse- Weil-Artin L-series, Journal of the American
Mathematical Society, 30 Vol. 3, (2017) 601-672. 4, 7, 18, 21

[DRb] Henri Darmon and Victor Rotger, p-adic families of diagonal cycles, in this volume.
15, 20, 21, 22, 23, 24, 25

[DG12] Samit Dasgupta and Matthew Greenberg, L-invariants and Shimura curves, Algebra
and Number Th. 6 (2012), 455-485. 2, 3, 7

[F190] Matthias Flach, A generalisation of the Cassels-Tate pairing, J. reine angew. Math.
412 (1990), 113-127. 20

[Gr09] Matthew Greenberg, Stark—Heegner points and the cohomology of quaternionic
Shimura varieties, Duke Math. J. 147 (2009), no. 3, 541-575. 2, 3, 7

[GS93] Ralph Greenberg and Glenn Stevens, p-adic L-functions and p-adic periods of mod-
ular forms. Invent. Math. 111 (1993), 407-447. 16

[Hs20] Ming-Lun Hsieh, Hida families and p-adic triple product L-functions, American J.
Math., to appear. 17, 21

[JLZ20] Dimitar Jetchev, David Loeffler and Sarah Zerbes, Heegner points in Coleman fam-
ilies, to appear in Proc. London Math. Soc. 8

[Ka04] Kazuya Kato, p-adic Hodge theory and values of zeta functions of modular forms,
Astérisque 295, 2004.

[Kil5] Guido Kings, Eisenstein classes, elliptic Soulé elements and the £-adic elliptic poly-
logarithm. London Math. Soc. Lecture Note Ser., 418, Cambridge Univ. Press, 2015.

[KLZ17] Guido Kings, David Loeffler, and Sarah Zerbes, Rankin-Eisenstein classes and
explicit reciprocity laws, Cambridge J. Math. 5 (2017), 1-122. 8

[Ko20] Shinishi Kobayashi, A p-adic interpolation of generalized Heegner cycles and
integral Perrin-Riou twist, preprint available at https://sites.google.com/view/
shinichikobayashi. 8

[KPM18] Daniel Kohen and Ariel Pacetti, with an appendix by Marc Masdeu, On Heegner
points for primes of additive reduction ramifying in the base field, Trans. Amer. Math. Soc.,
Trans. Amer. Math. Soc. 370 (2018), 911-926. 2, 3

[KZ84] Winfried Kohnen and Don Zagier, Modular forms with rational periods, in "Modular
forms" (Durham, 1983), 197-249, Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res.,
Horwood, Chichester, 1984. 16

[Li] David Lilienfeldt, McGill Ph.D Thesis, in progress. 8

[LLZ14] Antonio Lei, David Loeffler, and Sarah Zerbes. Euler systems for Rankin-Selberg
convolutions of modular forms. Ann. of Math. (2) 180 (2014), no. 2, 653-771. 8

[LRV12] Matteo Longo, Victro Rotger, and Stefano Vigni, On rigid analytic uniformizations
of Jacobians of Shimura curves, Amer. J. Math. 134 (2012), no. 5, 1197-1246. 2, 3, 7


https://sites.google.com/view/shinichikobayashi
https://sites.google.com/view/shinichikobayashi

28 HENRI DARMON AND VICTOR ROTGER

[LMY17] Matteo Longo, Kimball Martin, and Hu Yan, Rationality of Darmon points over
genus fields of non-maximal orders, preprint 2017. 4, 7, 16, 17, 18, 21

[LV14] Matteo Longo and Stefano Vigni, The rationality of quaternionic Darmon points over
genus fields of real quadratic fields, Int. Math. Res. Not. 13 (2014), 3632-3691. 4, 18

[Mo11] Chung-Pang Mok, Heegner points and p-adic L-functions for elliptic curves over
certain totally real fields, Comment. Math. Helv. 86 (2011), 867-945. 4

[Mo17] Chung-Pang Mok, On a theorem of Bertolini-Darmon about rationality of Stark-
Heegner points over genus fields of a real quadratic field, preprint 2017. 4, 7

[Mul2] Ritabrata Munshi, A note on simultaneous nonvanishing twists. J. Number Theory
132 (2012), no. 4, 666-674. 5

[Ne98] Jan Nekovar, p-adic Abel-Jacobi maps and p-adic heights, in The Arithmetic and
Geometry of Algebraic Cycles (Banff, Canada, 1998), CRM Proc. Lect. Notes 24 (2000),
367-379. 19

[Po06] Alex Popa, Central values of Rankin L-series over real quadratic fields. Compos.
Math. 142 (2006), 811-866. 17

[Rel5] Juan Restrepo, Stark-Heegner points attached to Cartan non-split curves, McGill
Ph.D thesis 2015. 2, 3

[Vel6] Rodolfo Venerucci, Ezceptional zero formulae and a conjecture of Perrin-Riou, Inv.
Math. 203 (2016), 923-972. 7, 24

[Wi88] Andrew Wiles, On ordinary A-adic representations assoc. to modular forms, Inv.
Math. 94 (1988), 529-573. 21

Henrl DarMON AND VicTOrR RoTGER, H. D.: Montreal, Canada
E-mail : darmon@math.mcgill.ca o V. R.: IMTech, UPC and Centre de Recerca Matema-
tiques, C. Jordi Girona 1-3, 08034 Barcelona, Spain e FE-mail : victor.rotger@upc.edu



p-ADIC FAMILIES OF DIAGONAL CYCLES

by

Henri Darmon and Victor Rotger

Abstract. — This note provides the construction of a three-variable family of coho-
mology classes arising from diagonal cycles on a triple product of towers of modular
curves, and proves a reciprocity law relating it to the three variable triple-product
p-adic L-function associated 