
Massimo Bertolini, Henri Darmon, Victor Rotger,
Marco Adamo Seveso and Rodolfo Venerucci

HEEGNER POINTS, STARK-HEEGNER
POINTS, AND DIAGONAL CLASSES



Massimo Bertolini, Henri Darmon, Victor Rotger, Marco Adamo Seveso and
Rodolfo Venerucci

2000 Mathematics Subject Classification. — 11R23, 11R34, 11G05, 11G40.

Key words and phrases. — Elliptic curves, modular forms, p-adic L-functions,
Heegner points, Stark-Heegner points, generalised Kato classes.



To Bernadette Perrin-Riou on her 65-th birthday





HEEGNER POINTS, STARK-HEEGNER POINTS, AND
DIAGONAL CLASSES

Massimo Bertolini, Henri Darmon, Victor Rotger,
Marco Adamo Seveso and Rodolfo Venerucci

Abstract. — This volume comprises four interrelated articles whose unifying theme
is the study of Heegner and Stark-Heegner points, and their connections with the
p-adic logarithm of certain global cohomology classes attached to a pair of weight one
theta series of a common (imaginary or real) quadratic field. These global classes are
obtained from p-adic deformations of diagonal classes attached to triples of modu-
lar forms of weight > 1, and naturally generalise a construction of Kato which one
recovers when the two theta series are replaced by Eisenstein series of weight one. Un-
derstanding the extent to which such classes obtained via the p-adic interpolation of
motivic cohomology classes are themselves motivic is a key motivation for this study.
A second is the desire to show that Stark-Heegner points, whose global nature is still
poorly understood theoretically, arise from classes in global Galois cohomology.

Résumé. — Ce volume est constitué de 4 articles interdépendants dont le théme
unificateur est l’étude des points de Heegner et de Stark-Heegner, et leurs relation
avec certaines classes de cohomologie Galoisienne globales associées à une paire de
séries theta de poids un du même corps quadratique (imaginaire ou réel). Ces classes
proviennent de déformations p-adiques des classes diagonales associés à des triplets
de formes modulaires de poids > 1, et généralisent une construction de Kato que
l’on récupère quand les deux séries theta sont remplacés par des séries d’Eisenstein
de poids un. Une des motivations pour cette étude est de comprendre dans quelle
mesure de telles classes, obtenues par interpolation p-adique à partir de familles de
classes motiviques, restent elles-mêmes motiviques. Ces résultats permettent aussi de
démontrer que les points de Stark-Heegner, dont les propriétés d’algébricité sont en-
core complétement conjecturales, proviennent tout au moins de classes de cohomologie
globales.
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Over the last three decades, the method of Euler systems has been honed into a
powerful and versatile technique for relating the arithmetic of a motive to its associ-
ated L-function, in the spirit of the conjectures of Deligne, Bloch-Beilinson, Bloch-
Kato and Perrin-Riou. Among its most notable successes is the proof of the weak
Birch and Swinnerton-Dyer conjecture asserting the equality of the algebraic and an-
alytic rank of an elliptic curve over Q when the latter invariant is ≤ 1, as well as
the finiteness of the associated Shafarevich-Tate group. These statements are partic-
ularly striking in the rank one setting, given the dearth of systematic techniques for
constructing rational or algebraic points on elliptic curves with direct connections to
L-function behaviour.

An important precursor of the Euler System concept is the seminal work of Coates
and Wiles [CW77] in the mid 1970’s, where certain global cohomology classes con-
structed from norm-compatible collections of elliptic units in Zp–extensions of an
imaginary quadratic field are used to prove the finiteness of Mordell-Weil groups
of elliptic curves with complex multiplication, when the L-function of the associated
Grossencharakter does not vanish at its center. The stronger method of Euler systems
parlays their tame deformations, arising from objects defined over tamely ramified
abelian extensions of finite, p-power degree, into an efficient approach for establish-
ing the finiteness of Selmer and Shafarevich-Tate groups in addition to Mordell-Weil
groups. The genesis of this approach occurs with the work of Francisco Thaine on
circular units [Th88] in the late 1980’s, whose inspiration can be traced back even
further to Kummer. The subsequent transposition of Thaine’s approach to the set-
ting of elliptic units is the basis for Karl Rubin’s remarkable strengthening [Ru87]
of the approach of Coates-Wiles, with dramatic consequences for the finiteness of
Shafarevich-Tate groups of elliptic curves with complex multiplication. Kolyvagin’s
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almost simultaneous but independent breakthrough [Ko89] exploits Heegner points
and their connection with special values of L-series exhibited earlier by Gross and
Zagier [GZ86] to prove the equality of analytic and algebraic ranks and the finiteness
of the Shafarevich-Tate group for all (modular) elliptic curves over Q of analytic
rank ≤ 1.

Shortly afterwards, Kazuya Kato [Ka04] pioneered an entirely different Euler sys-
tem approach in which Heegner points are replaced by Beilinson elements in the
second K-groups of modular curves — more accurately, by their p-adic deformations
arising from norm-compatible systems in towers of modular curves, echoing the theme
of p-adic variation that was already present in the work of Coates and Wiles. Some
20 years later, it was realised that Kato’s approach could be profitably adapted to
other closely related settings, in which Beilinson elements are replaced by so-called
Beilinson-Flach elements [BDR15] and diagonal cycles on a triple product of modu-
lar curves [DR14], whose p-adic deformations — particularly, those that are germane
to the study of the Birch and Swinnerton-Dyer conjecture—are referred to as gen-
eralised Kato-classes in the articles by Darmon–Rotger ([DR.v1] and [DR.v2]) or
as (specialisations of) balanced diagonal classes in the contributions by Bertolini–
Seveso–Venerucci ([BSV.v3] and [BSV.v4]) to this collection. These classes are the
key to proving the weak Birch and Swinnerton-Dyer conjecture in analytic rank zero
for Mordell–Weil groups of elliptic curves over ring class fields of quadratic fields,
both imaginary and real [DR17] (see also [BSV20] for a simpler variant to this
method, applied in greater generality). For instance, if H is the Hilbert class field of
a quadratic field K, then the implication

(1) “L(E/H, 1) 6= 0 =⇒ E(H) is finite”

is known unconditionally via these methods. When K is imaginary, the original
pathway to such a result, as described in [BD05], rests crucially on the existence of
compatible families of Heegner points, as well as building on the theory of congruences
between modular forms and on the p-adic uniformisation of Shimura curves. The route
to the same result when K is real quadratic is entirely different and makes no use of
the theory of complex multiplication, for the simple but compelling reason that no
such theory is currently available in the setting of real quadratic fields.

Extending the theory of complex multiplication to real quadratic fields represents
the simplest open case of Hilbert’s twelfth problem aiming to adapt the Jugendtraum of
Kronecker to ground fields other than the rational numbers or CM fields. A systematic
attempt was initiated around 2000 to formulate a theory of “real multiplication”,
involving p-adic rather than complex analytic objects. The resulting real quadratic
analogues of Heegner points, defined in [Dar01] in terms of Coleman’s theory of p-adic
integration, are referred to as Stark-Heegner points. They are expected to give rise
to a systematic norm-compatible supply of global points (on suitable elliptic curves
over Q) defined over ring class fields of real quadratic fields. Because of their strong
analogy with Heegner points, they form the basis for a purely conjectural extension
of the approach of Kolyvagin described in [BD05] for proving (1) when K is real
quadratic, which is discussed for instance in [BDD07].
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The article [BD09] introduces a different approach to Stark–Heegner points, by
realising them as derivatives of Hida–Rankin p-adic L-functions. This point of view
leads to the proof in loc. cit. of the rationality of Stark–Heegner points attached to
genus characters of real quadratic fields. It also provides the crucial bridge to connect
Stark–Heegner points to generalised Kato classes arising from suitable p-adic families
of diagonal cycles. The results of [BD07] can likewise be exploited to make a similar
comparison with Heegner points. The explicit comparison between Heegner or Stark-
Heegner points and generalised Kato classes, with a view to broadening the scope of
the conjecture of Perrin-Riou on rational points on elliptic curves [PR93], is the main
goal of this volume.

Comparisons of this type between different Euler systems and Heegner points have
a number of fruitful antecedents, among which it may be worthwhile to mention the
following:

1. A pioneering early work by Rubin [Ru92] examines the global Selmer class
arising from the Euler system of elliptic units and finds that the logarithm of
such a class is proportional to the square of the logarithm of a global point
arising from a Heegner point construction. This comparison of elliptic units
and Heegner points has intriguing consequences for the construction of rational
points on CM elliptic curves via the special values of the Katz p-adic L-function
of an imaginary quadratic field.

2. In an attempt to extend Rubin’s theorem to elliptic curves without complex
multiplication, Bernadette Perrin-Riou conjectured in [PR93] that the p-adic
logarithm of the global Selmer class arising from p-adic families of Beilinson
elements via Kato’s method should likewise be expressed in terms of the square
of the logarithm of a Heegner point. This is proved in [Ve16] for elliptic curves
with multiplicative reduction at p, and in [BDV] in the general case. One of
the key ingredients in the latter work are the articles [BDP13] and [BDP12],
the latter of which proposes an alternate approach to Rubin’s formula based
on special values of p-adic Rankin L-series rather than of the Katz p-adic L-
function.

3. The systematic study of “p-adic iterated integrals” undertaken in [DLR15]
leads to a general conjectural formula relating the p-adic logarithms of gen-
eralised Kato classes to certain regulators which are linear combinations with
algebraic coefficients of products of two logarithms of global points on elliptic
curves. This formula is conceptualised in the framework of a p-adic Birch and
Swinnerton-Dyer conjecture in [BSV21]. The cases where this conjecture is
proved unconditionally (thanks to Heegner points) are an important ingredient
in the proof of Perrin-Riou’s conjecture described in [BDV].

The present volume collects four interrelated articles, partially motivated by the
goal of systematically studying the p-adic logarithm of the balanced diagonal class
attached to a pair of weight one theta series of an imaginary (resp. real) quadratic
field, and of relating it to the product of logarithms of two Heegner (resp. Stark–
Heegner) points. More precisely, the first article [DR.v1] gives an overview of the
theory of Stark–Heegner points and of Hida–Rankin p-adic L-functions attached to
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elliptic curves, and explains the general strategy used to relate Stark–Heegner points
to generalised Kato classes. The second article [DR.v2] studies the problem of the
p-adic interpolation of the image of diagonal cycles under the étale Abel–Jacobi map,
leading to a 3-variable Λ-adic class in Iwasawa cohomology. It establishes moreover
an explicit reciprocity law, connecting this class to a Hida–Garrett–Rankin p-adic
L-function attached to a triple of Hida families of cusp forms. The third article
[BSV.v3] undertakes the construction of a so-called balanced diagonal class in three
variables from a different standpoint, by exploiting the invariant theory of the diagonal
embedding of GL2 into its triple product, combined with the Ash–Stevens theory of
p-adic distributions. This analytic approach, formulated in the context of Coleman
families of modular forms, lends itself to generalisations to higher groups. It allows to
establish an explicit reciprocity law in this context, which is at the base of the results
of the subsequent article. In turn the constructions of [DR.v2] deal more directly
with the geometry of diagonal cycles and have been investigated further for example
in [CS21]. The fourth article [BSV.v4] gives detailed proofs of the formulae relating
the product of the p-adic logarithms of two Heegner points or Stark–Heegner points
to the specialisation at the weight (2, 1, 1) of the balanced diagonal class. We refer to
the extensive introductions of the various chapters for further details.

At present, the collection of Heegner points on a modular elliptic curve, arising
from the combination of modularity and of the theory of complex multiplication,
still represents the “gold standard” for understanding the Birch and Swinnerton-Dyer
conjecture, particularly in analytic rank one, where the crucial issue of producing
non-trivial algebraic points of infinite order on elliptic curves becomes inescapable.
By contrast, generalised Kato classes, as well as their forebearers arising from elliptic
units make a priori only tenuous contact with these central issues, upon which further
progress on the Birch and Swinnterton-Dyer conjecture would seem to be crucially
dependent. Obtaining tight connections between generalised Kato classes and global
points on elliptic curves, such as those proved in this volume, is worthwhile for at least
two reasons. Firstly, it seems important to understand the extent to which Selmer
classes constructed via a p-adic limiting process are related to “motivic” extensions
attached to genuine global points on elliptic curves (or more general algebraic cycles
on higher dimensional varieties). The results of the present monograph combine
with those of [Ru92], [Ve16], [BDV], [DLR15] and [BSV21] to present a coherent
picture in the setting of generalised Kato classes arising from diagonal cycles on triple
products. Secondly, it lends some theoretical support for the theory of Stark–Heegner
points, towards the hope of extending the available constructions of rational points
on elliptic curves beyond the theory of Heegner points.

This monograph owes a tremendous debt to the vision of Perrin-Riou, whose conjec-
ture of [PR93] is a basic prototype for the results that are proved here. Perrin-Riou’s
insights into the connection between Euler systems and p-adic L-functions through
her fundamental “dual exponential map in p-adic families” also provides a key ingre-
dient for the proofs of our main results. It is therefore a pleasure to dedicate this
collection to Bernadette Perrin-Riou on her 65th birthday.
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STARK-HEEGNER POINTS AND DIAGONAL CLASSES

by

Henri Darmon and Victor Rotger

Abstract. — Stark-Heegner points are conjectural substitutes for Heegner points
when the imaginary quadratic field of the theory of complex multiplication is replaced
by a real quadratic field K. They are constructed analytically as local points on
elliptic curves with multiplicative reduction at a prime p that remains inert in K,
but are conjectured to be rational over ring class fields of K and to satisfy a Shimura
reciprocity law describing the action of GK on them. The main conjectures of [Da01]
predict that any linear combination of Stark-Heegner points weighted by the values
of a ring class character ψ of K should belong to the corresponding piece of the
Mordell-Weil group over the associated ring class field, and should be non-trivial
when L′(E/K,ψ, 1) 6= 0. Building on the results on families of diagonal classes
described in the remaining contributions to this volume, this note explains how such
linear combinations arise from global classes in the idoneous pro-p Selmer group,
and are non-trivial when the first derivative of a weight-variable p-adic L-function
Lp(f/K,ψ) does not vanish at the point associated to (E/K,ψ).

To Bernadette Perrin-Riou on her 65-th birthday
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1. Introduction

Let E be an elliptic curve over Q of conductor N and let K be a quadratic field
of discriminant D relatively prime to N , with associated Dirichlet character χK .

When χK(−N) = −1, the Birch and Swinnerton-Dyer conjecture predicts a sys-
tematic supply of rational points on E defined over abelian extensions of K. More
precisely, if H is any ring class field of K attached to an order O of K of conductor
prime to DN , the Hasse-Weil L-function L(E/H, s) factors as a product

(1.1) L(E/H, s) =
∏
ψ

L(E/K,ψ, s)

of twisted L-series L(E/K,ψ, s) indexed by the finite order characters

ψ : G = Gal (H/K) −→ L×,

taking values in some fixed finite extension L of Q. The L-series in the right-hand
side of (1.1) all vanish to odd order at s = 1, because they arise from self-dual Galois
representations and have sign χK(−N) in their functional equations. In particular,
L(E/K,ψ, 1) = 0 for all ψ. An equivariant refinement of the Birch and Swinnerton-
Dyer conjecture predicts that the ψ-eigenspace E(H)ψ ⊂ E(H) ⊗ L of the Mordell-
Weil group for the action of Gal (H/K) has dimension ≥ 1, and hence, that E(H)⊗Q
contains a copy of the regular representation of G.

When K is imaginary quadratic, this prediction is largely accounted for by the
theory of Heegner points on modular or Shimura curves, which for each ψ as above
produces an explicit element Pψ ∈ E(H)ψ. The Gross-Zagier formula implies that
Pψ is non-zero when L′(E/K,ψ, 1) 6= 0. Thus it follows for instance that E(H)⊗Q
contains a copy of the regular representation of G when L(E/H, s) vanishes to order
[H : K] at the center.

When K is real quadratic, the construction of non-trivial algebraic points in E(H)
appears to lie beyond the scope of available techniques. Extending the theory of
Heegner points to this setting thus represents a tantalizing challenge at the frontier
of our current understanding of the Birch and Swinnerton-Dyer conjecture.

Assume from now on that D > 0 and there is an odd prime p satisfying

(1.2) N = pM with p -M, χK(p) = −1, χK(M) = 1.

A conjectural construction of Heegner-type points, under the further restriction
that χK(`) = 1 for all `|M , was proposed in [Da01], and extended to the more
general setting of (1.2) in [Gr09], [DG12], [LRV12], [KPM18] and [Re15]. It
leads to a canonical collection of so-called Stark-Heegner points

Pa ∈ E(H ⊗Qp) =
∏
℘|p

E(H℘),

indexed by the ideal classes a of Pic(O), which are regarded here as semi-local points,
i.e., [H : K]-tuples Pa = {Pa,℘}℘|p of local points in E(Kp). This construction, and its
equivalence with the slightly different approach of the original one, is briefly recalled
in §2.
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As a formal consequence of the definitions (cf. Lemma 2.1), the semi-local points
Pa satisfy the Shimura reciprocity law

Pσa = Prec(σ)·a for all σ ∈ G,

where G acts on the group E(H ⊗Qp) in the natural way and rec : G → Pic(O) is
the Artin map of global class field theory.

The construction of the semi-local point Pa ∈
∏
℘|pE(H℘) is purely p-adic analytic,

relying on a theory of p-adic integration of 2-forms on the product H × Hp, where
H denotes Poincaré’s complex upper half plane and Hp stands for Drinfeld’s rigid
analytic p-adic avatar ofH, the integration being performed, metaphorically speaking,
on two-dimensional regions in Hp × H bounded by Shintani-type cycles associated
to ideal classes in K. The following statement of the Stark-Heegner conjectures of
loc.cit. is equivalent to [Da01, Conj. 5.6, 5.9 and 5.15], and the main conjectures in
[Gr09], [DG12], [LRV12], [KPM18] and [Re15] in the general setting of (1.2):

Stark-Heegner Conjecture. The semi-local points Pa belong to the natural image
of E(H) in E(H ⊗Qp), and the ψ-component

Pψ :=
∑

a∈Pic(O)

ψ−1(a)Pa ∈ E(H ⊗Qp)
ψ

is non-trivial if and only if L′(E/K,ψ, 1) 6= 0.

The Stark-Heegner Conjecture has been proved in many cases where ψ is a
quadratic ring class character. When ψ2 = 1, the induced representation

Vψ := IndQ
Kψ = χ1 ⊕ χ2

decomposes as the sum of two one-dimensional Galois representations attached to
quadratic Dirichlet characters satisfying

χ1(p) = −χ2(p), χ1(M) = χ2(M),

and the pair (χ1, χ2) can be uniquely ordered in such a way that the L-series
L(E,χ1, s) and L(E,χ2, s) have sign 1 and −1 respectively in their functional
equations.

Define the local sign α := ap(E), which is equal to either 1 or −1 according to
whether E has split or non-split multiplicative reduction at p. Let p be a prime
of H above p, and let σp ∈ Gal (H/Q) denote the associated Frobenius element.
Because p is inert in K/Q, the unique prime of K above p splits completely in H/K
and σp belongs to a conjugacy class of reflections in the generalised dihedral group
Gal (H/Q). It depends in an essential way on the choice of p, but, because ψ cuts
out an abelian extension of Q, the Stark-Heegner point

(1.3) Pαψ := Pψ + α · σpPψ
does not depend on this choice. It can in fact be shown that

Pαψ =

{
2Pψ if χ2(p) = α;

0 if χ2(p) = −α.
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The recent work [Mo17] of Mok and [LMY17] of Longo, Martin and Yan, building
on the methods introduced in [BD09, Thm. 1], [Mo11], and [LV14], asserts:

Stark-Heegner theorem for quadratic characters. Let ψ be a quadratic ring
class character of conductor prime to 2DN . Then the Stark-Heegner point Pαψ belongs
to E(H)⊗Q and is non-trivial if and only if

(1.4) L(E,χ1, 1) 6= 0, L′(E,χ2, 1) 6= 0, and χ2(p) = α.

The principle behind the proof of this result is to compare Pαψ to suitable Heegner
points arising from Shimura curve parametrisations, exploiting the fortuitous circum-
stance that the field over which Pψ is conjecturally defined is a biquadratic extension
of Q and is thus also contained in ring class fields of imaginary quadratic fields (in
many different ways).

The present work is concerned with the less well understood generic case where
ψ2 6= 1, when the induced representation Vψ is irreducible. Note that ψ is either
totally even or totally odd, i.e., complex conjugation acts as a scalar εψ ∈ {1,−1} on
the induced representation Vψ.

The field which ψ cuts out cannot be embedded in any compositum of ring class
fields of imaginary quadratic fields, and the Stark-Heegner Conjecture therefore seems
impervious to the theory of Heegner points in this case.

The semi-local point Pαψ of (1.3) now depends crucially on the choice of p, but it
is not hard to check that its image under the localisation homomorphism

jp : E(H ⊗Qp) −→ E(Hp) = E(Kp)

at p is independent of this choice, up to scaling by L× (cf. Lemma 2.4). It is the local
point

Pαψ,p := jp(Pαψ ) ∈ E(Hp)⊗ L = E(Kp)⊗ L
which will play a key role in Theorems A and B below.

Theorems A and B are conditional on either one of the two non-vanishing hypothe-
ses below, which apply to a pair (E,K) and a choice of archimedean sign ε ∈ {−1, 1}.
The first hypothesis is the counterpart, in analytic rank one, of the non-vanishing for
simultaneous twists of modular L-series arising as the special case of [DR17, Def. 6.8]
discussed in (168) of loc.cit., where it plays a similar role in the proof of the Birch
and Swinnerton–Dyer conjecture for L(E/K,ψ, s) when L(E/K,ψ, 1) 6= 0. The main
difference is that we are now concerned with quadratic ring class characters for which
L(E/K,ψ, s) vanishes to odd rather than to even order at the center.

Analytic non-vanishing hypothesis: Given (E,K) as above, and a choice of a
sign ε ∈ {1,−1}, there exists a quadratic Dirichlet character χ of conductor prime to
DN satisfying

χ(−1) = −ε, χχK(p) = α, L(E,χ, 1) 6= 0, L′(E,χχK , 1) 6= 0.
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The second non-vanishing hypothesis applies to an arbitrary ring class character ξ
of K.

Weak non-vanishing hypothesis for Stark-Heegner points: Given (E,K) as
above, and a sign ε ∈ {1,−1}, there exists a ring class character ξ of K of conductor
prime to DN with εξ = −ε for which Pαξ,p 6= 0.

That the former hypothesis implies the latter follows by applying the Stark-Heegner
theorem for quadratic characters to the quadratic ring class character ξ of K attached
to the pair (χ1, χ2) := (χ, χχK) supplied by the analytic non-vanishing hypothesis.
The stronger non-vanishing hypothesis is singled out because it has the virtue of
tying in with mainstream questions in analytic number theory on which there has
been recent progress [Mu12]. On the other hand, the weak non-vanishing hypothesis
is known to be true in the classical setting of Heegner points, when K is imaginary
quadratic. In fact, for a given E and K, all but finitely many of the Heegner points Pa

(as a ranges over all ideal classes of all possible orders in K) are of infinite order, and
Pξ and Pαξ are therefore non-trivial for infinitely many ring class characters ξ, and for
at least one character of any given conductor, with finitely many exceptions. It seems
reasonable to expect that Stark-Heegner points should exhibit a similar behaviour,
and the experimental evidence bears this out as one can readily verify on a software
package like Pari or Magma. In practice, efficient algorithms for calculating Stark-
Heegner points make it easy to produce a non-zero Pαξ,p for any given (E,K), and
indeed, the extensive experiments carried out so far have failed to produce even a
single example of a vanishing Pαξ when ξ has order ≥ 3. Thus, while these non-
vanishing hypotheses are probably difficult to prove in general, they are expected to
hold systematically. Moreover, they can easily be checked in practice for any specific
triple (E,K, ε) and therefore play a somewhat ancillary role in studying the infinite
collection of Stark-Heegner points attached to a fixed E and K.

Let Vp(E) :=
(

lim←−E[pn]
)
⊗ Qp denote the Galois representation attached to E

and let
Selp(E/H) := H1

f (H,Vp(E))

be the pro-p Selmer group of E over H. The ψ-component of this Selmer group is an
Lp-vector space, where Lp is a field containing both Qp and L, by setting

Selp(E/H)ψ := {κ ∈ H1
f (H,Vp(E))⊗Qp

Lp s.t. σκ = ψ(σ)·κ for all σ ∈ Gal (H/K)}.

Since E is defined over Q, the group

Selp(E/H) ' ⊕%H1
f (Q, Vp(E)⊗ %)

admits a natural decomposition indexed by the set of irreducible representations % of
Gal (H/Q). In this note we focus on the isotypic component singled out by ψ, namely

(1.5) Selp(E,ψ) := H1
f (Q, Vp(E)⊗ Vψ) = Selp(E/H)ψ ⊕ Selp(E/H)ψ̄

where Shapiro’s lemma combined with the inflation-restriction sequence gives the
above canonical identifications.
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It will be convenient to assume from now on that E[p] is irreducible as a GQ-
module. This hypothesis could be relaxed at the cost of some simplicity and trans-
parency in some of the arguments.

Theorem A. Assume that the (analytic or weak) non-vanishing hypothesis holds for
(E,K, ε). Let ψ be any non-quadratic ring class character of K of conductor prime
to DN , for which εψ = ε. Then there is a global Selmer class

κψ ∈ Selp(E,ψ)

whose natural image in the group E(Hp)⊗ Lp of local points agrees with Pαψ,p.

The Selmer class mentioned in the statement above is constructed as a p-adic limit
of diagonal classes. In particular, it follows from Theorem A that

(1.6) Pαψ,p 6= 0 ⇒ dimLp Sel(T)p(E/H)ψ ≥ 1.

As a corollary, we obtain a criterion for the infinitude of Selp(E/H)ψ in terms of the
p-adic L-function Lp(f/K,ψ) constructed in [BD09, §3], interpolating the square
roots of the central critical values L(fk/K,ψ, k/2), as fk ranges over the weight k ≥ 2
classical specializations of the Hida family passing through the weight two eigenform f
associated to E. The interpolation property implies that Lp(f/K,ψ) vanishes at k =
2, and its first derivative Lp

′(f/K,ψ)(2) is a natural p-adic analogue of the derivative
at s = 1 of the classical complex L-function L(f/K,ψ, s). The following result can
thus be viewed as a p-adic variant of the Birch and Swinnerton-Dyer Conjecture in
this setting.

Theorem B. If Lp
′(f/K,ψ)(2) 6= 0, then dimLp Sel(T)p(E/H)ψ ≥ 1.

Theorem B is a direct corollary of (1.6) in light of the main result of [BD09],
recalled in Theorem 4.1 below, which asserts that Pαψ,p is non-trivial when
Lp
′(f/K,ψ)(2) 6= 0.

Remark 1. Assume the p-primary part of (the ψ-isotypic component of) the Tate-
Shafarevich group of E/H is finite. Then Theorem A shows that Pαψ,p arises from a
global point in E(H)⊗ Lp, as predicted by the Stark-Heegner conjecture. Moreover,
Theorem B implies that dimLE(H)ψ ≥ 1 if Lp

′(f/K,ψ)(2) 6= 0.

Remark 2. The irreducibility of Vψ when ψ is non-quadratic shows that Pαψ is
non-trivial if and only if the same is true for Pψ. The Stark-Heegner Conjecture
combined with the injectivity of the map from E(H) ⊗ L to E(Hp) ⊗ L suggests
that Pαψ,p never vanishes when Pψ 6= 0, but the scenario where Pαψ is a non-trivial
element of the kernel of jp seems hard to rule out unconditionally, without assuming
the Stark-Heegner conjecture a priori.

Remark 3. Section 2 is devoted to review the theory of Stark-Heegner points. For
notational simplicity, §2 has been written under the stronger Heegner hypothesis

χK(p) = −1, χK(`) = 1 for all `|M
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of [Da01]. This section merely collects together the basic notations and principal
results of [Da01], [BD09], [Mo17] and [LMY17]. Exact references for the analogous
results needed to cover the more general setting of (1.2) are given along the way.
The remaining sections §3, 4, 5, 6 and 7, which form the main body of the article,
adapt without change to proving Theorems A and B under the general assumption
(1.2). In particular, while quaternionic modular forms need to be invoked in the
general construction of Stark-Heegner points of [Gr09], [DG12] and [LRV12], the
arguments in loc. cit. only employ classical elliptic modular forms in order to deal with
the general setting.

Remark 4. The proof of Theorems A and B summarized in this note invokes several
crucial results on families of diagonal classes that are proved in the remaining contri-
butions to this volume. In particular the articles [BSVa] and [BSVb] supply essential
ingredients in the extension of the Perrin-Riou style reciprocity laws in settings where
the idoneous p-adic L-function admits an “exceptional zero". In a previous version of
this article it was wrongly claimed that one of the key inputs, namely formula (7.7)
in the text, follows from one of the main results in Venerucci’s paper [Ve16]; the
authors are grateful to Bertolini, Seveso and Venerucci for pointing out this error and
supplying a proof of this important formula in their contributions to this volume.

History and connection with related work. The first two articles in this volume
are the culmination of a project which originated in the summer of 2010 during a
two month visit by the first author to Barcelona, where, building on the approach
of [BDP13], the authors began collaborating on what eventually led to the p-adic
Gross-Zagier formula of [DR14] relating p-adic Abel-Jacobi images of diagonal cycles
on a triple product of modular curves to the special values of certain Garrett-Rankin
triple product p-adic L-functions. In October of that year, they realized that Kato’s
powerful idea of varying Galois cohomology classes in (cyclotomic) p-adic families
could be adapted to deforming the étale Abel Jacobi images of diagonal cycles, or
the étale regulators of Belinson-Flach elements, along Hida families. The resulting
generalised Kato classes obtained by specialising these families to weight one seemed
to promise significant arithmetic applications, notably for the Birch and Swinnerton-
Dyer conjecture over ring class fields of real quadratic fields – a setting that held a
special appeal because of its connection with the still poorly understood theory of
Stark-Heegner points. This led the authors to formulate a program, whose broad
outline was already in place by the end of 2010, and whose key steps involved

— In the setting of “analytic rank zero", a proof of the “weak Birch and Swin-
nerton Dyer conjecture" for elliptic curves over Q twisted by certain Artin
representations % of dimension ≤ 4 arising in the tensor product of a pair of
odd two-dimensional Artin representations, i.e., the statement that

L(E, %, 1) 6= 0 ⇒ (E(H)⊗ %)GQ = 0.

This was carried out in [DR17] and [BDR15] by showing that the generalised
Kato classes fail to be crystalline precisely when L(E, %, 1) 6= 0.

— In the setting of “analytic rank one", when L(E, %, 1) = 0 it becomes natural to
compare the relevant generalised Kato class to algebraic points in the %-isotypic
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part of E(H), along the lines of conjectures first formulated by Rubin (for CM
elliptic curves) and by Perrin-Riou (in the setting of Kato’s work). Several
precise conjectures were formulated along those lines, notably in [DLR15],
guided by extensive numerical experiments conducted with Alan Lauder. In
general, the independent existence of such global points is tied with deep and
yet unproved instances of the Birch and Swinnerton-Dyer conjecture, but when
% is induced from a ring class character of a real quadratic field K and p
is a prime of multiplicative reduction for E which is inert in K, it becomes
natural to compare the resulting generalised Kato class (a global invariant in
the Selmer group, albeit with p-adic coefficients) to Stark-Heegner points (which
are defined purely p-adic analytically, but are conjecturally motivic, with Q-
coefficients).

Starting roughly in 2012, the idea of exploiting p-adic families of diagonal cycles and
Beilinson-Flach elements was taken up by several others, motivated by a broader range
of applications. While the authors were fleshing out their strategy for writing the
two papers appearing in this volume, they thus benefitted from several key advances
made during this time, which have simplified and facilitated the work that is described
herein, and which it is a pleasure to acknowledge, most importantly:

— The construction of three variable cohomology classes was further developed
and perfected, in the setting of Beilinson-Flach elements by Lei, Loeffler and
Zerbes [LLZ14] and several significant improvements were subsequently pro-
posed, notably in the article [KLZ17] in which Kings’ Λ-adic sheaves play an
essential role. These provide what are often more efficient and general ap-
proaches to constructing p-adic families of cohomology classes.

— The article [BSVa] by Bertolini, Seveso and Venerucci that appears in this
volume constructs a three-variable Λ-adic class of diagonal cohomology classes
by a different method, building on the work of Andreatta-Iovita-Stevens, and
makes a more systematic study of such classes in settings where there is an
exceptional zero, surveying a wider range of scenarios. Although there is some
overlap between the two works as far as the general strategy is concerned,
both present a different take on these results. Indeed, the approach in this
note eschews the methods of Andreatta-Iovita-Stevens in favour of an approach
based on the study of a collection of cycles on the cube of the modular curve
X(N) of full level structure. These cycles are of interest in their own right,
and shed a useful complementary perspective on the construction of the Λ-adic
cohomology classes for the triple product. Indeed, their study forms the basis
for the ongoing PhD thesis of David Lilienfeldt [Li], and has let to interesting
open questions (cf. e.g. those that are explored in [CS20]).

— Families of cohomology classes based on compatible collections of Heegner
points are of course a long-standing theme in the subject, and have been
taken up anew, for instance in the more recent works of Castella-Hsieh [CS18],
Kobayashi [Ko20] and Jetchev-Loeffler-Zerbes [JLZ20].

Acknowledgements. The first author was supported by an NSERC Discovery grant.
The second author also acknowledges the financial support by ICREA under the
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ICREA Academia programme. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 682152). It is a pleasure to thank M.L.
Hsieh and M. Longo for detailed explanations of their respective recent preprints, and
M. Bertolini, M. Seveso, and R. Venerucci for their complementary works [BSVa],
[BSVb] appearing in this volume.

2. Stark-Heegner points

This section recalls briefly the construction of Stark-Heegner points originally pro-
posed in [Da01] and compares it with the equivalent but slightly different presen-
tation given in the introduction. As explained in Remark 3, we provide the details
under the running assumptions of loc. cit., and we refer to the references quoted in
the introduction for the analogous story under the more general hypothesis (1.2).

Let E/Q be an elliptic curve of conductor N := pM with p - M . Since E has
multiplicative reduction at p, the group E(Qp2) of local points over the quadratic
unramified extension Qp2 of Qp is equipped with Tate’s p-adic uniformisation

ΦTate : Q×p2/q
Z −→ E(Qp2).

Let f be the weight two newform attached to E via Wiles’ modularity theorem, which
satisfies the usual invariance properties under Hecke’s congruence group Γ0(N), and
let

Γ :=

{(
a b
c d

)
∈ SL2(Z[1/p]), c ≡ 0 (mod M)

}
denote the associated p-arithmetic group, which acts by Möbius transformations both
on the complex upper-half plane H and on Drinfeld’s p-adic analogue Hp := P1(Cp)−
P1(Qp). The main construction of Sections 1-3 of [Da01] attaches to f a non-trivial
indefinite multiplicative integral

Hp × P1(Q)× P1(Q) −→ C×p /q
Z, (τ, x, y) 7→ ×

∫ τ∫ y

x

ωf

satisfying

(2.1) ×
∫ γτ∫ γy

γx

ωf = ×
∫ τ∫ y

x

ωf , for all γ ∈ Γ,

along with the requirement that

(2.2) ×
∫ τ∫ y

x

ωf =

(
×
∫ τ∫ x

y

ωf

)−1

, ×
∫ τ∫ y

x

ωf ××
∫ τ∫ z

y

ωf = ×
∫ τ∫ z

x

ωf .

This function is obtained, roughly speaking, by applying the Schneider-Teitelbaum
p-adic Poisson transform to a suitable harmonic cocycle constructed from the modu-
lar symbol attached to f . It is important to note that there are in fact two distinct
such modular symbols, which depend on a choice of a sign w∞ = ±1 at ∞ and are
referred to as the plus and the minus modular symbols, and therefore two distinct
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multiplicative integral functions, with different transformation properties under ma-
trices of determinant −1 in GL2(Z[1/p]). More precisely, the multiplicative integral
associated to w∞ satisfies the further invariance property

×
∫ −τ∫ −y

−x
ωf =

(
×
∫ τ∫ y

x

ωf

)w∞
.

See sections 1-3 of loc. cit., and §3.3. in particular, for further details.
Let K be a real quadratic field of discriminant D > 0, whose associated Dirichlet

character χK satisfies the Heegner hypothesis

χK(p) = −1, χK(`) = 1 for all `|M.

It follows that D is a quadratic residue modulo M , and we may fix a δ ∈ (Z/MZ)×

satisfying δ2 = D (mod M). Let Kp ' Qp2 denote the completion of K at p, and let√
D denote a chosen square root of D in Kp.
Fix an order O of K, of conductor c relatively prime to DN . The narrow Picard

group GO := Pic(O) is in bijection with the set of SL2(Z)-equivalence classes of binary
quadratic forms of discriminant Dc2. A binary quadratic form F = Ax2 +Bxy+Cy2

of this discriminant is said to be a Heegner form relative to the pair (M, δ) if M
divides A and B ≡ δc (mod M). Every class in GO admits a representative which is
a Heegner form, and all such representatives are equivalent under the natural action
of the group Γ0(M). In particular, we can write

GO = Γ0(M)\
{
Ax2 +Bxy + Cy2 with (A,B) ≡ (0, δc) (mod M)

}
.

For each class a := Ax2 +Bxy + Cy2 ∈ GO as above, let

τa :=
−B + c

√
D

2A
∈ Kp −Qp ⊂ Hp, γa :=

(
r −Bs −2Cs

2As r +Bs

)
,

where (r, s) is a primitive solution to the Pell equation x2 −Dc2y2 = 1. The matrix
γa ∈ Γ has τa as a fixed point for its action onHp. This fact, combined with properties
(2.1) and (2.2), implies that the period

Ja := ×
∫ τa∫ γax

x

ωf ∈ K×p /qZ

does not depend on the choice of x ∈ P1(Q) that was made to define it. Property (2.1)
also shows that Ja depends only on a and not on the choice of Heegner representative
that was made in order to define τa and γa. The local point

y(a) := ΦTate(Ja) ∈ E(Kp)

is called the Stark-Heegner point attached to the class a ∈ GO.
Let H denote the narrow ring class field of K attached to O, whose Galois group is

canonically identified with GO via global class field theory. Because p is inert in K/Q
and Gal (H/K) is a generalised dihedral group, this prime splits completely in H/K.
The set P of primes of H that lie above p has cardinality [H : K] and is endowed
with a simply transitive action of Gal (H/K) = GO, denoted (a, p) 7→ a ∗ p.
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Set KPp := Hom(P, E(Kp)) ' K [H:K]
p . There is a canonical identification

(2.3) H ⊗Qp = KPp ,

sending x ∈ H ⊗Qp to the function p 7→ x(p) := xp, where xp denotes the natural
image of x in Hp = Kp. The group Gal (H/K) acts compatibly on both sides of (2.3),
acting on the latter via the rule

(2.4) σx(p) = x(σ−1 ∗ p).

Our fixed embedding of H into Q̄p determines a prime p0 ∈ P. Conjecture 5.6
of [Da01] asserts that the points y(a) are the images in E(Kp) of global points
P ?
a ∈ E(H) under this embedding, and Conjecture 5.9 of loc. cit. asserts that these

points satisfy the Shimura reciprocity law

P ?
ba = rec(b)−1P ?

a , for all b ∈ Pic(O),

where rec : Pic(O) −→ Gal (H/K) denotes the reciprocity map of global class field
theory.

It is convenient to reformulate the conjectures of [Da01] as suggested in the intro-
duction, by parlaying the collection {y(a)} of local points in E(Kp) into a collection
of semi-local points

Pa ∈ E(H ⊗Qp) = E(Kp)
P

indexed by a ∈ GO. This is done by letting Pa (viewed as an E(Kp)-valued function
on the set P) be the element of E(H ⊗Qp) given by

(Pa)(b ∗ p0) := y(ab),

so that, by definition

(2.5) Pba(p) = Pa(b ∗ p).

This point of view has the pleasant consequence that the Shimura reciprocity law
becomes a formal consequence of the definitions:

Lemma 2.1. — The semi-local Stark-Heegner points Pa ∈ E(H ⊗ Qp) satisfy the
Shimura reciprocity law

rec(b)−1(Pa) = Pba.

Proof. — By (2.4),

rec(b)−1(Pa)(p) = Pa(rec(b) ∗ p) = Pa(b ∗ p), for all p ∈ P.
But on the other hand, by (2.5)

Pa(b ∗ p) = Pba(p).

The result follows from the two displayed identities.

The modular form f is an eigenvector for the Atkin-Lehner involution WN acting
on X0(N). Let wN denote its associated eigenvalue. Note that this is the negative
of the sign in the functional equation for L(E, s) and hence that E(Q) is expected to
have odd (resp. even) rank if wN = 1 (resp. if wN = −1). Recall the prime p0 of
H attached to the chosen embedding of H into Q̄p. The frobenius element at p0 in
Gal (H/Q) is a reflection in this dihedral group, and is denoted by σp0

.
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Proposition 2.2. — For all a ∈ GO,

σp0
Pa = wNPa−1 .

Proof. — Proposition 5.10 of [Da01] asserts that

σp0
y(a) = wNy(ca)

for some c ∈ GO. The definition of c which occurs in equation (177) of loc.cit. directly
implies that

σp0
y(1) = wNy(1), σp0

y(a) = wNy(a−1),

and the result follows from this.

Lemma 2.1 shows that the collection of Stark-Heegner points Pa is preserved under
the action of Gal (H/K), essentially by fiat. A corollary of the less formal Proposition
2.2 is the following invariance of the Stark-Heegner points under the full action of
Gal (H/Q):

Corollary 2.3. — For all σ ∈ Gal (H/Q) and all a ∈ GO,

σPa = wδσN Pb, for some b ∈ GO,

where

δσ =

{
0 if σ ∈ Gal (H/K);
1 if σ /∈ Gal (H/K).

Proof. — This follows from the fact that Gal (H/Q) is generated by Gal (H/K) to-
gether with the reflection σp0

.

To each p ∈ P we have associated an embedding jp : H −→ Kp and a frobenius
element σp ∈ Gal (H/Q). If p′ = σ ∗ p is another prime in P, then we observe that

(2.6) jp′ = jp ◦ σ−1, σp′ = σσpσ
−1, jp′ ◦ σp′ = jp ◦ σp ◦ σ−1.

Let ψ : Gal (H/K) −→ L× be a ring class character, let

eψ :=
1

#GO

∑
σ∈GO

ψ(σ)σ−1 ∈ L[GO]

be the associated idempotent in the group ring, and denote by

Pψ := eψP1 ∈ E(H ⊗Qp)⊗ L

the ψ-component of the Stark-Heegner point. Recall from the introduction the sign
α ∈ {−1, 1} which is equal to 1 (resp. −1) if E has split (resp. non-split) multiplicative
reduction at the prime p. Following the notations of the introduction, write

Pαψ = (1 + ασp)Pψ.

Lemma 2.4. — The local point jp(Pαψ ) is independent of the choice of prime p ∈ P
that was made to define it, up to multiplication by a scalar in ψ(GO) ⊂ L×.
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Proof. — Let p′ = σ ∗ p be any other element of P. Then by (2.6),

jp′(1 + ασp′)Pψ = jp ◦ σ−1(1 + ασσpσ
−1)eψP1 = jp ◦ (1 + ασp)σ−1eψP1

= ψ(σ)−1jp ◦ (1 + ασp)Pψ.

The result follows.

Examples. This paragraph describes a few numerical examples illustrating the scope
and applicability of the main results of this paper. By way of illustration, suppose
that E is an elliptic curve of prime conductor N = p, so that M = 1. In that special
case the Atkin-Lehner sign wN is related to the local sign α by

wN = −α.
The following proposition reveals that the analytic non-vanishing hypothesis fails in
the setting of the Stark-Heegner theorem for quadratic characters of [BD09] when
ε = −1:

Proposition 2.5. — Let ψ be a totally even quadratic ring class character of K of
conductor prime to N . Then Pαψ is trivial.

Proof. — Let (χ1, χ2) = (χ, χχK) be the pair of even quadratic Dirichlet characters
associated to ψ, ordered in such a way that L(E,χ1, s) and L(E,χ2, s) have signs 1
and −1 respectively in their functional equations. Writing sign(E,χ) ∈ {−1, 1} for the
sign in the functional equation of the twisted L-function L(E,χ, s), it is well-known
that, if the conductor of χ is relatively prime to N ,

sign(E,χ) = sign(E)χ(−N) = −wNχ(−1)χ(p) = αχ(p)χ(−1).

It follows that
αχ1(p) = 1, αχ2(p) = −1,

but equation (1.4) in the Stark-Heegner theorem for quadratic characters implies
Pαψ = 0.

The systematic vanishing of Pαψ for even quadratic ring class characters of K can
be traced to the failure of the analytic non-vanishing hypothesis of the introduction,
which arises for simple parity reasons. The failure is expected to occur essentially
only when E has prime conductor p, i.e., when M = 1, and never when M satisfies
ordq(M) = 1 for some prime q. Because of Proposition 2.5, the main theorem of
[BD09] gives no information about the Stark-Heegner point Pαψ attached to even
quadratic ring class characters of conductor prime to p, on an elliptic curve of con-
ductor p.

On the other hand, in the setting of Theorem A of the introduction, where ψ has
order > 2, this phenomenon does not occur as the non-vanishing of Pαψ and P−αψ are
equivalent to each other, in light of the irreducibility of the induced representation
Vψ. The numerical examples below show many instances of non-vanishing Pαψ for ring
class characters of both even and odd parity.

Example. Let E : y2 + y = x3 − x be the elliptic curve of conductor p = 37, whose
Mordell-Weil group is generated by the point (0, 0) ∈ E(Q). Let K = Q(

√
5) be the
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real quadratic field of smallest discriminant in which p is inert. It is readily checked
that L(E/K, s) has a simple zero at s = 1 and that E(K) also has Mordell-Weil rank
one. The curve E has non-split multiplicative reduction at p and hence α = −1 in
this case. It is readily verified that the pair of odd characters (χ1, χ2) attached to the
quadratic imaginary fields of discriminant −4 and −20 satisfy the three conditions
in (1.4), and hence the analytic non-vanishing hypothesis is satisfied for the triple
(E,K, ε = 1). In particular, Theorem A holds for E, K, and all even ring class
characters of K of conductor prime to 37.

Let O be an order of OK with class number 3, and let H be the corresponding
cubic extension of K. The prime p of H over p and a generator σ of Gal (H/K) can
be chosen so that the components

P1 := Pp, P2 := Pσp, P3 := Pσ2p

in E(Hp) = E(Kp) of the Stark-Heegner point in E(H ⊗Qp) satisfy

P 1 = P1, P 2 = P3, P 3 = P2.

Letting ψ be the cubic character which sends σ to ζ := (1 +
√
−3)/2, we find that

jp(Pψ) = P1 + ζP2 + ζ2P3,

σp(jp(Pψ)) = P 1 + ζP 2 + ζ2P 3 = P1 + ζP3 + ζ2P2,

jp(Pαψ ) =
√
−3× (P2 − P3) =

√
−3× (P2 − P 2).

The following table lists the Stark-Heegner points P1, P2, and P2−P 2 attached to the
first few orders O ⊂ OK of conductor c = c(O) and of class number three, calculated
to a 37-adic accuracy of 2 significant digits. (The numerical entries in the table below
are thus to be understood as elements of (Z/372Z)[

√
5].)

c(O) P1 P2 P2 − P 2

18 (−635,−256) (319 + 678
√

5,−481230
√

5) (−360, 684 + 27
√

5)

38 (−154, 447) (−588 + 1237
√

5, 367 + 386
√

5) (−437, 684 + 87
√

5)

46 (223, 12 · 37) (−112 + 629
√

5, (−6 + 34
√

5) · 37) ∞
47 (610,−229) (539 + 71

√
5, 10 + 439

√
5) (−293, 684 + 1132

√
5)

54 (533,−561) (679 + 984
√

5, 391 + 862
√

5) (93, 684 + 673
√

5)

Since the Mordell-Weil group of E(K) has rank one, the data in this table is enough
to conclude that the pro-37-Selmer groups of E over the ring class fields of K attached
to the orders of conductors 18, 38, 47 and 54 have rank at least 3. As for the order
of conductor 46, a calculation modulo 373 reveals that P2 − P 2 is non-trivial, and
hence the pro-37 Selmer group has rank ≥ 3 over the ring class field of that conductor
as well. Under the Stark-Heegner conjecture, more is true: the Stark-Heegner points
above are 37-adic approximations of global points rather than mere Selmer classes.
But recognising them as such (and thereby proving that the Mordell-Weil ranks are
≥ 3) typically requires a calculations to higher accuracy, depending on the eventual
height of the Stark-Heegner point as an algebraic point, about which nothing is known
of course a priori, and which can behave somewhat erratically. For example, the x-
coordinates of the Stark-Heegner points attached to the order of conductor 47 appear
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to satisfy the cubic polynomial

x3 − 319x2 + 190x+ 420,

while those of the Stark-Heegner points for the order of conductor 46 appear to satisfy
the cubic polynomial

2352347001x3 − 34772698791x2 + 138835821427x− 136501565573

with much larger coefficients, whose recognition requires a calculation to at least 7
digits of 37-adic accuracy.

The table above produced many examples of non-vanishing Pαψ for ψ even, and in
particular it verifies the non-vanishing hypothesis for Stark-Heegner points stated in
the introduction, for the sign ε = −1. This means that Theorem A is also true for
odd ring class characters of K, even if the premise of (1.6) is never verified for odd
quadratic characters of K.

3. p-adic L-functions associated to Hida families

Let
f =

∑
n≥1

an(f)qn ∈ Λf [[q]]

be the Hida family of tame level M and trivial tame character passing through f ;
cf. [BD09] and [DRb, §1.3] for more details on the notations chosen for Hida families.

Let x0 ∈ W◦f denote the point of weight 2 such that fx0 = f . Note that fx0 ∈ S2(N)
is new at p, while for any x ∈ W◦f with wt(x) = k > 2, fx(q) = f◦x(q)− βf◦x(qp) is the
ordinary p-stabilisation of an eigenform f◦x of level M = N/p. We set f◦x0

= fx0
= f .

Let K be a real quadratic field in which p remains inert and all prime factors of M
split, and fix throughout a finite order anticyclotomic character ψ of K of conductor
c coprime to DN , with values in a finite extension Lp/Qp. Note that ψ(p) = 1 as the
prime ideal pOK is principal.

Under our running assumptions, the sign of the functional equation satisfied by
the Hasse-Weil-Artin L-series L(E/K,ψ, s) = L(f, ψ, s) is

ε(E/K,ψ) = −1,

and in particular the order of vanishing of L(E/K,ψ, s) at s = 1 is odd. In contrast,
at every classical point x of even weight k > 2 the sign of the functional equation
satisfied by L(fx/K,ψ, s) is

ε(fx/K,ψ) = +1

and one expects generic non-vanishing of the central critical value L(fx/K,ψ, k/2).
In [BD09, Definition 3.4], a p-adic L-function

Lp(f/K,ψ) ∈ Λf

associated to the Hida family f , the ring class character ψ and a choice of collection
of periods was defined, by interpolating the algebraic part of (the square-root of) the
critical values L(fx/K,ψ, k/2) for x ∈ W◦f with wt(x) = k = k◦ + 2 ≥ 2. See also
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[LMY17, §4.1] for a more general treatment, encompassing the setting considered
here.

In order to describe this p-adic L-function in more detail, let Φfx,C denote the
classical modular symbol associated to fx with values in the space Pk◦ (C) of homo-
geneous polynomials of degree k◦ in two variables with coefficients in C. The space
of modular symbols is naturally endowed with an action of GL2(Q) and we let Φ+

fx,C

and Φ−fx,C denote the plus and minus eigencomponents of Φfx,C under the involution
at infinity induced by w∞ =

(
1 0
0 −1

)
.

As proved in [KZ84, §1.1] (with slightly different normalizations as for the powers
of the period 2πi that appear in the formulas, which we have taken into account
accordingly), there exists a pair of collections of complex periods

{Ω+
fx,C
}x∈W◦f , {Ω−fx,C}x∈W◦f ⊂ C×

satisfying the following two conditions:

(i) the modular symbols

Φ+
fx

:=
Φ+

fx,C

Ω+
fx,C

, Φ−fx :=
Φ−fx,C

Ω−fx,C
take values in Q(fx) = Q({an(fx)}n≥1),

(ii) and Ω+
fx,C
· Ω−fx,C = 4π2〈f◦x , f◦x〉.

Note that conditions (i) and (ii) above only characterize Ω±fx,C up to multiplication
by non-zero scalars in the number field Q(fx).

Fix an embedding Q̄ ↪→ Q̄p ⊂ Cp, through which we regard Φ±fx as Cp-valued
modular symbols. In [GS93], Greenberg and Stevens introduced measure-valued
modular symbols µ+

f and µ−f interpolating the classical modular symbols Φ+
fx

and Φ−fx
as x ranges over the classical specializations of f .

More precisely, they show (cf. [GS93, Theorem 5.13] and [BD07, Theorem 1.5])
that for every x ∈ W◦f , there exist p-adic periods

(3.1) Ω+
fx,p

, Ω−fx,p ∈ Cp

such that the specialisation of µ+
f and µ−f at x satisfy

(3.2) x(µ+
f ) = Ω+

fx,p
· Φ+

fx
, x(µ−f ) = Ω−fx,p · Φ

−
fx
.

Since no natural choice of periods Ω±fx,C presents itself, the scalars Ω+
fx,p

and Ω−fx,p
are not expected to vary p-adically continuously. However, conditions (i) and (ii)
above imply that the product Ω+

fx,p
· Ω−fx,p ∈ Cp is a more canonical quantity, as it

may also be characterized by the formula

(3.3) x(µ+
f ) · x(µ−f ) = Ω+

fx,p
Ω−fx,p ·

Φ+
fx,C
· Φ−fx,C

4π2〈f◦x , f◦x〉
,

which is independent of any choices of periods.
This suggests that the map x 7→ Ω+

fx,p
Ω−fx,p may extend to a p-adic analytic func-

tion, possibly after multiplying it by suitable Euler-like factors at p. And indeed, the
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following theorem is proved in one of the contributing articles of Bertolini, Seveso and
Venerucci to this volume, and we refer to [BSVb, §3] for the proof.

Theorem 3.1. — There exists a rigid-analytic function Lp(Sym2(f)) on a neigh-
borhood Uf of Wf around x0 such that for all classical points x ∈ Uf ∩W◦f of weight
k ≥ 2:

(3.4) Lp(Sym2(f))(x) = E0(fx)E1(fx) · Ω+
fx,p

Ω−fx,p,

where E0(fx) and E1(fx) are as in [DR14, Theorem 1.3]. Moreover, Lp(Sym2(f))(x0) ∈
Q×.

Remark 3.1. — The motivation for denoting Lp(Sym2(f)) the p-adic function ap-
pearing above relies on the fact that Ω±fx,p are p-adic analogues of the complex periods
Ω±fx,C. As is well-known, the product Ω+

fx,C
·Ω−fx,C = 4π2〈f◦x , f◦x〉 is essentially the near-

central critical value of the classical L-function associated to the symmetric square of
f◦x . In addition to this, as M. L. Hsieh remarked to us, it might not be difficult to show
that Lp(Sym2(f)) is a generator of Hida’s congruence ideal in the sense of [Hs20,
§1.4, p.4].

The result characterizing the p-adic L-function Lp(f/K,ψ) alluded to above is
[BD09, Theorem 3.5], which we recall below. Although [BD09, Theorem 3.5] is
stated in loc. cit. only for genus characters, the proof has been recently generalized
to arbitrary (not necessarily quadratic) ring class characters ψ of conductor c with
(c,DN) = 1 by Longo, Martin and Yan in [LMY17, Theorem 4.2], by employing
Gross-Prasad test vectors to extend Popa’s formula [Po06, Theorem 6.3.1] to this
setting.

Let fc ∈ K× denote the explicit constant introduced at the first display of [LMY17,
§3.2]. It only depends on the conductor c and its square lies in Q×.

Theorem 3.2. — The p-adic L-function Lp(f/K,ψ) satisfies the following interpo-
lation property: for all x ∈ W◦f of weight wt(x) = k = k◦ + 2 ≥ 2, we have

Lp(f/K,ψ)(x) = ff ,ψ(x)× L(f◦x/K,ψ, k/2)1/2

where

ff ,ψ(x) = (1− α−2
fx
pk◦ ) ·

fc · (Dc2)
k◦+1

4 (
k◦
2 )!

(2πi)k◦/2
·

Ω
εψ
fx,p

Ω
εψ
fx,C

.

4. A p-adic Gross-Zagier formula for Stark-Heegner points

One of the main theorems of [BD09] is a formula for the derivative of Lp(f/K,ψ)
at the point x0, relating it to the formal group logarithm of a Stark-Heegner point.
This formula shall be crucial for relating these points to generalized Kato classes and
eventually proving our main results.
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Theorem 4.1. — The p-adic L-function Lp(f/K,ψ) vanishes at the point x0 of
weight 2 and

(4.1)
d

dx
Lp(f/K,ψ)|x=x0

=
1

2
logp(P

α
ψ ).

Proof. — The vanishing of Lp(f/K,ψ) at x = x0 is a direct consequence of the
assumptions and definitions, because x = x0 lies in the region of interpolation of the
p-adic L-function and therefore Lp(f/K,ψ)(x0) is a non-zero multiple of the central
critical value L(f/K,ψ, 1). This L-value vanishes as remarked in the paragraph right
after (1.1).

The formula for the derivative follows verbatim as in the proof of [BD09, Theorem
4.1]. See also [LMY17, Theorem 5.1] for the statement in the generality required
here. Finally, we refer to [LV14] for a formulation and proof of this formula in
the setting of quaternionic Stark-Heegner points, under the general assumption of
(1.2).

5. Setting the stage

In this section we set the stage for the proofs of Theorems A and B by introducing
a particular choice of triplet of eigenforms (f, g, h) of weights (2, 1, 1). Let E/Q be an
elliptic curve having multiplicative reduction at a prime p and set α = ap(E) = ±1.
Let

ψ : Gal (H/K) −→ L×

be an anticyclotomic character of a real quadratic field K satisfying the hypotheses
stated in the introduction.

In particular we assume that a prime ideal p above p in H has been fixed and either
of the non-vanishing hypotheses stated in loc. cit. holds; these hypotheses give rise to
a character ξ of K having parity opposite to that of ψ that we fix for the remainder
of this note, satisfying that the local Stark-Heegner point Pαξ,p is non-zero.

As shown in [DR17, Lemma 6.9], there exists a (not necessarily anti-cyclotomic)
character ψ0 of finite order of K and conductor prime to DNE such that

(5.1) ψ0/ψ
′
0 = ξ/ψ.

Since by hypothesis ξ/ψ is totally odd, it follows that ψ0 has mixed signature (+,−)
with respect to the two real embeddings of K.

Let c ⊂ OK denote the conductor of ψ0 and let χ denote the odd central Dirichlet
character of ψ0. Let χK also denote the quadratic Dirichlet character associated to
K/Q.

Let f ∈ S2(pMf ) denote the modular form associated to E by modularity. Like-
wise, set

Mg = Dc2 ·NK/Q(c) and Mh = D ·NK/Q(c)

and define the eigenforms

g = θ(ψ0ψ) ∈ S1(Mg, χχK) and h = θ(ψ−1
0 ) ∈ S1(Mh, χ

−1χK)

to be the theta series associated to the characters ψ0ψ and ψ−1
0 , respectively.
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Recall from the introduction that E[p] is assumed to be irreducible as aGQ-module.
This implies that the mod p residual Galois representation attached to f is irreducible,
and thus also non-Eisenstein mod p. The same claim holds for g and h because ψ and
ξ have opposite signs and p is odd, hence ξ 6≡ ψ±1 (mod p).

Note that p -MfMgMh. As in previous sections, we letM denote the least common
multiple of Mf , Mg and Mh. The Artin representations Vg and Vh associated to g
and h are both odd and unramified at the prime p. Since p remains inert in K, the
arithmetic frobenius Frp acts on Vg and Vh with eigenvalues

{αg, βg} = {ζ, −ζ}, {αh, βh} = {ζ−1,−ζ−1},
where ζ is a root of unity satisfying χ(p) = −ζ2.

In light of (5.1) we have ψ0ψ/ψ0 = ψ and ψ0ψ/ψ
′
0 = ξ, hence the tensor product

of Vg and Vh decomposes as

(5.2) Vgh = Vg ⊗ Vh ' IndQ
K(ψ)⊕ IndQ

K(ξ) as GQ-modules

and

Vg = V αgg ⊕ V βgg , Vh = V αhh ⊕ V βhh , Vgh =
⊕
(a,b)

V abgh as GQp -modules

where (a, b) ranges through the four pairs (αg, αh), (αg, βh), (βg, αh), (βg, βh). Here
V
αg
g , say, is the GQp

-submodule of Vg on which Frp acts with eigenvalue αg, and
similarly for the remaining terms.

Let Wp be an arbitrary self-dual Artin representation with coefficients in Lp and
factoring through the Galois group of a finite extension H of Q. Assume Wp is
unramified at p. There is a canonical isomorphism

H1(Q, Vp(E)⊗Wp) ' (H1(H,Vp(E))⊗Wp)
Gal (H/Q)(5.3)

= HomGal (H/Q)(Wp, H
1(H,Vp(E))),

where the the second equality follows from the self-duality of Wp. Kummer theory
gives rise to a homomorphism

(5.4) δ : E(H)Wp := HomGal (H/Q)(Wp, E(H)⊗ Lp) −→ H1(Q, Vp(E)⊗Wp).

For each rational prime `, the maps (5.3) and (5.4) admit local counterparts

H1(Q`, Vp(E)⊗Wp) ' HomGal (H/Q)(Wp,⊕λ|`H1(Hλ, Vp(E))),

δ` :
(
⊕λ|`E(Hλ)

)Wp −→ H1(Q`, Vp(E)⊗Wp),

for which the following diagram commutes:

(5.5) E(H)Wp
δ //

res`
��

H1(Q, Vp(E)⊗Wp)

res`

��(
⊕λ|`E(Hλ)

)Wp δ` // H1(Q`, Vp(E)⊗Wp).

For primes ` 6= p, it follows from [Ne98, (2.5) and (3.2)] that H1(Q`, Vp(E) ⊗
Wp) = 0. (We warn however that if we were working with integral coefficients, these
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cohomology groups may contain non-trivial torsion.) For ` = p, the Bloch-Kato
submodule H1

f (Qp, Vp(E) ⊗Wp) is the subgroup of H1(Qp, Vp(E) ⊗Wp) formed by
classes of crystalline extensions of Galois representations of Vp(E) ⊗Wp by Qp. It
may also be identified with the image of the local connecting homomorphism δp.

Lemma 5.1. — There is a natural isomorphism of Lp-vector spaces

H1
f (Qp, Vp(E)⊗Wp) = H1

f (Qp, V
+
f ⊗W

Frp=α
p )⊕H1(Qp, V

+
f ⊗Wp/W

Frp=α
p ),

where recall α = ap(E) = ±1.

Proof. — We firstly observe that H1
f (Qp, Vp(E) ⊗ Wp) = H1

g (Qp, Vp(E) ⊗ Wp) by
e.g. [Be09, Prop. 2.0 and Ex. 2.20], because Vp(E) ⊗ Wp contains no unramified
submodule. As shown in [Fl90, Lemma , p.125], it follows that

H1
f (Qp, Vp(E)⊗Wp) = Ker

(
H1(Qp, Vp(E)⊗Wp) −→ H1(Ip, V

−
p (E)⊗Wp)

)
is the kernel of the composition of the homomorphism in cohomology induced by
the natural projection Vp(E) −→ V −p (E) and restriction to the inertia subgroup
Ip ⊂ GQp

.
The long exact sequence in Galois cohomology arising from the exact sequence

0→ V +
p (E) −→ Vp(E) −→ V −p (E)→ 0

shows that the kernel of the map H1(Qp, Vp(E) ⊗Wp) −→ H1(Qp, V
−
p (E) ⊗Wp) is

naturally identified with H1(Qp, V
+
p (E) ⊗Wp). We have H1(Ip,Qp(ψεcyc)) = 0 for

any nontrivial unramified character ψ. Besides, it follows from e.g. [DRb, Example
1.4] that H1

f (Qp,Qp(εcyc)) = ker
(
H1(Qp,Qp(εcyc)) → H1(Ip,Qp(εcyc))

)
is a line in

the two-dimensional space H1(Qp,Qp(εcyc)), which Kummer theory identifies with
Z×p ⊗̂ZpQp sitting inside Q×p ⊗̂ZpQp.

Note that V +
p (E) = Lp(ψfεcyc) and V −p (E) ' Lp(ψf ) where ψf is the unramified

quadratic character of GQp
sending Frp to α. The lemma follows.

The Selmer group Sel(T)p(E,Wp) is defined as

Sel(T)p(E,Wp) := {λ ∈ H1(Q, Vp(E)⊗Wp) : resp(λ) ∈ H1
f (Qp, Vp(E)⊗Wp)}.

Here resp stands for the natural map in cohomology induced by restriction from
GQ to GQp .

6. Factorisation of p-adic L-series

The goal of this section is proving a factorisation formula of p-adic L-functions
which shall be crucial in the proof of our main theorems.

Keep the notations introduced in the previous section and recall in particular the
sign α := ap(f) ∈ {±1} associated to E. Let gζ and hαζ−1 denote the ordinary
p-stabilizations of g and h on which the Hecke operator Up acts with eigenvalue

(6.1) αg := ζ and αh := αζ−1,

respectively.
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Let f , g and h be the Hida families of tame levelsMf ,Mg,Mh and tame characters
1, χχK , χ−1χK passing respectively through f , gζ and hαζ−1 . The existence of these
families is a theorem of Wiles [Wi88], and their uniqueness follows from a recent result
of Bellaïche and Dimitrov [BeDi16] (note that the main theorem of loc. cit. indeed
applies because αg 6= βg, αh 6= βh and p does not split in K). Let x0, y0, z0 denote
the classical points in Wf , Wg and Wh respectively such that fx0

= f , gy0 = gζ and
hz0 = hαζ−1 .

As explained in [DR14], [DR17] and recalled briefly in [DRb, (5.1)] in this vol-
ume, associated to a choice

f̆ ∈ Sord
Λf

(M)[f ], ğ ∈ Sord
Λg

(M,χχK)[g], h̆ ∈ Sord
Λh

(M,χ−1χK)[h]

of Λ-adic test vectors of tame level M there is a three-variable p-adic L-function
Lp

f (f̆ , ğ, h̆). Among such choices, Hsieh [Hs20] pinned down a particular choice of
test vectors with optimal interpolation properties (cf. loc. cit. and [DRb, Prop. 5.1]
for more details), which we fix throughout this section.

Define

(6.2) Lp
f (f̆ , ğζ , h̆αζ−1) ∈ Λf

to be the one-variable p-adic L-function arising as the restriction of Lp
f (f̆ , ğ, h̆) to

the rigid analytic curve Wf × {y0, z0}.
In addition, recall the p-adic L-functions described in §3 associated to the twist

of E/K by an anticyclotomic character of K, and set fO(k◦) := (Dc2)
1−k
2 /f2c , where

fc is the constant introduced at the first display of [LMY17, §3.2]. Note that the
rule k 7→ fO(k◦) extends to an Iwasawa function, that we continue to denote fO,
because p does not divide Dc2. Recall also the rigid-analytic function Lp(Sym2(f))
in a neighborhood Uf ⊂ Wf of x0 introduced in (3.4).

Theorem 6.1. — The following factorization of p-adic L-functions holds in Λf :

Lp(Sym2(f))×Lp
f (f̆ , ğζ , h̆αζ−1) = fO ·Lp(f/K,ψ)×Lp(f/K, ξ).

Proof. — It follows from [DRb, Prop. 5.1] that Lp
f (f̆ , ğζ , h̆αζ−1) satisfies the follow-

ing interpolation property for all x ∈ W◦f of weight k ≥ 2:

Lp
f (f̆ , ğζ , h̆αζ−1)(x) = (2πi)−k · (k◦

2
!)2 ·

1− α−2
fx
pk◦

1− β2
fx
p1−k ·

L(f◦x , g, h,
k
2 )1/2

〈f◦x , f◦x〉
.

Besides, it follows from Theorem 3.2 that the product of Lp(f/K,ψ) and
Lp(f/K, ξ) satisfies that for all x ∈ W◦f of weight k ≥ 2:

Lp(f/K,ψ)Lp(f/K, ξ)(x) = ff ,ψ(x) · ff ,ξ(x)× L(f◦x/K,ψ, k/2)1/2 · L(f◦x/K, ξ, k/2)1/2

where

ff ,ψ(x) · fξ(x) = (1− α−2
fx
pk◦ )2 ·

f2c · (Dc2)
k◦+1

2 · (k◦2 )!2

(2πi)k◦
·

Ω+
fx,p

Ω−fx,p

Ω+
fx,C

Ω−fx,C
.

A direct inspection to the Euler factors shows that for all x ∈ W◦f of weight k ≥ 2:

(6.3) L(f◦x , g, h, k/2) = L(f◦x/K,ψ, k/2) · L(f◦x/K, ξ, k/2).
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Recall finally from Theorem 3.1 that the value of Lp(Sym2(f)) at a point x ∈
Uf ∩W◦f is

Lp(Sym2(f))(x) = (1− β2
fxp

1−k)(1− α−2
fx
pk◦ )Ω+

fx,p
Ω−fx,p.

Combining the above formulae together with the equality

Ω+
fx,C
· Ω−fx,C = 4π2〈f◦x , f◦x〉,

described in §3, it follows that the following formula holds for all x ∈ W◦f of weight
k ≥ 2:

Lp(Sym2(f))(x)×Lp
f (f̆ , ğζ , h̆αζ−1)(x) = λO(k◦) ·Lp(f/K,ψ)(x)×Lp(f/K, ξ)(x).

Since W◦f is dense in Wf for the rigid-analytic topology, the factorization formula
claimed in the theorem follows.

Recall from Theorem 3.2 that Lp(f/K,ψ) and Lp(f/K, ξ) both vanish at x0 and

(6.4)
d

dx
Lp(f/K,ψ)|x=x0

=
1

2
· logp(P

α
ψ ),

d

dx
Lp(f/K, ξ)|x=x0

=
1

2
· logp(P

α
ξ ).

By Theorem 3.1, Lp(Sym2(f))(x0) ∈ Q×. It thus follows from Theorem 6.1 that
the order of vanishing of Lp

f (f̆∨, ğζ , h̆αζ−1) at x = x0 is at least two and

(6.5)
d2

dx2
Lp

f (f̆∨, ğζ , h̆αζ−1)|x=x0
= C1 · logp(P

α
ψ ) · logp(P

α
ξ ),

where C1 is a non-zero simple algebraic constant.
As recalled at the beginning of this article, Pαξ,p is non-zero. We can also suppose

that Pαψ,p is non-zero, as otherwise there is nothing to prove. Hence (6.5) shows that
the order of vanishing of Lp

f (f̆∨, ğζ , h̆αζ−1) at x = x0 is exactly two.

7. Main results

Let us now explain the proofs of the main theorems stated in the introduction by
invoking the results proved in previous sections in combination with some of the main
statements proved in the remaining contributions to this volume.

Let
κ(f ,g,h) ∈ H1(Q,V†fgh(M))

be the Λ-adic global cohomology class introduced in [DRb, Def. 5.2].
Define V†fgh(M) as the Λf [GQ]-module obtained by specialising the Λfgh[GQ]-

module V†fgh(M) at (y0, z0). Let

(7.1) κ(f , gζ , hαζ−1) := νy0,z0κ(f ,g,h) ∈ H1(Q,V†fgh(M))

denote the specialisation of κ(f ,g,h) at (y0, z0), and

κ(f, gζ , hαζ−1) ∈ H1(Q, Vfgh(M))

denote the class obtained by specializing (7.1) further at x0.
Let us analyze the above class locally. According to the discussion preceding

Lemma 5.1, it follows that res` (κ(f, gζ , hαζ−1)) = 0 at every prime ` 6= p.
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In order to study it at p, write κp(f, gζ , hαζ−1) := resp κ(f, gζ , hαζ−1) ∈
H1(Qp, Vf ⊗ Vgh(M)).

After setting V abgh = V ag ⊗ V bh , we find that there is a natural decomposition

(7.2) H1(Qp, Vp(E)⊗ Vgh) =
⊕
(a,b)

H1(Qp, Vp(E)⊗ V abgh )

where (a, b) ranges through the four pairs (αg, αh), (αg, βh), (βg, αh), (βg, βh). Anal-
ogous decompositions hold for the various Galois cohomology groups appearing in
this section. Given a class κ ∈ H1(Qp, Vp(E) ⊗ Vgh(M)), we shall denote κab for its
projection to the corresponding (a, b)-component.

Note that

(7.3) αgαh = βgβh = α, αgβh = βgαh = −α.

Hence, according to Lemma 5.1, κ(f, gζ , hαζ−1) lies in the Bloch-Kato finite submodule
of H1(Q, Vfgh(M)) if and only if

(i) κp(f, gζ , hαζ−1)αgβh and κp(f, gζ , hαζ−1)βgαh lie in H1(Qp, V
+
p (E)⊗ Vgh(M)),

(ii) κp(f, gζ , hαζ−1)αgαh and κp(f, gζ , hαζ−1)βgβh lie in H1
f (Qp, V

+
p (E)⊗ Vgh(M)).

By [DRb, Proposition 1.5.8], the local class κp(f, gζ , hαζ−1) is the specialization
at (x0, y0, z0) of a Λ-adic cohomology class with values in the Λ-adic representation
V+

fgh(M), which recall is defined as the span in V†fgh(M) of (suitably twisted) triple
tensor products of the form V±f ⊗ V±g ⊗ V±h , with at least two +’s in the exponents.

Since V βgg = V +
g and V

αg
g = V −g , and similarly for Vh, it follows from the very

definition of V+
fgh(M) that the (αg, αh)-component of κp(f, gζ , hαζ−1) in H1(Qp, Vf ⊗

V
αgαh
gh (M)) vanishes –this yields a fortiori claim (ii) for the (αg, αh)-component. The

same reasoning also yields that the (αg, βh) and (βg, αh)-components of the projection
of κp(f, gζ , hαζ−1) to H1(Qp, V

−
f ⊗ Vgh(M)) vanish, and hence (i) holds.

It only remains to analyze the (βg, βh)-component κp(f, gζ , hαζ−1). For this pur-
pose we define the Λf [GQp ]-modules

W := Vf ,ββ(M) := Vf (M)(ε
−1/2
f )⊗ V βgβhgh (M),

W− := V−f ,ββ(M) := V−f (M)(ε
−1/2
f )⊗ V βgβhgh (M).

It follows from (6.1) that V ββgh = Lp(α) is the one-dimensional representation af-
forded by the character of Gal (Kp/Qp) sending Frp to α = ap(E). Hence W− is the
sub-quotient of V†fgh(M) that is isomorphic to several copies of Λf (Ψ

gh
f ε
−1/2
f ), where

as in [DRb, (1.5.5)], Ψgh
f denotes the unramified character of GQp

satisfying

Ψgh
f (Frp) = ap(f)a

−1
p (g1)a−1

p (h1) = α · ap(f).

Let

(7.4) κfp(f , gζ , hαζ−1) ∈ H1(Qp,W), κfp(f , gζ , hαζ−1)− ∈ H1(Qp,W−)

denote the image of κp(f , gζ , hαζ−1) under the map induced by the projection
V+

fgh(M)→W = Vf ,ββ(M), and further to W− = V−f ,ββ(M) respectively.
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Equivalently and in consonance with our notations, κfp(f , gζ , hαζ−1)− is the spe-
cialization at (y0, z0) of the local class κfp(f ,g,h)− introduced in [DRb, (1.5.8)] and
invoked in [DRb, Theorem 1.5.1]. Hence [DRb, Theorem 1.5.1] applies and asserts
that the following identity holds in Λf for any triple (f̆ , ğ, h̆) of Λ-adic test vectors:

(7.5) 〈Lf ,gh(κfp(f , gζ , hαζ−1)−), ηf̆∗ ⊗ ωğ∗ζ ⊗ ωh̆∗
αζ−1
〉 = Lp

f (f̆∨, ğζ , h̆αζ−1).

Let now κfp(f, gζ , hαζ−1) and κfp(f, gζ , hαζ−1)− denote the specializations at x0 of
the classes in (7.4). According to our previous definitions, we have

(7.6) κp(f, gζ , hαζ−1)βgβh = κfp(f, gζ , hαζ−1).

Since ap(f) = α ∈ {±1} and εf (x0) = 1, it follows from the above description
of W and the character Ψgh

f that W(x0) ' Vp(E+)(M) as GQp -modules, where
E+ is the (trivial or quadratic) twist of E given by α. Hence κfp(f, gζ , hαζ−1) ∈
H1(Qp, Vp(E+)(M)).

The Bloch-Kato dual exponential and logarithm maps associated to the p-adic
representation Vp(E+)(M) take values in a space Lp(M) consisting of several copies
of the base field Lp. Given a choice of test vectors, it gives rise to a projection
Lp(M) −→ Lp. We shall denote by a slight abuse of notation

logBK : H1
f (Qp, Vp(E+)(M)) −→ Lp

the composition of the Bloch-Kato logarithm with the projection to Lp.
The following fundamental input comes from the main results due to Bertolini,

Seveso and Venerucci in this volume, and we refer to [BSVa] and [BSVb] for the
detailed proof; here we just content to point out to precise references in loc. cit. As
explained in the introduction, in a previous version of this paper formula (7.7) below
was wrongly attributed to [Ve16].

Theorem 7.1. — (Bertolini, Seveso, Venerucci) The local class κfp(f, gζ , hαζ−1) is
crystalline and

(7.7)
d2

dx2
Lp

f (f̆∨, ğζ , h̆αζ−1)|x=x0
= C2 · logBK(κfp(f, gζ , hαζ−1))

for some nonzero rational number C2 ∈ Q×.

Indeed, the first claim of the above theorem follows from [BSVa, Theorem B]: since
L(f, g, h, 1) = 0 it follows from the equivalence between (a) and (c) of [BSVa, §9.4]
that the dual exponential map vanishes on κfp(f, gζ , hαζ−1) –note that the improved
class κ∗g(f, gζ , hαζ−1) of loc. cit. is simply a non-zero multiple of κ(f, gζ , hαζ−1) in our
setting, because of (7.3). This amounts to saying that the class is crystalline. Formula
(7.7) follows from [BSVb, Proposition 2.2] combined with (7.5).

In light of (7.6) and the above discussion, the above theorem implies that
κ(f, gζ , hαζ−1) belongs to the Selmer group H1

f (Q, Vfgh(M)), as conditions (i) and
(ii) above are fulfilled.
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Recall from (5.2) that Vgh = Vψ ⊕ Vξ decomposes as the direct sum of the induced
representations of ψ and ξ. Write

κψ(f, gζ , hαζ−1) ∈ H1
f (Q, Vp(E)⊗ Vψ(M)),(7.8)

κξ(f, gζ , hαζ−1) ∈ H1
f (Q, Vp(E)⊗ Vξ(M))

for the projections of the class κ(f, gζ , hαζ−1) to the corresponding quotients. We
denote as in the introduction

καψ(f, gζ , hαζ−1) = (1 + ασp)κψ(f, gζ , hαζ−1) ∈ H1
f (H,Vp(E)(M))ψ⊕ψ̄

the component of κψ(f, gζ , hαζ−1) on which σp acts with eigenvalue α, and likewise
with ψ replaced by the auxiliary character ξ.

Lemma 7.1. — We have

logE,p κ
α
ψ(f, gζ , hαζ−1) = logE,p κ

α
ξ (f, gζ , hαζ−1).

Proof. — We may decompose the local class

κp := κp(f, gζ , hαζ−1) = (καgαhp , καgβhp , κβgαhp , κβgβhp )

in H1(Qp, Vf ⊗ V
αgαh
gh (M)) as the sum of four contributions with respect to the

decomposition (7.2) afforded by the eigen-spaces for the action of σp. In addition to
that, κp also decomposes as

κp = (κψ,p, κξ,p) ∈ H1
f (Qp, Vp(E)⊗ Vψ(M))⊕H1

f (Qp, Vp(E)⊗ Vξ(M)),

where κψ,p, κξ,p are the local components at p of the classes in (7.8). An easy exercise
in linear algebra shows that

(7.9) καgαhp = καψ,p − καξ,p, κβgβhp = καψ,p + καξ,p.

Since we already proved that καgαhp = 0, the above display implies that καψ,p = καξ,p
are the same element. The lemma follows.

Let

logβgβh : H1
f (Qp, Vf ⊗ Vgh(M))

prβgβh−→ H1
f (Qp, Vf ⊗ V

βgβh
gh (M))

logBK−→ Lp

denote the composition of the natural projection to the (βg, βh)-component with the
Bloch-Kato logarithm map associated to the p-adic representation Vf ⊗ V

βgβh
gh (M) '

Vf+(M) and the choice of test vectors. Note that H1
f (Qp, Vp(E+)) = H1

f (Qp,Qp(1)),
which as recalled in [DRb, Example 1.1.4 (c)] is naturally identified with the comple-
tion of Z×p , and the Bloch-Kato logarithm is nothing but the usual p-adic logarithm
on Z×p under this identification. Lemma 7.1 together with the second identity in (7.9)
imply that

(i) logE,p κ
α
ψ(f, gζ , hαζ−1) = logβgβh(κp(f, gζ , hαζ−1)).

Thanks to (7.7) we have

(ii) logβgβh(κp(f, gζ , hαζ−1)) =
d2

dx2
Lp

f (f̆∨, ğζ , h̆αζ−1)|x=x0
(mod L×).
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Finally, fix (f̆ , ğ, h̆) to be Hsieh’s choice of Λ-adic test vectors satisfying the prop-
erties stated in Theorem 6.1. Recall from (6.5) that, with this choice, we have

(iii)
d2

dx2
Lp

f (f̆∨, ğζ , h̆αζ−1)|x=x0
= logp(P

α
ψ ) · logp(P

α
ξ ) (mod L×).

Define
κψ := logE,p(Pαξ )−1 × καψ(f, gα, hα).

It follows from the combination of (i)-(ii)-(iii) that κψ fulfills the claims stated in
Theorem A, and hence the theorem is proved.

Theorem B also follows, because the non-vanishing of the first derivative
d
dxLp(f/K,ψ)|x=x0

implies that Pαψ,p 6= 0. Theorem A then implies that the
class κψ ∈ H1

f (H,Vp(E)(M))ψ⊕ψ̄ is non-trivial.
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Abstract. — This note provides the construction of a three-variable family of coho-
mology classes arising from diagonal cycles on a triple product of towers of modular
curves, and proves a reciprocity law relating it to the three variable triple-product
p-adic L-function associated to a triple of Hida families by means of Perrin-Riou’s
Λ-adic regulator.
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Introduction

The main purpose of this article is to supply a construction of a three-variable
family of cycles interpolating the generalized diagonal cycles introduced in [DR14],
and to prove a reciprocity law relating this family to the three variable triple-product
p-adic L-function associated to a triple of Hida families by means of Perrin-Riou’s
Λ-adic regulator.

In order to give a flavor of our construction, let us describe in more detail the
organization and contents of this article.

After reviewing some background in the first section, in section 2 we construct for
every r ≥ 1 a completely explicit family of cycles in the cube X3

r of the modular curve
Xr = X1(Mpr) of Γ1(Mpr)-level structure. This family is parametrized by the space
of SL2(Z/prZ)-orbits of the set

Σr := ((Z/prZ× Z/prZ)′)3 ⊂ ((Z/prZ)2)3

of triples of primitive row vectors of length 2 with entries in Z/prZ, on which
GL2(Z/prZ) acts diagonally by right multiplication. Any triple in Σr gives rise to
a twisted diagonal embedding of the modular curve X(pr) of Γ1(M) ∪ Γ(pr)-level
structure into the three-fold X3

r and the associated cycle is defined as the image of
this map: we refer to (2.4) for the precise recipe.

The parameter space Σr/SL2(Z/prZ) is closely related to ((Z/prZ)×)3 and as
shown throughout §2, the associated family of global cohomology classes introduced
in Definition 2.9 can be packaged into a global Λ-adic cohomology class parametrized
by three copies of weight space.

Along §3 and §4 we study the higher weight and cristalline specialisations of this
family and we eventually prove in Theorem 4.1 that they interpolate the classes
introduced in [DR14] as claimed above.

Finally, in §5 we recall Garrett-Hida’s triple product p-adic L-function associated
to a triple of Hida families (f ,g,h) and prove in Theorem 5.1 a reciprocity law ex-
pressing the latter as the image of our three-variable cohomology classes (as specified
in Definition 5.2) under Perrin-Riou’s Λ-adic regulator.

It is instructive to compare the construction of our family to the approach taken in
[DR17], which associated to a triple (f,g,h) consisting of a fixed newform f and a pair
(g,h) of Hida families a one-variable family of cohomology classes instead of the two-
variable family that one might have felt entitled to a priori. This shortcoming of the
earlier approach can be understood by noting that the space of embeddings of X(pr)
intoX1(M)×Xr×Xr as above in which the projection to the first factor is fixed is nat-
urally parametrized by the coset space M2(Z/prZ)′/SL2(Z/prZ), where M2(Z/prZ)′

denotes the set of 2×2 matrices whose rows are not divisible by p. The resulting cycles
are therefore parametrized by the coset space GL2(Z/prZ)/SL2(Z/prZ) = (Z/prZ)×,
whose inverse limit with r is the one dimensional p-adic space Z×p rather than a
two-dimensional one.

As mentioned already in our previous article in this volume, these cycles are of
interest in their own right, and shed a useful complementary perspective on the con-
struction of the Λ-adic cohomology classes for the triple product when compared to
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[BSVa]. Indeed, their study forms the basis for the ongoing PhD thesis of David
Lilienfeldt [Li], and has let to interesting open questions as those that are explored
by Castella and Hsieh in [CS20].

1. Background

1.1. Basic notations. — Fix an algebraic closure Q̄ of Q. All the number fields
that arise will be viewed as embedded in this algebraic closure. For each such K,
let GK := Gal (Q̄/K) denote its absolute Galois group. Fix an odd prime p and an
embedding Q̄ ↪→ Q̄p; let ordp denote the resulting p-adic valuation on Q̄×, normalized
in such a way that ordp(p) = 1.

For a variety V defined over K ⊂ Q̄, let V̄ denote the base change of V to Q̄. If F
is an étale sheaf on V , write Hi

ét(V̄ ,F) for the ith étale cohomology group of V̄ with
values in F , equipped with its continuous action by GK .

Given a prime p, let Q(µp∞) = ∪r≥1Q(ζr) be the cyclotomic extension of Q
obtained by adjoining to Q a primitive pr-th root of unity ζr. Let

εcyc : GQ −→ Gal (Q(µp∞)/Q)
'−→ Z×p

denote the p-adic cyclotomic character. It can be factored as εcyc = ω〈εcyc〉, where
ω : GQ −→ µp−1 〈εcyc〉 : GQ −→ 1 + pZp

are obtained by composing εcyc with the projection onto the first and second factors
in the canonical decomposition Z×p ' µp−1 × (1 + pZp). If M is a Zp[GQ]-module
and j is an integer, writeM(j) =M⊗ εjcyc for the j-th Tate twist ofM.

Let
Λ
◦

r := Zp[(Z/p
rZ)×], Λ

◦
:= Zp[[Z

×
p ]] := lim←−

r

Λ
◦

r

denote the group ring and completed group ring attached to the profinite group Z×p .
The ring Λ

◦
is equipped with p − 1 distinct algebra homomorphisms ωi : Λ

◦ → Λ (for
0 ≤ i ≤ p− 2) to the local ring

Λ = Zp[[1 + pZp]] = lim←−Zp[1 + pZ/prZ] ' Zp[[T ]],

where ωi sends a group-like element a ∈ Z×p to ωi(a)〈a〉 ∈ Λ. These homomorphisms
identify Λ

◦
with the direct sum

Λ
◦

=

p−2⊕
i=0

Λ.

The local ring Λ is called the one variable Iwasawa algebra. More generally, for any
integer t ≥ 1, let

Λ
◦⊗t

:= Λ
◦
⊗̂Zp

t. . . ⊗̂ZpΛ
◦
, Λ⊗t = Λ⊗̂Zp

t. . . ⊗̂ZpΛ ' Zp[[T1, . . . Tt]].

The latter ring is called the Iwasawa algebra in t variables, and is isomorphic to the
power series ring in t variables over Zp, while

Λ
◦⊗t

=
⊕
α

Λ⊗t,
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the sum running over the (p− 1)t distinct Z×p valued characters of (Z/pZ)×t.

1.2. Modular forms and Galois representations. — Let

φ = q +
∑
n≥2

an(φ)qn ∈ Sk(M,χ)

be a cuspidal modular form of weight k ≥ 1, level M and character χ : (Z/MZ)× →
C×, and assume that φ is an eigenform with respect to all good Hecke operators T`,
` -M .

Fix an odd prime number p (that in this section may or may not divide M). Let
Oφ denote the valuation ring of the finite extension of Qp generated by the fourier
coefficients of φ, and let T denote the Hecke algebra generated over Zp by the good
Hecke operators T` with ` - M and by the diamond operators acting on Sk(M,χ).
The eigenform φ gives rise to an algebra homomorphism

ξφ : T −→ Oφ
sending T` to a`(φ) and the diamond operator 〈`〉 to χ(`).

A fundamental construction of Shimura, Deligne, and Serre-Deligne attaches to φ
an irreducible Galois representation

%φ : GQ −→ Aut(Vφ) ' GL2(Oφ)

of rank 2, unramified at all primes ` -Mp, and for which

(1.1) det(1− %φ(Fr`)x) = 1− a`(φ)x+ χ(`)`k−1x2,

where Fr` denotes the arithmetic Frobenius element at `. This property characterizes
the semi-simplification of %φ up to isomorphism.

When k := k◦ + 2 ≥ 2, the representation Vφ can be realised in the p-adic étale
cohomology of an appropriate Kuga-Sato variety. Since this realisation is important
for the construction of generalised Kato classes, we now briefly recall its salient fea-
tures. Let Y = Y1(M) and X = X1(M) denote the open and closed modular curve
representing the fine moduli functor of isomorphism classes of pairs (A,P ) formed by
a (generalised) elliptic curve A together with a torsion point P on A of exact order
M . Let

(1.2) π : A◦ −→ Y

denote the universal elliptic curve over Y .
The k◦ -th open Kuga-Sato variety over Y is the k◦ -fold fiber product

(1.3) Ak◦◦ := A◦×Y (k◦ ). . . ×YA◦

of A◦ over Y . The variety Ak◦◦ admits a smooth compactification Ak◦ which is fibered
overX and is called the k◦ -th Kuga-Sato variety overX; we refer to Conrad’s appendix
in [BDP13] for more details. The geometric points in Ak◦ that lie above Y are
in bijection with isomorphism classes of tuples [(A,P ), P1, . . . , Pk◦ ], where (A,P ) is
associated to a point of Y as in the previous paragraph and P1, ..., Pk◦ are points on
A.
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The representation Vφ is realised (up to a suitable Tate twist) in the middle degree
étale cohomology Hk◦+1

ét (Āk◦ ,Zp). More precisely, let

Hr := R1π∗ Z/p
rZ(1), H := R1π∗ Zp(1),

and for any k◦ ≥ 0, define

(1.4) Hk◦r := TSymk◦ (Hr), Hk◦ := TSymk◦ (H)

to be the sheaves of symmetric k◦ -tensors of Hr and H, respectively. As defined in
e.g. [BDP13, (2.1.2)], there is an idempotent εk◦ in the ring of rational correspon-
dences of Ak◦ whose induced projector on the étale cohomology groups of this variety
satisfy:

(1.5) εk◦
(
H
k◦+1
ét (Āk◦ ,Zp(k◦))

)
= H1

ét(X̄,Hk◦ ).

Define the Oφ-module

(1.6) Vφ(M) := H1
ét(X̄,Hk◦ (1))⊗T,ξφ Oφ,

and write

(1.7) $φ : H1
ét(X̄,Hk◦ (1)) −→ Vφ(M)

for the canonical projection of T[GQ]-modules arising from (1.6). Deligne’s results
and the theory of newforms show that the module Vφ(M) is the direct sum of several
copies of a locally free module Vφ of rank 2 over Oφ that satisfies (1.1).

Let αφ and βφ the two roots of the p-th Hecke polynomial T 2−ap(φ)T +χ(p)pk−1,
ordered in such a way that ordp(αφ) ≤ ordp(βφ). (If αφ and βφ have the same p-
adic valuation, simply fix an arbitrary ordering of the two roots.) We set χ(p) = 0
whenever p divides the primitive level of φ and thus αφ = ap(φ) and βφ = 0 in this
case. The eigenform φ is said to be ordinary at p when ordp(αφ) = 0. In that case,
there is an exact sequence of GQp

-modules

(1.8) 0→ V +
φ −→ Vφ −→ V −φ → 0, V +

φ ' Oφ(εk−1
cyc χψ

−1
φ ), V −φ ' Oφ(ψφ),

where ψφ is the unramified character of GQp
sending Frp to αφ.

1.3. Hida families and Λ-adic Galois representations. — Fix a prime p ≥ 3.
The formal spectrum

W := Spf(Λ)

of the Iwasawa algebra Λ = Zp[[1 + pZp]] is called the weight space attached to Λ.
The A-valued points of W over a p-adic ring A are given by

W(A) = Homalg(Λ, A) = Homgrp(1 + pZp, A
×),

where the Hom’s in this definition denote continuous homomorphisms of p-adic rings
and profinite groups respectively. Weight space is equipped with a distinguished col-
lection of arithmetic points νk◦ ,ε , indexed by integers k◦ ≥ 0 and Dirichlet characters
ε : (1 + pZ/prZ)→ Qp(ζr−1)× of p-power conductor. The point νk◦ ,ε ∈ W(Zp[ζr]) is
defined by

νk◦ ,ε(n) = ε(n)nk◦ ,
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and the notational shorthand νk◦ := νk◦ ,1 is adopted throughout. More generally, if
Λ̃ is any finite flat Λ-algebra, a point x ∈ W̃ := Spf(Λ̃) is said to be arithmetic if its
restriction to Λ agrees with νk◦ ,ε for some k◦ and ε. The integer k = k◦ + 2 is called
the weight of x and denoted wt(x).

Let

(1.9) εcyc : GQ −→ Λ×

denote the Λ-adic cyclotomic character which sends a Galois element σ to the group-
like element [〈εcyc(σ)〉]. This character interpolates the powers of the cyclotomic
character, in the sense that

(1.10) νk◦ ,ε ◦ εcyc = ε · 〈εcyc〉k◦ = ε · εk◦cyc · ω−k◦ .
Let M ≥ 1 be an integer not divisible by p.

Definition 1.1. — A Hida family of tame level M and tame character χ :
(Z/MZ)× → Q̄×p is a formal q-expansion

φ =
∑
n≥1

an(φ)qn ∈ Λφ[[q]]

with coefficients in a finite flat Λ-algebra Λφ, such that for any arithmetic point
x ∈ Wφ := Spf(Λφ) above νk◦ ,ε, where k◦ ≥ 0 and ε is a character of conductor
pr, the series

φx :=
∑
n≥1

x(an(φ))qn ∈ Q̄p[[q]]

is the q-expansion of a classical p-ordinary eigenform in the space Sk(Mpr, χεω−k◦ )
of cusp forms of weight k = k◦ + 2, level Mpr and nebentype χεω−k◦ .

By enlarging Λφ if necessary, we shall assume throughout that Λφ contains the
M -th roots of unity.

Definition 1.2. — Let x ∈ Wφ be an arithmetic point lying above the point νk◦ ,ε of
weight space. The point x is said to be

— tame if the character ε is tamely ramified, i.e., factors through (Z/pZ)×.
— crystalline if εω−k◦ = 1, i.e., if the weight k specialisation of φ at x has trivial

nebentypus character at p.
We let W◦φ denote the set of crystalline arithmetic points of Wφ.

Note that a crystalline point is necessarily tame but of course there are tame
points that are not crystalline. The justification for this terminology is that the
Galois representation Vφx is crystalline at p when x is crystalline.

If x is a crystalline point, then the classical form φx is always old at p if k > 2.
In that case there exists an eigenform φ◦x of level M such that φx is the ordinary
p-stabilization of φ◦x. If the weight is k = 1 or 2, φx may be either old or new at p; if
it is new at p then we set φ◦x = φx in order to have uniform notations.

We say φ is residually irreducible if the mod p Galois representation associated
to the Deligne representations associated to φ◦x for any crystalline classical point is
irreducible.
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Finally, the Hida family φ is said to be primitive of tame level Mφ | M if for all
but finitely many arithmetic points x ∈ Wφ of weight k ≥ 2, the modular form φx
arises from a newform of level Mφ.

The following theorem of Hida and Wiles associates a two-dimensional Galois rep-
resentation to a Hida family φ (cf. e.g. [MT90, Théorème 7]).

Theorem 1.1. — Assume φ is residually irreducible. Then there is a rank two
Λφ-module Vφ equipped with a Galois action

(1.11) %φ : GQ −→ AutΛφ
(Vφ) ' GL2(Λφ),

such that, for all arithmetic points x : Λφ −→ Q̄p,

Vφ ⊗x,Λφ
Q̄p ' Vφx ⊗ Q̄p.

Let
ψφ : GQp

−→ Λ×φ

denote the unramified character sending a Frobenius element Frp to ap(φ). The re-
striction of Vφ to GQp

admits a filtration
(1.12)
0 → V+

φ → Vφ → V−φ → 0 where V+
φ ' Λφ(ψ−1

φ χε−1
cycεcyc) and V−φ ' Λφ(ψφ).

The explicit construction of the Galois representation Vφ plays an important role
in defining the generalised Kato classes, and we now recall its main features.

For all 0 ≤ r < s, let

Xr := X1(Mpr), Xr,s := X1(Mpr)×X0(Mpr) X0(Mps),

where the fiber product is taken relative to the natural projection maps. In particular,
— the curve X := X0 := X1(M) represents the functor of elliptic curves A with

Γ1(M)-level structure, i.e., with a marked point of order M ;
— the curve Xr represents the functor classifying pairs (A,P ) consisting of a

generalized elliptic curve A with Γ1(M)-level structure and a point P of order
pr on A;

— the curve X0,s = X1(M)×X0(M)X0(Mps) classifies pairs (A,C) consisting of a
generalized elliptic curve A with Γ1(M) structure and a cyclic subgroup scheme
C of order ps on A;

— the curve Xr,s classifies pairs (A,P,C) consisting of a generalized elliptic curve
A with Γ1(M) structure, a point P of order r on A and and a cyclic subgroup
scheme C of order ps on A containing P .

The curves Xr and X0,r are smooth geometrically connected curves over Q. The
natural covering map Xr −→ X0,r is Galois with Galois group (Z/prZ)× acting on
the left via the diamond operators defined by

(1.13) 〈a〉(A,P ) = (A, aP ).

Let

(1.14) $1 : Xr+1 −→ Xr



8 HENRI DARMON AND VICTOR ROTGER

denote the natural projection from level r+1 to level r which corresponds to the map
(A,P ) 7→ (A, pP ), and to the map τ 7→ τ on upper half planes. Let

$2 : Xr+1 −→ Xr

denote the other projection, corresponding to the map (A,P ) 7→ (A/〈prP 〉, P+〈prP 〉),
which on the upper half plane sends τ to pτ . These maps can be factored as

(1.15) Xr+1

µ

��

$1

##
Xr,r+1 π1

// Xr,

Xr+1

µ

��

$2

##
Xr,r+1 π2

// Xr.

For all r ≥ 1, the vertical map µ is a cyclic Galois covering of degree p, while the
horizontal maps π1 and π2 are non-Galois coverings of degree p. When r = 0, the
map µ is a cyclic Galois covering of degree p − 1 and π2 are non-Galois coverings of
degree p+ 1.

The Λ-adic representation Vφ shall be realised (up to twists) in quotients of the
inverse limit of étale cohomology groups arising from the tower

X∗∞ : · · · $1−→ Xr+1
$1−→ Xr

$1−→ · · · $1−→ X1
$1−→ X0

of modular curves. Define the inverse limit

(1.16) H1
ét(X̄

∗
∞,Zp) := lim←−

$1∗

H1
ét(X̄r,Zp)

where the transition maps arise from the pushforward induced by the morphism $1.
This inverse limit is a module over the completed group rings Zp[[Z×p ]] arising from the
action of the diamond operators, and is endowed with a plethora of extra structures
that we now describe.

Hecke operators. The transition maps in (1.16) are compatible with the action of
the Hecke operators Tn for all n that are not divisible by p. Of crucial importance
for us in this article is Atkin’s operator U∗p , which operates on H1

ét(X̄r,Zp) via the
composition

U∗p := π1∗π
∗
2

arising from the maps in (1.15).
The operator U∗p is compatible with the transition maps defining H1

ét(X̄
∗
∞,Zp),

Inverse systems of étale sheaves. The cohomology group H1
ét(X̄

∗
∞,Zp) can be iden-

tified with the first cohomology group of the base curve X1 with values in a certain
inverse systems of étale sheaves.

For each r ≥ 1, let

(1.17) L∗r := $r−1
1∗ Zp

be the pushforward of the constant sheaf on Xr via the map

$r−1
1 : Xr −→ X1

The stalk of L∗r at a geometric point x = (A,P ) on X1 is given by

L∗r,x = Zp[A[pr]〈P 〉],
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where
A[pr]〈P 〉 := {Q ∈ A[pr] such that pr−1Q = P}.

The multiplication by p map on the fibers gives rise to natural homomorphisms of
sheaves

(1.18) [p] : L∗r+1 −→ L∗r ,

and Shapiro’s lemma gives canonical identifications

H1
ét(X̄r,Zp) = H1

ét(X̄1,L∗r),

for which the following diagram commutes:

H1
ét(X̄r+1,Zp)

$1∗ // H1
ét(X̄r,Zp)

H1
ét(X̄1,L∗r+1)

[p] // H1
ét(X̄1,L∗r).

Let L∗∞ := lim←−
r

L∗r denote the inverse system of étale sheaves relative to the maps

[p] arising in (1.18). By passing to the limit, we obtain an identification

(1.19) H1
ét(X̄

∗
∞,Zp) = lim←−

r≥1

H1
ét(X̄1,L∗r) = H1

ét(X̄1,L∗∞).

Weight k specialisation maps. Recall the p-adic étale sheaves Hk◦ introduced in (1.4),
whose cohomology gave rise to the Deligne representations attached to modular forms
of weight k = k◦ + 2 via (1.6). The natural k◦ -th power symmetrisation function

A[pr] −→ Hk◦r , Q 7→ Qk◦ ,

restricted to A[pr]〈P 〉 and extended to L∗r,x by Zp-linearity, induces morphisms

(1.20) sp∗k,r : L∗r −→ H
k◦
r

of sheaves over X1 (which are thus compatible with the action of GQ on the fibers).
These specialisation morphisms are compatible with the transition maps [p] in the
sense that the diagram

L∗r+1

[p] //

sp∗k,r+1

��

L∗r
sp∗k,r
��

Hk◦r+1
// Hk◦r

commutes, where the bottom horizontal arrow denotes the natural reduction map.
The maps sp∗k,r can thus be pieced together into morphisms

(1.21) sp∗k : L∗∞ −→ Hk◦ .

The induced morphism

(1.22) sp∗k : H1
ét(X̄

∗
∞,Zp) −→ H1

ét(X̄1,Hk◦ ),
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arising from those on H1
ét(X̄1,L∗∞) via (1.19) will be denoted by the same symbol

by abuse of notation, and is referred to as the weight k = k◦ + 2 specialisation map.
The existence of such maps having finite cokernel reveals that the Λ-adic Galois
representation H1

ét(X̄
∗
∞,Zp) is rich enough to capture the Deligne representations

attached to modular forms on X1 of arbitrary weight k ≥ 2.
For each a ∈ 1 + pZp, the diamond operator 〈a〉 acts trivially on X1 and as

multiplication by ak◦ on the stalks of the sheaves Hk◦r . It follows that the weight k
specialisation map sp∗k factors through the quotient H1

ét(X̄
∗
∞,Zp)⊗Λ,νk◦

Zp, i.e., one
obtains a map

sp∗k : H1
ét(X̄

∗
∞,Zp)⊗Λ,νk◦

Zp −→ H1
ét(X̄1,Hk◦ ).

Remark 1.3. — The inverse limit L∗∞ of the sheaves L∗r on X1 has been systemat-
ically studied by G. Kings in [K15, §2.3-2.4], and is referred to as a sheaf of Iwasawa
modules. Jannsen introduced in [J88] the étale cohomology groups of such inverse
systems of sheaves, and proved the existence of a Hoschild-Serre spectral sequence,
Gysin excision exact sequences and cycle map in this context.

Ordinary projections. Let

(1.23) e∗ := lim
n→∞

U∗n!
p

denote Hida’s (anti-)ordinary projector. Since U∗p commutes with the push-forward
maps $1∗, this idempotent operates on H1

ét(X̄
∗
∞,Zp). While the structure of the

Λ-module H1
ét(X̄

∗
∞,Zp) seems rather complicated, a dramatic simplification occurs

after passing to the quotient e∗H1
ét(X̄

∗
∞,Zp), as the following classical theorem of

Hida shows.

Theorem 1.2. — [H86, Corollaries 3.3 and 3.7] The Galois representation
e∗H1

ét(X̄
∗
∞,Zp(1)) is a free Λ-module. For each νk◦ ∈ W with k◦ ≥ 0, the weight

k = k◦ + 2 specialisation map induces maps with bounded cokernel (independent of k)

sp∗k : e∗H1
ét(X̄

∗
∞,Zp(1))⊗νk◦ Zp −→ e∗H1

ét(X̄1,Hk◦ (1)).

Galois representations attached to Hida families. The Galois representation Vφ of
Theorem 1.1 associated by Hida and Wiles to a Hida family φ of tame level M and
character χ can be realised as a quotient of the Λ-module e∗H1

ét(X̄
∗
∞,Zp(1)). More

precisely, let
ξφ : TΛ −→ Λφ

be the Λ-algebra homomorphism from the Λ-adic Hecke algebra TΛ to the Λ-algebra
Λφ generated by the fourier coefficients of φ sending T` to a`(φ).

Then we have, much as in (1.7), a quotient map of Λ-adic Galois representations

(1.24) $∗φ : e∗H1
ét(X̄

∗
∞,Zp(1)) −→ e∗H1

ét(X̄
∗
∞,Zp(1))⊗TΛ,ξφ Λφ =: Vφ(M),
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for which the following diagram of TΛ[GQ]-modules is commutative:

(1.25) e∗H1
ét(X̄

∗
∞,Zp(1))

$∗φ //

sp∗k
��

Vφ(M)

x

��
e∗H1

ét(X̄1,Hk◦ (1))
$φx // Vφx(Mp),

for all arithmetic points x of Wφ of weight k = k◦ + 2 and trivial character.
As in (1.7), Vφ(M) is non-canonically isomorphic to a finite direct sum of copies of

a Λφ[GQ]-module Vφ of rank 2 over Λφ, satisfying the properties stated in Theorem
1.1.

One can of course work alternatively with the ordinary projection e := limn→∞ Un!
p

rather than the anti-ordinary one, in which case one similarly constructs a quotient
map of Λ-adic Galois representations

(1.26) $φ : eH1
ét(X̄∞,Zp(1)) := e lim←−

$2∗

H1
ét(X̄r,Zp(1)) −→ Vφ(M).

1.4. Families of Dieudonné modules. — Let BdR denote Fontaine’s field of de
Rham periods, B+

dR be its ring of integers and log[ζp∞ ] denote the uniformizer of
B+

dR associated to a norm-compatible system ζp∞ = {ζpn}n≥0 of pn-th roots of unity.
(cf. e.g.[BK93, §1]). For any finite-dimensional de Rham Galois representation V of
GQp

with coefficients in a finite extension Lp/Qp, define the de Rham Dieudonné
module

D(V ) = (V ⊗BdR)GQp .

It is an Lp-vector space of the same dimension as V , equipped with a descending
exhaustive filtration FiljD(V ) = (V ⊗ logj [ζp∞ ]B+

dR)GQp by Lp-vector subspaces.
Let Bcris ⊂ BdR denote Fontaine’s ring of crystalline p-adic periods. If V is crys-

talline (which is always the case if it arises as a subquotient of the étale cohomology of
an algebraic variety with good reduction at p), then there is a canonical isomorphism

D(V ) ' (V ⊗Bcris)
GQp ,

which furnishes D(V ) with a linear action of a Frobenius endomorphism Φ.
In [BK93] Bloch and Kato introduced a collection of subspaces of the local Galois

cohomology group H1(Qp, V ), denoted respectively

H1
e (Qp, V ) ⊆ H1

f (Qp, V ) ⊆ H1
g (Qp, V ) ⊆ H1(Qp, V ),

and constructed homomorphisms

(1.27) logBK : H1
e (Qp, V )

∼−→ D(V )/
(
Fil0D(V ) +D(V )Φ=1

)
and

(1.28) exp∗BK : H1(Qp, V )/H1
g (Qp, V )

∼−→ Fil0D(V )

that are usually referred to as the Bloch-Kato logarithm and dual exponential map.
We illustrate the above Bloch-Kato homomorphisms with a few basic examples

that shall be used several times in the remainder of this article.
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Example 1.4. — As shown e.g. in [BK93], [B09, §2.2], for any unramified charac-
ter ψ of GQp and all n ∈ Z we have:

(a) If n ≥ 2, or n = 1 and ψ 6= 1, then H1
e (Qp, Lp(ψε

n
cyc)) = H1(Qp, Lp(ψε

n
cyc)) is

one-dimensional over Lp and the Bloch-Kato logarithm induces an isomorphism

logBK : H1(Qp, Lp(ψε
n
cyc))

∼−→ D(Lp(ψε
n
cyc)).

(b) If n < 0, or n = 0 and ψ 6= 1, then H1
g (Qp, Lp(ψε

n
cyc)) = 0 and

H1(Qp, Lp(ψε
n
cyc)) is one-dimensional. The dual exponential gives rise to

an isomorphism

exp∗BK : H1(Qp, Lp(ψε
n
cyc))

∼−→ Fil0D(Lp(ψε
n
cyc)) = D(Lp(ψε

n
cyc)).

(c) Assume ψ = 1. If n = 0, then H1(Qp, Lp) has dimension 2 over Lp,
H1

f (Qp, Lp) = H1
g (Qp, Lp) has dimension 1 and H1

e (Qp, Lp) has dimension 0
over Lp. The Bloch-Kato dual exponential map induces an isomorphism

exp∗BK : H1(Qp, Lp)/H
1
f (Qp, Lp)

∼−→ Fil0D(Lp) = D(Lp) = Lp.

Class field theory identifies H1(Qp, Lp) with Homcont(Q
×
p ,Qp) ⊗ Lp, which is

spanned by the homomorphisms ordp and logp.
If n = 1, then H1(Qp, Lp(1)) = H1

g (Qp, Lp(1)) is 2-dimensional and
H1

f (Qp, Lp(1)) = H1
e (Qp, Lp(1)) has dimension 1 over Lp. As proved e.g. in

[B09, Prop. 2.9], Kummer theory identifies the spaces H1
f (Qp, Lp(1)) ⊂

H1(Qp, Lp(1)) with Z×p ⊗̂Lp sitting inside Q×p ⊗̂Lp. Under this identification,
the Bloch-Kato logarithm is the usual p-adic logarithm on Z×p .

Let Ẑnr
p denote the ring of integers of the completion of the maximal unramified

extension of Qp. If V is unramified then there is a further canonical isomorphism

(1.29) D(V ) ' (V ⊗ Ẑnr
p )GQp .

Let φ be an eigenform (with respect to the good Hecke operators) of weight k =
k◦ + 2 ≥ 2, level M and character χ, with fourier coefficients in a finite extension Lp
of Qp. The comparison theorem [F97] of Faltings-Tsuji combined with (1.6) asserts
that there is a natural isomorphism

D(Vφ(M)) ' H1
dR(X1(M),Hk◦ (1))[φ]

of Dieudonné modules over Lp. Note that D(Vφ(M)) is the direct sum of several
copies of the two-dimensional Dieudonné module D(Vφ).

Assume that p - M and φ is ordinary at p. Then Vφ(M) is crystalline and Φ acts
on D(Vφ(M)) as

(1.30) Φ = χ(p)pk◦+1U−1
p .

In particular the eigenvalues of Φ on D(Vφ(M)) are χ(p)pk◦+1α−1
φ = βφ and

χ(p)pk◦+1β−1
φ = αφ, the two roots of the Hecke polynomial of φ at p. For future
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reference, recall from [DR14, Theorem 1.3] the Euler factors

(1.31) E0(φ) := 1− χ−1(p)β2
φp

1−k = 1−
βφ◦x
αφ◦x

, E1(φ) := 1− χ(p)α−2
φ pk−2.

Let φ∗ = φ ⊗ χ̄ ∈ Sk(M, χ̄) denote the twist of φ by the inverse of its nebentype
character. Poincaré duality induces a perfect pairing

〈 , 〉 : D(Vφ(M))×D(Vφ∗(M)) −→ D(Lp) = Lp.

The exact sequence (1.8) induces in this setting an exact sequence of Dieudonné
modules

(1.32) 0 −→ D(V +
φ (M))

i−→ D(Vφ(M))
π−→ D(V −φ (M)) −→ 0.

Since V −φ (M is unramified, we have D(V −φ (M)) ' (V −φ (M) ⊗ Ẑnr
p )GQp . This sub-

module may also be characterized as the eigenspace D(V −φ (M)) = D(Vφ(M))Φ=αφ of
eigenvalue αφ for the action of frobenius.

The rule φ̆ 7→ ωφ̆ that attaches to a modular form its associated differential form
gives rise to an isomorphism Sk(M,χ)Lp [φ]

∼−→ Fil0(D(Vφ(M))) ⊂ D(Vφ(M)). More-
over, the map π of (1.32) induces an isomorphism

(1.33) Sk(M,χ)Lp [φ]
∼−→ Fil0(D(Vφ(M)))

π−→ D(V −φ (M)).

Any element ω ∈ D(V −φ∗(M)) gives rise to a linear map

ω : D(V +
φ (M)) −→ Lp, η 7→ 〈η, π−1(ω)〉.

Similarly, any η ∈ D(V +
φ∗(M)) may be identified with a linear functional

η : D(V −φ (M)) −→ Lp, ω 7→ 〈π−1(ω), η〉,

and given φ̆ ∈ Sk(M,χ)Lp [φ] we set ηφ̆ : D(V −φ∗(M))→ Lp, ϕ 7→ ηφ̆(ϕ) = 〈φ̆,ϕ〉
〈φ̆,φ̆∗〉

.

Let now Λ̃ be a finite flat extension of the Iwasawa algebra Λ and let U denote
a free Λ̃-module of finite rank equipped with an unramified Λ̃-linear action of GQp .
Define the Λ-adic Dieudonné module

D(U) := (U⊗̂Ẑnr
p )GQp .

As shown in e.g. [O03, Lemma 3.3], D(U) is a free module over Λ̃ of the same rank
as U.

Examples of such Λ-adic Dieudonné modules arise naturally in the context of fam-
ilies of modular forms thanks to Theorem 1.1. Indeed, let φ be a Hida family of tame
level M and character χ, and let φ∗ denote the Λ-adic modular form obtained by
twisting φ by χ̄.

Let Vφ and Vφ(M) denote the global Λ-adic Galois representations described in
(1.24). It follows from (1.12) that to the restriction of Vφ to GQp one might associate
two natural unramified Λ[GQp ]-modules of rank one, namely

V−φ ' Λφ(ψφ) and U+
φ = V+

φ(χ−1εcycε
−1
cyc).

Define similarly the unramified modules V−φ(M) and U+
φ(M).
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Let

(1.34) Sord
Λ (M,χ)[φ] :=

{
φ̆ ∈ Sord

Λ (M,χ) s.t.
∣∣∣∣ T`φ̆ = a`(φ)φ̆, ∀` -Mp,

Upφ̆ = ap(φ)φ̆

}
,

For any crystalline arithmetic point x ∈ W◦φ of weight k, the specialization of a
Λ-adic test vector φ̆ ∈ Sord

Λ (M,χ)[φ] at x is a classical eigenform φ̆x ∈ Sk(Mp,χ)
with coefficients in Lp = x(Λφ) ⊗ Qp and the same eigenvalues as φx for the good
Hecke operators.

Likewise, define

Sord
Λ (M, χ̄)∨[φ] =

{
η : Sord

Λ (M, χ̄)→ Λφ

∣∣∣∣ η ◦ T ∗` = a`(φ)η, ∀` -Mp,
η ◦ U∗p = ap(φ)η

}
Let Qφ denote the field of fractions of Λφ. Associated to any test vector φ̆ ∈

Sord
Λ (M,χ)[φ], [DR14, Lemma 2.19] describes a Qφ-linear dual test vector

(1.35) φ̆
∨
∈ Sord

Λ (M, χ̄)∨[φ] ⊗̂Qφ

such that for any ϕ ∈ Sord
Λ (M, χ̄) and any point x ∈ W◦f ,

x(φ̆
∨

(ϕ)) =
〈φ̆x,ϕx〉
〈φ̆x, φ̆

∗
x〉

where 〈 , 〉 denotes the pairing induced by Poincaré duality on the modular curve
associated to the congruence subgroup Γ1(M) ∩ Γ0(p). This way, the specialization
of a Λ-adic dual test vector φ̆

∨
∈ Sord

Λ (M, χ̄)∨[φ] at x gives rise to a linear functional

ηφ̆x
: Sk(Mp, χ̄)[φ∗x] −→ Lp.

A natural Qf -basis of Sord
Λ (M,χ)[φ] ⊗̂Qφ is given by the Λ-adic modular forms

φ(qd) as d ranges over the positive divisors of M/Mφ and it is also obvious that
{φ(qd)∨ : d | MMφ

} provides a Qφ-basis of Sord
Λ (M, χ̄)∨[φ] ⊗̂Qφ.

The following statement shows that the linear maps described above can be made
to vary in families.

Proposition 1.5. — For any Λ-adic test vector φ̆ ∈ Sord
Λ (M,χ)[φ] there exist ho-

momorphisms of Λφ-modules

ωφ̆ : D(U+
φ∗(M)) −→ Λφ, ηφ̆ : D(V−φ∗(M)) −→ Qφ,

whose specialization at a classical point x ∈ W◦φ such that φx is the ordinary stabi-
lization of an eigenform φ◦x of level M are, respectively

1. x ◦ ωφ̆ = E0(φ◦x) e$∗1(ωφ̆
◦
x
) as functionals on D(U+

φ∗x
(Mp)).

2. x ◦ ηφ̆ = 1
E1(φ◦x) · e$

∗
1(ηφ̆◦x

) as functionals on D(V −φ∗x
(Mp)).

Proof. — This is essentially a reformulation of [KLZ17, Propositions 10.1.1 and
10.1.2], which in turn builds on [O00]. Namely, the first claim in Prop. 10.1.2 of
loc. cit. asserts that ωφ̆ exists such that at any x ∈ W◦φ as above, x ◦ ωφ̆ = ωφ̆x

=
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Prα∗(ωφ̆◦x
) where Prα∗ is the map defined in [KLZ17, 10.1.3] sending φ̆◦x to its ordi-

nary p-stablilization φ̆x. Note that $∗1(φ◦x) =
αφ◦x

φ̆x

αφ◦x
−βφ◦x

− βφ◦x
φ̆′x

αφ◦x
−βφ◦x

, where φ̆′x denotes

the non-ordinary specialization of φ̆◦x. Since eωφ̆′x = 0 and E0(φ◦x) =
αφ◦x
−βφ◦x
αφ◦x

the
claim follows.

The second part of [KLZ17, Proposition 10.1.2] asserts that there exists a Λ-adic
functional η̃φ̆ such that for all x as above:

x ◦ η̃φ̆ =
Prα∗ηφ̆◦x

λ(φ◦x)E0(φ◦x)E1(φ◦x)

as Lp-linear functionals on D(V −φ∗x
(Mp)). Here λ(φ◦x) ∈ Q̄× denotes the pseudo-

eigenvalue of φ◦x, which we recall is the scalar given by

(1.36) WM (φ◦x) = λ(φ◦x) · φ◦∗x ,
where WM : Sk(M,χ) → Sk(M,χ−1) stands for the Atkin-Lehner operator. Since
we are assuming that Λφ contains the M -th roots of unity (cf. the remark right after
Definition 1.1), Prop. 10.1.1 of loc. cit. shows that there exists an element λ(φ) ∈ Λφ

interpolating the pseudo-eigenvalues of the classical p-stabilized specializations of φ.
The claim follows by taking ηφ̆ = λ(φ)η̃φ̆. The same argument as above yields that

for all x as above, x ◦ ηφ̆ = E0(φ◦x)
e$∗1ηφ̆◦x

E0(φ◦x)E1(φ◦x) , which amounts to the statement of
the proposition.

2. Generalised Kato classes

2.1. A compatible collection of cycles. — This section defines a collection of
codimension two cycles in X1(Mpr)3 indexed by elements of (Z/prZ)×3 and records
some of their properties.

We retain the notations that were in force in Section 1.3 regarding the meanings
of the curves X = X1(M), Xr = X1(Mpr) and Xr,s. In addition, let

Y(pr) := Y ×X(1) Y (pr), X(pr) := X ×X(1) X(pr)

denote the (affine and projective, respectively) modular curve over Q(ζr) with full
level pr structure. The curve Y(pr) classifies triples (A,P,Q) in which A is an elliptic
curve with Γ1(M) level structure and (P,Q) is a basis for A[pr] satisfying 〈P,Q〉 = ζr,
where 〈 , 〉 denotes the Weil pairing and ζr is a fixed primitive pr-th root of unity.
The curve X(pr) is geometrically connected but does not descend to a curve over Q,
as can be seen by noting that the description of its moduli problem depends on the
choice of ζr. The covering X(pr)/X is Galois with Galois group SL2(Z/prZ), acting
on the left by the rule

(2.1)
(
a b
c d

)
(A,P,Q) = (A, aP + bQ, cP + dQ).

Consider the natural projection map

(2.2) $r
1 ×$r

1 ×$r
1 : X3

r −→ X3
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induced on triple products by the map $r
1 of (1.14). Write ∆ ⊂ X3 for the usual

diagonal cycle, namely the image of X under the diagonal embedding x 7→ (x, x, x).
Let ∆r be the fiber product ∆×X3 X3

r via the natural inclusion and the map of (2.2),
which fits into the cartesian diagram

∆r
� � //

����

X3
r

����
∆ �
� // X3.

An element of a Zp-module Ω is said to be primitive if it does not belong to pΩ, and
the set of such primitive elements is denoted Ω′. Let

Σr := ((Z/prZ× Z/prZ)′)3 ⊂ ((Z/prZ)2)3

be the set of triples of primitive row vectors of length 2 with entries in Z/prZ, equipped
with the action of GL2(Z/prZ) acting diagonally by right multiplication.

Lemma 2.1. — The geometrically irreducible components of ∆r are defined over
Q(ζr) and are in canonical bijection with the set of left orbits

Σr/SL2(Z/prZ).

Proof. — Each triple

(v1, v2, v3) = ((x1, y1), (x2, y2), (x3, y3)) ∈ Σr

determines a morphism

ϕ(v1,v2,v3) : X(pr) −→ ∆r ⊂ X3
r

of curves over Q(ζr), defined in terms of the moduli descriptions on Y(pr) by

(A,P,Q) 7→ ( (A, x1P + y1Q), (A, x2P + y2Q), (A, x3P + y3Q) ).

It is easy to see that if two elements (v1, v2, v3) and (v′1, v
′
2, v
′
3) ∈ Σr satisfy

(v′1, v
′
2, v
′
3) = (v1, v2, v3)γ, with γ ∈ SL2(Z/prZ),

then
ϕ(v′1,v

′
2,v
′
3) = ϕ(v1,v2,v3) ◦ γ,

where γ is being viewed as an automorphism of X(pr) as in (2.1). It follows that the
geometrically irreducible cycle

∆r(v1, v2, v3) := ϕ(v1,v2,v3)∗(X(pr))

depends only on the SL2(Z/prZ)-orbit of (v1, v2, v3).
Since SL2(Z/prZ) acts transitively on (Z/prZ× Z/prZ)′, one further checks that

the collection of cycles ∆r(v1, v2, v3) for (v1, v2, v3) ∈ Σr/SL2(Z/prZ) do not over-
lap on Y 3

r and cover ∆r. Hence the irreducible components of ∆r are precisely
∆r(v1, v2, v3) for (v1, v2, v3) ∈ Σr/SL2(Z/prZ).
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The quotient Σr/SL2(Z/prZ) is equipped with a natural determinant map

D : Σr/SL2(Z/prZ) −→ (Z/prZ)3

defined by

D ((x1y1), (x2, y2), (x3, y3)) :=

(∣∣∣∣ x2 y2

x3 y3

∣∣∣∣ , ∣∣∣∣ x3 y3

x1 y1

∣∣∣∣ , ∣∣∣∣ x1 y1

x2 y2

∣∣∣∣) .
For each [d1, d2, d3] ∈ (Z/prZ)3, we can then write

Σr[d1, d2, d3] := {(v1, v2, v3) ∈ Σr with D(v1, v2, v3) = (d1, d2, d3)} .
The group SL2(Z/prZ) operates simply transitively on Σr[d1, d2, d3] if (and only if)

(2.3) [d1, d2, d3] ∈ Ir := (Z/prZ)×3.

In particular, if (v1, v2, v3) belongs to Σr[d1, d2, d3], then the cycle ∆r(v1, v2, v3) de-
pends only on [d1, d2, d3] ∈ Ir and will henceforth be denoted

(2.4) ∆r[d1, d2, d3] ∈ CH2(X3
r ).

A somewhat more intrinsic definition of ∆r[d1, d2, d3] as a curve embedded
in X3

r is that it corresponds to the schematic closure of the locus of points
((A,P1), (A,P2), (A,P3)) satisfying

(2.5) 〈P2, P3〉 = ζd1
r , 〈P3, P1〉 = ζd2

r , 〈P1, P2〉 = ζd3
r .

This description also makes it apparent that the cycle ∆r[d1, d2, d3] is defined over
Q(ζr) but not over Q. Let σm ∈ Gal (Q(ζr)/Q) be the automorphism associated to
m ∈ (Z/prZ)×, sending ζr to ζmr . The threefold X3

r is also equipped with an action
of the group

(2.6) G̃r := ((Z/prZ)×)3 = {〈a1, a2, a3〉, a1, a2, a3 ∈ (Z/prZ)×}
of diamond operators, where the automorphism associated to a triple (〈a1〉, 〈a2〉, 〈a3〉)
has simply been denoted 〈a1, a2, a3〉.

Lemma 2.2. — For all diamond operators 〈a1, a2, a3〉 ∈ G̃r and all [d1, d2, d3] ∈ Ir,
(2.7) 〈a1, a2, a3〉∆r[d1, d2, d3] = ∆r[a2a3 · d1, a1a3 · d2, a1a2 · d3].

For all σm ∈ Gal (Q(ζr)/Q),

(2.8) σm∆r[d1, d2, d3] = ∆r[m · d1,m · d2,m · d3].

Proof. — Equation (2.7) follows directly from the identity

D(a1v1, a2v2, a3v3) = [a2a3, a1a3, a1a2]D(v1, v2, v3).

The first equality in (2.8) is most readily seen from the equation (2.5) defining the
cycle ∆r[d1, d2, d3], since applying the automorphism σm ∈ Gal (Q(ζr)/Q) has the
effect of replacing ζr by ζmr .

Remark 2.3. — Assume m is a quadratic residue in (Z/prZ)×, which is the case,
for instance, when σm belongs to Gal (Q(ζr)/Q(ζ1)). Then it follows from (2.7) and
(2.8) that

(2.9) σm∆r[d1, d2, d3] = 〈m,m,m〉1/2∆r[d1, d2, d3].
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Let us now turn to the compatibility properties of the cycles ∆r[d1, d2, d3] as the
level r varies. Recall the modular curve Xr,r+1 classifying generalised elliptic curves
together with a distinguished cyclic subgroup of order pr+1 and a point of order pr
in it. The maps µ, $1, π1, $2 and π2 of (1.15) induce similar maps on the triple
products:

(2.10) X3
r+1

µ3

��

$3
1

""
X3
r,r+1

π3
1

// X3
r ,

X3
r+1

µ3

��

$3
2

""
X3
r,r+1

π3
2

// X3
r .

A finite morphism j : V1 −→ V2 of varieties induces maps

j∗ : CHj(V1) −→ CHj(V2), j∗ : CHj(V2) −→ CHj(V1)

between Chow groups, and j∗j∗ agrees with the multiplication by deg(j) on CHj(V2).
If j is a Galois cover with Galois group G,

(2.11) j∗j∗(∆) =
∑
σ∈G

σ∆.

By abuse of notation we will denote the associated maps on cycles (rather than just
on cycle classes) by the same symbols.

Lemma 2.4. — For all r ≥ 1 and all [d′1, d
′
2, d
′
3] ∈ Ir+1 whose image in Ir is

[d1, d2, d3],

($3
1)∗∆r+1[d′1, d

′
2, d
′
3] = p3∆r[d1, d2, d3],

($3
2)∗∆r+1[d′1, d

′
2, d
′
3] = (Up)

⊗3∆r[d1, d2, d3].

The cycles ∆r[d1, d2, d3] also satisfy the distribution relations∑
[d′1,d

′
2,d
′
3]

∆r+1[d′1, d
′
2, d
′
3] = ($3

1)∗∆r[d1, d2, d3],

where the sum is taken over all triples [d′1, d
′
2, d
′
3] ∈ Ir+1 which map to [d1, d2, d3] in

Ir.

Proof. — A direct verification based on the definitions shows that the morphisms µ3

and π3
1 of (2.10) induce morphisms

∆r+1[d′1d
′
2, d
′
3]

µ3

// µ3
∗∆r+1[d′1, d

′
2, d
′
3]

π3
1 // ∆r[d1, d2, d3],

of degrees 1 and p3 respectively. Hence the restriction of$3
1 to ∆r+1[d′1, d

′
2, d
′
3] induces

a map of degree p3 from ∆r+1[d′1, d
′
2, d
′
3] to ∆r[d1, d2, d3], which implies the first

assertion. It also follows from this that

(2.12) µ3
∗∆r+1[d′1, d

′
2, d
′
3] = (π3

1)∗∆r[d1, d2, d3].

Applying (π3
2)∗ to this identity implies that

($3
2)∗∆r+1[d′1, d

′
2, d
′
3] = (Up)

⊗3∆r[d1, d2, d3].
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The second compatibility relation follows. To prove the distribution relation, observe
that the sum that occurs in it is taken over the p3 translates of a fixed ∆r+1[d′1, d

′
2, d
′
3]

for the action of the Galois group of X3
r+1 over X3

r,r+1, and hence, by (2.11), that∑
[d′1,d

′
2,d
′
3]

∆r+1[d′1, d
′
2, d
′
3] = (µ∗)3µ3

∗∆r+1[d′1, d
′
2, d
′
3].

The result then follows from (2.12).

2.2. Galois cohomology classes. — The goal of this section is to parlay the cy-
cles ∆r[d1, d2, d3] into Galois cohomology classes with values in H1

ét(X̄r,Zp)
⊗3(2),

essentially by considering their images under the p-adic étale Abel-Jacobi map:

(2.13) AJét : CH2(X3
r )0 −→ H1(Q, H3

ét(X̄
3
r ,Zp(2))),

where
CH2(X3

r )0 := ker
(
CH2(X3

r ) −→ H4
ét(X̄

3
r ,Zp(2))

)
denotes the kernel of the étale cycle class map, i.e., the group of null-homologous
algebraic cycles defined over Q. There are two issues that need to be dealt with.
Firstly, the cycles ∆r[d1, d2, d2] need not be null-homologous and have to be suitably
modified so that they lie in the domain of the Abel Jacobi map. Secondly, these
cycles are defined over Q(ζr) and not over Q, and it is desirable to descend the field
of definition of the associated extension classes.

To deal with the first issue, let q be any prime not dividing Mp, and let Tq denote
the Hecke operator attached to this prime. It can be used to construct an algebraic
correspondence on X3

r by setting

θq := (Tq − (q + 1))⊗3.

Lemma 2.5. — The element θq annihilates the target H4
ét(X̄

3
r ,Zp) of the étale cycle

class map on CH2(X3
r ).

Proof. — The correspondence Tq acts as multiplication by (q+1) on H2
ét(X̄r,Zp) and

θq therefore annihilates all the terms in the Künneth decomposition of H4
ét(X̄r,Zp).

The modified diagonal cycles in CH2(X3
r ) are defined by the rule

(2.14) ∆◦r [d1, d2, d3] := θq∆r[d1, d2, d3].

Lemma 2.5 shows that they are null-homologous and defined over Q(ζr). Define

κr[d1, d2, d3] := AJét(∆
◦
r [d1, d2, d3]) ∈ H1(Q(ζr), H

1
ét(X̄r,Zp)

⊗3(2)).

To deal with the circumstance that the cycles ∆◦r [d1, d2, d3] are only defined over
Q(ζr), and hence that the associated cohomology classes κr[d1, d2, d3] need not (and
in fact, do not) extend to GQ, it is necessary to replace the Zp[G̃r][GQ]-module
H1

ét(X̄r,Zp)
⊗3(2) by an appropriate twist over Q(ζr). Let Gr denote the Sylow p-

subgroup of the group G̃r of (2.6), and let G∞ := lim←−Gr. Let

Λ(Gr) := Zp[Gr], Λ(G∞) = Zp[[G∞]]
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be the finite group ring attached to Gr and the associated Iwasawa algebra, respec-
tively.

Let Λ(Gr)(± 2

1
) denote the Galois module which is isomorphic to Λ(Gr) as a

Λ(Gr)-module, and on which the Galois group GQ(ζ1) is made to act via its quo-
tient Gal (Q(ζr)/Q(ζ1)) = 1 + pZ/prZ, the element σm acting as multiplication by
the group-like element 〈m,m,m〉∓1/2. Let Λ(G∞)(±

2

1
) denote the projective limit of

the Λ(Gr)(± 2

1
). It follows from the definitions that if

νk◦ , ◦̀ ,m◦ : Λ(Gr) −→ Z/prZ, or νk◦ , ◦̀ ,m◦ : Λ(G∞) −→ Zp

is the homomorphism sending 〈a1, a2, a3〉 to a
k◦
1 a

◦̀
2 a

m◦
3 , then

(2.15) Λ(Gr)( 2

1
)⊗νk◦ , ◦̀ ,m◦ Z/p

rZ = (Z/prZ)(ε
−(k◦+ ◦̀+m◦ )/2
cyc ),

where the tensor product is taken over Λ(Gr), and similarly for G∞. In particular if
k◦ + ◦̀ +m◦ = 2t is an even integer,

(2.16) Λ(G∞)(
2

1
)⊗νk◦ , ◦̀ ,m◦ Zp = Zp(−t)(ωt)

as GQ-modules. More generally, if Ω is any Λ(G∞) module, write

Ω(
2

1
) := Ω⊗Λ(G∞) Λ(G∞)(

2

1
), Ω(

2

−1
) := Ω⊗Λ(G∞) Λ(G∞)(

2

−1
),

for the relevant twists of Ω, which are isomorphic to Ω as a Λ(G∞)[GQ(µp∞ )]-module
but are endowed with different actions of GQ.

There is a canonical Galois-equivariant Λ(Gr)-hermitian bilinear, Λ(Gr)-valued
pairing

(2.17) 〈〈 , 〉〉r : H1
ét(X̄r,Zp)

⊗3(2)(
2

1
) × H1

ét(X̄r,Zp)
⊗3(1)(

2

1
) −→ Λ(Gr),

given by the formula

〈〈a, b〉〉r :=
∑

σ=〈d1,d2,d3〉∈Gr

〈aσ, b〉Xr · 〈d1, d2, d3〉,

where

〈 , 〉Xr : H1
ét(X̄r,Zp)

⊗3(2)×H1
ét(X̄r,Zp)

⊗3(1) −→ H2
ét(X̄r,Zp(1))⊗3 = Zp

arises from the Poincaré duality between H3
ét(X̄

3
r ,Zp)(2) and H3

ét(X̄
3
r ,Zp)(1). This

pairing enjoys the following properties:
— For all λ ∈ Λ(Gr),

〈〈λa, b〉〉r = λ∗〈〈a, b〉〉r, 〈〈a, λb〉〉r = λ〈〈a, b〉〉r,

where λ∗ ∈ Λ(Gr) is obtained from λ by applying the involution on the group
ring which sends every group-like element to its inverse. In particular, the
pairing of (2.17) can and will also be viewed as a Λ(Gr)-valued ∗-hermitian
pairing

〈〈 , 〉〉r : H1
ét(X̄r,Zp)

⊗3(2)×H1
ét(X̄r,Zp)

⊗3(1) −→ Λ(Gr).

— For all σ ∈ GQ(ζ1), we have 〈〈σa, σb〉〉r = 〈〈a, b〉〉r.
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— The Up and U∗p operators are adjoint to each other under this pairing, giving
rise to a duality (denoted by the same symbol, by an abuse of notation)

〈〈 , 〉〉r : e∗H1
ét(X̄r,Zp)

⊗3(2)(
2

1
) × eH1

ét(X̄r,Zp)
⊗3(1)(

2

1
) −→ Λ(Gr).

Define

H111(Xr) := HomΛ(Gr)(H
1
ét(X̄r,Zp)

⊗3(1)(
2

1
),Λ(Gr)) ' H1

ét(X̄r,Zp)
⊗3(2)(

2

1
),

H111
◦ (Xr) := HomΛ(Gr)(eH

1
ét(X̄r,Zp)

⊗3(1)(
2

1
),Λ(Gr)) ' e∗H1

ét(X̄r,Zp)
⊗3(2)(

2

1
).

The above identifications of Zp[GQ(ζ1)]-modules follow from the pairing (2.17).
To descend the field of definition of the classes κr[d1, d2, d3], we package them

together into elements

κr[a, b, c] ∈ H1(Q(ζr),H111(Xr))

indexed by triples

(2.18) [a, b, c] ∈ I1 = (Z/pZ)×3 = µp−1(Zp)
3 ⊂ (Z×p )3.

The class κr[a, b, c] is defined by setting, for all σ ∈ GQ(ζr) and all γr ∈
H1

ét(X̄r,Zp)
⊗3(1),

(2.19) κr[a, b, c](σ)(γr) = 〈〈κr[a, b, c](σ), γr〉〉r,

where the elements a, b, c ∈ (Z/pZ)× are viewed as elements of (Z/prZ)× via the
Teichmuller lift alluded to in (2.18). Note that there is a natural identification

H1(Q(ζr),H111(Xr)) = Ext1
Λ(Gr)[GQ(ζr)]

(H1
ét(X̄r,Zp)

⊗3(1),Λ(Gr),

because H1
ét(X̄r,Zp)

⊗3(1) = H1
ét(X̄r,Zp)

⊗3(1)(
2

1
) as GQ(ζr)-modules and the Λ(Gr)-

dual of the latter is H111(Xr). With these definitions we have

Lemma 2.6. — The class κr[a, b, c] is the restriction to GQ(ζr) of a class

κr[a, b, c] ∈ H1(Q(ζ1),H111(Xr)) = Ext1
Λ(Gr)[GQ(ζ1)]

(H1
ét(X̄r,Zp)

⊗3(1)(
2

1
),Λ(Gr)).

Furthermore, for all m ∈ µp−1(Zp),

σm κr[a, b, c] = κr[ma,mb,mc].

Proof. — We will prove this by giving a more conceptual description of the coho-
mology class κr[a, b, c]. Let |∆| denote the support of an algebraic cycle ∆, and
let

(2.20) ∆◦r [[a, b, c]] := |∆◦1[a, b, c]| ×X3
1
X3
r

denote the inverse image in X3
r of |∆◦1[a, b, c]|, which fits into the cartesian diagram

∆◦r [[a, b, c]]
� � //

����

X3
r

($r−1
1 )3

����
|∆◦1[a, b, c]| �

� // X3
1 .
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As in the proof of Lemma 2.1, observe that

∆◦r [[a, b, c]] =
⊔

[d1,d2,d3]∈I1
r

|∆◦r [ad1, bd2, cd3]|

where I1
r denotes the p-Sylow subgroup of Ir. Consider now the commutative diagram

of Λ(Gr)[GQ(ζ1)]-modules with exact rows:

(2.21)

Λ(Gr)( 2

−1
)

� _

j

��
H3

ét(X̄
3
r ,Zp)(2) �

� //

p
����

H3
ét(X̄

3
r−∆◦r [[a, b, c]],Zp)(2) // // H0

ét(∆̄
◦
r [[a, b, c]],Zp)0

H1
ét(X̄r,Zp)

⊗3(2),

where
— the map j is the inclusion defined on group-like elements by

j (〈d1, d2, d3〉) = cl(∆◦r [ad2d3, bd1d3, cd1d2]),

which is GQ(ζ1)-equivariant by Lemma 2.2;
— the middle row arises from the excision exact sequence in étale cohomology

(cf. [J88, (3.6)] and [M, p. 108]);
— the subscript of 0 appearing in the rightmost term in the exact sequence denotes

the kernel of the cycle class map, i.e.,

H0
ét(∆̄

◦
r [[a, b, c]],Zp)0 := ker

(
H0

ét(∆̄
◦
r [[a, b, c]],Zp)0 −→ H4

ét(X̄
3
r ,Zp(2))

)
,

and the fact that the image of j is contained in H0
ét(∆̄

◦
r [[a, b, c]],Zp)0 follows

from Lemma 2.5;
— the projection p is the one arising from the Künneth decomposition.

Taking the pushout and pullback of the extension in (2.21) via the maps p and j
yields an exact sequence of Λ(Gr)[GQ(ζ1)]-modules

(2.22) 0 // H1
ét(X̄r,Zp)

⊗3(2) // Er // Λ(Gr)( 2

−1
) // 0.

Taking the Λ(Gr)-dual of this exact sequence, we obtain

0 // Λ(Gr)( 2

1
) // Ěr // H1

ét(X̄r,Zp)
⊗3(1)∗ // 0.

where M∗ means the Λ(Gr)-module obtained from M by letting act Λ(Gr) on it by
composing with the involution λ 7→ λ∗. Twisting this sequence by (

2

−1
) and noting

that M∗(
2

−1
) 'M(

2

1
)∗ yields an extension

(2.23) 0 // Λ(Gr) // E′r // H1
ét(X̄r,Zp)

⊗3(1)(
2

1
)∗ // 0.
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Since

H1
ét(X̄r,Zp)

⊗3(1)(
2

1
)∗ = HomΛ(Gr)(H

1
ét(X̄r,Zp)

⊗3(2)(
2

1
),Λ(Gr)),

it follows that the cohomology class realizing the extension E′r is an element of

H1(Q(ζ1),HomΛ(Gr)(H
1
ét(X̄r,Zp)

⊗3(1)(
2

1
),Λ(Gr))) = H1(Q(ζ1),H111(Xr)),

because the duality afforded by 〈〈 , 〉〉r is hermitian (and not Λ-linear). When restricted
to GQ(ζr), this class coincides with κr[a, b, c], and the first assertion follows.

The second assertion is an immediate consequence of the definitions, using the
Galois equivariance properties of the cycles ∆r[d1, d2, d3] given in the first assertion
of Lemma 2.2.

Remark 2.7. — The extension E′r of (2.23) can also be realised as a subquotient of
the étale cohomology group H3

c (X̄3
r−∆◦r [[a, b, c]],Zp)(1) with compact supports, in light

of the Poincaré duality

H3
ét(X̄

3
r−∆◦r [[a, b, c]],Zp)(2) × H3

c (X̄3
r−∆◦r [[a, b, c]],Zp)(1) −→ Zp.

2.3. Λ-adic cohomology classes. — Thanks to Lemma 2.6, we now dispose, for
each [a, b, c] ∈ µp−1(Zp)

3, of a system

(2.24) κr[a, b, c] ∈ H1(Q(ζ1),H111(Xr))

of cohomology classes indexed by the integers r ≥ 1, so that e∗κr[a, b, c] ∈
H1(Q(ζ1),H111

◦ (Xr)). Let

pr+1,r : Λ(Gr+1) −→ Λ(Gr)

be the projection on finite group rings induced from the natural homomorphism
Gr+1 −→ Gr.

Lemma 2.8. — Let γr+1 ∈ H1
ét(X̄r+1,Zp)

⊗3(1) and γr ∈ H1
ét(X̄r,Zp)

⊗3(1)
be elements that are compatible under the pushforward by $3

1, i.e., that satisfy
($3

1)∗(γr+1) = γr. For all σ ∈ GQ(ζ1),

pr+1,r (κr+1[a, b, c](σ)(γr+1)) = κr[a, b, c](σ)(γr).

Proof. — This amounts to the statement that

pr+1,r(〈〈κr+1[a, b, c], γr+1〉〉r+1) = 〈〈κr[a, b, c], γr〉〉r.

But the left-hand side of this equation is equal to∑
Gr

〈(µ3)∗(µ3)∗κr+1[ad′2d
′
3, bd

′
1d
′
3, cd

′
1d
′
2], γr+1〉Xr+1

· 〈d1, d2, d3〉,
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where the sum runs over 〈d1, d2, d3〉 ∈ Gr and 〈d′1, d′2, d′3〉 denotes an (arbitrary) lift
of 〈d1, d2, d3〉 to Gr+1. The third assertion in Lemma 2.4 allows us to rewrite this as∑

Gr

〈($3
1)∗κr[ad2d3, bd1d3, cd1d2], γr+1〉Xr+1

· 〈d1, d2, d3〉

=
∑
Gr

〈κr[ad2d3, bd1d3, cd1d2], ($3
1)∗γr+1〉Xr · 〈d1, d2, d3〉

=
∑
Gr

〈κr[ad2d3, bd1d3, cd1d2], γr〉Xr · 〈d1, d2, d3〉

= 〈〈κr[a, b, c], γr〉〉r,
and the result follows.

Define

H111(X∗∞) := HomΛ(G∞)(H
1
ét(X̄

∗
∞,Zp)

⊗3(1)(
2

1
),Λ(G∞))(2.25)

= HomΛ(G∞)(H
1
ét(X̄1,L∗∞)⊗3(1)(

2

1
),Λ(G∞)),

where the identification follows from (1.19).
Thanks to Lemma 2.8, the classes κr[a, b, c] can be packaged into a compatible

collection. Namely:

Definition 2.9. — Set

(2.26) κ∞[a, b, c] := (κr[a, b, c])r≥1 ∈ H
1(Q(ζ1),H111(X∗∞)).

It will also be useful to replace the classes κ∞[a, b, c] by elements that are essentially
indexed by triples

(ω1, ω2, ω3) : (Z/pZ×)3 −→ Z×p

of tame characters of G̃r/Gr. Assume that the product ω1ω2ω3 is an even character.
This assumption is equivalent to requiring that

ω1ω2ω3 = δ2, for some δ : (Z/pZ)× −→ Z×p .

Note that for a given (ω1, ω2, ω3), there are in fact two characters δ as above, which
differ by the unique quadratic character of conductor p. With the choices of ω1, ω2, ω3

and δ in hand, we set

(2.27) κ∞(ω1, ω2, ω3; δ) :=
p3

(p− 1)3
·
∑

[a,b,c]

δ−1(abc) ·ω1(a)ω2(b)ω3(c) ·κ∞[bc, ac, ab],

where the sum is taken over the triples [a, b, c] of (p− 1)st roots of unity in Z×p . The
classes κ∞(ω1, ω2, ω3; δ) satisfy the following properties.

Lemma 2.10. — For all σm ∈ Gal (Q(ζ∞)/Q),

σmκ∞(ω1, ω2, ω3; δ) = δ(m)κ∞(ω1, ω2, ω3; δ).

For all diamond operators 〈a1, a2, a3〉 ∈ µp−1(Zp)
3

〈a1, a2, a3〉κ∞(ω1, ω2, ω3; δ) = ω123(a1, a2, a3) · κ∞(ω1, ω2, ω3; δ).
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Proof. — This follows from a direct calculation based on the definitions, using the
compatibilities of Lemma 2.2 satisfied by the cycles ∆r[d1, d2, d3].

The classes κ∞[a, b, c] and κ∞(ω1, ω2, ω3; δ) are called the Λ-adic cohomology
classes attached to the triple [a, b, c] ∈ µp−1(Zp)

3 or the quadruple (ω1, ω2, ω3; δ). As
will be explained in the next section, they are three variable families of cohomology
classes parametrised by points in the triple product W ×W ×W of weight spaces,
and taking values in the three-parameter family of self-dual Tate twists of the Galois
representations attached to the different specialisations of a triple of Hida families.

3. Higher weight balanced specialisations

For every integer k◦ ≥ 0 define

W
k◦
1 := H1

ét(X̄1,Hk◦ )

and recall from the combination of (1.19), (1.21) and (1.22) the specialisation map

(3.1) sp∗k◦ : H1
ét(X̄

∗
∞,Zp) = H1

ét(X̄1,L∗∞) −→W
k◦
1 .

Fix throughout this section a triple

k = k◦ + 2, ` = ◦̀ + 2, m = m◦ + 2

of integers ≥ 2 for which k◦ + ◦̀ +m◦ = 2t is even. Let

Hk◦ , ◦̀ ,m◦ := Hk◦ �H ◦̀ �Hm◦

viewed as a sheaf on X3
1 , and

W
k◦ , ◦̀ ,m◦
1 := W

k◦
1 ⊗W ◦̀

1 ⊗W
m◦
1 (2− t).

As one readily checks, the p-adic Galois representation W k◦ , ◦̀ ,m◦
1 is Kummer self-

dual, i.e., there is an isomorphism of GQ-modules

HomGQ
(W

k◦ , ◦̀ ,m◦
1 ,Zp(1)) 'W k◦ , ◦̀ ,m◦

1 .

The specialisation maps give rise, in light of (2.16), to the triple product speciali-
sation map

(3.2) sp∗k◦ , ◦̀ ,m◦ := sp∗k◦ ⊗ sp∗
◦̀
⊗ sp∗m◦ : H111(X∗∞) −→W

k◦ , ◦̀ ,m◦
1

and to the associated collection of specialised classes

(3.3) κ1(k◦ , ◦̀ ,m◦)[a, b, c] := spk◦ , ◦̀ ,m◦ (κ∞[a, b, c]) ∈ H1(Q(ζ1),W
k◦ , ◦̀ ,m◦
1 ).

Note that for (k◦ , ◦̀ ,m◦) = (0, 0, 0), it follows from the definitions (cf. e.g. the proof
of Lemma 2.6) that the class κ1(k◦ , ◦̀ ,m◦)[a, b, c] is simply the image under the étale
Abel-Jacobi map of the cycle ∆◦1[a, b, c].

The main goal of this section is to offer a similar geometric description for the above
classes also when (k, `,m) is balanced and k◦ , ◦̀ ,m◦ > 0, which we assume henceforth
for the remainder of this section.
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In order to do this, it shall be useful to dispose of an alternate description of
the extension (2.22) in terms of the étale cohomology of the (open) three-fold X3

1 −
|∆◦1[a, b, c]| with values in appropriate sheaves.

Lemma 3.1. — Let L∗�3
r denote the exterior tensor product of L∗r, over the triple

product X3
1 . There is a commutative diagram

H3
ét(X

3
r ,Zp)(2) // H3

ét(X
3
r −∆◦r [[a, b, c]],Zp)(2) // H0

ét(∆
◦
r [[a, b, c]],Zp)

H3
ét(X̄

3
1 ,L∗�3

r )(2) // H3
ét(X̄

3
1 − |∆◦1[a, b, c]|,L∗�3

r )(2) // H0
ét(|∆◦1[a, b, c]|,L∗⊗3

r )),

in which the leftmost maps are injective and the horizontal sequences are exact.

Proof. — Recall from (1.17) that

L∗�3
r = ($r−1

1 ×$r−1
1 ×$r−1

1 )∗Zp,

where
$r−1

1 ×$r−1
1 ×$r−1

1 : X3
r −→ X3

1

is defined as in (2.2). The vertical isomorphisms then follow from Shapiro’s lemma
and the definition of ∆◦r [[a, b, c]] in (2.20). The horizontal sequence arises from the
excision exact sequence in étale cohomology of [J88, (3.6)] and [M, p. 108].

Lemma 3.2. — For all [a, b, c] ∈ I1,

H0
ét(∆̄1[a, b, c],Hk◦ , ◦̀ ,m◦ ) = Zp(t).

Proof. — The Clebsch-Gordan formula asserts that the space of tri-homogenous poly-
nomials in 6 = 2 + 2 + 2 variables of tridegree (k◦ , ◦̀ ,m◦) has a unique SL2-invariant
element, namely, the polynomial

Pk◦ , ◦̀ ,m◦ (x1, y1, x2, y2, x3, y3) =

∣∣∣∣ x2 y2

x3 y3

∣∣∣∣k◦ ′ ∣∣∣∣ x3 y3

x1 y1

∣∣∣∣ ◦̀ ′ ∣∣∣∣ x1 y1

x2 y2

∣∣∣∣m◦ ′ ,
where

k◦
′ =
−k◦ + ◦̀ +m◦

2
, ◦̀

′ =
k◦ − ◦̀ +m◦

2
m◦
′ =

k◦ + ◦̀ −m◦
2

.

Since the triplet of weights is balanced, it follows that k◦
′, ◦̀
′,m◦

′ ≥ 0. From the
Clebsch-Gordan formula it follows that H0

ét(∆̄1[a, b, c],Hk◦ , ◦̀ ,m◦ ) is spanned by the
global section whose stalk at a point ((A,P1), (A,P2), (A,P3)) ∈ ∆1[a, b, c] as in (2.5)
is given by

(X2 ⊗ Y3 − Y2 ⊗X3)⊗k◦
′
⊗ (X1 ⊗ Y3 − Y1 ⊗X3)⊗ ◦̀

′
⊗ (X1 ⊗ Y2 − Y1 ⊗X2)⊗m◦

′
,

where (Xi, Yi), i = 1, 2, 3, is a basis of the stalk of H at the point (A,Pi) in X1. The
Galois action is given by the t-th power of the cyclotomic character because the Weil
pairing takes values in Zp(1) and k◦

′ + ◦̀
′ +m◦

′ = t.
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Write clk◦ , ◦̀ ,m◦ (∆1[a, b, c]) ∈ H0
ét(|∆̄◦1[a, b, c]|,Hk◦ , ◦̀ ,m◦ ) for the standard generator

given by Lemma 3.2. Define

(3.4) AJk◦ , ◦̀ ,m◦ (∆1[a, b, c]) ∈ H1(Q(ζ1),W
k◦ , ◦̀ ,m◦
1 )

to be the extension class constructed by pulling back by j and pushing forward by p
in the exact sequence of the middle row of the following diagram:
(3.5)

Zp(t)� _

j

��
H3

ét(X̄
3
1 ,Hk◦ , ◦̀ ,m◦ )(2)

� � //

����

H3
ét(X̄

3
1−∆̄,Hk◦ , ◦̀ ,m◦ )(2) // // H0

ét(∆̄,Hk◦ , ◦̀ ,m◦ )

W
k◦ , ◦̀ ,m◦
1 (t),

where
— ∆ = ∆1[a, b, c];
— the map j is the GQ(ζ1)-equivariant inclusion defined by j(1) = clk◦ , ◦̀ ,m◦ (∆);
— the surjectivity of the right-most horizontal row follows from the vanishing of

the group H4
ét(X̄

3
1 ,Hk◦ , ◦̀ ,m◦ ), which in turn is a consequence of the Künneth

formula and the vanishing of the terms H2
ét(X̄1,Hk◦ ) when k◦ > 0 (cf. [BDP13,

Lemmas 2.1, 2.2]).
In particular the image of j lies in the image of the right-most horizontal row and
this holds regardless whether the cycle is null-homologous or not. The reader may
compare this construction with (2.21), where the cycle ∆◦r [[a, b, c]] is null-homologous
and this property was crucially exploited.

Theorem 3.1. — Set AJk◦ , ◦̀ ,m◦ (∆◦1[a, b, c]) = θqAJk◦ , ◦̀ ,m◦ (∆1[a, b, c]). Then the
identity

κ1(k◦ , ◦̀ ,m◦)[a, b, c] = AJk◦ , ◦̀ ,m◦ (∆◦1[a, b, c])

holds in H1(Q(ζ1),W
k◦ , ◦̀ ,m◦
1 ).

Proof. — Set ∆ := ∆◦1[a, b, c] in order to alleviate notations. Thanks to Lemma 3.1,
the diagram in (2.21) used to construct the extension Er realising the class κr[a, b, c]
is the same as the diagram
(3.6)

Λ(Gr)( 2

−1
)

� _

��
0 // H3

ét(X̄
3
1 ,L∗�3

r )(2) //

����

H3
ét(X̄

3
1 − |∆̄|,L∗�3

r )(2) // H0
ét(|∆̄|,L∗⊗3

r )

H1
ét(X̄1,L∗r)⊗3(2).
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Let
νk◦ , ◦̀ ,m◦ : Λ(Gr) −→ Z/prZ

be the algebra homomorphism sending the group like element 〈d1, d2, d3〉 to d
k◦
1 d

◦̀
2 d

m◦
3 ,

and observe that the moment maps of (1.20) allow us to identify

L∗�3
r ⊗νk◦ , ◦̀ ,m◦ (Z/prZ) = Hk◦ , ◦̀ ,m◦r .

Tensoring (3.6) over Λ(Gr) with Z/prZ via the map νk◦ , ◦̀ ,m◦ : Λ(Gr) −→ Z/prZ,
yields the specialised diagram which coincides exactly with the mod pr reduction of
(3.5), with ∆ = ∆◦1[a, b, c]. The result follows by passing to the limit with r.

Corollary 3.3. — Let

(3.7) ∆◦1(ω1, ω2, ω3; δ) :=
p3

(p− 1)3
·
∑

[a,b,c]∈I1

δ−1(abc)ω1(a)ω2(b)ω3(c)∆◦1[a, b, c].

Then
sp∗k◦ , ◦̀ ,m◦ (κ∞(ω1, ω2, ω3; δ) = AJk◦ , ◦̀ ,m◦ (∆◦1(ω1, ω2, ω3; δ)).

Proof. — This follows directly from the definitions.

4. Cristalline specialisations

Let f , g, h be three arbitrary primitive, residually irreducible p-adic Hida families of
tame levelsMf ,Mg,Mh and tame characters χf , χg, χh, respectively, with associated
weight spaceWf×Wg×Wg. Assume χfχgχh = 1 and setM = lcm(Mf ,Mg,Mh). Let
(x, y, z) ∈ Wf×Wg×Wh be a point lying above a classical triple (νk◦ ,ε1 , ν ◦̀ ,ε2 , νm◦ ,ε3) ∈
W3 of weight space. As in Definition 1.2, the point (x, y, z) is said to be tamely
ramified if the three characters ε1, ε2 and ε3 are tamely ramified, i.e., factor through
the quotient (Z/pZ)× of Z×p , and is said to be crystalline if ε1ω−k◦ = ε2ω

− ◦̀ =

ε3ω
−m◦ = 1.
Fix such a crystalline point (x, y, z) of balanced weight (k, `,m) = (k◦+2, ◦̀+2,m◦+

2), and let (fx,gy,hz) be the specialisations of (f ,g,h) at (x, y, z). The ordinariness
hypothesis implies that, for all but finitely many exceptions, these eigenforms are the
p-stabilisations of newforms of level dividing M , denoted f , g and h respectively:

fx(q) = f(q)− βff(qp), gy = g(q)− βgg(qp), hz(q) = h(q)− βhh(qp).

Since the point (x, y, z) is fixed throughout this section, the dependency of (f, g, h)
on (x, y, z) has been suppressed from the notations, and we also write (fα, gα, hα) :=
(fx,gy,hz) for the ordinary p-stabilisations of f , g and h.

Recall the quotient X01 of X1, having Γ0(p)-level structure at p, and the projection
map µ : X1 −→ X01 introduced in (1.15). By an abuse of notation, the symbol Hk◦
is also used to denote the étale sheaves appearing in (1.4) over any quotient of X1,
such as X01. Let

W1 := H1
ét(X̄1,Hk◦ )⊗H1

ét(X̄1,H ◦̀ )⊗H1
ét(X̄1,Hm◦ )(2− t),

W01 := H1
ét(X̄01,Hk◦ )⊗H1

ét(X̄01,H ◦̀ )⊗H1
ét(X̄01,Hm◦ )(2− t),
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be the Galois representations arising from the cohomology of X1 and X01 with values
in these sheaves. They are endowed with a natural action of the triple tensor product
of the Hecke algebras of weight k◦ , ◦̀ , m◦ and level Mp.

Let W1[fα, gα, hα] denote the (fα, gα, hα)-isotypic component of W1 on which the
Hecke operators act with the same eigenvalues as on fα ⊗ gα ⊗ hα. Let πfα,gα,hα :
W1 →W1[fα, gα, hα] denote the associated projection. Use similar notations forW01.

Recall the family

(4.1) κ∞(ε1ω
−k◦ , ε2ω

− ◦̀ , ε3ω
−m◦ ; 1) = κ∞(1, 1, 1; 1)

that was introduced in (2.27). By Lemma 2.10, this class lies in H1(Q,H111(X∗∞)).
Recall the choice of auxiliary prime q made in the definition of the modified diagonal

cycle (2.14). We assume now that q is chosen so that Cq := (aq(f) − q − 1)(aq(g) −
q − 1)(aq(h) − q − 1) is a p-adic unit. Note that this is possible because the Galois
representations %f , %g and %h were assumed to be residually irreducible and hence f ,
g and h are non-Eisenstein mod p. Let

(4.2) κ1(fα, gα, hα) :=
1

Cq
· πfα,gα,hα sp∗x,y,z κ∞(1, 1, 1; 1)) ∈ H1(Q,W1[fα, gα, hα])

be the specialisation at the crystalline point (x, y, z) of (4.1), after projecting it to
the (fα, gα, hα)-isotypic component of W1 via πfα,gα,hα . We normalize the class by
multiplying it by the above constant in order to remove the dependency on the choice
of q.

The main goal of this section is to relate this class to the generalised Gross-Schoen
diagonal cycles that were studied in [DR14], arising from cycles in Kuga-Sato varieties
which are fibered over X3 and have good reduction at p.

The fact that (x, y, z) is a crystalline point implies that the diamond operators in
Gal (X1/X01) act trivially on the (fα, gα, hα)-eigencomponents, and hence the Hecke-
equivariant projection µ3

∗ : W1 −→W01 induces an isomorphism

µ3
∗ : W1[fα, gα, hα] −→W01[fα, gα, hα].

The first aim is to give a geometric description of the class

κ01(fα, gα, hα) := µ3
∗κ1(fα, gα, hα)

in terms of appropriate algebraic cycles. To this end, recall the cycles ∆1[a, b, c] ∈
CH2(X3

1 ) introduced in (2.4), and let p∗ := ±p be such that Q(
√
p∗) is the quadratic

subfield of Q(ζ1).

Lemma 4.1. — The cycle µ3
∗∆1[a, b, c] depends only on the quadratic residue symbol

(abcp ) attached to abc ∈ (Z/pZ)×. The cycles

∆+
01 := µ3

∗∆1[a, b, c] for any a, b, c with
(
abc

p

)
= 1,

∆−01 := µ3
∗∆1[a, b, c] for any a, b, c with

(
abc

p

)
= −1,

belong to CH2(X3
01/Q(

√
p∗)) and are interchanged by the non-trivial automorphism

of Q(
√
p∗).
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Proof. — Arguing as in Lemma 2.2 shows that for all (d1, d2, d3) ∈ I1 = (Z/pZ)×3,

〈d1, d2, d3〉∆1[a, b, c] = ∆1[d2d3a, d1d3b, d1d2c].

The orbit of the triple [a, b, c] under the action of I1 is precisely the set of triples
[a′, b′, c′] for which (a

′b′c′

p ) = (abcp ). Since X01 is the quotient of X1 by the group
I1, it follows that µ3

∗∆1[a, b, c] depends only on this quadratic residue symbol, and
hence that the classes ∆+

01 and ∆−01 in the statement of Lemma 4.1 are well-defined.
Furthermore, Lemma 2.6 implies that, for all m ∈ (Z/pZ)×, the Galois automor-
phism σm fixes ∆+

01 and ∆−01 if m is a square modulo p, and interchanges these two
cycle classes otherwise. It follows that they are invariant under the Galois group
Gal (Q(ζ1)/Q(

√
p∗)) and hence descend to a pair of conjugate cycles ∆±01 defined

over Q(
√
p∗), as claimed.

It follows from this lemma that the algebraic cycle

(4.3) ∆01 := ∆+
01 + ∆−01 ∈ CH2(X3

01/Q).

is defined over Q. To describe it concretely, note that a triple (C1, C2, C3) of distinct
cyclic subgroups of order p in an elliptic curve A admits a somewhat subtle discrete
invariant in (µ⊗3

p − {1}) modulo the action of (Z/pZ)×2, denoted o(C1, C2, C3) and
called the orientation of (C1, C2, C3). This orientation is defined by choosing genera-
tors P1, P2, P3 of C1, C2 and C3 respectively and setting

o(C1, C2, C3) := 〈P2, P3〉 ⊗ 〈P3, P1〉 ⊗ 〈P1, P2〉 ∈ µ⊗3
p − {1}.

It is easy to check that the value of o(C1, C2, C3) in µ⊗3
p − {1} only depends on the

choices of generators P1, P2 and P3, up to multiplication by a non-zero square in
(Z/pZ)×. In view of (2.5), we then have

(4.4) ∆01 = {((A,C1), (A,C2), (A,C3)) with C1 6= C2 6= C3},
and

∆+
01 =

{
((A,C1), (A,C2), (A,C3)) with o(C1, C2, C3) = aζ⊗3

1 , a ∈ (Z/pZ)×2
}
,

∆−01 =
{

((A,C1), (A,C2), (A,C3)) with o(C1, C2, C3) = aζ⊗3
1 , a /∈ (Z/pZ)×2

}
.

Recall the natural projections

π1, π2 : X01 −→ X, $1, $2 : X1 −→ X

to the curve X = X0(M) of prime to p level, and set

W0 := H1
ét(X̄0,Hk◦ )⊗H1

ét(X̄0,H ◦̀ )⊗H1
ét(X̄0,Hm◦ )(2− t),

The Galois representation W0 is endowed with a natural action of the triple tensor
product of the Hecke algebras of weight k◦ , ◦̀ , m◦ and level M . Let W0[f, g, h]
denote the (f, g, h)- isotypic component of W0, on which the Hecke operators act
with the same eigenvalues as on f ⊗ g ⊗ h. Note that the U∗p operator does not act
naturally on W0 and hence one cannot speak of the (fα, gα, hα)-eigenspace of this
Hecke module. One can, however, denote by W1[f, g, h] and W01[f, g, h] the (f, g, h)-
isotypic component of these Galois representations, in which the action of the U∗p
operators on the three factors are not taken into account. Thus, W01[fα, gα, hα] is
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the image of W01[f, g, h] under the ordinary projection, and likewise for W1. In other
words, denoting by πf,g,h the projection to the (f, g, h)-isotypic component on any of
these modules, one has

πfα,gα,hα = e∗πf,g,h

whenever the left-hand projection is defined.
The projection maps

(π1, π1, π1) : X3
01 −→ X3, ($1, $1, $1) : X3

1 −→ X3

induces push-forward maps

(π1, π1, π1)∗ : W01[fα, gα, hα] −→W0[f, g, h],

($1, $1, $1)∗ : W1[fα, gα, hα] −→W0[f, g, h]

on cohomology, as well as maps on the associated Galois cohomology groups.
The goal is now to relate the class

(4.5) ($1, $1, $1)∗(κ1(fα, gα, hα)) = (π1, π1, π1)∗(κ01(fα, gα, hα))

to those arising from the diagonal cycles on the curve X0 = X, whose level is prime
to p.

To do this, it is key to understand how the maps π1∗ and (π1, π1, π1)∗ interact with
the Hecke operators, especially with the ordinary and anti-ordinary projectors e and
e∗, which do not act naturally on the target of π1∗. Consider the map

(π1, π2) : W
k◦
01 := H1

ét(X̄01,Hk◦ ) −→W
k◦
0 := H1

ét(X̄0,Hk◦ ).

It is compatible in the obvious way with the good Hecke operators arising from primes
` -Mp, and therefore induces a map

(4.6) (π1, π2) : W
k◦
01 [f ] −→W

k◦
0 [f ]⊕W k◦

0 [f ]

on the f -isotypic components for this Hecke action. As before, note that W k◦
01 [f ] is a

priori larger than W k◦
01 [fα], which is its ordinary quotient.

Let ξf := χf (p)pk−1 be the determinant of the frobenius at p acting on the two-
dimensional Galois representation attached to f , and likewise for g and h.

Lemma 4.2. — For the map (π1, π2) as in (4.6),(
π1

π2

)
◦ Up =

(
ap(f) −1
ξf 0

)(
π1

π2

)
,(

π1

π2

)
◦ U∗p =

(
0 p

−ξfp−1 ap(f)

)(
π1

π2

)
.

Proof. — The definitions π1 and π2 imply that, viewing Up and U∗p (resp. Tp) as
correspondences on a Kuga-Sato variety fibered over X01 (resp. over X0), we have

π1Up = Tpπ1 − π2, π1U
∗
p = pπ2

π2Up = p[p]π1 π2U
∗
p = −[p]π1 + Tpπ2,
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where [p] is the correspondence induced by the multiplication by p on the fibers and
on the prime-to-p part of the level structure. The result follows by passing to the f -
isotypic parts, using the fact that [p] induces multiplication by ξfp−1 on this isotypic
part.

For the next calculations, it shall be notationally convenient to introduce the no-
tations

δf = αf − βf , δg = αg − βg, δh = αh − βh, δfgh = δfδgδh.

Lemma 4.3. — For (π1, π2) as in Lemma 4.2,

π1 ◦ e =
αfπ1 − π2

δf
, π2 ◦ e =

ξfπ1 − βfπ2

δf
= βf · (π1 ◦ e),

π1 ◦ e∗ =
−βfπ1 + pπ2

δf
, π2 ◦ e∗ =

−ξfp−1π1 + αfπ2

δf
= pα−1

f · (π1 ◦ e∗).

Proof. — The matrix identities(
ap(f) −1
ξf 0

)
=

(
1 1
βf αf

)(
αf 0
0 βf

)(
1 1
βf αf

)−1

,(
0 p

−ξfp−1 ap(f)

)
=

(
βf αf

ξfp
−1 ξfp

−1

)(
αf 0
0 βf

)(
βf αf

ξfp
−1 ξf (p)p−1

)−1

,

show that

lim

(
ap(f) −1
ξf 0

)n!

=

(
1 1
βf αf

)(
1 0
0 0

)(
1 1
βf αf

)−1

= δ−1
f

(
αf −1
ξf −βf

)
,

lim

(
0 p

−ξfp−1 ap(f)

)n!

= δ−1
f

(
−βf p
−ξfp−1 αf

)
,

and the result now follows from Lemma 4.2.

Lemma 4.4. — Let κ ∈ H1(Q,W01[f, g, h]) be any cohomology class with val-
ues in the (f, g, h)-isotypic subspace of W01, and let e, e∗ : H1(Q,W01[fgh]) −→
H1(Q,W01[fα, gα, hα]) denote the ordinary and anti-ordinary projections. Then

(π1, π1, π1)∗(eκ) = δ−1
fgh ×

{
αfαgαh(π1, π1, π1)∗

−αgαh(π2, π1, π1)∗ − αfαh(π1, π2, π1)∗ − αfαg(π1, π1, π2)∗

+αf (π1, π2, π2)∗ + αg(π2, π1, π2)∗ + αh · (π2, π2, π1)∗

−(π2, π2, π2)∗

}
(κ).
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(π1, π1, π1)∗(e
∗κ) = δ−1

fgh ×
{
− βfβgβh(π1, π1, π1)∗

+pβgβh(π2, π1, π1)∗ + pβfβh(π1, π2, π1)∗ + pβfβg(π1, π1, π2)∗

−p2βf (π1, π2, π2)∗ − p2βg(π2, π1, π2)∗ − p2βh(π2, π2, π1)∗

+p3(π2, π2, π2)∗

}
(κ),

where we recall that δfgh := ((αf − βf )(αg − βg)(αh − βh)).

Proof. — This follows directly from Lemma 4.3.

Recall the notations

k◦ := k − 2, ◦̀ = `− 2, m◦ := m− 2, r := (k◦ + ◦̀ +m◦)/2.

Let A denote the Kuga-Sato variety over X as introduced in 1.2. In [DR14,
Definitions 3.1,3.2 and 3.3], a generalized diagonal cycle

∆k◦ , ◦̀ ,m◦ = ∆
k◦ , ◦̀ ,m◦
0 ∈ CHr+2(Ak◦ ×A ◦̀ ×Am◦ ,Q)

is associated to the triple (k◦ , ◦̀ ,m◦).
When k◦ , ◦̀ ,m◦ > 0, ∆k◦ , ◦̀ ,m◦ is obtained by choosing subsets A, B and C of the

set {1, . . . , r} which satisfy:

#A = k◦ , #B = ◦̀ , #C = m◦ , A ∩B ∩ C = ∅,

#(B ∩ C) = r − k◦ , #(A ∩ C) = r − ◦̀ , #(A ∩B) = r −m◦ .

The cycle ∆k◦ , ◦̀ ,m◦ is defined as the image of the embedding Ar into Ak◦ ×A ◦̀ ×Am◦
given by sending (E, (P1, . . . , Pr)) to ((E,PA), (E,PB), (E,PC)), where for instance
PA is a shorthand for the k◦ -tuple of points Pj with j ∈ A.

Let also ∆
k◦ , ◦̀ ,m◦
01 ∈ CHr+2(Ak◦ ×A ◦̀ ×Am◦ ) denote the generalised diagonal cycle

in the product of the three Kuga-Sato varieties of weights (k, `,m) fibered over X01,
defined in a similar way as in (4.4) and along the same lines as recalled above.

More precisely, ∆
k◦ , ◦̀ ,m◦
01 is defined as the schematic closure in Ak◦ ×A ◦̀ ×Am◦ of

the set of tuples ((E,C1, PA), (E,C2, PB), (E,C3, PC)) where PA, PB , PC are as above,
and C1, C2, C3 is a triple of pairwise distinct subgroups of order p in the elliptic curve
E.

Since the triple (k◦ , ◦̀ ,m◦) is fixed throughout this section, in order to alleviate
notations in the statements below we shall simply denote ∆] and ∆]

01 for ∆k◦ , ◦̀ ,m◦

and ∆
k◦ , ◦̀ ,m◦
01 respectively.
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Lemma 4.5. — The following identities hold in CHr+2(Ak◦ ×A ◦̀ ×Am◦ ):

(π1, π1, π1)∗(∆
]
01) = (p+ 1)p(p− 1)(∆]),

(π2, π1, π1)∗(∆
]
01) = p(p− 1)× (Tp, 1, 1)(∆]),

(π1, π2, π1)∗(∆
]
01) = p(p− 1)× (1, Tp, 1)(∆]),

(π1, π1, π2)∗(∆
]
01) = p(p− 1)× (1, 1, Tp)(∆

]),

(π1, π2, π2)∗(∆
]
01) = (p− 1)× ((1, Tp, Tp)(∆

])− pr−k◦D1)

(π2, π1, π2)∗(∆
]
01) = (p− 1)× ((Tp, 1, Tp)(∆

])− pr− ◦̀D2)

(π2, π2, π1)∗(∆
]
01) = (p− 1)× ((Tp, Tp, 1)(∆])− pr−m◦D3)

(π2, π2, π2)∗(∆
]
01) = (Tp, Tp, Tp)(∆

])− pr−k◦E1 − pr− ◦̀E2 − pr−m◦E3

−pr(p+ 1)∆],

where the cycles D1, D2 and D3 satisfy

([p], 1, 1)∗(D1) = pk◦ (Tp, 1, 1)∗(∆
]), (1, [p], 1)∗(D2) = p ◦̀ (1, Tp, 1)∗(∆

]),

(1, 1, [p])∗(D3) = pm◦ (1, 1, Tp)(∆
]),

the cycles E1, E2 and E3 satisfy

([p], 1, 1)∗(E1) = pk◦ (Tp2 , 1, 1)(∆]), (1, [p], 1)∗(E2) = p ◦̀ (1, Tp2 , 1)(∆]),

(1, 1, [p])∗(E3) = pm◦ (1, 1, Tp2)(∆]),

and Tp2 := T 2
p − (p+ 1)[p].

Proof. — The first four identities are straightforward: the map π1 × π1 × π1 in-
duces a finite map from ∆]

01 to ∆] of degree (p + 1)p(p − 1), which is the number
of possible choices of an ordered triple of distinct subgroups of order p on an ellip-
tic curve, and likewise π2 × π1 × π1 induces a map of degree p(p − 1) from ∆]

01 to
(Tp, 1, 1)∆]. The remaining identities follow from combinatorial reasonings based on
the explicit description of the cycles ∆]

01 and ∆]. For the 5th identity, observe that
(π1, π2, π2)∗ induces a degree (p − 1) map from ∆]

01 to the variety X parametris-
ing triples ((E,PA), (E′, P ′B), (E′′, P ′′C)) for which there are distinct cyclic p-isogenies
ϕ′ : E −→ E′ and ϕ′ : E −→ E′′, the system of points P ′B ⊂ E′ and P ′′C ⊂ E′′ indexed
by the sets B and C satisfy

ϕ′(PA∩B) = P ′A∩B , ϕ′′(PA∩C) = P ′′A∩C ,

and for which there exists points QB∩C ⊂ E indexed by B ∩ C satisfying

ϕ′(QB∩C) = P ′B∩C , ϕ′′(QB∩C) = P ′′B∩C .

On the other hand, (1, Tp, Tp) parametrises triples of the same type, in which E′ and
E′′ need not be distinct. It follows that

(4.7) (1, Tp, Tp)(∆
]) = X + pr−k◦D1,



p-ADIC FAMILIES OF DIAGONAL CYCLES 35

where the closed points of D1 correspond to triples ((E,PA), (E′, P ′B), (E′, P ′C)) for
which there is a cyclic p-isogeny ϕ′ : E −→ E′ satisfying

ϕ′(PA∩B) = P ′A∩B , ϕ′(PA∩C) = P ′A∩C .

The coefficient of pr−k◦ in (4.7) arises because each closed point of D1 comes from
p#(B∩C) distinct closed points on (1, Tp, Tp)(∆

]), obtained by translating the points
Pj ∈ PB∩C with j ∈ B ∩ C by arbitrary elements of ker(ϕ). The fifth identity now
follows after noting that the map ([p], 1, 1]) induces a map of degree pk◦ from D1 to
(Tp, 1, 1)∗∆

]. The 6th and 7th identity can be treated with an identical reasoning
by interchanging the three factors in W k◦ ×W ◦̀ ×Wm◦ . As for the last identity,
the map (π2, π2, π2) induces a map of degree 1 to the variety Y consisting of triples
(E′, E′′, E′′′) of elliptic curves which are p-isogenous to a common elliptic curve E
and distinct. But it is not hard to see that

(Tp, Tp, Tp)(∆
]) = Y + pr−k◦E1 + pr− ◦̀E2 + pr−m◦E3 + pr(p+ 1)∆]

where the additional terms on the right hand side account for triples (E′, E′′, E′′′)
where E′ 6= E′′ = E′′′, where E′′ 6= E′ = E′′′, where E′′′ 6= E′ = E′′, and where
E′ = E′′ = E′′′ respectively.

Assume for the remainder of the section that k◦ , ◦̀ ,m◦ > 0. Recall the projectors
εk◦ of (1.5). It was shown in [DR14, §3.1] that (εk◦ , ε ◦̀ , εm◦ )∆k◦ , ◦̀ ,m◦ is a null-
homologous cycle and we may define

(4.8) κ(f, g, h) := πf,g,h AJét((εk◦ , ε ◦̀ , εm◦ )∆k◦ , ◦̀ ,m◦ ) ∈ H1(Q,W0[f, g, h])

as the image of this cycle under the p-adic étale Abel-Jacobi map, followed by the
natural projection from H2c−1

ét (Āk◦ × Ā ◦̀ × Ām◦ ,Qp(c)) to W k◦ , ◦̀ ,m◦
0 induced by the

Künneth decomposition and the projection πf,g,h.
It follows from [DR14, (66)], (1.5) and the vanishing of the terms Hi

ét(X̄1,Hk◦ )
for i 6= 1 when k◦ > 0, that the class κ(f, g, h) is realized by the (f, g, h)-isotypic
component of the same extension class as in (3.5), after replacing X1 by the curve
X = X0 and ∆ = ∆0,0,0 is taken to be the usual diagonal cycle inX3. In the notations
of (3.4), this amounts to

(4.9) κ(f, g, h) = πf,g,hAJk◦ , ◦̀ ,m◦ (∆).

Similar statements holds over the curve X01. Namely, we also have the following:

Proposition 4.6. — The cycle (εk◦ , ε ◦̀ , εm◦ )∆
k◦ , ◦̀ ,m◦
01 is null-homologous and the

following equality of classes holds in H1(Q,W01[fα, gα, hα]):

(4.10) κ01(fα, gα, hα) = p3 · πfα,gα,hα AJét((εk◦ , ε ◦̀ , εm◦ )∆
k◦ , ◦̀ ,m◦
01 ).

Proof. — Corollary 3.3 together with (4.2) imply that

κ1(fα, gα, hα) =
1

Cq
· πfα,gα,hα AJk◦ , ◦̀ ,m◦ (∆◦1(1, 1, 1; δ)),
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in which δ = 1 is the trivial character of (Z/pZ)×. Since µ3 induces a finite map of
degree (p−1)3 from the support of ∆1(1, 1, 1; δ) to ∆01, it follows from the convention
adopted in (3.7) that

κ01(fα, gα, hα) := µ3
∗ κ1(fα, gα, hα) =

p3

Cq
· πfα,gα,hα AJk◦ , ◦̀ ,m◦ (∆◦01),

where AJk◦ , ◦̀ ,m◦ (∆◦01) is defined to be the class realized by the same extension class
as in (3.5), after replacing X1 by the curve X01 and replacing ∆ by the cycle ∆◦01

arising from (4.4). Since ∆
k◦ , ◦̀ ,m◦
01 is fibered over ∆01, the same argument as in (4.9)

then shows that

AJk◦ , ◦̀ ,m◦ (∆01) = AJét((εk◦ , ε ◦̀ , εm◦ )∆
k◦ , ◦̀ ,m◦
01 ).

Since πfα,gα,hα(∆01) = 1
Cq
πfα,gα,hα(∆◦01), the proposition follows.

Theorem 4.1. — With notations as before, letting c = r + 2, we have

($1, $1, $1)∗ κ1(fα, gα, hα) =
Ebal(fα, gα, hα)

E(fα)E(gα)E(hα)
× κ(f, g, h),

where

Ebal(fα, gα, hα) = (1−αfβgβhp−c)(1−βfαgβhp−c)(1−βfβgαhp−c)(1−βfβgβhp−c),
and

E(fα) = 1−χ−1
f (p)β2

fp
1−k, E(gα) = 1−χ−1

g (p)β2
gp

1−`, E(hα) = 1−χ−1
h (p)β2

hp
1−m.

Proof. — In view of (4.5), (4.8) and (4.10), it suffices to prove the claim for the
cycles ∆k◦ , ◦̀ ,m◦ and (π1, π1, π1)∗ e

∗∆
k◦ , ◦̀ ,m◦
01 . Since k◦ , ◦̀ ,m◦ are fixed throughout the

discussion, we again denote ∆] = ∆k◦ , ◦̀ ,m◦ and ∆]
01 = ∆

k◦ , ◦̀ ,m◦
01 to lighten notations.

When combined with Lemma 4.4, Lemma 4.5 equips us with a completely explicit
formula for comparing (π1, π1, π1)∗e

∗(∆]
01) with the generalised diagonal cycle ∆].

Namely, since the correspondences ([p], 1, 1), (1, [p], 1) and (1, 1, [p]) induce multipli-
cation by pk◦ , p ◦̀ and pm◦ respectively on the (f, g, h)-isotypic parts, while (Tp, 1, 1),
(1, Tp, 1), and (1, 1, Tp) induce multiplication by ap(f), ap(g), and ap(h) respectively,
it follows that, with notations as in the proof of Lemma 4.5,

πf,g,h(D1) = ap(f)πf,g,h(∆]),

πf,g,h(D2) = ap(g)πf,g,h(∆]),

πf,g,h(D3) = ap(h)πf,g,h(∆]),

and that

πf,g,h(E1) = (a2
p(f)− (p+ 1)pk◦ )πf,g,h(∆]),

πf,g,h(E2) = (a2
p(g)− (p+ 1)p ◦̀ )πf,g,h(∆]),

πf,g,h(E3) = (a2
p(h)− (p+ 1)pm◦ )πf,g,h(∆]).

By projecting the various formulae for (π1, π1, π1)∗(∆
]
01) that are given in Lemma

4.5 to the (f, g, h)-isotypic component and substituting them into Lemma 4.4, one
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obtains a expression for ef,g,h(π1, π1, π1)∗e
∗(∆]

01) as a multiple of πf,g,h(∆]) by an
explicit factor, which is a rational function in αf , αg and αh. This explicit factor is
somewhat tedious to calculate by hand, but the identity asserted in Theorem 4.1 is
readily checked with the help of a symbolic algebra package.

5. Triple product p-adic L-functions and the reciprocity law

Let (f ,g,h) be a triple of p-adic Hida families of tame levels Mf , Mg, Mh and
tame characters χf , χg, χh as in the previous section. Let also (f∗,g∗,h∗) = (f ⊗
χ̄f ,g ⊗ χ̄g,h ⊗ χ̄h) denote the conjugate triple. As before, we assume χfχgχh = 1
and set M = lcm(Mf ,Mg,Mh).

Let Λf , Λg and Λh be the finite flat extensions of Λ generated by the coefficients
of the Hida families f , g and h, and set Λfgh = Λf ⊗̂ZpΛg⊗̂ZpΛh. Let also Qf denote
the fraction field of Λf and define

Qf ,gh := Qf ⊗̂Λg⊗̂Λh.

Let W◦fgh := W◦f × W◦g × W◦h ⊂ Wfgh = Spf(Λfgh) denote the set of triples of
crystalline classical points, at which the three Hida families specialize to modular
forms with trivial nebentype at p (and may be either old or new at p). This set
admits a natural partition, namely

W◦fgh =Wf
fgh t W

g
fgh t W

h
fgh t Wbal

fgh

where
— Wf

fgh denotes the set of points (x, y, z) ∈ W◦fgh of weights (k, `,m) such that
k ≥ `+m.

— Wg
fgh and Wh

fgh are defined similarly, replacing the role of f with g (resp.h).
— Wbal

fgh is the set of balanced triples, consisting of points (x, y, z) of weights
(k, `,m) such that each of the weights is strictly smaller than the sum of the
other two.

Each of the four subsets appearing in the above partition is dense in Wfgh for the
rigid-analytic topology.

Recall from (1.34) the spaces of Λ-adic test vectors Sord
Λ (M,χf )[f ]. For any choice

of a triple

(f̆ , ğ, h̆) ∈ Sord
Λ (M,χf )[f ]× Sord

Λ (M,χg)[g]× Sord
Λ (M,χh)[h]

of Λ-adic test vectors of tame level M , in [DR14, Lemma 2.19 and Definition 4.4]
we constructed a p-adic L-function Lp

f (f̆ , ğ, h̆) in Qf ⊗̂Λg⊗̂Λh, giving rise to a mero-
morphic rigid-analytic function

(5.1) Lp
f (f̆ , ğ, h̆) :Wfgh −→ Cp.

As shown in [DR14, §4], this p-adic L-function is characterized by an interpolation
property relating its values at classical points (x, y, z) ∈ Wf

fgh to the central critical
value of Garrett’s triple-product complex L-function L(fx,gy,hz, s) associated to the
triple of classical eigenforms (fx,gy,hz). The fudge factors appearing in the inter-
polation property depend heavily on the choice of test vectors: cf. [DR14, §4] and
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[DLR15, §2] for more details. In a recent preprint, Hsieh [H17] has found an explicit
choice of test vectors, which yields a very optimal interpolation formula which shall
be useful for our purposes. We describe it below:

Proposition 5.1. — for every (x, y, z) ∈ Wf
fgh of weights (k, `,m) we have

(5.2) Lp
f (f̆ , ğ, h̆)2(x, y, z) =

a(k, `,m)

〈f◦x , f◦x〉2
· e2(x, y, z) ·

∏
v|N∞

Cv × L(f◦x ,g
◦
y,h
◦
z, c)

where

i) c = k+`+m−2
2 ,

ii) a(k, `,m) = (2πi)−2k · (k+`+m−4
2 )! · (k+`−m−2

2 )! · (k−`+m−2
2 )! · (k−`−m2 )!,

iii) e(x, y, z) = E(x, y, z)/E0(x)E1(x) with

E0(x) := 1− χ−1
f (p)β2

fxp
1−k,

E1(x) := 1− χf (p)α−2
fx
pk◦ ,

E(x, y, z) :=
(

1− χf (p)α−1
fx
αgyαhzp

k−`−m
2

)
×
(

1− χf (p)α−1
fx
αgyβhzp

k−`−m
2

)
×
(

1− χf (p)α−1
fx
βgyαhzp

k−`−m
2

)
×
(

1− χf (p)α−1
fx
βgyβhzp

k−`−m
2

)
.

iv) The local constant Cv ∈ Q(fx,gy,hz) depends only on the admissible represen-
tations of GL2(Qv) associated to (fx,gy,hz) and on the local components at v
of the test vectors.

Moreover, there exists a distinguished choice of test vectors (f̆ , ğ, h̆) (as specified
by Hsieh in [H17, §3]) for which Lp

f (f̆ , ğ, h̆) lies in Λfgh and the local constants may
be taken to be Cv = 1 at all v | N∞.

Proof. — This follows from [H17, Theorem A], after spelling out explicitly the defi-
nitions involved in Hsieh’s formulation.

Let us remark that throughout the whole article [DR14], it was implicitly assumed
that fx, g` and hm are all old at p, and note that the definition we have given here of
the terms E0(x), E1(x) and E(x, y, z) is exactly the same as in [DR14] in such cases,
because βfx = χf (p)α−1

fx
pk−1 when fx is old at p.

In contrast with loc. cit., in the above proposition we also allow any of the eigen-
forms fx, g` and hm to be new at p (which can only occur when the weight is 2); in
such case, recall the usual convention adopted in §1.2 to set βφ = 0 when p divides
the primitive level of an eigenform φ. With these notations, the current formulation
of E(x, y, z), E0(x) and E1(x) is the correct one, as one can readily verify by rewriting
the proof of [DR14, Lemma 4.10].

5.1. Perrin-Riou’s regulator. — Recall the Λ-adic cyclotomic character εcyc and
the unramified characters Ψf , Ψg, Ψh of GQp introduced in Theorem 1.1. As a piece
of notation, let εf : GQp

−→ Λ×f denote the composition of εcyc and the natural
inclusion Λ× ⊂ Λ×f , and likewise for εg and εh. Expressions like ΨfΨgΨh or εfεgεh
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are a short-hand notation for the Λ×fgh-valued character of GQp
given by the tensor

product of the three characters.
Let Vf , Vg and Vh be the Galois representations associated to f , g and h in

Theorem 1.1.
The purpose of this section is describing in precise terms the close connection

between the diagonal cycles constructed above and the three-variable triple-product
p-adic L-function. In order to do that, let us introduce the Λfgh-modules

(5.3) V†fgh := Vf ⊗ Vg ⊗ Vh(−1)(
2

1
) = Vf ⊗ Vg ⊗ Vh(ε−1

cycε
−1/2
f ε−1/2

g ε
−1/2
h ).

and

(5.4) V†fgh(M) := Vf (M)⊗ Vg(M)⊗ Vh(M)(−1)(
2

1
).

The pairing defined in (2.17) yields an identificationH111(X∗∞) = H1
ét(X̄∞,Zp)

⊗3(2)(
2

1
).

As explained in (1.26), V†fgh(M) is isomorphic to the direct sum of several copies
of V†fgh and there are canonical projections $f , $g, $h which assemble into a
GQ-equivariant map

$f ,g,h : H111(X∗∞) = H1
ét(X̄∞,Zp)

⊗3(2)(
2

1
) −→ V†fgh(M).

Recall the three-variable Λ-adic global cohomology class

κ∞(ε1ω
−k◦ , ε2ω

− ◦̀ , ε3ω
−m◦ ; 1) = κ∞(1, 1, 1; 1) ∈ H1(Q,H111(X∗∞))

introduced in (4.1).
Set Cq(f ,g,h) := (aq(f)−q−1)(aq(g)−q−1)(aq(h)−q−1). Note that Cq(f ,g,h)

is a unit in Λfgh, because its classical specializations are p-adic units (cf. (4.2)).

Definition 5.2. — Define

κ(f ,g,h) :=
1

Cq(f ,g,h)
· $f ,g,h∗(κ∞(ε1ω

−k◦ , ε2ω
− ◦̀ , ε3ω

−m◦ ; 1)) ∈ H1(Q,V†fgh(M))

to be the projection of the above class to the (f ,g,h)-isotypical component.

In the above definition, we normalize κ(f ,g,h) by the constant Cq(f ,g,h) so that
the classical specializations of κ(f ,g,h) at classical points coincide with the classes
κ1(fα, gα, hα) introduced in (4.2).

Let
resp : H1(Q,V†fgh(M))→ H1(Qp,V†fgh(M))

denote the restriction map to the local cohomology at p and set

κp(f ,g,h) := resp(κ(f ,g,h)) ∈ H1(Qp,V†fgh(M)).

The main result of this section asserts that the p-adic L-function Lp
f (f̆ , ğ, h̆)

introduced in §5 can be recast as the image of the Λ-adic class κp(f ,g,h) under a
suitable three-variable Perrin-Riou regulator map whose formulation relies on a choice
of families of periods which depends on the test vectors f̆ , ğ, h̆.
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The recipe we are about to describe depends solely only on the projection of
κp(f ,g,h) to a suitable sub-quotient of V†fgh which is free of rank one over Λfgh,
and whose definition requires the following lemma.

Lemma 5.3. — The Galois representation V†fgh is endowed with a four-step filtration

0 ⊂ V++
fgh ⊂ V+

fgh ⊂ V−fgh ⊂ V†fgh
by GQp

-stable Λfgh-submodules of ranks 0, 1, 4, 7 and 8 respectively.
The group GQp acts on the successive quotients for this filtration (which are free

over Λfgh of ranks 1, 3, 3 and 1 respectively) as a direct sum of one dimensional
characters,

V++
fgh = ηfgh,

V+
fgh

V++
fgh

= ηghf ⊕η
fh
g ⊕η

fg
h ,

V−fgh
V+

fgh

= ηfgh⊕η
g
fh⊕η

h
fg,

V†fgh
V−fgh

= ηfgh,

where

ηfgh = (ΨfΨgΨh × ε2
cyc(εfεgεh)1/2, ηfgh = ΨfΨgΨh × ε−1

cyc(εfεgεh)−1/2,

ηghf = χ−1
f ΨfΨ

−1
g Ψ−1

h × εcyc(ε−1
f εgεh)1/2, ηfgh = χfΨ−1

f ΨgΨh × (εfε
−1
g ε−1

h )1/2,

ηfhg = χ−1
g ΨgΨ−1

f Ψ−1
h × εcyc(εfε

−1
g εh)1/2, ηgfh = χgΨfΨhΨ−1

g × (ε−1
f εgε

−1
h )1/2,

ηfgh = χ−1
h ΨhΨ−1

f Ψ−1
g × εcyc(εfεgε

−1
h )1/2, ηhfg = χhΨfΨgΨ−1

h × (ε−1
f ε−1

g εh)1/2.

Proof. — Let φ be a Hida family of tame character χ as in §1.3. Let ψφ denote
the unramified character of GQp sending a Frobenius element Frp to ap(φ) and recall
from (1.12) that the restriction of Vφ to GQp admits a filtration

0 → V+
φ → Vφ → V−φ → 0

with
V+

φ ' Λφ(ψ−1
φ χε−1

cycεcyc), V−φ ' Λφ(ψφ).

Set

V++
fgh = V+

f ⊗ V+
g ⊗ V+

h (ε−1
cycε

−1/2
f ε−1/2

g ε
−1/2
h ),

V+
fgh =

(
Vf ⊗ V+

g ⊗ V+
h + V+

f ⊗ Vg ⊗ V+
h + V+

f ⊗ V+
g ⊗ Vh

)
(ε−1

cycε
−1/2
f ε−1/2

g ε
−1/2
h )

V−fgh =
(
Vf ⊗ Vg ⊗ V+

h + Vf ⊗ V+
g ⊗ Vh + V+

f ⊗ Vg ⊗ Vh

)
(ε−1

cycε
−1/2
f ε−1/2

g ε
−1/2
h ).

It follows from the definitions that these three representations are Λfgh[GQp ]-
submodules of V†fgh of ranks 1, 4, 7 as claimed. Moreover, since χfχgχh = 1, the rest
of the lemma follows from (1.12).

A one-dimensional character η : GQp −→ C×p is said to be of Hodge-Tate weight
−j if it is equal to a finite order character times the j-th power of the cyclotomic
character. The following is an immediate corollary of Lemma 5.3.
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Corollary 5.4. — Let (x, y, z) ∈ W◦fgh be a triple of classical points of weights
(k, `,m). The Galois representation V †fx,gy,hz is endowed with a four-step GQp-stable
filtration

0 ⊂ V ++
fx,gy,hz

⊂ V +
fx,gy,hz

⊂ V −fx,gy,hz ⊂ V
†
fx,gy,hz

,

and the Hodge-Tate weights of its successive quotients are:

Subquotient Hodge-Tate weights
V ++
fx,gy,hz

−k−`−m
2 + 1

V +
fx,gy,hz

/V ++
fx,gy,hz

k−`−m
2 , −k+`−m

2 , −k−`+m2

V −fx,gy,hz/V
+
fx,gy,hz

−k+`+m
2 − 1, k−`+m2 − 1, k+`−m

2 − 1

Vfx,gy,hz/V
−
fx,gy,hz

k+`+m
2 − 2

Corollary 5.5. — The Hodge-Tate weights of V +
fx,gy,hz

are all strictly negative if
and only if (k, `,m) is balanced.

Let Vgh
f and Vgh

f (M) be the subquotient of V†fgh (resp. of V†fgh(M)) on which GQp

acts via (several copies of) the character

(5.5) ηghf := Ψgh
f ×Θgh

f

where
— Ψgh

f is the unramified character ofGQp
sending Frp to χ−1

f (p)ap(f)ap(g)−1ap(h)−1,
and

— Θgh
f is the Λfgh-adic cyclotomic character whose specialization at a point of

weight (k, `,m) is εtcyc with t := (−k + `+m)/2.
The classical specializations of Vgh

f are

(5.6) V
gyhz
fx

:= V −fx ⊗ V
+
gy ⊗ V

+
hz

(
−k − `−m+ 4

2
) ' Lp

(
χ−1
f ψfxψ

−1
gy ψ

−1
hz

)
(t),

where the coefficient field is Lp = Qp(fx,gy,hz). Note that t > 0 when (x, y, z) ∈
Wbal

fgh, while t ≤ 0 when (x, y, z) ∈ Wf
fgh.

Recall now from §1.4 the Dieudonné module D(V
gyhz
fx

(Mp)) associated to (5.6).
As it follows from loc. cit., every triple

(η1, ω2, ω3) ∈ D(V +
f∗x

(Mp))×D(V −g∗y (Mp))×D(V −h∗z
(Mp))

gives rise to a linear functional η1 ⊗ ω2 ⊗ ω3 : D(V
gyhz
fx

(Mp)) −→ Lp.
In order to deal with the p-adic variation of these Dieudonné modules, write

Vgh
f (M) as

Vgh
f (M) = U(Θgh

f )

where U is the unramified Λfgh-adic representation of GQp
given by (several copies

of) the character Ψgh
f .

As in §1.4, define the Λ-adic Dieudonné module

D(U) := (U⊗̂Ẑnr
p )GQp .
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In view of (1.29), for every (x, y, z) ∈ W◦fgh there is a natural specialisation map

νx,y,z : D(U) −→ D(U
gyhz
fx

)

where Ugyhz
fx

:= U⊗Λfgh
Qp(fx,gy,hz) ' V

gyhz
fx

(Mp)(−t).

Proposition 5.6. — For any triple of test vectors

(f̆ , ğ, h̆) ∈ Sord
Λ (M,χf )[f ]× Sord

Λ (M,χg)[g]× Sord
Λ (M,χh)[h],

there exists a homomorphism of Λfgh-modules

〈 , ηf̆∗ ⊗ ωğ∗ ⊗ ωh̆∗〉 : D(U) −→ Qf ,gh

such that for all λ ∈ D(U) and all (x, y, z) ∈ W◦fgh such that fx is the ordinary
stabilization of an eigenform f◦x of level M :

νx,y,z
(
〈λ, ηf̆∗ ⊗ ωğ∗ ⊗ ωh̆∗〉

)
=

1

E0(f◦x)E1(f◦x)
× 〈νx,y,z(λ), ηf̆∗x

⊗ ωğ∗y
⊗ ωh̆∗z

〉.

Recall from (1.31) that

E0(f◦x) = 1− χ−1(p)β2
f◦x
p1−k, E1(f◦x) = 1− χ(p)α−2

f◦x
pk−2.

Proof. — Since U is isomorphic to the unramified twist of V−f ⊗V+
g ⊗V+

h , this follows
from Proposition 1.5 because E0(f◦x) = E0(f◦∗x ) and E1(f◦x) = E1(f◦∗x ).

It follows from Example 1.4 (a) and (b) that the Bloch-Kato logarithm and dual
exponential maps yield isomorphisms

logBK : H1(Qp, V
gyhz
fx

)
∼−→ D(V

gyhz
fx

), if t > 0,

exp∗BK : H1(Qp, V
gyhz
fx

)
∼−→ D(V

gyhz
fx

), if t ≤ 0.

Define

(5.7) EPR(x, y, z) =
1− p k−`−m2 α−1

fx
αgyαhz

1− p `+m−k−2
2 αfxα

−1
gy α

−1
hz

=
1− p−cβfxαgyαhz

1− p−cαfxβgyβhz
.

The following is a three-variable version of Perrin-Riou’s regulator map constructed
in [PR95] and [LZ14].

Proposition 5.7. — There is a homomorphism

Lf ,gh : H1(Qp,Vgh
f (M)) −→ D(U)

such that for all κp ∈ H1(Qp,Vgh
f (M)) the image Lf ,gh(κp) satisfies the following

interpolation properties:
(i) For all balanced points (x, y, z) ∈ Wbal

fgh,

νx,y,z
(
Lf ,gh(κp)

)
=

(−1)t

t!
· EPR(x, y, z) · logBK(νx,y,z(κp)),

(ii) For all points (x, y, z) ∈ Wf
fgh,

νx,y,z
(
Lf ,gh(κp)

)
= (−1)t · (1− t)! · EPR(x, y, z) · exp∗BK(νx,y,z(κp)).
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Proof. — This follows by standard methods as in [KLZ17, Theorem 8.2.8], [LZ14,
Appendix B], [DR17, §5.1].

Proposition 5.8. — The class κp(f ,g,h) belongs to the image of H1(Qp,V+
fgh(M))

in
H1(Qp,V†fgh(M)) under the map induced from the inclusion V+

fgh(M) ↪→ V†fgh(M).

Proof. — Let (x, y, z) ∈ W◦fgh be a triple of classical points of weights (k, `,m). By the
results proved in §4, the cohomology class κp(fx,gy,hz) is proportional to the image
under the p-adic étale Abel-Jacobi map of the cycles appearing in (4.8), that were in-
troduced in [DR14, §3]. The purity conjecture for the monodromy filtration is known
to hold for the variety Ak◦ ×A ◦̀ ×Am◦ by the work of Saito (cf. [S97], [N98, (3.2)]).
By Theorem 3.1 of loc.cit., it follows that the extension κp(fx,gy,hz) is crystalline.
Hence κp(fx,gy,hz) belongs to H1

f (Qp, V
†
fx,gy,hz

(Mp)) ⊂ H1(Qp, V
†
fx,gy,hz

(Mp)).
Since (k, `,m) is balanced, Corollary 5.5 implies that V +

fx,gy,hz
is the subrepre-

sentation of V †fx,gy,hz on which the Hodge-Tate weights are all strictly negative. As
is well-known (cf. [F90, Lemma 2, p. 125], [LZ19, §3.3] for similar results), the fi-
nite Bloch-Kato local Selmer group of an ordinary representation can be recast à la
Greenberg [G89] as

H1
f (Qp, V

†
fx,gy,hz

) = ker
(
H1(Qp, V

†
fx,gy,hz

) −→ H1(Ip, V
†
fx,gy,hz

/V +
fx,gy,hz

)
)
,

where Ip denotes the inertia group at p.
Since the set of balanced classical points is dense in Wfgh for the rigid-analytic

topology, it follows that the Λ-adic class κp(f ,g,h) belongs to the kernel of the natural
map

H1(Qp,V†fgh(M)) −→ H1(Ip,V†fgh(M)/V+
fgh(M)).

Since the kernel of the restriction map

H1(Qp,V†fgh(M)/V+
fgh(M)) −→ H1(Ip,V†fgh(M)/V+

fgh(M))

is trivial by Lemma 5.3, the result follows.

Thanks to Lemma 5.3 and Proposition 5.8, we are entitled to define

κfp(f ,g,h)− ∈ H1(Qp,Vgh
f (M))(5.8)

as the projection of the local class κp(f ,g,h) to Vgh
f (M).

Theorem 5.1. — For any triple of Λ-adic test vectors (f̆ , ğ, h̆), the following equality
holds in the ring Qf ,gh:

〈Lf ,gh(κfp(f ,g,h)− ), ηf̆∗ ⊗ ωğ∗ ⊗ ωh̆∗ 〉 = Lp
f (f̆ , ğ, h̆).

Proof. — It is enough to prove this equality for a subset of classical points that is
dense for the rigid-analytic topology, and we shall do so for all balanced triple of
crystalline classical points (x, y, z) ∈ Wbal

fgh such that fx, g` and hm are respectively
the ordinary stabilization of an eigenform f := f◦x , g := g◦y and h := h◦z of level M .
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Set κ−p := κfp(f ,g,h)− and L = 〈Lf ,gh(κ−p ), ηf̆∗ ⊗ ωğ∗ ⊗ ωh̆∗〉 for notational sim-
plicity. Proposition 5.6 asserts that the following identity holds in Lp:

νx,y,z(L) = 〈νx,y,z(Lf ,gh(κ−p )), ηf̆∗x
⊗ ωğ∗y

⊗ ωh̆∗z
〉.

Recall also from Proposition 1.5 that

ηf̆∗x
=

1

E1(f)
e$∗1(ηf̆∗), ωğ∗y

= E0(g)e$∗1(ωğ∗), ωh̆∗z
= E0(h)e$∗1(ωh̆∗)

and

νx,y,z(Lf ,gh(κ−p )) =
(−1)t

t!
· EPR(x, y, z) logBK(νx,y,z(κ

−
p ))

by Proposition 5.7.
Recall the class κ(f, g, h) = κ(f◦x ,g

◦
y,h
◦
z) introduced in (4.8) arising from the

generalized diagonal cycles of [DR14]. As in (5.8), we may define κfp(f, g, h)− ∈
H1(Qp,Vghf (M)) as the projection to V ghf (M) of the restriction at p of the global
class κ(f, g, h).

It follows from Theorem 4.1 that

($1, $1, $1)∗νx,y,z(κ
−
p ) =

Ebal(x, y, z)

(1− βf/αf )(1− βg/αg)(1− βh/αh)
× κfp(f, g, h)−

where

Ebal(x, y, z) = (1− αfβgβhp−c)(1− βfαgβhp−c)(1− βfβgαhp−c)(1− βfβgβhp−c).

The combination of the above identities shows that the value of L at the balanced
triple (x, y, z) is

νx,y,z(L) =
(−1)t · Ebal(x, y, z)EPR(x, y, z)

t! · E0(f)E1(f)
× 〈logBK(κfp(f, g, h)), ηf̆∗ ⊗ ωğ∗ ⊗ ωh̆∗〉

Besides, since the syntomic Abel-Jacobi map appearing in [DR14] is the compo-
sition of the étale Abel-Jacobi map and the Bloch-Kato logarithm, the main theorem
of loc. cit. asserts in the present notations that

νx,y,z
(
Lp

f (f̆ , ğ, h̆)
)

=
(−1)t

t!

E f(x, y, z)

E0(f)E1(f)
〈logBK(κfp(f, g, h)−), ηf̆∗ ⊗ ωğ∗y ⊗ ωh̆∗〉

where

E f(x, y, z) =
(
1− βfαgαhp−c

) (
1− βfαgβhp−c

) (
1− βfβgαhp−c

) (
1− βfβgβhp−c

)
.

Since
E f(x, y, z) = Ebal(x, y, z)× EPR(x, y, z)

and the sign and factorial terms also cancel, we have

νx,y,z(L) = νx,y,z
(
Lp

f (f̆ , ğ, h̆)
)
,

as we wanted to show. The theorem follows.
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RECIPROCITY LAWS
FOR BALANCED DIAGONAL CLASSES

by

Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci

Abstract. — This article constructs a 3-variable balanced diagonal class κ(f , g,h)
in the cohomology of the Galois representation associated to a self-dual triple (f , g,h)
of p-adic Hida families. Its first main result (Theorem A of Section 1.1) establishes an
explicit reciprocity law relating κ(f , g,h) to the unbalanced Garrett–Rankin p-adic L-
function attached to (f , g,h). The class κ(f , g,h) arises from the p-adic interpolation
of diagonal classes in the Bloch–Kato Selmer groups of the specialisations of (f , g,h)
at balanced triples of classical weights. As a consequence, the value of κ(f , g,h) at
a specialisation (f, g, h) of (f , g,h) at an unbalanced triple of classical weights is a
p-adic limit of crystalline classes. Our second main result (Theorem B of Section
1.2) shows that the obstruction to the crystallinity of an appropriate derivative of
κ(f , g,h) at (f, g, h) is encoded in the central critical value of the complex L-function
of f ⊗ g ⊗ h.

To Bernadette Perrin-Riou on her 65th birthday
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1. Description and statement of results

The reciprocity laws alluded to in the title of this work concern the diagonal class
arising in the cohomology of the big Galois representation attached to a self-dual
triple of Hida p-adic families of cusp forms. Our construction of this class builds on
the push-forward of a canonical generator of an invariant space of locally analytic
functions along the diagonal morphism of a modular curve into the corresponding
triple-product threefold. It constitutes a crucial step towards the proof of the main
results of this paper and of those of our other contribution [BSV20a] to the present
volume.

The specialisations of the diagonal class at triples of classical weights in the so-
called balanced region, in which each weight is strictly smaller than the sum of the
other two, give rise to cohomology classes admitting a similar description in terms
of invariant theory which are closely related to diagonal cycles in Chow groups of
Kuga–Sato varieties. As a consequence, the diagonal class belongs to a big Selmer
group, called the balanced Selmer group, which interpolates in the geometric region
of balanced weights the Bloch–Kato Selmer groups of the triple tensor product rep-
resentations of the corresponding modular forms.

The first main result of this paper – Theorem A of Section 1.1 – pertains to the
specialisation of the diagonal class to the three unbalanced regions where one weight
is at least equal to the sum of the other two. The explicit reciprocity laws proved
therein identify the image of the diagonal class by a branch of the Perrin-Riou big
logarithm corresponding to the choice of unbalanced region as the 3-variable p-adic
L-function interpolating the central critical values of the Garrett–Rankin complex
L-functions attached to the triples of weights in that region.

Our second main result – Theorem B of Section 1.2 – proves that the specialisation
of the diagonal class at an unbalanced point is crystalline at p if and only if the
corresponding central critical value is zero. This criterion follows directly from the
reciprocity law of Theorem A combined with Jacquet’s conjecture proved by Harris–
Kudla when the p-adic L-function for the corresponding unbalanced region does not
have an exceptional zero in the sense of Mazur–Tate–Teitelbaum. The exceptional
cases can only occur at unbalanced triples in which the modular form of dominant
weight is multiplicative at p. These subtler cases require the proof of an exceptional
zero formula for the 3-variable p-adic L-function, combined with an analysis of the
derivatives of the Perrin-Riou logarithm at the unbalanced point and the costruction
of an improved class.

Applications to the arithmetic of elliptic curves obtained from instances of the
exceptional case constitute the object of the main results of our other contribution
[BSV20a] to this volume, and represent one motivating feature of the present work.
The Hida families considered in this setting respectively interpolate the weight-two
modular form attached to an elliptic curve A over the rational numbers and two
weight-one theta series associated to the same quadratic fieldK and subject to natural
arithmetic conditions. In this setting, we establish a factorisation of the triple product
p-adic L-function along the line (k, 1, 1) as a product of two Hida–Rankin p-adic L-
functions attached to A/K, which implies a relation between the fourth derivative
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at weights (2, 1, 1) of the former p-adic L-function and the product of the second
derivatives at k = 2 of the latter. This translates into a formula for the Bloch–Kato
logarithm of the specialisation of the diagonal class at (2, 1, 1) as a product of formal
group logarithms of Heegner points or Stark–Heegner points, depending respectively
on whether K is imaginary quadratic or real quadratic. This result provides a bridge
between the diagonal class arising from the geometry of higher dimensional varieties
and the theory of rational points on elliptic curves, lending also some support to the
conjecture on the rationality of Stark–Heegner points.

1.1. The three-variable reciprocity law. — Fix a prime p > 5, algebraic clo-
sures Q̄ and Q̄p of Q and Qp respectively, and embeddings Q̄ ↪→ Q̄p and Q̄ ↪→ C.
Let L be a finite extension of Qp and let

f ]=
∑
n>1

an(k) · qn ∈ O(Uf )JqK,

g]=
∑
n>1

bn(l) · qn ∈ O(Ug)JqK

and h]=
∑
n>1

cn(m) · qn ∈ O(Uh)JqK

be primitive, L-rational Hida p-adic families of modular forms of tame conductors
Nf , Ng and Nh, centres ko, lo and mo and tame characters χf , χg and χh respectively
(cf. Section 5). Here Nf is a positive integer coprime to p, Uf is an L-rational open
disc centred at ko ∈ Z>1 in the p-adic weight space W, and O(Uf ) is the ring of
analytic functions on Uf . For each k in U cl

f =
{
k ∈ Uf ∩ Z>2 | k ≡ ko mod 2(p− 1)

}
the weight-k specialisation f ]k =

∑
n>1 an(k)·qn ∈ LJqK∩Sk(Nfp, χf ) is a p-stabilised

newform of weight k, level Γ1(Nf ) ∩ Γ0(p) and character χf . In particular the p-th
Fourier coefficient ap(k) is a unit in the ring Λf of functions α ∈ O(Uf ) satisfying
|α(x)|p 6 1 for all x ∈ Uf . If k > 2 then f ]k is the ordinary p-stabilisation of a newform
f ]k in Sk(Nf , χf ). If k = 2 then either f ]2 = f ]2 is new or it is the p-stabilisation of a
newform f ]2 of level Nf . A similar discussion applies to g] and h].

Let (ξ], uo) denote one of pairs (f ], ko), (g
], lo) and (h],mo). If uo = 1, then the

weight-one specialisation ξ]1 of ξ] is a cuspidal-overconvergent (but not necessarily
classical) ordinary modular form. Throughout the paper we make the following

Assumption 1.1. — If uo = 1, then ξ]1 is a p-stabilisation of a classical, cuspidal
and p-regular newform of level Γ1(Nξ), without real multiplication by a quadratic field
in which p splits.

A weight-one eigenform has real multiplication if it is equal to the theta series
ϑχ =

∑
a χ(a) · qNa associated with a ray class character χ of a real quadratic field

K, where a runs over the non-zero ideals of OK and Na = |OK/a|. Moreover, a
normalised weight-one eigenform ξ =

∑
n>0 an(ξ) · qn of level Γ1(Nξ) and character

χξ is said to be p-regular if its p-th Hecke polynomial X2 − ap(ξ) · X + χξ(p) is
separable. We refer to Remarks 1.4 and to Section 5 below for explanations on the
relevance of Assumption 1.1 for the main results of this paper.
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Let N be the least common multiple of Nf , Ng and Nh. A level-N test vector
for (f ], g],h]) is a triple (f , g,h) of Hida families of common tame level N , having
(f ], g],h]) as associated triple of primitive families (cf. Section 5). For each k in
U cl
f the weight-k specialisation fk of f is an ordinary cusp form of weight k, level

Γ1(N)∩ Γ0(p) and character χf , which is an eigenvector for Up and T` for all primes
` - Np, with the same eigenvalues as f ]k. Similarly for g and h. Fix a level-N test
vector (f , g,h) for (f ], g],h]).

We make throughout this paper the following crucial self-duality assumption.

Assumption 1.2. — χf · χg · χh = 1.

Set Σ = Ũ cl
f × Ũ cl

g × Ũ cl
h , where Ũ

cl
f = U cl

f ∪ {ko} (so that Ũ cl
f = U cl

f if ko > 2),
and Ũ cl

g and Ũ cl
h are defined similarly. Assumption 1.2 implies that k + l + m is an

even integer for all w = (k, l,m) in U cl
f × U cl

g × U cl
h , hence cw = (k + l +m− 2)/2 is

a positive integer. Let Σf be the set of w in Σ such that k > l +m, define similarly
Σg and Σh and denote by Σbal the complement in Σ of the union of Σf , Σg and Σh.
One calls Σbal the balanced region.

Denote by ξ one of the symbols f , g and h and correspondingly by ξ one of f, g
and h. Let Oξ = Λξ[1/p] be the space of bounded analytic functions on Uξ and set
Ofgh = Of ⊗̂LOg⊗̂LOh. Associated with (f , g,h) one has:
• Garrett–Rankin square root p-adic L-functions L ξ

p (f , g,h) in Ofgh, interpo-
lating the square roots of the central critical values L(f ]k ⊗ g]l ⊗ h]m, cw) of
the complex Garrett–Rankin L-functions L(f ]k ⊗ g

]

l ⊗h]m, s) for classical triples
w = (k, l,m) in the region Σξ (cf. Remark 1.8(1) and see Section 6 for details).

• An Ofgh-adic representation V (f , g,h) of GQ = Gal(Q̄/Q), satisfying the
following interpolation property (cf. Section 7.2). For each classical triple
w = (k, l,m) in Σ let V (f ]k, g

]

l , h
]
m) be the central critical twist (i.e. the cw-th

Tate twist) of the tensor product of the Deligne representations of f ]k, g
]

l and h
]
m.

Then the base change V (fk, gl,hm) of V (f , g,h) under evaluation at (k, l,m)
on Ofgh is isomorphic to

⊕a
i=1 V (f ]k, g

]

l , h
]
m), for some integer a > 1 which is

independent of (k, l,m) ∈ Σ (cf. Section 7.2).
• A balanced Selmer group H1

bal(Q, V (f , g,h)) ⊂ H1(Q, V (f , g,h)), which in-
terpolates the Bloch–Kato Selmer groups Sel(Q, V (fk, gl,hm)) for all balanced
triples (k, l,m) ∈ Σbal (cf. Section 7.2).

• Perrin-Riou big logarithms

Lξ = Logξ(f , g,h) : H1
bal(Qp, V (f , g,h)) −→ Ofgh,

satisfying the following interpolation properties. Say that ξ = f to fix ideas.
Then for all balanced triples w = (k, l,m) in a subset of Σbal which is dense in
Uf × Ug × Uh, and for all local balanced classes Z in H1

bal(Qp, V (f , g,h))

Lf

(
resp(Z )

)
(w) = Ef (fk, gl,hm) · logp(Zw)

(
ηαfk⊗ ωgl⊗ ωhm

)
.

Here Ef (fk, gl,hm) is an explicit non-zero algebraic number, the class Zw in
H1

fin(Qp, V (fk, gl,hm)) is the specialisation of Z at w, logp is the Bloch–Kato
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logarithm and ηαfk⊗ ωgl⊗ ωhm is the differential considered in Section 7.3, to
which we refer for details.

According to a conjectural picture envisioned by Perrin-Riou the L-functions
L ξ
p (f , g,h) should arise from a global balanced class via the logarithms Lξ. Our

first main result confirms this expectation.

Theorem A. — There is a canonical class κ(f , g,h) in H1
bal(Q, V (f , g,h)) such

that, for ξ = f , g,h, one has

Lξ

(
resp

(
κ(f , g,h)

))
= L ξ

p (f , g,h).

Remarks 1.3. —
1. The equality displayed in Theorem A determines the class κ(f , g,h) only up to

addition by an element in a suitable (conjecturally trivial) restricted Selmer group.
Nonetheless Section 8.1 gives a geometric construction of a canonical three-variable
balanced class κ(f , g,h) satisfying the conclusions of Theorem A.

2. Theorem 8.1 and Proposition 8.3 express the specialisation of κ(f , g,h) at a
balanced triple (k, l,m) ∈ Σbal as an explicit multiple of a suitable Selmer diagonal
class κ(fk, gl,hm) ∈ Sel(Q, V (fk, gl,hm)) associated in Section 3 with (fk, gl,hm)
(cf. Proposition 3.2). The latter is in turn related to the values of L ξ

p (f , g,h) at
(k, l,m) by an explicit reciprocity law (cf. Proposition 3.6). Theorem A then follows
from analytic continuation.

3. Both the square-root p-adic L-function L ξ
p (f , g,h) and the big logarithm

Lξ = Logξ(f , g,h) genuinely depend on the choice of the level-N test vec-
tor (f , g,h) for (f ], g],h]). On the other hand the big Galois representation
V (f , g,h) = VN (f ], g],h]) and the balanced class

κ(f , g,h) = κN (f ], g],h])

depend on the test vector (f , g,h) only through its level N and the systems of eigen-
values defined by (f ], g],h]) (cf. Sections 5 and 8.1).

4. The construction of κ(f , g,h) given in Section 8.1 applies more generally to a
triple (f , g,h) of (not necessarily ordinary) Coleman families. The p-adic L-function
L ξ
p (f , g,h) has recently been constructed in [AI21b], and it is natural to wonder if

one can generalise Theorem A to this setting.

Remark 1.4. — Let (ξ], uo) denote one of pairs (f ], ko), (g
], lo) and (h],mo). When

uo = 1, Assumption 1.1 guarantees that the big Galois representation V (ξ) and its
maximal GQp -unramified quotient V (ξ)− are free over Oξ (cf. Section 5 below for
more details). It is likely that Theorem A can be proved without this assumption, at
the cost of extending scalars to the fraction field of Ofgh in the definition of κ(f , g,h)
and in the statement of the explicit reciprocity law. On the other hand, the freeness
of V (ξ) and V (ξ)− are crucial in the proofs of Theorem B below and of the main
result of our contribution [BSV20a].

Remark 1.5. — By using different methods, extending those of [DR16], the contri-
bution of Darmon and Rotger [DR20] to this volume gives an alternate construction
of the 3-variable diagonal class.
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Remark 1.6. — The class κ(f , g,h) is constructed by interpolating diagonal classes
in the Bloch-Kato Selmer groups Sel(Q, V (fk, gl,hm)) for all triples (k, l,m) ∈ Σbal.
By using systems of étale sheaves attached to spaces of locally analytic functions
and the big Abel–Jacobi map defined in equation (156), this geometric problem is
reduced to the simpler one of constructing a canonical invariant in a space of locally
analytic functions. This invariant element plays a central role in the construction,
carried out in [GS20] (cf. also [Hsi20]), of a balanced triple-product p-adic L-function
interpolating the square-roots of the central critical values L(f ]k ⊗ g

]

l ⊗ h]m, cw) for
triples w = (k, l,m) in the balanced region Σbal. We remark that a similar method
can be applied in other settings, for example for the interpolation of generalised
Heegner cycles. In this case, the relevant invariant function was instrumental for
the definition in [BD07] of an anticyclotomic two-variable p-adic L-function. The
resulting big Heegner class gives rise via an explicit reciprocity law to the p-adic L-
functions considered in [BDP13, AI21a]. See also [JLZ20] for a related construction
in the Heegner case.

1.2. Specialisations at unbalanced points. — Let wo = (k, l,m) be a classical
triple in the unbalanced region Σf . The following assumption will be in force in this
section (cf. Remarks 1.8).

Assumption 1.7. — The local sign ε`(f
]

k, g
]

l , h
]
m) is equal to +1 for each rational

prime `.

Theorem B stated below relates the specialisation of the big diagonal class
κ(f , g,h) at wo to the central value of the complex Garrett–Rankin L-function
L(f ]k⊗g

]

k⊗h
]

k, s). This relation is particularly intriguing and subtle when L f
p (f , g,h)

has an exceptional zero at wo in the sense of Mazur–Tate–Teitelbaum.
LetHg = Hg(wo) be the g-improving plane in Uf×Ug×Uh defined by the equation

k − l+m = k − l +m.

Let Ogh = Og⊗̂LOh and (shrinking Ug and Uh if necessary) let νg : Ofgh −→ Ogh
be the map sending F (k, l,m) to its restriction F (l −m + k + m − l, l,m) to Hg.
Set V (f , g,h)|Hg = V (f , g,h)⊗νg Ogh and denote by

κ(f , g,h)|Hg ∈ H1(Q, V (f , g,h)|Hg )

the image of κ(f , g,h) under the morphism induced in cohomology by νg. Define the
analytic g-Euler factor

(1) Eg(f , g,h) = 1− χ̄g(p) · bp(l)
cp(m) · ap(l−m+ k +m− l)

· p(k−l+m−2)/2 ∈ Ogh.

Section 9.3 proves the factorisation

(2) κ(f , g,h)|Hg = Eg(f , g,h) · κ∗g(f , g,h)

for a canonical g-improved balanced diagonal class

κ∗g(f , g,h) ∈ H1
bal(Qp, V (f , g,h)|Hg ).
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This is not interesting nor surprising if Eg(f , g,h) does not vanish at wo. On the
other hand, if Eg(fk, gl,hm) = 0 this implies that the specialisation of κ(f , g,h) at wo
vanishes independently of whether the complex L-function L(f ]k⊗g

]

l ⊗h]m, s) vanishes
at the central point s = cwo . This phenomenon is the first source of exceptional
zeros in the present setting. Since we are limiting our discussion to Hida families, the
vanishing of Eg(f , g,h) at wo is equivalent to the following conditions:

(3) wo = (2, 1, 1), p‖c(f2), p - c(g1) · c(h1) and χh(p) · ap(2) · bp(1) = cp(1),

where c(f2), c(g1) and c(h1) denote the conductors of f2, g1 and h1 respectively. In
particular g1 and h1 are classical weight-one eigenforms.

The second source of exceptional zeros for L f
p (f , g,h) at wo is of a different (non

geometric) nature (cf. Section 9.2). It is related to the vanishing at wo of the analytic
f -unbalanced Euler factor

(4) E∗f (f , g,h) = 1− bp(l) · cp(m)

χ̄f (p) · ap(l+m+ k − l −m)
p(k−l−m)/2 ∈ Ogh,

which on the f -improving plane in Uf × Ug × Uh defined by the equation

k − l−m = k − l −m

interpolates a different Euler factor of L f
p (f , g,h). In the present ordinary scenario,

this vanishing is equivalent to the following conditions:

(5) wo = (2, 1, 1), p‖c(f2), p - c(g1) · c(h1) and χf (p) · bp(1) · cp(1) = ap(2).

We say that the unbalanced triple wo in Σf is exceptional if the conditions displayed
in Equation (3) or those displayed in Equation (5) are satisfied.

Remarks 1.8. —
1. Assumption 1.7 is in place to guarantee that for weights in the unbalanced

region the Garrett–Rankin complex L-functions involved in the definition of the triple-
product p-adic L-function have sign of the functional equation equal to +1, and that
the corresponding central values can be described in terms of trilinear forms arising
on GL2,Q (cf. [HK91]). On the other hand, Theorem A holds regardless of this
assumption and does not exclude the possibility of vanishing of the diagonal class for
sign reasons.

2. The exceptional zero condition (3) is symmetric in g and h. Precisely, define
Hh, V (f , g,h)|Hh , κ(f , g,h)|Hg and Eh(f , g,h) by switching in the above definitions
the roles of g of h. Then

κ(f , g,h)|Hh = Eh(f , g,h) · κ∗h(f , g,h)

for a unique canonical h-improved diagonal class κ∗h(f , g,h) in the global Galois
cohomology of V (f , g,h)|Hg .

3. The restriction of the class κ(f , g,h) to the plane Hf also factors as the prod-
uct of Ef (f , g,h) and a canonical class κ∗f (f , g,h) in the Galois cohomology of
V (f , g,h)|Hf . This factorisation is uninteresting in the present setting, as the Euler
factor Ef (f , g,h) does not vanish at any classical point of the region Σf .
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4. Under Assumption 1.1, the exceptional zero conditions (3) and (5) are mutually
exclusive. Indeed, if one of them holds, then the other is satisfied precisely if the form
g]1 (or equivalently h]1) is p-irregular.

Define the diagonal class

κ∗(fk, gl,hm) ∈ H1(Q, V (fk, gl,hm))

by the following recipe. If the conditions stated in Equation (3) are not satisfied, then

κ∗(fk, gl,hm) = κ(fk, gl,hm)

is the specialisation of κ(f , g,h) at the classical triple wo = (k, l,m). If Equation (3)
is satisfied, one defines

κ∗(f2, g1,h1) = κ∗g(f2, g1,h1),

where the global class κ∗g(f2, g1,h1) is the specialisation of the g-improved diagonal
class κ∗g(f , g,h) at wo = (2, 1, 1). (Note that κ∗h(f2, g1,h1) = −κ∗g(f2, g1,h1).)

Theorem B. — The diagonal class κ∗(fk, gl,hm) is crystalline at p if and only if
the complex L-function L(f ]k ⊗ g

]

l ⊗ h]m, s) vanishes at s = k+l+m−2
2 .

Acknowledgements. The authors are grateful to F. Andreatta for helpful conversations
about his work with A. Iovita and G. Stevens on overconvergent Eichler–Shimura iso-
morphisms. They also thank the referees for their detailed comments and corrections,
which resulted in a significant improvement of our contributions to this volume.

2. Cohomology of modular curves

In a first reading of this paper it will be sufficient to get acquainted with the main
definitions and notations of this section. The precise description of the various Hecke
operators will be necessary for crucial computations in the arguments of later sections
(see in particular Section 8). The exposition follows [Kat04, Section 2].

2.1. Modular curves. — Let M > 1 and N > 1 be positive integers such that
M +N > 5. Denote by

Y (M,N) −→ Spec(Z[1/MN ])

the scheme which represents the functor

S � //
{
isomorphism classes of S-triples (E,P,Q)

}
,

where S is a Z[1/MN ]-scheme, E is an elliptic curve over S, and P and Q are sections
of E over S such that M ·P = 0, N ·Q = 0 and the map Z/MZ×Z/NZ→ E which
on (a, b) takes the value a · P + b · Q is injective. More generally, for each rational
prime ` > 1, we consider as in [Kat04] the schemes

Y (M(`), N) −→ Z[1/`MN ] and Y (M,N(`)) −→ Z[1/`MN ].

The Z[1/`MN ]-scheme Y (M(`), N) classifies 4-tuples (E,P,Q,C), where (E,P,Q)
is as above and C is a cyclic subgroup of E of order `M which contains P and is
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complementary to Q (viz. the map Z/NZ × C → E which sends (a, x) to a · Q + x
is injective). Similarly Y (M,N(`)) classifies 4-tuples (E,P,Q,C) where C is a cyclic
subgroup of order `N which contains Q and is complementary to P . Denote by

E(M,N) −→ Y (M,N),

E(M(`), N) −→ Y (M(`), N)

and E(M,N(`)) −→ Y (M,N(`))

the universal elliptic curves over Y (M,N), Y (M(`), N) and Y (M,N(`)) respectively.
Let H = {z ∈ C | =(z) > 0} be the Poincaré upper half-plane and set

Γ(M,N) =
{
γ in SL2(Z) such that γ ≡ ( 1 0

0 1 ) mod (M M
N N )

}
.

Then

(6) Y (M,N)(C) ∼= (Z/MZ)∗ × Γ(M,N)\H,

where the class of (a, z) in (Z/MZ)∗ × H corresponds to the isomorphism class
of the triple (C/Z⊕ Zz, az/M, 1/N). The Riemann surfaces Y (M(`), N)(C) and
Y (M,N(`))(C) admit a similar complex uniformisation by (Z/MZ)∗ ×H.

There is an isomorphism of Z[1/`MN ]-schemes

ϕ` : Y (M,N(`)) ∼= Y (M(`), N)

which on the 4-tuple (E,P,Q,C)/S in Y (M,N(`)) (for some Z[1/`MN ]-scheme S)
takes the value

ϕ`(E,P,Q,C) =
(
E/NC,P +NC, `−1(Q) ∩ C +NC,

(
`−1(Z · P ) +NC

)
/NC

)
,

where `−1(·) is the inverse image of · under multiplication by ` on E. On complex
points (cf. Equation (6)) this is induced by the map (Z/MZ)∗×H −→ (Z/MZ)∗×H
which sends (a, z) to (a, ` · z). If

ϕ∗` (E(M(`), N)) −→ Y (M,N(`))

denotes the base change of E(M(`), N) → Y (M(`), N) under ϕ`, there is a natural
degree-` isogeny

λ` : E(M,N(`)) −→ ϕ∗` (E(M(`), N)).

When M = 1 one denotes by

(7) Y1(N) = Y (1, N) and Y1(N, `) = Y (1, N(`))

the affine modular curves over Z[1/N ] and Z[1/N`] corresponding to the subgroups
Γ1(N) and Γ1(N, `) = Γ1(N) ∩ Γ0(`ordl(N)+1) of SL2(Z) respectively. Similarly one
writes

E1(N) = E(1, N) and E1(N, `) = E(1, N(`))

for the universal elliptic curves over Y1(N) and Y1(N, `) respectively.
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2.2. Degeneracy maps. — Let M and N be as in the previous section, and let `
be a rational prime. Let

Y (M,N`)
µ`−→Y (M,N(`))

ν`−→ Y (M,N)

and Y (M`,N)
µ̌`−→Y (M(`), N)

ν̌`−→ Y (M,N)

be the natural degeneracy maps (e.g. µ`(E,P,Q) = (E,P, ` · Q,Z · Q) and
ν`(E,P,Q,C) = (E,P,Q)), and define

pr1 : Y (M,N`) −→ Y (M,N) and pr` : Y (M,N`) −→ Y (M,N)

by the formulae

pr1(E,P,Q) = (E,P, ` ·Q) and pr`(E,P,Q) = (E/NZ ·Q,P +NZ ·Q,Q+NZ ·Q).

Under the isomorphism (6) the map pr1 (resp., pr`) is induced by the identity (resp.,
multiplication by `) on the complex upper half-plane H. Unwinding the definitions
one easily checks the identities

(8) pr1 = ν` ◦ µ` and pr` = ν̌` ◦ ϕ` ◦ µ`.

The degeneracy maps µ`, µ̌`, ν`, ν̌`,pr1 and pr` are finite étale morphisms of
Z[1/MN`]-schemes.

2.3. Relative Tate modules and Hecke operators. — Let N,M and ` be as
in the previous section and let S be a Z[1/MN`p]-scheme. For every Z[1/MN`p]-
scheme X write XS = X ×Z[1/MN`p] S and denote by A = AX either the locally
constant sheaf Z/pmZ(j) or the locally constant p-adic sheaf (cf. [FK88, Definition
12.6]) Zp(j) on Xét, for fixed m > 1 and j ∈ Z. Moreover fix an integer r > 0.

The previous sections yield the following commutative diagram, in which the
smaller squares are cartesian.
(9)
E(M,N)S

vM,N

��

E(M,N(`))Soo

vM,N(`)

��

λ` // ϕ∗` (E(M(`), N)S)

��

// E(M(`), N)S

vM(`),N

��

// E(M,N)S

vM,N

��
Y (M,N)S Y (M,N(`))S

ν`oo Y (M,N(`))S
ϕ` // Y (M(`), N)S

ν̌` // Y (M,N)S

Here vM,N , vM(`),N and vM,N(`) are the structural maps, one writes again ν` and ν̌`
(resp., λ`) for the base changes to S of the corresponding degeneracy maps (resp.,
isogeny), and the unlabelled maps are the natural projections.

If Y (·)S denotes one of Y (M,N)S , Y (M(`), N)S and Y (M,N(`))S , set

(10) T·(A) = R1v·∗Zp(1)⊗Zp A and T ∗· (A) = HomA(T·(A), A).

Here Rqv·∗ is the q-th right derivative of v·∗ : E(·)ét −→ Y (·)ét and one calls

T·
def
= T·(Zp)

the relative Tate module of the universal elliptic curve E(·) −→ Y (·). The perfect
cup-product pairing

T· ⊗Zp T· −→ R2v·∗Zp(2)
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and the relative trace R2v·∗Zp ∼= Zp(−1) give the perfect relative Weil pairing

(11) 〈·, ·〉E(·)p∞ : T· ⊗Zp T· −→ Zp(1),

under which one identifies T·(−1) with T ∗· = HomZp(T·,Zp). It is a consequence of
the smooth base change theorem (cf. Corollary 4.2, Chapter IV of [Mil80]) that T·(A)
and T ∗· (A) are locally constant p-adic sheaves on Y1(N)S , of formation compatible
with base changes along morphisms of Z[1/NM`p]-schemes S′ → S. (This justifies
the choice to suppress the dependence on S from the notations.) Define

L·,r(A) = Tsymr
AT·(A) and S·,r(A) = Symmr

AT ∗· (A),

where for any finite free module M over a profinite Zp-algebra R one denotes by
Tsymr

RM the R-submodule of symmetric tensors in M⊗r and by Symmr
RM the max-

imal symmetric quotient of M⊗r.

Notation. — When Y (·)S = Y (1, N)S is the modular curve Y1(N)S associated with
the congruence subgroup Γ1(N), and the level N is clear from the context, we use
the simplified notations

(12) Lr(A) = L1,N,r(A), Lr = Lr(Zp), Sr(A) = S1,N,r(A) and Sr = Sr(Zp).

If there is no risk of confusion, we use the same simplified notations to denote the étale
sheaves L1,N(`),r(A) and S1,N(`),r(A) on the modular curve Y (1, N(`))S = Y1(N, `)S
of level Γ1(N) ∩ Γ0(`ordl(N)+1) (cf. Equation (7)).

Throughout the rest of this section let F r
· denote either L·,r(A) or S·,r(A). Ac-

cording to the proper base change theorem [Mil80, Chapter VI, Corollary 2.3] and
the diagram (9), associated with the finite étale morphisms ν` and ν̌` one has natural
isomorphisms

(13) ν∗`
(
F r
M,N

) ∼= F r
M,N(`) and ν̌∗`

(
F r
M,N

) ∼= F r
M(`),N ,

which induce pullbacks
(14)

Hi
ét(Y (M,N)S ,F r

M,N )
ν̌∗`
,,

ν∗`
rr

Hi
ét(Y (M,N(`))S ,F r

M,N(`)) Hi
ét(Y (M(`), N)S ,F r

M(`),N )

and traces (cf. [Mil80, Lemma 1.12, pag. 168])
(15)

Hi
ét(Y (M,N)S ,F r

M,N )

Hi
ét(Y (M,N(`))S ,F r

M,N(`))

ν`∗ 22

Hi
ét(Y (M(`), N)S ,F r

M(`),N )

ν̌`∗ll

Similarly the (finite étale) isogeny λ` induces morphisms

(16) λ`∗ : F r
M,N(`) −→ ϕ∗`

(
F r
M(`),N

)
and λ∗` : ϕ∗`

(
F r
M(`),N

)
−→ F r

M,N(`).

More precisely, associated with the `-isogeny λ` there is a trace λ`∗ ◦ λ∗` −→ id. As
v◦λ` = vM,N(`), where v : ϕ∗` (E(M(`), N)S)→ Y (M(`), N)S is the first projection, it
induces a map vM,N(`)∗ ◦λ∗` −→ v∗. Applying R1 and using the natural isomorphisms
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ϕ∗` (R
1vM(`),N∗Zp(1)) ∼= R1v∗Zp(1) and λ∗`Zp(1) ∼= Zp(1), this in turn induces a

morphism R1vM,N(`)∗Zp(1) −→ ϕ∗`
(
R1vM(`),N∗Zp(1)

)
, and finally the push-forwards

λ`∗ which appear in Equation (16). The pullbacks are defined similarly, after replacing
the trace λ`∗ ◦ λ∗` −→ id with the adjunction morphism id = λ`∗ ◦ λ∗` . Together with
ϕ` the previous morphisms give a pushforward

(17) Φ`∗ = ϕ`∗ ◦ λ`∗ : Hi
ét(Y (M,N(`))S ,F

r
M,N(`)) −→ Hi

ét(Y (M(`), N)S ,F
r
M(`),N )

and a pullback

Φ∗` = λ∗` ◦ ϕ∗` : Hi
ét(Y (M(`), N)S ,F

r
M(`),N ) −→ Hi

ét(Y (M,N(`))S ,F
r
M,N(`)).

Define the dual `-th Hecke operator

T ′` = ν`∗ ◦ Φ∗` ◦ ν̌∗` : Hi
ét(Y (M,N)S ,F

r
M,N ) −→ Hi

ét(Y (M,N)S ,F
r
M,N ).

We also consider the `-th Hecke operator

T` = ν̌`∗ ◦ Φ`∗ ◦ ν∗` : Hi
ét(Y (M,N)S ,F

r
M,N ) −→ Hi

ét(Y (M,N)S ,F
r
M,N ).

As customary, if the prime ` divides MN , we also denote by U` and U ′` the Hecke
operators T` and T ′` respectively.

For each profinite Zp-algebra R and each finite free R-module M , the evaluation
map induces a perfect pairing

Tsymr
RM ⊗R Symmr

RM
∗ −→ R,

where M∗ = HomR(M,Zp). This defines a perfect pairing Lr ⊗Zp Sr −→ Zp, hence
a cup-product
(18)
〈·, ·〉N : H1

ét(Y1(N)Q̄,Lr(1))⊗Zp H
1
ét,c(Y1(N)Q̄,Sr) −→ H2

ét,c(Y1(N)Q̄,Zp(1)) ∼= Zp,

which by Poincaré duality is perfect after inverting p. The Hecke operators T ·` induce
endomorphisms on the compactly supported cohomology H1

ét,c(Y1(N)Q̄,Sr), and by
construction T` and T ′` (resp., T ′` and T`) are adjoint to each other under 〈·, ·〉N . In
addition, the Eichler–Shimura isomorphism (cf. Chapter 8 of [Shi71])

(19) H1
ét(Y1(N)Q̄,Lr)⊗Zp C ∼= Mr+2(N,C)⊕ Sr+2(N,C)

(depending on a fixed embedding Zp ↪−→ C) commutes with the action of the Hecke
operators T ·` on both sides.

After replacing the left hand square in the diagram (9) with the cartesian square

E(M,N`)S

vM,N`

��

// E(M,N(`))S

vM,N(`)

��
Y (M,N`)S

µ` // Y (M,N(`))S

one defines as in Equations (14) and (15) the maps µ∗` and µ`∗. For · = 1, ` one can
also define as above morphisms
(20)

Hi
ét(Y (M,N`)S ,F

r
M,N`)

pr·∗−→ Hi
ét(Y (M,N)S ,F

r
M,N )

pr∗·−→ Hi
ét(Y (M,N`)S ,F

r
M,N`),
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which according to Equation (8) satisfy the identities

(21) pr1∗ = ν`∗ ◦µ`∗, pr∗1 = µ∗` ◦ ν∗` , pr`∗ = ν̌`∗ ◦Φ`∗ ◦µ`∗ and pr∗` = µ∗` ◦Φ∗` ◦ ν̌∗` .
As a consequence, if deg(µ`) denotes the degree of the finite morphism µ`, one has
the relations

(22) deg(µ`) · T` = pr`∗ ◦ pr∗1 and deg(µ`) · T ′` = pr1∗ ◦ pr∗` .

2.3.1. Diamond and Atkin–Lehner operators. — We recall here the geometric
definition of the diamond and Atkin–Lehner operators on the cohomology groups
Hi

ét(Y (·)S ,F r
· ) (where F r

· are the sheaves introduced in the previous section). For
simplicity we limit the discussion to the modular curves Y1(·) of level Γ1(·), and
denote by Fr the étale sheaf F r

1,· on Y1(·)S .
For every unit d in (Z/NZ)∗ the diamond operator 〈d〉 : Y1(N)S → Y1(N)S is

the automorphism of Y1(N)S defined on the moduli problem by sending (E,P ) to
(E, d · P ). Denote by P1(N) the universal point of order N of E1(N)S . The pair
(E1(N)S , d ·P1(N)) is an elliptic curve with Γ1(N)-level structure over Y1(N)S , hence
there exists a unique isomorphism 〈d〉 : E1(N)S ∼= E1(N)S which makes the following
diagram cartesian:

E1(N)S

vN

��

〈d〉 // E1(N)S

vN

��
Y1(N)S

〈d〉 // Y1(N)S .

This induces automorphisms 〈d〉 = 〈d〉∗ and 〈d〉′ = 〈d〉∗ of Hi
ét(Y1(N)S ,Fr) which are

inverse to each other.
Assume in the rest of this Section 2.3.1 that p does not divide N and that S is a

scheme over Z[1/N, µp]. Set ζp = e2πi/p. For every elliptic curve E denote by Ep the
kernel of multiplication by p and by 〈·, ·〉Ep : Ep × Ep → µp the Weil pairing. Since
p - N the curve Y1(Np) classifies triples (E,P,Q), where E is an elliptic curve and
P (resp., Q) is a point of exact order N (resp., p). (More precisely a pair (E,PNp),
where E is an elliptic curve over and PNp is a section of exact order Np, corresponds
in the above identification to the triple (E, p · PNp, N · PNp).) The Atkin–Lehner
operator wp = wζp : Y1(Np)S ∼= Y1(Np)S is the automorphism of Y1(Np)S defined by

wp(E,P,Q) = (E/Z ·Q,P + Z ·Q,Q′ + Z ·Q),

where Q′ ∈ Ep is characterized by 〈Q,Q′〉Ep = ζp. There is a natural commutative
diagram

E1(Np)S
w̌p //

vNp

��

w∗p(E1(Np))S

��

// E1(Np)S

vNp

��
Y1(Np)S Y1(Np)S

wp // Y1(Np)S ,

in which the right-hand square is cartesian and w̌p is a degree-p isogeny. As in
Equations (13)–(17), associated with the previous diagram one has a Atkin–Lehner
operator
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wp : Hi
ét(Y1(Np)S ,Fr)

w∗p−→ Hi
ét(Y1(Np)S , w

∗
p(Fr))

w̌∗p−→ Hi
ét(Y1(Np)S ,Fr)

and a dual Atkin–Lehner operator

w′p : Hi
ét(Y1(Np)S ,Fr)

w̌p∗−→ Hi
ét(Y1(Np)S , w

∗
p(Fr))

wp∗−→ Hi
ét(Y1(Np)S ,Fr).

More generally, let Q be a divisor of Np such that Q and Np/Q are coprime. After
replacing the pair (p,N) with (Q,Np/Q) in the previous construction, one defines
the Atkin–Lehner operators w·Q on H1

ét(Y1(Np)S ,Fr).

2.4. Deligne representations. — Let

f =
∑
n>1

an(f)qn ∈ Sk(N,χf )

be a normalised cusp form of weight k > 2, level Γ1(N) and character χf . Set
No = N/pordp(N) and assume that f is an eigenvector for the Hecke operator T` for
every prime ` - No. (In particular f is an eigenvector for Up if p divides N .)

Let L/Qp be a finite extension containing the Fourier coefficients of f . Define

(23) H1
ét(Y1(N)Q̄,Lk−2(1))L −� V (f)

to be the maximal L-quotient on which T ′` and 〈d〉′ = 〈d〉∗ act as multiplication by
a`(f) and χf (d) respectively, for all ` - No and 〈d〉 ∈ (Z/NZ)∗. If f is new of conductor
N then V (f) is the dual of the Deligne representation of f : for every prime ` - Np
an arithmetic Frobenius Frob` ∈ GQ at ` acts on it with characteristic polynomial

det (1− Frob`|V (f) ·X) = 1− a`(f) ·X + χf (`) · `k−1 ·X2.

In general V (f) ∼=
⊕a

i=1 V (fprim) is (non-canonically) isomorphic to the direct sum of
a finite number of copies of V (fprim), where fprim is the primitive form (of conductor
a divisor of N) associated with f . Dually let

V ∗(f) ↪−→ H1
ét,c(Y1(N)Q̄,Sk−2)L

be the maximal L-submodule on which the Hecke operators T` and 〈d〉 = 〈d〉∗ act as
multiplication by ap(f) and χf (d) respectively, for every prime ` - No and unit d mod-
uloN . (Since f is cuspidal, one can replace the compactly supported cohomologyH1

ét,c

with the full cohomology H1
ét in the definition of V ∗(f).) If f is new of level N then

V ∗(f) is the Deligne GQ-representation of f . In general V ∗(f) ∼=
⊕a

i=1 V
∗(fprim) for

a positive integer a.
Because (by construction) T ′` and 〈d〉

∗ are respectively the adjoints of T` and 〈d〉∗
under the morphism 〈·, ·〉N defined in Equation (18), the latter induces a pairing

(24) 〈·, ·〉f : V (f)⊗L V ∗(f) −→ L,

which is perfect by Poincaré duality [Mil80, Chapter VI].
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2.5. Comparison with de Rham cohomology. — Let A be a subring of Cp.
Write v : E → Y for one of the universal morphisms vM,N et cetera that as been
previously introduced. Denote by

SdR = SdR(v) = R1v∗
(
OE −→ Ω1

E/Y

)
the relative de Rham cohomology of E/Y and for every r > 0 set

SdR,r = Symmr
OY SdR.

Let ω = v∗Ω
1
E/Y be the invertible sheaf of relative differentials on E/Y . The vector

bundle SdR is equipped with the Hodge filtration

0 −→ ω −→ SdR −→ ω−1 −→ 0

and with an integrable Gauß–Manin connection ∇ : SdR → SdR ⊗OY Ω1
Y/K . For all

r > 0 these give rise to the Hodge filtration

(25) ωr ↪−→ · · · ↪−→ ω ⊗SdR,r−1 ↪−→ SdR,r

and to an integrable connection on SdR,r, denoted again by ∇.
Set LdR = HomOY (SdR,OY ) and LdR,r = Tsymr

OY LdR, equipped with the in-
duced Hodge filtration and integrable connection (denoted again by∇). If F = S ,L
define the de Rham cohomology groups

Hj
dR(Y,FdR,r) = Hj

(
Y,FdR,r

∇−→ FdR,r ⊗OY Ω1
Y/K

)
(where the complex FdR,r

∇−→ FdR,r ⊗OY Ω1
Y/K is concentrated in degrees zero and

one). As in Section 2.3 one defines on Hj
dR(Y,FdR,r) Hecke operators T` and T ′` , for

every prime ` (when Y = Y (M,N)), and diamond operators 〈d〉, for every unit d of
Z/NZ (when Y = Y1(N)).

Taking A = Qp the comparison theorem of Faltings–Tsuji [Fal88, Tsu99] (and
the Leray spectral sequence for vN , cf. the proof of [BDP13, Lemma 2.2]) gives a
natural, Hecke equivariant isomorphism of filtered Qp-vector spaces

(26) DdR

(
H1

ét(Y1(N)Q̄p
,Fr)Qp

) ∼= H1
dR(Y1(N)Qp ,FdR,r),

where DdR(·) = H0(Qp, · ⊗Qp BdR) with BdR Fontaine’s field of p-adic periods, and
the filtration on the de Rham cohomology arises from the Hodge filtration on FdR (cf.
Equation (25)). Denote byMr+2(N,Z) the Z-module of modular forms of weight r+2,
level Γ1(N) and integral Fourier coefficients, and setMr+2(N,R) = Mr+2(N,Z)⊗ZR
for every ring R. It then follows that canonically

(27) FiliDdR

(
H1

ét(Y1(N)Q̄p
,Sr)Qp

)
⊗Q Q(µN ) ∼= Mr+2(N,Qp)⊗Q Q(µN )

for every 1 6 i 6 k − 1 (cf. [BDP13, Lemma 2.2]). Under the isomorphisms (26)
and (27) the space Fil1H1

dR(Y1(N)Q,SdR,r) corresponds to the image of Mr+2(N,Q)
under the Atkin–Lehner operator wN .

Let f and L/Qp be as in the previous section and assume that L contains Q(µN ).
Define

V ∗dR(f) ↪−→ H1
dR(Y1(N)Qp

,SdR,k−2)L
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to be the maximal submodule on which T` and 〈d〉∗ act respectively as a`(f) and
χf (d) for every prime ` - No and every d ∈ (Z/NZ)∗, and dually (cf. Section 2.4)

H1
dR(Y1(N)Qp

,Lk−2(1))L −� VdR(f).

(Here LdR,r(j) = LdR,r as flat sheaves and FiliLdR,r(j) = Fili+jLdR,r.) The com-
parison isomorphism (26) gives

(28) DdR(V (f)) ∼= VdR(f) and DdR(V ∗(f)) ∼= V ∗dR(f),

and Equation (27) implies that they restrict to canonical isomorphisms

(29) Fil0VdR(f) ∼= Sk(N,L)f∗ and Fil1V ∗dR(f) ∼= Sk(N,L)f .

Here f∗ =
∑
n>1 ān(f) · qn ∈ Sk(N, χ̄f ) is the dual of f and Sk(N,L)· denotes the

L-module of cusp forms in Sk(N,L) which are eigenvectors for the Hecke operators
T` and 〈d〉, with the same eigenvalues as ·, for all primes ` - No and units d in Z/NZ.
One denotes by

(30) ωf ∈ Fil1V ∗dR(f)

the element corresponding to f under the second isomorphism in Equation (29).
The pairing (24) and the isomorphisms (28) induce a perfect duality

(31) 〈·, ·〉f : VdR(f)⊗L V ∗dR(f) −→ DdR(L) = L,

which together with the isomorphisms (29) gives rise to perfect pairings

〈·, ·〉f : Sk(N,L)f∗ ⊗L V ∗dR(f)/Fil1 −→ L(32)

and 〈·, ·〉f : VdR(f)/Fil0 ⊗L Sk(N,L)f −→ L,

under which we often identify V ∗dR(f)/Fil1 with the L-linear dual of Sk(N,L)f∗ .
Denote by

(33) fw = wN (f) = Nk−1 · (Nz)−k · f(−1/Nz)

the image of f under the Atkin–Lehner isomorphism

wN : Sk(N,χf ) ∼= Sk(N, χ̄f )

and define

(34) ηf ∈ V ∗dR(f)/Fil1

to be the element which represents the linear functional

(35) Jf =
(fw, · )N

(fw, fw)N
: Sk(N,L)f∗ −→ L.

Here (µ, ν)N =
∫∫
Y1(N)C

µ̄(z)ν(z)yk dxdyy2 (with z = x + iy) is the Petersson scalar
product on Sk(N,C). The a priori C-valued functional Jf indeed takes values in L
(cf. [Hid85, Proposition 4.5]).

Assume that ordp(N) 6 1, that p does not divide the conductor of χf , and
that ap(f) is a unit in O. Then the GQp -representations V ·(f) are semistable, viz.
DdR(V ·(f)) = Dst(V

·(f)). It follows that DdR(V ·(f)), hence V ·dR(f) by Equation
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(28), are equipped with an L-linear Frobenius endomorphism ϕ. Enlarging L if nec-
essary, let αf ∈ O∗ be the unit root of the Hecke polynomial

hf,p = X2 − ap(f) ·X + χf (p)pk−1 = (X − αf ) · (X − βf )

of f . As proved in [Sai97] the characteristic polynomial of the Frobenius endomor-
phism ϕ acting on V ∗dR(f) is a power of hf,p, and

(36) V ∗dR(f) = Fil1V ∗dR(f)⊕ V ∗dR(f)ϕ=αf .

As a consequence ηf lifts uniquely to a differential

(37) ηαf ∈ V ∗dR(f)ϕ=αf .

3. Diagonal classes

Notation. In this section Y1(N) = Y1(N)Q denotes the modular curve of level
Γ1(N) = Γ(1, N) over Q and T = T1,N denotes the relative Tate module of the
universal elliptic curve E1(N) = E1(N)Q (cf. Equation (10)).

Fix a geometric point η = ηN : Spec(Q̄) → Y1(N) and denote by GN =
πét

1 (Y1(N), η) the fundamental group of Y1(N) with base point η. Then the stalk Tη

of T at η is a free Zp-module of rank two, equipped with a continuous action of GN .
Choose an isomorphism of Zp-modules ξ : Tη

∼= Zp ⊕ Zp satisfying (cf. Equation
(11))

(38) 〈x, y〉Ep∞ = ξ(x) ∧ ξ(y)

for every x, y ∈ Tη (where one identifies
∧2

Z2
p and Zp via (1, 0) ∧ (0, 1) = 1) and

denote by
%N : GN −→ AutZp(Tη) ∼= GL2(Zp)

the corresponding continuous group morphism. According to Proposition A I.8 of
[FK88] the map which sends F to its stalk Fη gives an equivalence between the
category of locally constant p-adic sheaves on Y1(N)ét and that of p-adic represen-
tations of GN . Then restriction via %N allows to associate with every continuous
representation of GL2(Zp) into a free finite Zp-module M a smooth sheaf M ét on
Y1(N) satisfying M ét

η = M .
Let Si(A) be the set of two-variable homogeneous polynomials of degree i in

A[x1, x2], equipped with the action of GL2(Zp) defined for every g ∈ GL2(Zp) and
P (x1, x2) ∈ Si(A) by

gP (x1, x2) = P
(
(x1, x2) · g

)
,

and let Li(A) be the A-linear dual of Si(A), with GL2(Zp)-action defined
by gµ(P (x1, x2)) = µ(g−1P (x1, x2)) for every g ∈ GL2(Zp), µ ∈ Li(A) and
P (x1, x2) ∈ Si(A). Then (as sheaves on Y1(N)Q) one has (cf. Equation (12))

(39) Li(A) = Li(A)ét and Si(A) = Si(A)ét.

In particular Tη is isomorphic to L1(Zp), hence Zp(1)η ∼=
∧2 Tη

∼= det−1, where
detj : GL2(Zp)→ Z∗p is defined by detj(·) = det(·)j for j ∈ Z. As a consequence, for
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every j ∈ Z and every p-adic representation M of GL2(Zp):

(40) H0(GL2(Zp),M ⊗ det−j) ↪−→ H0(GN ,M ⊗ det−j) ∼= H0
ét(Y1(N),M ét(j)).

Let r = (r1, r2, r3) ∈ N3 be a triple of nonnegative integers satisfying the following
assumption.

Assumption 3.1. — 1. r1 + r2 + r3 = 2 · r with r ∈ N.
2. For every permutation {i, j, k} of {1, 2, 3} one has ri + rj > rk.

Let Sr denote the GL2(Zp)-representation Sr1(Zp)⊗Zp Sr2(Zp)⊗Zp Sr3(Zp), which
we identify with the module of six-variable polynomials in Zp[x,y, z] which are ho-
mogeneous of degree r1, r2 and r3 in the variables x = (x1, x2), y = (y1, y2) and
z = (z1, z2) respectively. Following the Clebsch–Gordan decomposition of classical
invariant theory, define (cf. Assumption 3.1)

(41) DetrN = det

(
x1 x2

y1 y2

)r−r3
· det

(
x1 x2

z1 z2

)r−r2
· det

(
y1 y2

z1 z2

)r−r1
,

which is a GL2(Zp)-invariant of Sr ⊗ det−r:

DetrN ∈ H0(GL2(Zp), Sr ⊗ det−r).

After setting Sr = Sr1(Zp)⊗Zp Sr2(Zp)⊗Zp Sr3(Zp), denote by

(42) DetrN ∈ H0
ét(Y1(N),Sr(r))

the class corresponding to DetrN under the natural injection (40). Let

pj : Y1(N)3 → Y1(N)

be the natural projections, let

S[r] = p∗1Sr1(Zp)⊗Zp p
∗
2Sr2(Zp)⊗Zp p

∗
3Sr3(Zp)

and set
WN,r = H3

ét(Y1(N)3
Q̄,S[r])(r + 2).

Since Y1(N)Q̄ is a smooth affine curve over Q̄ one has

H4
ét(Y1(N)3

Q̄,S[r](r + 2)) = 0,

hence the Hochschild–Serre spectral sequence

Hp(Q, Hq
ét(Y

3
Q̄,S[r](r + 2))) =⇒ Hp+q

ét (Y1(N)3,S[r](r + 2))

defines a morphism

HS : H4
ét(Y1(N)3,S[r](r + 2)) −→ H1(Q, WN,r).

Let d : Y1(N) −→ Y1(N)3 be the diagonal embedding. As

E2r
1 (N) = Er1 (N)×Y1(N)3 Y1(N)

is isomorphic to the base change of urN : Er1 (N)→ Y1(N)3 under d, there is a natural
isomorphism d∗S[r]

∼= Sr of smooth sheaves on Y1(N)ét. The codimension-2 closed
embedding d then gives a pushforward map

d∗ : H0
ét(Y1(N),Sr(r)) −→ H4

ét(Y1(N)3,S[r](r + 2)),
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and one defines the diagonal class of level N and weights r + 2:

(43) κ̃N,r = HS ◦ d∗(DetrN ) ∈ H1(Q, WN,r)

as the image of DetrN under the composition of d∗ with HS. Let WN,r = WN,r ⊗Zp Qp

and letH1
geo(Q,WN,r) be the geometric Bloch–Kato Selmer group ofWN,r over Q, viz.

the module of classes in H1(Q,WN,r) which are unramified at every prime different
from p, and whose restrictions at p belong to the geometric subspace

H1
geo(Qp,WN,r) = ker

(
H1(Qp,WN,r) −→ H1(Qp,WN,r ⊗Qp

BdR)
)

(cf. [BK90, Section 3]). The results of [NN16] (cf. the proof of Theorem 5.9) yield
the following crucial proposition.

Proposition 3.2. — The class κ̃N,r belongs to H1
geo(Q,WN,r).

The bilinear form det∗ : Li(Zp)⊗Zp Li(Zp)→ Zp ⊗ det−i defined by

det∗(µ⊗ ν) = µ⊗ ν
(
(x1y2 − x2y1)i

)
for all µ, ν ∈ Li(Zp) becomes perfect after extending scalars to Qp, hence induces an
isomorphism of GL2(Zp)-modules

si : Si(Qp) = HomQp
(Li(Qp),Qp) ∼= Li(Qp)⊗Zp deti.

Under the equivalence ·ét this corresponds by Equation (39) to an isomorphism of
sheaves

(44) si : Si(Qp) ∼= Li(Qp)⊗Zp Zp(−i).

Define the sheaves Lr on Y1(N) and L[r] on Y1(N)3 as above, and set

(45) VN,r = H3
ét(Y1(N)3

Q̄,L[r])(2− r) and VN,r = VN,r ⊗Zp Qp.

The tensor product of the srj gives an isomorphism sr : WN,r
∼= VN,r. Set

(46) κN,r = sr∗(κ̃N,r) ∈ H1
geo(Q, VN,r).

Remarks 3.3. — 1. We strived to define diagonal classes with values in the repre-
sentations VN,r, as the corresponding cohomology groups are those which are exten-
sively studied in the literature (cf. Sections 4 and 5).

2. For every 0 6 j 6 i denote by [x1, x2]j the projection of x⊗j1 ⊗ x
⊗i−j
2 in Si(Qp).

Then [x1, x2]j is a Qp-basis of Si(Qp) and one writes [x1, x2]∗j for the dual basis of
Li(Qp). A direct computation shows that si : Si(Qp) ∼= Li(Qp) is given by the
formula

(−1)j ·
(
i

j

)
· si([x1, x2]j) = [x1, x2]∗j .
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Set k = r1 + 2, l = r2 + 2 and m = r3 + 2, and consider three cuspidal normalised
modular forms

f =
∑
n>1

an(f) · qn ∈ Sk(N,χf ),

g =
∑
n>1

an(g) · qn ∈ Sl(N,χg),

h =
∑
n>1

an(h) · qn ∈ Sm(N,χh)

of level Γ1(N), weights k, l and m and characters χf , χg and χh. Assume in the rest
of this section the following

Assumption 3.4. — 1. The triple (f, g, h) is self-dual, that is χf · χg · χh = 1.
2. The forms f, g and h are eigenvectors for the Hecke operators T`, for every ` - N .
3. If p divides N then f, g and h are eigenvectors for the Hecke operator Up.

Note that Assumption 3.4.1 implies Assumption 3.1.1, id est that k + l +m is an
even integer. Moreover, Assumption 3.1.2 states that the triple (k, l,m) is balanced
(with the terminology introduced in Section 1.1). Set

(47) V (f, g, h) = V (f)⊗L V (g)⊗L V (h)
(
(4− k − l −m)/2

)
.

The Künneth decomposition and projection to the (f, g, h)-isotypic component give
a morphism of GQ-modules

(48) prfgh : VN,r ⊗Qp
L −� V (f, g, h)

and one defines the diagonal class associated to the triple (f, g, h) by

κ(f, g, h) = prfgh(κN,r) ∈ H1
geo(Q, V (f, g, h)).

3.1. The explicit reciprocity law (cf. [BSV20b]). — Let r and (f, g, h) be
as in the previous section. In particular r and (f, g, h) satisfy Assumption 3.1 and
Assumption 3.4 respectively. In addition, assume in this section that ordp(N) 6 1,
that the conductors of χf , χg and χh are all coprime to p, and that the forms f, g
and h are p-ordinary (viz. their p-th Fourier coefficients are p-adic units).

Lemma 3.5. — For • in {geo,fin, exp}, the Bloch–Kato local conditions

H1
• (Qp, V (f, g, h)) ↪−→ H1(Qp, V (f, g, h))

(cf. [BK90, Section 3]) are all equal.

Proof. — Set w = (k, l,m). For ξ = f, g, h, denote by ξ] the newform of conductor
Nξ|N and weight u = k, l,m associated to ξ, and set

V = V (f ])⊗L V (g])⊗L V (h])
(
(4− k − l −m)/2

)
.

Since V (ξ) is isomorphic to the direct sum of a finite number of copies of V (ξ]) (cf. Sec-
tion 2.4), it is sufficient to prove the statement after replacing V (f, g, h) with V . More-
over, since V is isomorphic to its Kummer dual V ∗ = HomL(V,L(1)), it is sufficient to
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prove that H1
exp(Qp, V ) equals H1

fin(Qp, V ) (cf. Proposition 3.8 of [BK90]). Accord-
ing to [BK90, Corollary 3.8.4], the quotient H1

fin(Qp, V )/H1
exp(Qp, V ) is isomorphic

to D/(ϕ − 1)D, where D is the crystalline module Dcris(V ) = H0(Qp, V ⊗Qp
Bcris)

associated with the restriction of V to GQp
, and ϕ is the crystalline Frobenius acting

on it. We are then reduced to prove the claim

(49) Dϕ=1 = 0.

The assumptions ordp(N) 6 1 and p - cond(χξ) guarantee that V (ξ])|GQp
is

semi-stable, hence so is V |GQp
. Denote by Dst(ξ

]) = H0(Qp, V (ξ]) ⊗Qp
Bst) and

Dst = H0(Qp, V ⊗Qp
Bst) the semi-stable Fontaine modules of V (ξ])|GQp

and V |GQp

respectively. One has
Dst(ξ

]) = L · aξ ⊕ L · bξ,
where aξ and bξ are ϕ-eigenvectors with eigenvalues ap(ξ])−1 and p1−uχξ(p)

−1ap(ξ
])

respectively (cf. Section 2.5). Moreover the monodromy operator Nξ on Dst(ξ
]) is

zero if p - Nξ, and satisfies Nξ(aξ) = bξ and Nξ(bξ) = 0 if p‖Nξ. Consider the set
Bw = {a·w,b·w : · = ∅, f, g, h} of elements of

Dst
∼= Dst(f

])⊗L Dst(g
])⊗L Dst(h

])⊗Qp Dcris(Qp((4− k − l −m)/2))

defined by

aw = af ⊗ ag ⊗ ah ⊗ t(4−k−l−m)/2, afw = bf ⊗ ag ⊗ ah ⊗ t(4−k−l−m)/2,

bfw = af ⊗ bg ⊗ bh ⊗ t(4−k−l−m)/2, bw = bf ⊗ bg ⊗ bh ⊗ t(4−k−l−m)/2

et cetera, where t is the canonical generator of Dcris(Qp(1)). Then Bw is an L-basis of
ϕ-eigenvectors of Dst with respective eigenvalues Ew = {α·w, β·w : · = ∅, f, g, h}, where

αw =
pc(w)−1

ap(f ])ap(g])ap(h])
, αfw =

pc(w)−k · ap(f ])
χf (p)ap(g])ap(h])

,

αgw and αhw are defined similarly, and β·w is defined by the equality

p · α·w · β·w = 1.

Since the forms f, g and h are ordinary and w is balanced, one has

ordp(β
·
w) < 0 6 ordp(α

ξ
w) < ordp(αw)

for · = ∅, f, g, h and ξ = f, g, h. In particular the L-module Dϕ=1
st (hence Dϕ=1) is

contained in the space generated by the eigenvectors aξw for ξ = f, g, h.
Define εξ ∈ {0, 1} to be 1 (resp., 0) if p divides (resp., does not divide) the conductor

Nξ of ξ = f, g, h, and set εw = εf + εg + εh. According to Theorems 4.5.17 (namely
the Ramanujan–Petersson conjecture) and 4.6.17 of [Miy06] one has

|αξw|∞ = p(εw−2·εξ−1)/2

for ξ = f, g, h, where | · |∞ denotes the complex absolute value. As a consequence
Dϕ=1

st vanishes if εw = 0 or εw = 2. If εw = 1, say εf = 1, then Dϕ=1
st is contained in

L · agw ⊕ L · ahw. On the other hand, the monodromy operator N on Dst satisfies

N(agw) = bhw and N(ahw) = bgw,
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hence Dϕ=1,N=0
st vanishes in this case. Finally, if εw = 3, then

N(aξw) = bξ
′

w + bξ
′′

w

for each permutation (ξ, ξ′, ξ′′) of (f, g, h), hence Dϕ=1 = Dϕ=1,N=0
st = 0 also in this

case, thus proving the claim (49).

It follows from the previous Lemma 3.5 that, upon setting

(50) VdR(f, g, h) = VdR(f)⊗L VdR(g)⊗L VdR(h)
(
(4− k − l −m)/2

)
,

the Bloch–Kato exponential and the isomorphism (28) give an isomorphism

expp : VdR(f, g, h)/Fil0 ∼= H1
geo(Qp, V (f, g, h)).

Similarly for the dual representations define

(51) V ∗dR(f, g, h) = V ∗dR(f)⊗L V ∗dR(g)⊗L V ∗dR(h)
(
(k + l +m− 2)/2

)
.

Then the perfect dualities (31) (for f , g and h) yield a natural isomorphism

VdR(f, g, h)/Fil0 ∼= Fil0V ∗dR(f, g, h)∨,

where ·∨ = HomL(·, L). Its composition with exp−1
p defines an isomorphism

(52) logp : H1
geo(Qp, V (f, g, h)) ∼= Fil0V ∗dR(f, g, h)∨.

For every global Selmer class κ in H1
geo(Q, V (f, g, h)) one simply writes logp(κ) as a

shorthand for logp(resp(κ)).
Denote by ωg ∈ Fill−1V ∗dR(g) and ωh ∈ Film−1V ∗dR(h) the differentials corre-

sponding to g and h respectively under the isomorphism (29), and recall the class
ηαf ∈ V ∗dR(f)ϕ=αf defined in Equation (37). Since Fil0V ∗dR(f) equals V ∗dR(f) and
l +m− 2 > (k + l +m− 2)/2 by Assumption 3.1(2) one has

(53) ηαf ⊗ ωg ⊗ ωh ∈ Fil0V ∗dR(f, g, h).

Assume in the rest of this section that p does not divide N . For every s in Z denote
by

Ms(N,L) ⊂ ZpJqK⊗Zp L

the space of p-adic modular forms of weight s and level Γ1(N) defined over L. Let

Ss(N,L) ⊂ q · OJqK⊗Zp Qp

be the subspace of cuspidal p-adic modular forms. Ms(N,L) contains naturally the
space Ms(Γ1(N, p), L) of classical modular forms of level Γ1(N, p) = Γ1(N) ∩ Γ0(p)
and q-expansion in LJqK. It is equipped with the Hecke operators U = Up and V = Vp,
which are described on q-expansions by

U
(∑
n>0

an · qn
)

=
∑
n>0

anp · qn and V
(∑
n>0

an · qn
)

=
∑
n>0

an · qpn

respectively. Serre’s derivative operator d = q · ddq on LJqK restricts to a morphism

d : Ms(N,L)→Ms+2(N,L).
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For every s > 2 Hida defined in [Hid85] an ordinary projector

eord : Ms(N,L) −�Mord
s (Γ1(N, p), L)

onto the spaceMord
s (Γ1(N, p), L) of classical ordinary modular forms of level Γ1(N, p),

which is a section of the natural inclusion Mord
s (Γ1(N, p), L) ↪→ Ms(N,L). Given

ξ ∈ Sl(Γ1(N, p), L) and ψ ∈ Sm(Γ1(N, p), L) set

Ξord
k (ξ, ψ) = eord

(
d(k−l−m)/2ξ[p] × ψ

)
∈ Sord

k (Γ1(N, p), L),

where ξ[p] and d(k−l−m)/2ξ[p] are defined as follows. Note first that t = (k− l−m)/2
is a negative integer by Assumption 3.1. The p-depletion ξ[p] ∈ Sl(N, p) is defined by
ξ[p] = (1− V U)ξ. If ξ has q-expansion

∑
n>1 an(ξ) · qn then

ξ[p] =
∑

(n,p)=1

an(ξ) · qn,

hence the limit of p-adic modular forms

dtξ[p] = lim
n→∞

dt+(p−1)pnξ

defines a p-adic modular form of weight l+2t such that d−t(dtξ[p]) = ξ[p], and dtξ[p]×ψ
belongs to Sk(N,L).

Let ξ ∈ Sk(N,χξ, L) be a eigenvector for the Hecke operators T`, for all primes
` - N . Assume that ξ is p-ordinary, viz. Tp(ξ) = ap(ξ) · ξ for a unit ap(ξ) in O∗. Let
αξ and βξ be the roots of the p-th Hecke polynomial X2 − ap(ξ) ·X + χξ(p)p

k−1 of
ξ. Enlarging L if necessary, assume that αξ and βξ belong to L, and order them in
such a way that αf ∈ O∗ is a p-adic unit and βf ∈ pk−1 · O∗. Then the (ordinary)
p-stabilisation of ξ:

(54) ξα(q) = ξ(q)− βξ · ξ(qp) ∈ Sord
k (Γ1(N, p), χξ)

is a normalised eigenvector for the Hecke operator T`, with the same eigenvalue as ξ,
for every prime ` - Np, and is an eigenvector for Up with eigenvalue αξ. Taking ξ to
be one of f, g, h and fw = wN (f) gives rise to the p-stabilised forms fα, gα, hα and
fwα = (fw)α in Sk(Γ1(N, p), L). Define (cf. Sections 2.5 and 6)

(55) L f
p (fα, gα, hα) =

(fwα ,Ξ
ord
k (g, h))Np

(fwα , f
w
α )Np

∈ L.

In [BSV20b] we proved the following explicit reciprocity law. Its proof uses the
ideas and techniques introduced in [BDP13, DR14, BDR15, KLZ20]. In particu-
lar it relies on Besser’s generalisation of Coleman’s p-adic integration and the work of
Bannai–Kings, Nekovář and Nizioł [Nek04, Niz97, Niz01, Bes00, BK90], which
forces the assumption p - N in the statement.

Proposition 3.6 ([BSV20b]). — Assume that p does not divide N , and that the
eigenforms f, g and h are p-ordinary. Then

logp
(
κ(f, g, h)

)
(ηαf ⊗ ωg ⊗ ωh) = E(f, g, h) ·L f

p (fα, gα, hα),
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where

E(f, g, h) =
(−1)r−r1(r − r1)!

(
1− βf

αf

)(
1− βf

pαf

)
(

1− βfαgαh
pr+2

)(
1− βfαgβh

pr+2

)(
1− βfβgαh

pr+2

)(
1− βfβgβh

pr+2

) .
3.2. Comparison with Gross–Kudla–Schoen diagonal cycles. — This section
elucidates the relation between the diagonal classes introduced above and the Gross–
Kudla–Schoen diagonal cycles. It will not be used in the sequel of this paper.

Let the notations and assumptions be as in the previous section. In this section
only we also assume rj > 1 for j = 1, 2, 3. As in [DR14, Section 3.1] fix three
subsets A = {a1, . . . , ar1}, B = {b1, . . . , br2} and C = {c1, . . . , cr3} of {1, . . . , r} of
cardinalities r1, r2 and r3 respectively, such that A ∩B ∩ C = ∅. This is possible by
Assumption 3.1. For 1 6 j 6 r, let pj : Er1(N) = E1(N)×Y1(N) · · · ×Y1(N) E1(N) −→
E1(N) be the projection from the r-fold fibered product of E1(N) over Y1(N) onto
its j-th component. Define

(56) ιN,r = (pA, pB , pC) : Er1(N) −→ Er1 (N)
def
= Er11 (N)×Q Er21 (N)×Q Er31 (N),

where pA = pa1 × · · · × par1 : Er1(N)→ Er11 (N) and pB and pC are defined similarly.
Then ιN,r = ιN,(A,B,C) is a closed immersion of relative dimension dimEr1 (N) −
dimEr1(N) = r + 2, and one defines the generalised Gross–Kudla–Schoen diagonal
cycle of level N and weights r + 2 (cf. Section 3 of [DR14]) as

(57) ∆N,r = ιN,r∗(E
r
1(N)) ∈ CHr+2(Er1 (N)),

where CHj(·) is the Chow group of codimension-j cycles in · modulo rational equiv-
alence.

For i ∈ N denote by Si = µi2 oΣi the semi-direct product of µi2 = {±1}i with the
symmetric group Σi on i letters. The permutation action of Σi on Ei1(N) and the
action of µ2 on E1(N) induce an action of Si on Ei1(N). Define the character ψi :
Si → {±1} by ψi(s1, . . . , si, σ) = sgn(σ) · s1 · · · si, and set εi = 1

2i·i!
∑
g∈Si ψi(g) · g.

Then εi gives an idempotent in the ring Corr(Ei1(N))Q of correspondences on Ei1(N)
with rational coefficients. Set εr = εr1 ⊗ εr2 ⊗ εr3 ∈ Corr(Er1 (N))Q. The Lieberman
trick (cf. the proof of Lemme 5.3 of [Del71]) shows that εr kills the cohomology
group Hj

ét(E
r
1 (N)Q̄,Qp) for every j 6= 2r + 3, hence the image

clét
(
εr ·∆N,r

)
∈ H2r+4

ét (Er1 (N),Qp(r + 2))

of εr ·∆N,r under the cycle class map

clét : CHr+2(Er1 (N))Q → H2r+4
ét (Er1 (N),Qp(r + 2))

belongs to

Fil0H2r+4
ét (Er1 (N),Qp(r + 2))

= ker
(
H2r+4

ét (Er1 (N),Qp(r + 2))
π∗−→ H2r+3

ét (Er1 (N)Q̄,Qp(r + 2))
)
,
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where π : Er1 (N)Q̄ → Er1 (N) is the projection. As a consequence one can consider
the Abel–Jacobi image

AJét
p

(
εr ·∆N,r

)
= HS ◦ clét

(
εr ·∆N,r

)
∈ H1(Q, εr ·H2r+3

ét (Er1 (N)Q̄,Qp(r + 2)))

of εr ·∆N,r under the composition of the cycle class map clét with the morphism

(58) HS : Fil0H2r+4
ét (Er1 (N),Qp(r + 2)) −→ H1(Q, H2r+3

ét (Er1 (N)Q̄,Qp(r + 2)))

arising from the Hochschild–Serre spectral sequence. According to the Lieberman
trick the Leray spectral sequence associated with the structural map Er1 (N)→ Y1(N)3

induces a natural isomorphism

(59) Lr : εr ·H2r+3
ét (Er1 (N)Q̄,Qp(r+2)) ∼= H1

ét(Y1(N)3
Q̄,S[r])⊗ZpQp(r+2) = WN,r.

Denote by

Lr∗ : H1(Q, εr ·H2r+3
ét (Er1 (N)Q̄,Qp(r + 2))) ∼= H1(Q,WN,r)

the isomorphism induced in Galois cohomology by Lr.

Proposition 3.7. — The image of AJét
p (εr · ∆N,r) under the isomorphism Lr∗ is

equal (up to sign) to κ̃N,r.

Proof. — To ease notation set E· = E·1(N), Y = Y1(N), ιr = ιN,r, and denote by
ur = urN the structural morphism

ur1N ×Q ur2N ×Q ur3N : Er1 (N)→ Y1(N)3.

Let ιr : Er → E2r be the proper morphism defined by

ιr(P1, . . . , Pr) = ({Paj}, {Pbj}, {Pcj}),

so that ιr is the composition of ιr with the natural map dr : E2r → Er.
Define

R2r = R2ru2r
∗ Zp, Rr = R2rur∗Zp and R[r] = R2rur∗Zp.

Then ιr induces relative pull-back and pushforward maps

ϑ∗r : R2r(r) −→ Zp and ϑr∗ : Zp −→ R2r(r)

which are adjoint to each other under the perfect relative Poincaré duality

R2r(r)⊗Zp R2r(r) −→ R4ru2r
∗ Zp(2r) ∼= Zp

induced by the cup-product pairing. (They induce on the stalks at a geometric point
y : Spec(Q̄) → Y the pull-back H2r

ét (E2r
y ,Zp(r)) → H2r

ét (Ery ,Zp(r))
∼= Zp and push-

forward Zp = H0
ét(E

r
y ,Zp) → H2r

ét (E2r
y ,Zp(r)) associated with ιr ×y Q̄ respectively.)

The Leray spectral sequences associated with the morphisms u2r and ur identify
the Qp-linear extensions of H0

ét(Y,R
2r(r)) and H4

ét(Y
3,R[r](r+ 2)) with direct sum-

mands of H2r
ét (E2r,Qp(r)) and H2r+4

ét (Er,Qp(r + 2)) respectively. (This is again a
consequence of the Lieberman trick, cf. [Del71].) By the functoriality of the Leray
spectral sequence, under these identifications ϑr∗ and d∗ are compatible with the
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absolute push-forward maps attached to ιr and dr, viz. the following diagram is
commutative:
(60)

Qp
ϑr∗ // H0

ét(Y,R
2r(r))Qp

d∗ //

Leray
��

H4
ét(Y

3,R[r](r + 2))Qp

Leray
��

H0
ét(E

r,Qp)
ιr∗ // H2r

ét (E2r,Qp(r))
dr∗ // H2r+4

ét (Er,Qp(r + 2)).

On the other hand the compatibility of the cycle class

clét : CHr+2(Er)Q → H2r+4
ét (Er,Qp(r + 2))

with proper push-forwards and the definition of the diagonal cycle ∆r = ∆N,r yield
the identities

clét(∆r) = clét ◦ ιr∗(Er) = ιr∗(1) = dr∗ ◦ ιr∗(1).

In addition, using again the functoriality of the Leray spectral sequences, one has the
commutative diagram

H4
ét(Y

3,R[r](r + 2))Qp

p[r] // //

Leray

��

H4
ét(Y

3,S[r](r + 2))Qp

HS // H1(Q,Wr)

Leray

��
Fil0H2r+4

ét (Er,Qp(r + 2))
εr∗◦HS // H1(Q, εr ·H2r+3

ét (Er
Q̄
,Qp(r + 2))),

where p[r] : R[r] � S[r] is the natural projection and Wr = WN,r. Since εr acts as
the identity on S[r], the previous three equations prove that (cf. Equation (59))

Lr∗
(
AJét

p (εr ·∆r)
)

= HS ◦ p[r] ◦ d∗ ◦ ϑr∗(1).

After setting Detr = DetrN , to conclude the proof of the proposition it is then sufficient
to show that

(61) Detr = pr ◦ ϑr∗(1) ∈ H0
ét(Y,Sr(r)),

where pr : R2r(r) � Sr(r) is the natural projection. Let S = S1(Zp) be the
standard representation of GL2(Zp). Recall the geometric point η : Spec(Q̄)→ Y and
the isomorphism ξ : Tη

∼= S ⊗ det−1 fixed above (cf. Equations (39) and (44)). The
GL2(Zp)-representation R2r(r)η contains S⊗2r⊗ det−r as a direct summand, and pr :

R2r(r)η → Sr(r)η = Sr ⊗ det−r is the composition of pr : R2r(r)η � S⊗2r ⊗ det−r

and the natural projection prr : S⊗2r ⊗ det−r � Sr ⊗ det−r. Let ϑor∗ : Zp → R2r(r)
be the relative push-forward associated (as above) with the morphism Er → E2r

which sends the point (P1, . . . , Pr) to (P1, P1, . . . , Pr, Pr). Then

(62) ϑr∗ = σr ◦ ϑor∗,
where σr = σA,B,C is any fixed permutation of {1, . . . , 2r} satisfying

σr(P1, P1, . . . , Pr, Pr) = (Pa1 , . . . , Par1 , Pb1 , . . . , Pbr2 , Pc1 , . . . , Pcr3 )

for every point (P1, . . . , Pr) of Er. The image of 1 under the composition

pr ◦ ϑor∗ : Zp = H0
ét(E

r
η ,Zp) −→ H2r

ét (E2r
η ,Zp(r)) = R2r(r)η � S⊗2r ⊗ det−r
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(where one writes again ϑor∗ for the morphism induced by ϑor∗ on the stalks at η) is
equal to

Fr =
(
x⊗ y − y ⊗ x

)⊗r
,

where x and y give a Zp-basis of S ⊂ Zp[x, y]. It then follows by the definition of
Detr (see Equation (42)) and Equation (62) that in order to prove the claim (61) is
it sufficient to prove (setting Detr = DetrN )

(63) Detr = prr ◦ σr(Fr).

The previous formula is easily verified if r 6 2 or r = (2, 2, 2) (hence r = 3). Assume
now r > 3 and r 6= (2, 2, 2). Then at least one of |A∩B|, |A∩C| and |B∩C| is greater
or equal than 2. Without loss of generality one can then assume r2 = min{r1, r2, r3}
and that the sets A and C are of the form

A = {1, r, a3, . . . , ar1} and C = {c1, . . . , cr3−2, 1, r}.

Let s = (r1 − 2, r2, r3 − 2) and s = r − 2. Then s satisfies Assumption 3.1 and
one can chose as above a permutation σs = σAo,B,Co of {1, . . . , 2 · (r − 1)} relative
to Ao = {a3, . . . , ar1−1}, B and Co = {c1, . . . , cr3−2}. Extend σs to a permutation
(denoted by the same symbol) of {1, . . . , 2r} by σs(i) = i for i = 1, 2, 2r−1, 2rWithout
loss of generality one can then assume that σr = σA,B,C is the composition of σs with
the permutation σr|s of {1, . . . , 2r} defined by σr|s(2) = 2r − 1 and σr|s(i) = i for
i 6= 2, 2r − 1, hence by induction on r one has

prr ◦ σr(Fr) = prr ◦ σr|s
(
F1 ⊗ σs(Fs)⊗ F1

)
= det

(
x1 x2

z1 z2

)2

·Dets.

Since r− r2 = s− s2 + 2 and r− rj = s− sj for j 6= 2, this proves Equation (63), and
with it the proposition.

4. Big étale sheaves and Galois representations

Sections 4.1 and 4.2 collect the technical background entering the construction of
the three-variable diagonal class of Theorem A. In particular they present a slight
extension of the overconvergent cohomology theory developed by Ash–Stevens and
Andreatta–Iovita–Stevens in [AS08, AIS15].

Notation. In this section N is a positive integer coprime with p. Set Γ = Γ1(N, p),
let Y denote the affine modular curve Y1(N, p) of level Γ defined over Z[1/Np] and
let u : E → Y be the universal elliptic curve E1(N, p). Denote by Cp the universal
order-p cyclic subgroup C1(N, p) of E1(N, p).

4.1. Locally analytic functions and distributions. — Let L be a finite exten-
sion of Qp with ring of integers O and maximal ideal m = π · O. Let W be the
weight space over Qp, viz. the rigid analytic space over Qp which parametrises the
continuous characters of Z∗p. It is isomorphic to p − 1 copies of the open unit disc,
indexed by the powers ωj of the Teichmüller character ω : F∗p → Z∗p. We identify
Z × Z/(p − 1)Z with a subset of W(Qp) by sending the pair (n, a) to the character
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(n, a) : Z∗p → Z∗p defined by (n, a)(u · ω) = un · ωa for every u ∈ 1 + pZp and ω ∈ F∗p.
Given κ ∈ W and z ∈ Z∗p we often write zκ for κ(z).

Let U ⊂ W be a connected wide open disc defined over L. Write U ∩Z for the set
of characters in U(Qp) of the form (n, iU ) for some n ∈ Z with n(mod p − 1) = iU ,
where iU ∈ Z/(p − 1)Z satisfies κ|F∗p = ωiU for every κ ∈ U . Denote by O(U) the
ring of rigid analytic functions on U , and by ΛU ⊂ O(U) the set of a ∈ O(U) such
that ordp(a(x)) > 0 for every x ∈ U . The O-algebra ΛU is isomorphic to the power
series ring OJT K. In particular it is a regular local ring, complete with respect to the
topology defined by its maximal ideal mU ∼= (π, T ). Let

κU : Z∗p −→ Λ∗U

be the character sending z ∈ Z∗p to the analytic function κU (z) ∈ Λ∗U which on t ∈ U
takes the value

κU (z)(t) = zt−2.

In what follows let (B, κ) denote either the pair (ΛU , κU ) or (O, r) for some r ∈ W(L),
and write mB for the maximal ideal of B. For every nonnegative integer m > 0 let
LAm(Zp, B) be the space of functions γ : Zp → B converging on balls of width m,
viz. for every [a] ∈ Z/pmZ one has γ(a+pmz) =

∑
n>0 cn(γ) · zn for a sequence cn(γ)

in B which converges to zero in the mB-adic topology. We always assume that U is
contained in a connected affinoid domain in W and that the function sending z to
κU (1 + pz) belongs to LAm(Zp,ΛU ). The latter condition is guaranteed by taking
m = m(U) big enough.

Define T = Z∗p × Zp and T′ = pZp × Z∗p. Right multiplication on Z2
p by the

semi-group

Σ0(p) =

(
Z∗p Zp
pZp Zp

)
⊂ Mat2×2(Zp)

(
resp., Σ′0(p) =

(
Zp Zp
pZp Z∗p

)
⊂ Mat2×2(Zp)

)
preserves the subset T (resp., T′). In particular both T and T′ are preserved by scalar
multiplication by Z∗p and right multiplication by the Iwahori subgroup

Γ0(pZp) = Σ0(p) ∩ Σ′0(p)

of GL2(Zp). Define

Aκ,m =
{
f : T −→ B

∣∣ f(1, z) ∈ LAm(Zp, B) and

f(a · t) = κ(a) · f(t) for every a ∈ Z∗p, t ∈ T
}
,(64)

and similarly define A′κ,m as the space of functions f : T′ → B such that f(pz, 1)
belongs to LAm(Zp, B), and f(a · t) = κ(a) · f(t) for all a ∈ Z∗p and t ∈ T′. Set

A·κ,m = A·κ,m ⊗O L, D·κ,m = HomB(A·κ,m, B) and D·κ,m = D·κ,m ⊗O L,

where the superscript · denotes either ∅ or ′. We equip A·κ,m with the mB-adic
topology and D·κ,m with the weak-∗ topology, viz. the weakest topology which makes
the evaluation-at-f morphism continuous for every f in A·κ,m. The B-module A·κ,m
is preserved by the left action of Σ·0(p) on functions f : T· → B given by γ · f(t) =
f(t · γ), for every γ ∈ Σ·0(p) and t ∈ T·. This equips A·κ,m with the structure of a
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B[Σ·0(p)]-module, and induce on D·κ,m the structure of a right B[Σ·0(p)]-module. If
(B, κ) = (ΛU , κU ) we write A·U,m and D·U,m as shorthands for A·κU ,m and D·κU ,m.

Remark 4.1. — For any function f : T→ B define fo : Zp → B by fo(z) = f(1, z).
The map which to f associates fo gives an isomorphism of B-modules between Aκ,m
and LAm(Zp, B). This intertwines the action of Σ0(p) on Aκ,m with the one on
LAm(Zp, B) given by

σ · fo(z) = (a+ cz)κ · fo
(
b+ dz

a+ cz

)
, where σ =

(
a b
c d

)
.

The B-module LAm(Zp, B) is isomorphic to the product
∏pm−1
a=0 BJT Ko, where BJT Ko

is the set of power series
∑
n>0 bn · Tn in BJT K with limn→∞ bn = 0 in the mB-adic

topology. Under this isomorphism, for every 0 6 a 6 pm − 1 and every n > 0, the
power Tn in the a-th factor of LAm(Zp, B) corresponds to an element fa,n ∈ Aκ,m.
Every f ∈ Aκ,m can be written uniquely as f =

∑
06a6pm−1,n>0 ba,n(f) · fa,n with

limn→∞ ba,n(f) = 0 for every 0 6 a 6 pm − 1. A similar discussion applies to A′κ,m.

4.1.1. Hecke operators. — Set Ξ·0(p) = Σ·0(p) ∩GL2(Qp), and recall that Γ denotes
the congruence subgroup Γ1(N) ∩ Γ0(p) of SL2(Z). Let M be a right Ξ·0(p)-module
(e.g. M = D·κ,m). Given σ ∈ Ξ·0(p) one defines a Hecke operator

Tσ : Hj(Γ,M)→ Hj(Γ,M)

as follows (cf. [AS86a, Section 1.1]). Write ΓσΓ =
∐nσ
i=1 Γσi with σi ∈ Ξ·0(p), and

define ti : Γ −→ Γ by σi · γ = ti(γ) · σi(γ) (for some 1 6 i(γ) 6 nσ). If ξ ∈ Hj(Γ,M)

is represented by the homogeneous j-cochain ξ : Γj+1 −→ M then Tσ(ξ) = cl(ξσ),
where ξσ : Γj+1 −→M is defined by

ξσ(γ0, . . . , γj) =

nσ∑
i=1

ξ(ti(γ0), . . . , ti(γj)) · σi.

For every prime ` denote by σ` (resp., σ′`) the diagonal matrix with diagonal (1, `)
(resp., (`, 1)). If σ` (resp., σ′`) belongs to Ξ·0(p) set T` = Tσ` (resp., T ′` = Tσ′`). As
usual one also writes U ·` for T

·
` if ` divides Np. The previous discussion then equips

Hi(Γ,Dκ,m) (resp., H1(Γ,D′κ,m)) with the action of the p-th Hecke operator Up (resp.,
p-th dual Hecke operator U ′p), as well as with the action of the Hecke operators T`
and T ′` for every prime ` 6= p.

Let N be a left Ξ·0(p)-module (e.g. N = A·κ,m) and let Nop denote the abelian
group N equipped with the structure of right Ξ·0(p)−1-module by n · τ = τ−1 · n for
every n ∈ N and τ ∈ Ξ·0(p)−1. After identifying Hi(Γ, N) and Hi(Γ, Nop) define
for every σ ∈ Ξ·0(p) the Hecke operator Tσ on Hi(Γ, N) to be the Hecke operator
Tσ−1 on Hi(Γ, Nop) defined in previous paragraph. This equips Hi(Γ,Aκ,m) (resp.,
Hi(Γ,A′κ,m)) with the action of the p-th Hecke operator Up = Tσp (resp., p-th dual
Hecke operator U ′p = Tσ′p), as well as with the action of the Hecke operators T` = Tσ`
and T ′` = Tσ′` for every prime ` different from p.
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4.1.2. Atkin–Lehner operators. — Let Q be a positive divisor of Np, such that Q
and Np/Q are coprime. Consider any matrix

wQ =

(
Qa b
Np Qd

)
∈M2(Z)

such that det(wQ) = Q and d ≡ 1 (mod Np/Q). Such a matrix satisfies

(65) Γ = wQ · Γ · w−1
Q .

If p divides Q, then right multiplication by wQ on Z2
p maps T onto T′, hence

induces a topological morphism of B-modules wQ : A′κ,m −→ Aκ,m. Together with
conjugation by the inverse of wQ on Γ (cf. Equation (65)), it yields a morphism of
pairs wQ : (Γ,A′κ,m) −→ (Γ,Aκ,m), which in turn induces a morphism

(66) wQ : H1(Γ,A′κ,m) −→ H1(Γ,Aκ,m).

A direct computation proves that, for each x in H1(Γ,A′κ,m), one has

Up ◦ wp(x) = wp ◦ U ′p ◦ 〈p〉N (x) and Up ◦ wNp(x) = wNp ◦ U ′p(x),

where 〈p〉N = Tαp is the Hecke operator on H1(Γ,A′κ,m) associated with any matrix
αp in SL2(Z) of the form αp =

(
a b
Npc d

)
with d ≡ 1 (mod p) and d ≡ p (mod N). The

dual of wQ : A′κ,m −→ Aκ,m yields a map wQ : Dκ,m −→ D′κ,m, which together with
conjugation by wQ on Γ induces as above a morphism

(67) wQ : H1(Γ,Dκ,m) −→ H1(Γ,D′κ,m).

For each y in H1(Γ,Dκ,m) one has

(68) wp ◦ Up(y) = U ′p ◦ wp ◦ 〈p〉N (y) and wNp ◦ Up(y) = U ′p ◦ wNp(y).

If p does not divide Q, then wQ belongs to Γ0(pZp), and for · = ∅, ′ one defines

(69) wQ : H1(Γ,D·κ,m) −→ H1(Γ,D·κ,m) and wQ : H1(Γ,A·κ,m) −→ H1(Γ,A·κ,m)

to be the Hecke operators TwQ introduced in Section 4.1.1.

4.1.3. Specialisations and comparison. — Let k = r + 2 ∈ U and let πk ∈ ΛU be a
uniformiser at k − 2 (hence π and πk generate mU ). There are short exact sequences
of Σ·0(p)-modules (cf. [AIS15, Proposition 3.11])

(70) 0 // A·U,m
πk // A·U,m

ρk // A·r,m // 0;

0 // D·U,m
πk // D·U,m

ρk // D·r,m // 0.

The morphisms ρk are defined by the formulae

ρk(f)(x, y) = f(x, y)(k) and ρk(µ)(γ) = µ(γU )(k)

for every f ∈ A·U,m, (x, y) ∈ T·, µ ∈ D·U,m, and γ ∈ A·r,m, where γU (x, y) = κU (x) ·
γ(1, y/x) if T· = T and γU (x, y) = κU (y) · γ(x/y, 1) if T· = T′.

Let r ∈ U ∩ Z>0 be a nonnegative integer. Viewing two-variable polynomials as
analytic functions on T· gives a natural map of Σ·0(p)-modules Sr(O) −→ A·r,m, and
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dually a morphism of Σ·0(p)-modules D·r,m −→ Lr(O). Together with the comparison
isomorphisms between étale and Betti cohomology:

(71) H1
ét(YQ̄,Sr(O)) ∼= H1(Γ, Sr(O)) and H1

ét(YQ̄,Lr(O)) ∼= H1(Γ, Lr(O))

they induce comparison morphisms

(72) H1
ét(YQ̄,Sr(O)) −→ H1(Γ,A·r,m) and H1(Γ,D·r,m) −→ H1

ét(YQ̄,Lr(O)).

The second isomorphism in Equation (71) is Hecke equivariant, hence so is the second
morphism in Equation (72). On the other hand the first isomorphism in Equation
(71) (resp., morphism in Equation (72)) intertwines the actions of the Hecke opera-
tors Up, T`, U ′p, T ′` on the left hand side with those of Hecke operators U ′p, T ′` , Up, T`
respectively on the right hand side (whenever the latter are defined).

4.1.4. Slope decompositions. — Let B be a Qp-Banach algebra, let N be a module
over B, let u be a B-linear endomorphism of N , and let h ∈ Q>0. Following [AS08]
one says that N admits a slope 6 h decomposition with respect to u if there exists a
(necessarily unique) direct sum decomposition

N = N6h ⊕N>h

into B[u]-modules such that the conditions 1–3 below are satisfied. One says that a
polynomial P (t) in B[t] has slope 6 h if every edge of its Newton polygon has slope
6 h. Let B[t]6h be the set of polynomials in B[t] of slope 6 h and whose leading
coefficient is a multiplicative unit. For every P (t) ∈ B[t] write P ∗(t) = tdeg(P )·P (1/t).

1. N6h is finitely generated over B.
2. There exists P (t) ∈ B[t]6h such that P ∗(u) kills N6h.
3. For every P (t) ∈ B[t]6h the endomorphism P ∗(u) of N>h is an isomorphism.
Let m and U be as in Section 4.1, let k = r + 2 ∈ U(L), and let h ∈ Q>0. Set

Tr =
{

(L,Ar,m, Up), (L,A
′
r,m, U

′
p), (L,Dr,m, Up), (L,D

′
r,m, U

′
p)
}

and

TU =
{

(OU , AU,m, Up), (OU , A
′
U,m, U

′
p), (OU , DU,m, Up), (OU , D

′
U,m, U

′
p)
}
,

where OU is a shorthand for ΛU [1/p]. Recall that ΛU is isomorphic to the power series
ring OJT K, equipped with the topology defined by the maximal ideal mU ∼= (π, T ),
hence OU is isomorphic to the L-module LJT Ko of power series in LJT K with bounded
Gauß norm. If s is a real number satisfying 0 < s < 1, define |·|s : LJT Ko −→ R>0

by |
∑
n>0 an · Tn|s = supn>0 s

n · |an|p. Then | · |s is an L-Banach algebra norm on
LJT Ko, which is independent of s and induces the (π, T )-adic topology on OJT K. This
corresponds to an L-Banach algebra norm on OU , which restricts to the mU -adic
topology on the O-submodule ΛU . The discussion on slope 6 h decompositions then
applies to each triple (B,M,u) in Tr∪TU . The following proposition is a consequence
of the work of Coleman and Ash–Stevens [Col97, AS08] (see also [AIS15]).

Proposition 4.2. — Let (B,M,u) be a triple in Tr ∪ TU . If r ∈ U ∩Z>0, one also
allows (B,M,u) to denote either (L, Sr(L), U ·p) or (L,Lr(L), U ·p), with U ·p = Up, U

′
p.
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1. Up to shrinking U if necessary, the B-module H1(Γ,M) admits a slope 6 h
decomposition with respect to u. Moreover, for · = ∅, ′, the specialisation maps ρk
defined in Equation (70) induce Hecke equivariant isomorphisms

ρk : H1(Γ, A·U,m)6h ⊗ΛU ΛU/πk ∼= H1(Γ, A·r,m)6h

and ρk : H1(Γ, D·U,m)6h ⊗ΛU ΛU/πk ∼= H1(Γ, D·r,m)6h.

2. Assume that r = (n, a) ∈ Z>0×Z/(p− 1)Z with n ≡ a (mod p− 1) and h < n+ 1.
Then (for · = ∅, ′) the natural maps Sr(L) −→ A·r,m and D·r,m −→ Lr(L) induce
Hecke equivariant isomorphisms

H1(Γ, Sr(L))6
·h ∼= H1(Γ, A·r,m)6h and H1(Γ, D·r,m)6h ∼= H1(Γ, Lr(L))6

·h,

where the superscript 6·h in H1(Γ, –)6
·h refers to the slope decomposition with respect

to the endomorphism U ·p.

Let r be a nonnegative integer and let h ∈ Q>0 such that h < r + 1. As the
étale cohomology groups H1

ét(YQ̄,Sr)L and H1
ét(YQ̄,Lr)L are finite-dimensional over

L, they admit slope 6·h decompositions with respect to U ·p. Part 2 of Proposition
4.2 then implies that the comparison maps defined in Equation (72) induce natural
isomorphisms of L-modules (cf. the last lines of the previous section)

(73) H1
ét(YQ̄,Sr)

6′h
L
∼= H1(Γ, Ar,m)6h and H1(Γ, Dr,m)6h ∼= H1

ét(YQ̄,Lr)
6h
L .

One obtains similar isomorphisms after replacing Ar,m and Dr,m with A′r,m and D′r,m
respectively.

4.2. Étale sheaves. — Let T = T1(p),N be the relative Tate module R1u∗Zp(1)

of E over Y (cf. Equation (10)). Fix a geometric point η : Spec(Q̄) −→ Y and
denote by G = GN,p the fundamental group πét

1 (Y, η). Fix in addition an isomorphism
ξ : Tη

∼= Zp ⊕ Zp of Zp-modules such that, for every x, y ∈ Tη, one has

(74) 〈x, y〉Ep∞ = ξ(x) ∧ ξ(y) and ξ̄(Cp,η) = Fp · (1, 0),

where 〈·, ·〉Ep∞ is the Weil pairing,
∧2

Z2
p = Zp via (1, 0) ∧ (0, 1) = 1, and ξ̄ : Ep,η ∼=

Fp ⊕Fp is the reduction of ξ modulo p. The action of G on Tη and the isomorphism
ξ give a continuous morphism % : G → GL2(Zp). Since the subgroup Cp,η of Ep,η
is preserved by the action of G, the second condition in Equation (74) implies that
% factors through a continuous morphism % : G −→ Γ0(pZp). Let Sf (Yét) be the
category of locally constant constructible sheaves on Yét with finite stalk of p-power
order at η, and for every topological group G denote by Mf (G) the category of
finite sets of p-power order, equipped with a continuous action of G. Taking the
stalk at η defines an equivalence of categories ·η : Sf (Yét) ∼= Mf (G), whose inverse
·ét : Mf (G) ∼= Sf (Yét) restricts via % to a functor ·ét : Mf (Γ0(pZp)) −→ Sf (Yét).
(Here both G and Γ0(pZp) have the profinite topology.) Define Mcts(G) to be the
category of G-modules M which are filtered unions M =

⋃
i∈IMi with Mi ∈Mf (G)

for every i ∈ I, and M(G) ⊂ Mcts(G)N to be the category of inverse systems of
objects of Mcts(G). Define similarly Scts(Yét) and S(Yét) ⊂ Scts(Yét)

N. If G denotes
one of G and Γ0(pZp), the functor ·ét extends to ·ét : M(G) −→ S(Yét). Let (Mi)i∈N
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be an inverse system of G-modules and let M = lim←−Mi. If the inverse system (Mi)i
defining M is clear from the context, we say that M belongs to M(G) to mean that
(Mi)i does. If this is the case we write M ét for (Mi)

ét
i .

More generally for every scheme S one defines the category S(Sét) as above. For
every F = (Fi)i∈N ∈ S(Sét) set

Hj
ét(S,F ) = Rj

(
lim
←i

Γ(S, ·)
)
(Fi)i and H

j
ét(S,F ) = lim

←i
Hj

ét(S,Fi),

so that (Hj
ét(S,F ) is the continuous étale cohomology in the sense of [Jan88] and)

there are short exact sequences

(75) 0 −→ R1lim
←i

Hj−1
ét (S,Fi) −→ Hj

ét(S,F ) −→ H
j
ét(S,F ) −→ 0.

One similarly defines compactly supported cohomology groups Hj
ét,c(S,F ) and

H
j
ét,c(S,F ) (cf. [Jan88]).
Let (B, κ) be as in Section 4.1. The modulesA·κ,m andD·κ,m belong to M(Γ0(pZp)):

D·κ,m = lim
←j
D·κ,m/FiljD·κ,m,

A·κ,m = lim
←j
A·κ,m/m

j
BA
·
κ,m

and A·κ,m/miB · A·κ,m =
⋃
j>i

Fili,jA·κ,m,

where (FiljD·κ,m)j>0 is a decreasing filtration by B[Σ·0(p)]-submodules on D·κ,m, such
that D·κ,m/Filj is finite for every j, and where (Fili,jA·κ,m)j>i is an increasing filtration
on A·κ,m/miB ·A·κ,m by B[Σ·0(p)]-submodules of finite cardinality. Precisely one defines

FiljD·κ,m =
{
µ ∈ D·κ,m

∣∣ µ(fa,n) ∈ mj−nB for every 0 6 a 6 pm − 1 and n 6 j
}

(cf. [AIS15, Definition 3.9 and Proposition 3.10]) and

Fili,jA·κ,m =
⊕

06a6pm−1,n6j

B ·
(
fa,n + miB

)
⊂ A·κ,m/miB · A·κ,m,

where (fa,n)06a6pm−1,n>0 is the orthonormal basis of A·κ,m defined in Remark 4.1.
Denote by

A·κ,m = A· étκ,m and D·κ,m = D· étκ,m

the images of A·κ,m and D·κ,m respectively under ·ét : M(Γ0(pZp)) → S(Yét). For
every j > 0 set

A·κ,m,j = A·κ,m/m
j
B · A

·
κ,m,

D·κ,m,j = D·κ,m/Filj ,

A·κ,m,j = A· étκ,m,j

and D·κ,m,j = D· étκ,m,j ,

so that A·κ,m is a shortened notation for the inverse system (A·κ,m,j)j∈N and similarly
D·κ,m = (D·κ,m,j)j∈N. If S is a Z[1/Np]-scheme one can define for every prime ` - Np
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(resp., prime `|Np, unit d ∈ (Z/NZ)∗) Hecke operators T ·` (resp., U ·`, 〈d〉) acting on
Hi

ét(YS ,A
·
κ,m,j) and Hi

ét(YS ,D
·
κ,m,j) (cf. Section 2.3 or [AIS15, Section 5]). We list

below some of the basic properties satisfied by A·κ,m and D·κ,m. Let S be a Z[1/Np]-
scheme and let χ : Z∗p → B∗ be a continuous character. Let B/miB(χ) ∈Mf (Γ0(pZp))

be a copy of B/miB equipped with the action of Γ0(pZp) defined by γ ·b = χ(det(γ))·b,
and let B(χ) = lim←iB/m

i
B(χ). If C·κ,m,· denotes either A·κ,m,· or D·κ,m,· define

C·κ,m,·(χ) = C·κ,m,· ⊗B B(χ) and C·κ,m(χ) = C·κ,m(χ)ét = C·κ,m ⊗ (B/miB(χ))éti∈N. As
usual, if (B, κ) = (ΛU , κU ), one sets C·U,m,· = C·κU ,m,·.
• For each k = r + 2 ∈ U(L), each j ∈ N and · = ∅, ′, the specialisation maps

(70) induce morphisms

ρk : A·U,m,j(χ)→ A·r,m,j(χ) and ρk : D·U,m,j(χ)→ D·r,m,j(χ),

which in turn induce in cohomology specialisation maps

ρk : H1
ét(YS ,A

·
U,m(χ)) −→ H1

ét(YS ,A
·
r,m(χ))(76)

and ρk : H1
ét(YS ,D

·
U,m(χ)) −→ H1

ét(YS ,D
·
r,m(χ)).

• There are natural isomorphisms H1
ét(YQ̄,D

·
κ,m,j)

∼= H1(Γ,D·κ,m,j), which in-
duce isomorphisms (cf. Theorem 3.15 of [AIS15])

H1
ét(YQ̄,D

·
κ,m) ∼= H1

ét(YQ̄,D
·
κ,m) ∼= H1(Γ,D·κ,m)(77)

and H1
ét,c(YQ̄,D·κ,m) ∼= H1

ét,c(YQ̄,D
·
κ,m) ∼= H1

c (Γ,D·κ,m)

of B-modules compatible with the action of the Hecke operators and with the
specialisation maps ρr. Here Hj

c (Γ, ·) = Hj−1(Γ, I(·)) is defined to be the
(j − 1)-th cohomology group of Γ with values in the Γ-module

I(·) = HomZ(Div0(P1(Q)), ·)

(cf. Proposition 4.2 of [AS86b]).
• There are natural maps H1

ét(YQ̄,A
·
κ,m,j) −→ H1(Γ,A·κ,m,j), inducing an iso-

morphism of B-modules (cf. Lemma 4.3 below and the discussion preceding
it)

(78) H1
ét(YQ̄,A

·
κ,m) ∼= H1(Γ,A·κ,m)

compatible with the action of the Hecke operators and with the specialisation
maps. In light of the exact sequence (75), the isomorphism (78) yields a Hecke
equivariant short exact sequence of B-modules

(79) 0 −→ R1lim
←j

H0(YQ̄,A·κ,m,j) −→ H1
ét(YQ̄,A

·
κ,m) −→ H1(Γ,A·κ,m) −→ 0.

• The B-modules H1
ét(YQ̄,D

·
κ,m) and H1

ét(YQ̄,A
·
κ,m) are equipped with natural

continuous actions of GQ which commute with the Hecke operators and the
specialisation maps. Moreover as GQ-modules

H1
ét(YQ̄,D

·
κ,m(χ)) = H1

ét(YQ̄,D
·
κ,m)(χQ)(80)

and H1
ét(YQ̄,A

·
κ,m(χ)) = H1

ét(YQ̄,A
·
κ,m)(χQ),
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where χQ = χ ◦ χ−1
cyc : GQ → B∗ and χcyc : GQ → Z∗p is the p-adic cyclotomic

character. A similar statement holds for the compactly supported cohomology
H1
ét,c(YQ̄,D

·
κ,m).

• We equip H1(Γ,D·κ,m), H1
c (Γ,D·κ,m) and H1(Γ,A·κ,m) with the structures of

continuous GQ-modules via the isomorphisms (77) and (78) respectively. If
h ∈ Q>0 (and U is sufficiently small) the slope 6 h submodules H1(Γ, D·κ,m)6h,
H1

c (Γ, D·κ,m)6h and H1(Γ, A·κ,m)6h of H1(Γ,D·κ,m)Qp
, H1

c (Γ,D·κ,m)Qp
and

H1(Γ,A·κ,m)Qp respectively (cf. Proposition 4.2) are preserved by the action
of GQ.
• Set ΛU,j = (ΛU/m

j)ét and ΛU = (ΛU,j)j∈N ∈ S(Yét). There are canonical
isomorphisms of ΛU -modules

(81) traceU : H2
c (Γ,ΛU ) ∼= H2

ét,c(YQ̄,ΛU ) ∼= ΛU .

The evaluation morphism A·U,m⊗ΛU D·U,m −→ ΛU and the trace traceU induce
a cup-product

H1(Γ,A·U,m)⊗ΛU H
1
c (Γ,D·U,m) −→ H2

c (Γ,ΛU ) ∼= ΛU ,

under which the Hecke operator U ·p acting on H1(Γ,A·U,m) is adjoint to U ·p
acting on H1

c (Γ,D·U,m). This in turn induces for h ∈ Q>0 (and U sufficiently
small) morphisms of ΛU [1/p]-modules

ξ·U,m : H1(Γ, A·U,m)6h −→ HomΛU [1/p]

(
H1

c (Γ, D·U,m)6h,ΛU [1/p]
)
.

• Define det : T×T′ −→ Z∗p by det((x1, x2), (y1, y2)) = x1y2−x2y1, and denote by
detU : T× T′ −→ Λ∗U the composition of det with κU : Z∗p −→ Λ∗U . Evaluation
at detU defines a Γ-equivarint bilinear form DU,m ⊗ΛU D′U,m −→ ΛU . Together
with traceU (cf. Equation (81)) this induces a cup-product pairing

(82) det∗U : H1(Γ,DU,m)⊗ΛU H
1
c (Γ,D′U,m) −→ H2

c (Γ,ΛU ) ∼= ΛU

under which the Hecke operators Up and U ′p are adjoint to each other. For
every h ∈ Q>0 the (inverse of the) adjoint of det∗U induces an isomorphism of
ΛU [1/p]-modules

ζ ′U,m : HomΛU [1/p]

(
H1

c (Γ, D′U,m)6h,ΛU [1/p]
) ∼= H1(Γ, DU,m)6h.

Similarly one defines an isomorphism

ζU,m : HomΛU [1/p]

(
H1

c (Γ, DU,m)6h,ΛU [1/p]
) ∼= H1(Γ, D′U,m)6h.

• Let h ∈ Q>0. If U is sufficiently small the composition of ζU,m with ξU,m gives
a morphism of GQ-modules

(83) sU,h : H1(Γ, AU,m)6h(κU ) −→ H1(Γ, D′U,m)6h,

where κU : GQ −→ Λ∗U is defined by κU (g) = κU (χcyc(g)) for every g ∈ GQ.
For every integer k = r+ 2 in U ∩Z such that h < k− 1, the following diagram
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of L[GQ]-modules commutes.

(84) H1(Γ, AU,m)6h(κU )
sU,h //

ρk

��

H1(Γ, D′U,m)6h

ρk

��
H1

ét(YQ̄,Sr)
6′h
L (r)

sr // H1
ét(YQ̄,Lr)

6′h
L

By a slight abuse of notation, here one writes again ρk for the composi-
tion of the specialisation map ρk : H1(Γ, AU,m)6h → H1(Γ, Ar,m)6h (resp.,
ρk : H1(Γ, D′U,m)6h → H1(Γ, D′r,m)6h) with the comparison isomorphism
H1(Γ, Ar,m)6h ∼= H1

ét(YQ̄,Sr)
6′h (resp., H1(Γ, D′r,m)6h ∼= H1(Γ,Lr)

6′h
L )

defined in Equation (73). Similarly the composition of ζ ′U,m with ξ′U,m gives a
morphism of GQ-modules

s′U,h : H1(Γ, A′U,m)6h(κU ) −→ H1(Γ, DU,m)6h

and the diagram of GQ-modules obtained by replacing AU,m, D′U,m and sU,h
with A′U,m, DU,m and s′U,h respectively in Equation (84) commutes.
• The Atkin–Lehner operators wp (resp., wNp) defined in Equations (66) and (67)

are GQ-equivariant (resp., GQ(µN )-equivariant).
Due to the lack of a reference, we explain how to construct the crucial isomorphism

(78). Let · denote either the empty symbol or ′, and let Fili,jA·κ,m = (Fili,jA·κ,m)ét

be the étale sheaf on Y associated with the finite B/miB[Γ]-module Fili,jA·κ,m. The
comparison isomorphisms between étale and Betti cohomology yields isomorphisms

compi,j : H1
ét(YQ̄,Fili,jA·κ,m) ∼= H1(Γ,Fili,jA·κ,m).

The étale cohomology of the affine scheme YQ̄ commutes with filtered direct limits.
Moreover, since the group Γ is finitely generated, the cohomology functor H1(Γ, ·)
commutes with filtered direct limits (cf. Exercises 1 and 4 on page 196 of [Bro94]).
Taking the direct limit for j → ∞ of the isomorphisms compi,j then gives isomor-
phisms of B/miB-modules

compi : H1(Γ,A·κ,m,i) ∼= H1
ét(YQ̄,A

·
κ,m,i),

which in turn entail an isomorphism of B-modules

comp : lim
←i

H1(Γ,A·κ,m,i) ∼= H1
ét(YQ̄,A

·
κ,m).

The sought for isomorphism (78) is defined as the composition of the comparison
isomorphism comp and the natural map H1(Γ,A·κ,m) −→ lim←−iH

1(Γ,A·κ,m,i), which
is an isomorphism by Lemma 4.3 below. The Hecke equivariance of the isomorphism
(78) is proved precisely as in Sections 3.2 and 3.3 of [AIS15].

Lemma 4.3. — The natural maps

H1(Γ,A·κ,m) −→ lim←−
i

H1(Γ,A·κ,m,i)

are isomorphisms of B-modules.
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Proof. — We adapt the proof of [AIS15, Lemma 3.13] to our setting. To ease nota-
tion, set Ai = A·κ,m,i and A = A·κ,m. For each Γ-module M , let

C•(Γ,M) : 0 −→M
d0−→ C1(Γ,M)

d1−→ C2(Γ,M) −→ · · ·

be the usual complex of inhomogeneous cochains computing the cohomology groups
Hj(Γ,M) = Zj(Γ,M)/im(dj−1), where Cj(Γ,M) is the group of maps from Γj to
M and Zj(Γ,M) = ker(dj). Denote by d• (resp., d•i ) the differentials in C•(Γ,A)
(resp., C•(Γ,Ai)), so that one has the following commutative diagram with exact
rows. (Recall that by definition Ai is a shorthand for A/miB · A.)

A d0 // Z1(Γ,A)

ζ

��

// H1(Γ,A)

ϑ

��

// 0

lim←−iAi
(d0i ) // lim←−i Z

1(Γ,Ai)
ε // lim←−iH

1(Γ,Ai)

To prove that ϑ is an isomorphism, it is then sufficient to show that ε is surjective and
that ζ is an isomorphism. The cokernel of ε is contained in R1 lim←−i(Ai/H

0(Γ,Ai)),
which vanishes since the maps Ai+1/H

0(Γ,Ai+1) −→ Ai/H0(Γ,Ai) are surjective.
Moreover, as A = lim←−iAi, the natural map C•(Γ,A) −→ lim←−i C

•(Γ,Ai) is an isomor-
phism, hence so is ζ by the left exactness of the inverse limit.

4.3. The ordinary case. — This section explains the relations between the ordi-
nary (id est slope 6 0) parts of the modules H1(Γ, D·U,m) and the big ordinary Galois
representations considered in [Hid86, Oht95, Oht00]. This will be particularly rel-
evant for the study of the eigencurve in a neighbourhood of a classical weight-one
eigenform (where the Eichler–Shimura isomorphism of [AIS15] does not apply).

Since H1(Γ,D·κ,m) is a profinite group (as D·κ,m is), the limit e·ord = limn→∞ U ·n!
p

defines an idempotent in the B-endomorphism ring of H1(Γ,D·κ,m). (Here as usual
(B, κ) denotes either (ΛU , κU ) or (O, r) with r in W(L), and · denotes either the
empty symbol or ′.) Set

H1(Γ,D·κ,m)60 = e·ord ·H1(Γ,D·κ,m).

This is a finite ΛB-module, which recasts H1(Γ, D·κ,m)60 after inverting p.
Following [Hid86, Oht95], define

T = lim
←r

H1
ét(Y1(Npr)Q̄,Zp(1)),

where r ∈ Z>1 and the transition maps are given by the traces pr1∗ induced in
cohomology by the degeneracy maps pr1 : Y1(Npr+1) −→ Y1(Npr) introduced in
Equation (8). As the maps pr1∗ are Hecke-equivariant, the module T is equipped
with the action of Hecke operators T ·` (resp., U ·`), for each prime ` not dividing
(resp., dividing) Np. Moreover, the action of (Z/prZ)∗ on H1

ét(Y1(Npr)Q̄,Zp(1)) via
diamond operators makes T a module over � = Zp[[Z

∗
p]]. Let

D′ = HomZp(Step(T′),Zp)
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be the right Σ′0(p)-module of measures on T′, where Step(T′) is the set of Zp-valued
step functions on T′. Section 4.1.1 equipsH1(Γ,D′) with the action of Hecke operators
U ′p and T ·` , for · = ∅, ′ and ` a rational prime different from p. A slight variant of
Lemma 6.8 of [GS93] yields a Hecke-equivariant isomorphism of �-modules

(85) T ∼= H1(Γ,D′),

where the action of the Iwasawa algebra � on the right hand side arises from that of
the group Z∗p = Z∗p · ( 1

1 ) ↪−→ Σ′0(p) on D′.
Each measure µ in D′ extends to a ΛU -linear morphism µU : C (T′,ΛU ) −→ ΛU on

the space C (T′,ΛU ) of ΛU -valued continuous functions on T′. The map sending µ to
the restriction of µU to A′U,m ↪−→ C (T′,ΛU ) defines a morphism of Σ′0(p)-modules

D′ −→ D′U,m,
which in turn induces a Hecke-equivariant morphism of ΛU -modules

(86) H1(Γ,D′)⊗� ΛU −→ H1(Γ,D′U,m),

where ΛU has the structure of �-algebra arising from κU : Z∗p −→ Λ∗U .
After setting

T60
U = e′ord ·T⊗� ΛU ,

the composition of the maps (85) and (86) yields an isomorphism of ΛU -modules

(87) ShU,m : T60
U
∼= H1(Γ,D′U,m)60(1),

which is Hecke-equivariant and GQ-equivariant. In order to prove this, let r be a
positive integer in U . Since H2(Γ, ·) vanishes for each Γ-module · of finite cardinality
(and D′U,m is profinite), evaluation at k = r + 2 on ΛU induces an isomorphism

(88) H1(Γ,D′U,m)60 ⊗ΛU ΛU/πk ∼= H1(Γ,D′r,m)60.

Moreover, for each j > 0, the natural map D′r,m −→ Lr(O) induces an isomorphism

(89) Hj(Γ,D′r,m)60 ∼= Hj(Γ, Lr(O))6
′0,

which for j = 1 recasts the isomorphism displayed in Part 2 of Proposition 4.2 after
inverting p. (Indeed a direct computation shows that

(
p 0
pNi 1

)
∈ Σ′0(p) maps the

kernel K′r,m of D′r,m −→ Lr(O) into pr+1 ·K′r,m for each 0 6 i 6 p−1, from which one
deduces that the anti-ordinary projector e′ord kills Hj(Γ,K′r,m) for each j > 0.) On
the other hand, the inclusion Sr(Zp) ↪−→ C (T′,Zp) dualises to a specialisation map
ρk : D′ −→ Lr(Zp), and Hida’s control theorem (cf. [Hid86, Oht95]) shows that the
isomorphism (85) and ρk induce a Hecke-equivariant isomorphism

(90) e′ord ·T⊗� �/Ik ∼= H1(Γ, Lr(Zp))
6′0,

where Ik is the ideal of � generated by [1+p]−(1+p)r and [µ]−µr, with µ a generator
of F∗p and [·] : Z∗p −→ �∗ the tautological map. It follows from Equations (88)–(90)
that the base change of ShU,m along the projection ΛU −→ ΛU/πk is an isomorphism.
Together with Nakayama’s Lemma, this implies that ShU,m is surjective, and that
ker(ShU,m) ⊗ΛU ΛU/πk is a quotient of the πk-torsion submodule of H1(Γ,D′U,m)60.
The latter is in turn a quotient of H0(Γ,D′r,m)60, which vanishes by Equation (89).
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Another application of Nakayama’s Lemma then proves that ShU,m is injective, thus
concluding the proof of the claim (87).

Set OU = ΛU [1/p] and denote by

h(U) = h(N,U) ↪−→ EndΛU (H1(Γ,D′U,m)60)[1/p]

the Hecke algebra generated over OU by the dual Hecke operators (U ′q)q|Np, (T ′`)`-Np
and (〈d〉)d∈(Z/NZ)∗ acting on H1(Γ, D′U,m)60. For each positive integer r and · = ∅, ′,
let h·(Npr) be the ring generated by the Hecke operators (U ·q)q|Np, (T ·`)`-Np and
(〈d〉)d∈(Z/NZ)∗ acting on the space M2(Npr) of complex modular forms of weight 2.
Conjugation by the Atkin–Lehner isomorphism wNpr ∈ IsoC(M2(Npr)) restricts to
an isomorphism h(Npr) ∼= h′(Npr), sending Uq and T` to U ′q and T ′` respectively. Set

(91) h·Np∞ = e·ord · lim
←r

(h·(Npr)⊗Z Zp) and h·Np∞(U) = h·Np∞ ⊗� OU ,

where the transition maps in the inverse limit defining hNp∞ (resp., h′Np∞) are induced
by the inclusions M2(Npr) ⊂M2(Npr+1) (resp., the maps M2(Npr) ↪−→M2(Npr+1)
sending f(z) to f(pz)). The Atkin–Lehner operators (wNpr )r>1 induce an isomor-
phism of ΛU -modules between hNp∞(U) and h′Np∞(N), and since h(Npr) acts faith-
fully on H1

ét(Y1(Npr)Q̄,Zp(1)) (cf. Equation (19)), the Shapiro isomorphism ShU,m
defined in Equation (87) yields an isomorphisms of OU -modules

(92) hNp∞(U) ∼= h(N,U).

sending the Hecke operators T` and Uq to the corresponding duals T ′` and U
′
q.

Denote by C = C(N) = Spf(hNp∞)Qp
Berthelot’s rigid fibre of the formal spectrum

of hNp∞ (cf. Section 7 of [dJ95]). The structural maps � −→ hNp∞ yield a finite and
flat morphism κ : C −→ W, and Equation (92) gives an isomorphism of OU -modules

(93) h(U) ∼= O(C ×W U)

mapping the dual Hecke operators T ′` (` - Np) and U ′q (q|Np) in the left hand side
to the corresponding Hecke operators T` and Uq in the right hand side, where O(·)
denotes the ring of bounded analytic functions on ·.

Section 6 of [Pil13] gives an isomorphism between C and the ordinary locus
C ord = C ord(N) of the Buzzard–Coleman–Mazur eigencurve C = C (N) of tame
level N , mapping the Hecke operators in hNp∞ to the corresponding Hecke operators
in O(C ord). In light of Equation (93), this gives isomorphisms

(94) h(U) ∼= O(C ord ×W U)

mapping the dual Hecke operators in the left hand side to the corresponding Hecke
operators in the right hand side.

Remark 4.4. — If U is a sufficiently small open disc in W centred at an integer
ko > 2, and h is a non-negative rational number satisfying h < ko − 2, then the
overconvergent Eichler–Shimura isomorphism [AIS15, Theorem 1.3] implies that the
isomorphism (94) holds after replacing C ord with the slope 6 h locus of C , and h(U)
with the Hecke algebra acting on the slope 6 h subspace of H1(Γ, D′U,m). On the
other hand, their result does not apply when U is centred at ko = 1 (and h = 0), a
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crucial scenario for the applications of the main results of this paper to the arithmetic
of elliptic curves (cf. [BSV20a]).

5. Hida families

As explained in Section 6 of [AIS15] (see also Section 6 of [GS93]), the big Ga-
lois representations associated to p-adic Coleman–Hida families (generically) appear
as direct factors of the cohomology groups H1(Γ,D·U,m). This section recalls these
results, paying particular attention to the case (not covered in loc. cit.) where the
open disc U is centred at weight 1 in W(Qp). To simplify the exposition we limit the
discussion to Hida families. This suffices for the applications we have in mind (and
requires no mention of the theory of (ϕ,Γ)-modules and trianguline representations).

Let M be a positive integer coprime to p, let U ⊂ W be an L-rational open disc
centred at a positive integer ko ∈ Z>1, and let χ be a Dirichlet character modulo M .
Let OU = ΛU [1/p] be the ring of bounded analytic functions on U , and let

U cl =
{
k ∈ U ∩ Z

∣∣ k > 2 and k ≡ ko mod 2 · (p− 1)
}

be the set of classical points of U . An OU -adic cusp form of tame level M and tame
character χ is a formal q-expansion

f =
∑
n>1

an(f ;k) · qn ∈ OU JqK

such that, for each classical weight k ∈ U cl, the weight-k specialisation

fk =
∑
n>1

an(f ; k) · qn ∈ Sord
k (Mp,χ)L

is the q-expansion of a p-ordinary cusp form in Sord
k (Mp,χ)L. Here

Sord
k (Mp,χ)L = eord · Sk(Mp,χ)L,

where eord = limn→∞ Un!
p is Hida’s ordinary projector acting on the L-module

Sk(Mp,χ)L of cusp forms of weight k, level Γ1(M) ∩ Γ0(p), character χ and Fourier
coefficients in Q̄ ∩ L (under the fixed embedding Q̄ ↪→ Q̄p). Denote by Sord

U (M,χ)
the OU -module of OU -adic cusp forms of tame level M and character χ. It is
equipped with the action of Hecke operators T`, for primes ` -Mp, and U`, for primes
`|Mp, which are compatible with the usual Hecke operators on Sord

k (Mp,χ) for each
k ∈ U cl. A cusp form f in Sord

U (M,χ) is normalised if a1(f ;k) is the constant
function with value one on U . A (L-rational) Hida family of tame level M , tame
character χ and centre ko ∈ Z>1 is an OU -adic cusp form f ∈ Sord

U (M,χ), for some
U as above, which is an eigenvector for the Hecke operators Up and T`, for each
prime ` - Mp (equivalently such that, for each k ∈ U cl, the weight-k specialisation
fk is an eigenvector for the Hecke operators Up and T`, for all primes ` - Mp.) A
normalised Hida family f ∈ Sord

U (M,χ) is new (or primitive) of tame level M if the
conductor of the eigenform fk is equal to M for all k > 2 in U cl. To each Hida family
f ∈ Sord

U (M,χ) is associated a unique pair (Mf ,f
]), where Mf is a positive divisor

of M and f ] =
∑
n>1 an(k) ·qn in Sord

U (Mf , χ) is a new Hida family of tame level Mf
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such that Up(f) = ap(k) · f and T`(f) = a`(k) · f for all primes ` - M . We call Mf

the conductor of f and f ] the primitive Hida family associated with f . Moreover, we
denote by

Sord
U (M,χf )[f ]] ↪−→ Sord

U (M,χf )

the OU -module of Hida families in Sord
U (M,χf ) having f ] as associated primitive Hida

family. A level-N test vector for f ] is an element of Sord
U (M,χf )[f ]] of the form

(95) f =
∑

0<d|M/Mf

rd · f ](qd),

for analytic functions (rd)d in OU without common zeros in U .
Fix in the rest of this section a positive divisor Nf of N and a normalised eigenform

f ]ko =
∑
n>1

an · qn ∈Mko(Γ1(Nf ) ∩ Γ0(p), χf )L

of weight ko > 1, level Nfp, character χf : (Z/NfZ)∗ −→ L∗ and Fourier coefficients
in L, satisfying the following (cf. Assumption 1.1)

Assumption 5.1. — One of the following statements 1–2 holds true.
1. The form f ]ko is cuspidal of weight ko > 2, p-ordinary (id est ap is a p-adic unit

under the fixed embedding Q̄ ↪−→ Q̄p) and its conductor is divisible by Nf .
2. The form f ]ko is a p-stabilisation of a cuspidal and p-regular weight-one newform

of level Nf , without real multiplication by a quadratic field in which p splits.

The previous assumption guarantees that the eigencurve κ : C (Nf ) −→ W (cf.
Section 4.3) is étale at (the L-rational point corresponding to) f ]ko . In case 5.1(1)
(resp., case 5.1(2)) this follows from Corollary 1.4 of [Hid86] and Section 6 of [Pil13]
(resp., Theorems 1.1 and 7.2 of [BD16]). As a consequence, there exists an open
connected disc Uf inWL centred at ko, and a section Uf ↪−→ C (Nf )⊗Qp L of κ⊗Qp L
mapping Uf isomorphically onto an open admissible neighbourhood of f ]ko . In light
of Equation (94), this yields an idempotent ef] in the Hecke algebra (cf. Section 4.3)

H def
= h(Nf , Uf ),

and an isomorphism of OUf -algebras between ef] · H and OUf . Let

(96) ϕ : H −→ OUf

be the composition of this isomorphism with the projection onto ef] · H.
For each positive integer n, denote by ∆′n ⊂ Σ′0(p)∩M2(Z) the set of integral matri-

ces α =
(
a b
c d

)
satisfying det(α) = n, d ≡ 1 mod N , p - d and c ≡ 0 mod Np. Define

T ′n =
∑
α∈∆′n

Tα, where Tα is the endomorphism of H1(Γ1(Nf ) ∩ Γ0(p),D′Uf ,m)60

introduced in Section 4.1.1 (and m = m(Uf ) is sufficiently large). The dual Hecke
operator T ′n belongs to H (cf. [Shi71, Chapter 3]), and after setting

an(k) = an(f ],k) = ϕ(T ′n),

the formal q-expansion
f ] =

∑
n>1

an(k) · qn ∈ OUf [[q]]



42 MASSIMO BERTOLINI, MARCO ADAMO SEVESO, AND RODOLFO VENERUCCI

is the (unique) cuspidal primitive Hida family in Sord
Uf

(Nf , χf ) of tame level Nf and
character χf specialising to f ]ko at ko. For each positive integer n, it is an eigenvector
for the Hecke operator Tn with eigenvalue an(k).

The rest of this section summarises the main result from Hida theory needed in
the sequel of the paper. Fix a level-N test vector

f ∈ Sord
Uf

(N,χf )[f ]]

for f ]. To ease notation, set Λf = ΛUf , Of = OUf , D·f ,m = D·Uf ,m and D·f ,m = D·Uf ,m
(where as usual · denotes either the empty symbol or ′). Denote by k−ko a uniformiser
at ko in Λf , so that Of is a module of power series in LJk − koK which converge for
any k in Uf . One has κUf (t) = ω(t)ko−2 · 〈t〉k−2 for all t ∈ Z∗p, and

(97) κUf = ωko−2
cyc · κk−2

cyc : GQ −→ Λ∗f .

Here ωcyc and κcyc denote the composition of the p-adic cyclotomic character

χcyc : GQ −→ Z∗p

with the projections ω : Z∗p −→ F∗p and 〈·〉 : Zp −→ 1 + pZp respectively, and κk−2
cyc is

the Λ∗f -valued character which on g ∈ GQ takes the value κcyc(g)k−2.
• For every classical weight k > 2 in U cl

f the weight-k specialisation fk is old at
p. Indeed fk = fα is the ordinary p-stabilisation of an eigenform f = fk in
Sk(N,χf ) (cf. Equation (54)), hence ap(k) = αf is the unit root of

X2 − ap(f)

a1(f)
·X + χf (p)pk−1 = (X − αf ) · (X − βf ).

(We refer the reader to [Hid86] for more details.)
• To ease notation, set

V = H1(Γ1(Nf ) ∩ Γ0(p), D′f ,m)60(1) and H = h(Nf , Uf ).

According to the main results of [Oht00] and the isomorphism (92), there is a
short exact sequence of H[GQp

]-modules

(98) 0 −→ V+ −→ V −→ V− −→ 0,

where V± are finite free Of -modules. The GQp
-module V− is the maximal

unramified Of -quotient of V , and an arithmetic Frobenius acts on it as mul-
tiplication by the p-th Fourier coefficient ap(k) of f ]. Moreover, there are
canonical isomorphisms of H-modules V+ ∼= Hpar and V− ∼= HomOU (H,OU ),
where Hpar is the quotient of H acting faithfully on the parabolic subspace
H1

par(Γf , D
′
f ,m)60(1) of the cohomology group V .

Applying the idempotent ef] (defined before Equation (96)) to the short
exact sequence (98) gives a short exact sequence of Of [GQp

]-modules

(99) 0 −→ V (f ])+ −→ V (f ]) −→ V (f ])− −→ 0,

where (for · equal to one of the symbols ∅,+ and −)

V (f ])· = ef] · V ·
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is a free Of -direct summand of V ·.
• The Of [GQ]-module V (f ]) has rank two over Of , and is unramified outside
Nfp. For every prime ` not dividing Nfp, the characteristic polynomial of an
arithmetic Frobenius Frob` in GQ at ` is given by (cf. Equation (106) below)

det
(
1− Frob`|V (f ]) ·X

)
= 1− a`(k) ·X + χf (`) · κUf (`) · ` ·X2.

In particular the determinant of V (f ]) is given by (cf. Equation (97))

(100) detOfV (f) = χf · χcyc · κUf = χf · ωko−1
cyc · κk−1

cyc .

As the arithmetic Frobenius Frobp ∈ GQp acts on V− as multiplication by
ap(k), one deduces isomorphisms of Of [GQp

]-modules

(101) V (f ])+ ∼= Of
(
1 + κUf + χf − ǎp(k)

)
and V (f ])− ∼= Of (ǎp(k)),

where for every a ∈ Λ∗f one writes ǎ : GQp → Λ∗f for the continuous unramified
character satisfying ǎ(Frobp) = a.

• Recall the level-N test vector f for f ] fixed above, and define

H1(Γ, D′f ,m)60(1) −� V (f)

to be the maximal Of -quotient of H1
· (Γ, D

′
f ,m)60(1) on which the dual Hecke

operators T ′` , U
′
p, and 〈d〉

′ act respectively as multiplication by a`(k), ap(k) and
χf (d), for each prime ` not dividing Np and each unit d in (Z/NZ)∗. This is
equal to the GQ-modules V (f ]) = ef] ·V introduced above when N = Nf and
f = f ]. In general, the OU [GQ]-module V (f) is (non-canonically) isomorphic
to the direct sum of a finite number of copies of V (f ]). In particular, V (f) is
a free OU -module, and there is a short exact sequence of Of [GQp

]-modules

(102) 0 −→ V (f)+ −→ V (f) −→ V (f)− −→ 0

with V (f)± free of finite rank over Of , and V (f) −� V (f)− the maximal
unramified Of -quotient of V (f).

Dually, define

V ∗(f) ↪−→ H1
c (Γ, Df ,m)60(−κUf )

be the maximal Of -submodule of H1
c (Γ, Df ,m)60(−κUf ) on which the Hecke

operators T`, Up and 〈d〉 act respectively as multiplication by a`(k), ap(k) and
χf (d), for every prime ` - Np and every unit d in (Z/NZ)∗. Then V ∗(f) is an
Of [GQ]-direct summand of H1

c (Γ, Df ,m)60(−κUf ), isomorphic to the Of -dual
of V (f). Indeed the bilinear form det∗Uf defined in Equation (82) induces a
perfect pairing of Of [GQ]-modules (cf. [Oht00] and Section 4.3)

(103) 〈·, ·〉f : V (f)⊗Of V
∗(f) −→ Of .

Let V ∗(f)+ ↪−→ V ∗(f) be the maximal unramified submodule of the restriction
of V ∗(f) to GQp

, and let V ∗(f)− be the quotient of V ∗(f) by V ∗(f)+. There
is then a short exact sequence of Of [GQp

]-modules

0 −→ V ∗(f)+ −→ V ∗(f) −→ V ∗(f)− −→ 0,
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and the bilinear form 〈·, ·〉f induces perfect, GQp
-equivariant pairings

(104) 〈·, ·〉f : V (f)± ⊗Of V
∗(f)∓ −→ Of .

Because H1
· (Γ, D

·
f ,m)60 is an Of -direct summand of H1

· (Γ, D
·
f ,m), there are

natural Of [GQ]-projections

(105) prf : H1(Γ, D′f ,m)(1) −� V (f) and pr∗f : H1
c (Γ, Df ,m)(−κUf ) −� V ∗(f).

• For all classical points k in U cl
f the specialisation map ρk in the right column

of Equation (84) gives rise to an isomorphism of L[GQ]-modules

(106) ρk : V (f)⊗Λf Λf/(πk) ∼= H1
ét(Y1(N, p)Q̄,Lk−2(1))f∗k

∼= V (fk).

Here

H1
ét(Y1(N, p)Q̄,Lk−2(1))L −→ H1

ét(Y1(N, p)Q̄,Lk−2(1))f∗k

is the maximal quotient on which T ′` , U
′
p and 〈d〉′ act respectively as multiplica-

tion by a`(k), ap(k) and χf (p) for any prime ` - Np and any unit d in (Z/NpZ)∗.
If t : Y1(Np)→ Y1(N, p) is the natural projection (viz. the one induced by the
identity on H under (6)), the second isomorphism in Equation (106) is the one
induced by the pull-back

t∗ : H1
ét(Y1(N, p)Q̄,Lk−2(1)) −→ H1

ét(Y1(Np)Q̄,Lk−2(1)).

If ko = 1, so that f1 =
∑
n>1 an(1) · qn is a classical, cuspidal weight-one

Hecke eigenform (cf. Assumption 5.1), then the weight-one specialisation

V (f ]1) = V (f ])⊗Λf Λf/(π1)

of V (f ]) yields a canonical model of the dual of the Deligne–Serre representation
attached to f ]1 . More generally, if f1 is classical, set V (f1) = V (f)⊗Λf Λf/π1

(which is non-canonically isomorphism to the direct sum of a finite number of
V (f ]1).) In order to have coherent notation and terminology, we still denote by

(107) ρ1 : V (f)⊗Λf Λf/(π1) −→ V (f1)

the identity map, and refer to it as the specialisation map at weight one.
Similarly for each classical weight k in U cl

f there are natural isomorphisms
of L[GQp ]-modules

(108) ρk : V ∗(f)⊗Λf Λf/(πk) ∼= V ∗(fk)

(cf. the discussion following Equation (84)). Moreover for each x ∈ V (f) and
y ∈ V ∗(f) one has

(109) 〈x, y〉f (k) = 〈ρk(x), ρk(y)〉fk ,

where 〈·, ·〉fk is the perfect bilinear form defined in Equation (24).
• For each k in U cl

f and · = ∅, ∗, one has short exact sequences of L[GQp ]-modules

(110) 0 −→ V ·(fk)+ −→ V ·(fk) −→ V ·(fk)− −→ 0,
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where V (fk)− is the maximal GQp
-unramified L-quotient of V (fk), and

V ∗(fk)+ is the maximal GQp
-unramified L-submodule of V ∗(fk). The special-

isation maps (106) and (108) induce isomorphisms

(111) ρk : V ·(f)± ⊗k L ∼= V ·(fk)±.

According to Equation (101) the inertia subgroup IQp
of GQp

acts on V (fk)+

via χk−1
cyc , and trivially on V (fk)−. If k > 2, applying DdR(·) to the previous

exact sequence and using Equation (28) gives natural isomorphisms

(112) Dcris(V (fk)+) ∼= VdR(fk)/Fil0 and Fil0VdR(fk) ∼= Dcris(V (fk)−).

Similarly IQp
acts trivially on V ∗(fk)+ and via χ1−k

cyc on V ∗(fk)−, hence Equa-
tions (28) and (110) give

(113) Dcris(V
∗(fk)+) ∼= V ∗dR(fk)/Fil1 and Fil1V ∗dR(fk) ∼= Dcris(V

∗(fk)−).

• The Atkin–Lehner operator wNp introduced in Equation (67) induces an iso-
morphism of Of [GQ(ζN )]-modules (cf. Equation (68))

wNp : H1(Γ, DU,m)60 ∼= H1(Γ, D′U,m)60,

intertwining the action of the dual Hecke operators U ′p, T ′` and 〈d〉 on the left
hand side with that of the Hecke operators Up, T` and 〈d〉−1 on the right hand
side, for each prime ` not dividing Np and each unit d modulo N . Since the
form f ]ko is cuspidal, it induces Galois equivariant isomorphisms

(114) w·Np : V ∗(f)·(1 + κUf + χf ) ∼= V (f)·,

for · equal to one of the symbols ∅,+ and −.
• Set

(115) D∗(f)− =
(
V∗(f)−(1 + κUf + χf )⊗̂ZpẐ

nr
p

)GQp [1/p],

where V∗(f)− is a GQp
-stable Λf -lattice in V ∗(f)−, and Ẑnr

p is the ring of
integers of the p-adic completion Q̂nr

p of the maximal unramified extension
of Qp. (Note that V ∗(f)−(1 + κUf + χf ) is an unramified GQp -module, cf.
Equations (101) and (104).) It is a free finite Of -module (of rank one if f = f ]

is primitive). For each classical point k in U cl
f , the isomorphism (111) and the

second isomorphism in Equation (113) induce a specialisation isomorphism

(116) ρk : D∗(f)− ⊗k L ∼=
(
V ∗(fk)−(k − 1 + χf )⊗Qp

Q̂nr
p

)GQp ∼= Fil1V ∗dR(fk).

As V ∗(fk)−(k − 1) is unramified, in the previous equation one identifies the
middle term with the tensor product of Dcris(V

∗(fk)−), Dcris(Qp(k − 1)) and
Dcris(L(χf )). The second isomorphism then arises from Equation (113), the
canonical isomorphism Dcris(Qp(k − 1)) ∼= Qp, and the isomorphism between
Dcris(L(χf )) and L sending the Gauß sum

∑
a∈(Z/c(χf )Z)∗ χ̌f (a) ⊗ ζac(χf ) of

the primitive character χ̌f attached to χf to the identity, where c(χf ) is the
conductor of χf and ζc(χf ) is a primitive c(χf )-th root of unity.
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In light of the isomorphisms (87) and (114), the main result of [Oht00] and
Theorem 9.5.2 of [KLZ17] yield an Eichler–Shimura isomorphism

(117) ES−f : D∗(f)− ∼= Sord
Uf

(N,χf )[f ]],

whose base change along evaluation at a classical point k ∈ U cl
f is equal to

the composition of the specialisation isomorphism (116) with the isomorphism
Fil1V ∗dR(fk) ∼= Sk(Np,L)fk defined in Equation (27). One defines

(118) ωf ∈ D∗(f)−

to be the image of the Hida family f under the inverse of ES−f , so that

(119) ρk(ωf ) = ωfk

for each classical point k in U cl
f (cf. Equation (30)). (When ko > 2, the overcon-

vergent Eichler–Shimura isomorphism proved in [AIS15] extends these results
to Coleman families of slope at most ko − 2.)

• Set

(120) D∗(f)+ =
(
V∗(f)+⊗̂ZpẐ

nr
p

)GQp [1/p],

where V∗(f)+ is a GQp
-stable Λf -lattice in V ∗(f)+. The perfect duality 〈·, ·〉f

(cf. Equation (104)), the Atkin–Lehner isomorphism w+
Np (cf. Equation (114))

and the Eichler–Shimura isomorphism ES−f give rise to an isomorphism

ES+
f : D∗(f)+ ∼= HomOf (Sord

Uf
(N,χf )[f ]],Of ),

whose base change along evaluation at k ∈ U cl
f on Of equals the composition

of the specialisation isomorphism

(121) ρk : D∗(f)+ ⊗k L ∼=
(
V ∗(fk)+ ⊗Qp

Q̂nr
p

)GQp ∼= V ∗dR(fk)/Fil1

arising from Equations (111) and (113), and the isomorphism

V ∗dR(fk)/Fil1 ∼= HomL(Sk(Np,L)f∗k , L) ∼= HomL(Sk(Np,L)fk , L),

where the first map is the adjoint of the perfect duality 〈·, ·〉fk defined in Equa-
tion (32) (cf. Equation (109)), and the second is the dual of

(−1)ko−2 · wNp : Sk(Np,L)fk
∼= Sk(Np,L)f∗k .

We claim that (shrinking Uf if necessary) there exists

(122) ηf ∈ D∗(f)+

such that, for each classical point k in U cl
f , one has (cf. Equation (34))

(123) ρk(ηf ) = (p− 1)ap(k) · ηfk .

Indeed, write f =
∑
d rd · f

](qd), with functions (rd)d|(N/Nf ) in Of without
common zeros. For each positive divisor d of N/Nf , the Q-rational morphism
vd : Y1(N, p)Q −→ Y1(Nf , p)Q arising from multiplication by d on H (cf. Equa-
tion (6)) induces a GQ-equivariant morphism vd∗ : V ∗(f) −→ V ∗(f ]) (cf.
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Equation (77)), which in turn induces vd∗ : D∗(f)− −→ D∗(f ])−. Under the
Eichler–Shimura isomorphism ES−f , the latter gives rise to a map

vd∗ : Sord
Uf

(N,χf )[f ]] −→ Sord
Uf

(Nf , χf )[f ]] = Of · f ].

Set Tracef =
∑
d rd · vd∗, and define the big differential η̌f ∈ D∗(f)+ to be the

image under the inverse of ES+
f of the linear form sending the Hida family f ′

in Sord
Uf

(N,χf )[f ]] to the first Fourier coefficient of Tracef (f ′):

ES+
f (η̌f )(f ′) = a1(Tracef (f ′)).

It follows from the definitions and Equation (109) that

ρk(η̌f ) = (−1)ko−2 · (fk,fk)Np
(f ]k,f

]

k)Nfp
· ηfk

for each classical point k in U cl
f . As explained in the proof of Lemma 2.19

of [DR14], the elements (−1)ko−2 · (fk,fk)Np

(f]k ,f
]
k)Nf p

are interpolated by an analytic

function Ef on Uf , which does not vanish at ko (as fko is non-zero by the
definition of level-N test vector for f ]). Shrinking Uf if necessary, one can then
assume that Ef is a unit in Of , and define the sought-for Of -adic differential
ηf to be (p− 1) · E−1

f · ap(k) times η̌f .
• Similarly as in Equations (115) and (120), for · = ±, define the Of -module

(124) D(f)· =
(
V(f)·(ν·)⊗̂ZpẐ

nr
p

)GQp [1/p],

where V(f)· is a GQp -stable Of -lattice in V (f)·, ν− is the trivial character and
ν+ = −1 − κUf (so that the twist of V (f)· by ν· is unramified, cf. Equation
(101)). The pairings 〈·, ·〉f defined in Equation (104) and the isomorphism
Dcris(L(χf )) ∼= L sending the Gauß sum G(χf ) to the identity induce perfect
dualities of Of -modules (denoted again by the same symbols)

(125) 〈·, ·〉f : D(f)± ⊗Of D
∗(f)∓ −→ Of .

Similarly as in Equations (116) and (121), for each classical point k ∈ U cl
f , the

specialisation maps (111) and the isomorphisms (112) give rise to specialisation
isomorphisms of L-modules

(126) ρk : D(f)+ ⊗k L ∼= VdR(fk)/Fil0 and ρk : D(f)− ⊗k L ∼= Fil0VdR(fk).

Under the isomorphisms (116), (121) and (126), the base change of (125) along
evaluation at k on Of is compatible with the perfect duality (31).

• If ko = 1, the representations V (f1) and V ∗(f1) are Artin representations
unramified at p. After setting V ·(f1)± = V ·(f)± ⊗1 L (for · = ∅, ∗), one has a
decomposition of GQp

-modules

V ·(f1) ∼= V ·(f1)+ ⊕ V ·(f1)−.

Indeed, according to Assumption 5.1(2) one has

V (f1)+ = V (f1)Frobp=βf1 and V (f1)− = V (f1)Frobp=αf1 ,
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where Frobp is an arithmetic Frobenius, αf1 = ap(1) and αf1 · βf1 = χf (p).
In order to have a uniform notation (cf. Equation (112)), if ko = 1 one sets

V ·dR(f1) = Dcris(V
·(f1)) and defines

(127) VdR(f1)/Fil0 = Dcris(V (f1)+) and Fil0VdR(f1) = Dcris(V (f1)−).

Similarly set Fil1V ∗dR(f1) = Dcris(V
∗(f1)−) and V ∗dR(f1)/Fil1 = Dcris(V

∗(f1)+).
The pairing (103) then induces a perfect and GQ-equivariant duality

V (f1)⊗L V ∗(f1) −→ L,

under which V (f1)+ is the orthogonal complement of V ∗(f1)+. This in turn
induces on the crystalline Dieudonné modules a perfect pairing

(128) 〈·, ·〉f1 : VdR(f1)⊗L V ∗dR(f1) −→ L,

which identifies Fil0VdR(f1) and VdR(f1)/Fil0 with the duals of V ∗dR(f1)/Fil1

and Fil1V ∗dR(f1) respectively. One finally defines

(129) ωf1 = ρ1(ωf ) ∈ Fil1V ∗dR(f1) and ηf1 = ρ1(ηf ) ∈ V ∗dR(f1)/Fil1

as the specialisations of ωf and ηf respectively at weight one.

6. Garrett–Rankin p-adic L-functions

Fix three primitive L-rational Hida families

f ]=
∑
n>1

an(k) · qn ∈ Sord
Uf

(Nf , χf ),

g]=
∑
n>1

bn(l) · qn ∈ Sord
Ug (Ng, χg)

and h]=
∑
n>1

cn(m) · qn ∈ Sord
Uh

(Nh, χh).

Let N be the least common multiple of Nf , Ng and Nh, and let

f ∈ Sord
Uf

(N,χf ), g ∈ Sord
Ug (N,χg) and h ∈ Sord

Uh
(N,χh)

be Hida families with associated primitive forms f ], g] and h] respectively. Suppose
that Assumption 1.2 holds true, namely χf · χg · χh is the trivial character modulo
N . Denote by Σgen

f the set of classical triples w = (k, l,m) in Σf such that p does
not divide the conductor of fk, gl and hm.

For any w ∈ Σgen
f one has fk = (fk)α, gl = (gl)α and hm = (hm)α for (unique)

p-ordinary eigenforms fk, gl and hm of common level N (cf. Equation (54)). Similarly
f ]k, g

]

l and h
]

m are the ordinary p-stabilisations of newforms f ]k, g
]

l and h]m of levels
Nf , Ng and Nh respectively.

Lemma 6.1. — There exists a Hida family wN (f) in Sord
Uf

(N, χ̄f ) such that, for any
k ∈ U cl

f with p not dividing the conductor of fk, the weight-k specialisation wN (f)k
is the ordinary p-stabilisation of fwk = wN (fk).
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Proof. — A direct computation (see Proposition 1.5 of [AL78]) shows that

wN ◦ pr∗p = 〈(p, 1)〉 · pr∗p ◦ wN and wN ◦ pr∗1 = pr∗1 ◦ wN
as morphisms from H1

dR(Y1(N)Qp ,SdR,k−2)L to H1
dR(Y1(Np)Qp ,SdR,k−2)L, where

〈(p, 1)〉 is the diamond operator associated with (p, 1) under the identification
Z/NpZ = Z/NZ× Fp. As a consequence

(fwk )α =

(
pr∗1 ◦ wN −

χ̄f (p)βfk
pk−1

· pr∗p ◦ wN
)
fk(130)

= wN ◦
(

pr∗1 −
βfk
pk−1

· pr∗p

)
fk = wN (fk).

The lemma follows from the previous equation and [KLZ17, Proposition 10.1.2],
namely the existence of a morphism wN : Sord

Uf
(N,χf ) → Sord

Uf
(N, χ̄f ) which spe-

cialises to the Atkin–Lehner operator wN on the ordinary part of Sk(Γ1(N, p), χf ) for
each classical weight k in U cl

f (cf. Equations (69) and (117)).

According to the previous lemma and the results of [HT01, DR14, Hid85] Hida’s
method (cf. [Hid85]) can be applied to construct a square-root Garrett–Rankin p-adic
L-function

L f
p (f , g,h) ∈ Ofgh

such that, for each classical triple w = (k, l,m) in Σgen
f , one has

(131) L f
p (f , g,h)(w) = L f

p (fk, gl,hm),

where L f
p (fk, gl,hm) is the p-adic period associated in Equation (55) to the p-

stabilisation of the triple (fk, gl, hm).

Remark 6.2. — The p-adic L-function L f
p (f , g,h) slightly differs from the one

denoted by the same symbol in [DR14]. Precisely our L f
p (f , g,h) is equal to their

L f
p (wN (f∗), g,h), where f∗ is the Hida family which specialises to the dual of fk for

each k in U cl
f .

6.1. Test vectors and special value formulae. — In this section assume the
following hypotheses (cf. [Hsi20]).

Assumption 6.3. —
1. There is a triple (k, l,m) in Σ such that the local sign εq(f ]k, g

]

l ,h
]

m) is equal to
+1 for all primes q|N .

2. The greatest common divisor of Nf , Ng and Nh is squarefree.
3. There is a classical point k in U cl

f such that V (f ]k) is residually irreducible and
p-distinguished.

Under these assumptions, Section 3.5 of [Hsi20] implies the existence of an explicit
level-N test vector (f?, g?,h?) for (f ], g],h]) such that the Garrett–Rankin triple
product p-adic L-function

Lp(f
], g],h]) = L f

p (f?, g?,h?)2
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satisfies the following interpolation property (see Theorem A of loc. cit.). For all
w = (k, l,m) in Σgen

f

(132)

Lp(f
]

k, g
]

l ,h
]

m) =
Γ(k, l,m)

2α(k,l,m)
·
E(f ]k, g

]

l ,h
]

m)2

E0(f ]k)2 · E1(f ]k)2
·
∏
q|N

Locq ·
L(f ]k ⊗ g

]

l ⊗ h]m,
k+l+m−2

2 )

π2(k−2) · (f ]k, f
]

k)
2

Nf

,

where the notations are as follows.
• α(k, l,m) ∈ Ofgh is a linear form in the variables k, l and m and

(133)
Γ(k,m, l) =

(
(k+l+m−4)/2

)
!·
(
(k+l−m−2)/2

)
!·
(
(k+m−l−2)/2

)
!·
(
(k−l−m)/2

)
!.

• Set cw = (k + l + m − 2)/2, αk = ap(k), βk = χf (p)pk−1/αk, αl = bp(l) et
cetera. Then

(134)

E(f ]k, g
]

l ,h
]

m) =

(
1− βkαlαm

pcw

)(
1− βkβlαm

pcw

)(
1− βkαlβm

pcw

)(
1− βkβlβm

pcw

)
,

(135) E0(f ]k) = 1− βk
αk

and E1(f ]k) = 1− βk
p · αk

.

• For each rational prime q dividing N , Locq is an explicit non-zero rational
number, independent of w.
• Let π(f ]k), π(g]l ) and π(h]m) be the cuspidal automorphic representations of GL2

attached to f ]k, g
]

l and h]m respectively, and set Πx = π(f ]k) ⊗ π(g]l ) ⊗ π(h]m).
Then

L(f ]k ⊗ g
]

l ⊗ h
]

m, s) = L(Πw, s+ (3− k − l −m)/2).

Thanks to the results of Garrett and Harris–Kudla [Gar87, HK91] one knows
that L(f ]k⊗ g

]

l ⊗h]m, s) admits an analytic continuation to all of C and satisfies
a functional equation with global epsilon factor ε(Πx, 1/2) equal to +1 relating
its values at s and k + l +m− 2− s.

This is proved by Hsieh in Theorem A of [Hsi20] relying on the special value
formulae of Garrett, Harris–Kudla and Ichino [Gar87, HK91, Ich08].

7. Selmer groups and big logarithms

Let (f ], g],h]) and (f , g,h) be as in Section 6.

7.1. A four-variable big logarithm. — Let (cf. Section 5, in particular Equa-
tions (97), (102) and (101))

M(f , g,h)f = V (f)−⊗̂LV (g)+⊗̂LV (h)+
(
ω2−lo−mo

cyc · κ2−l−m
cyc

)
.

This is a free Ofgh-module on which GQp
acts via the unramified character

Ψ : GQp
−� Gur

Qp
−→ O∗fgh
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defined by

(136) Ψ(Frobp) =
χgχh(p) · ap(k)

bp(l) · cp(m)

(cf. Equation (101)). Let Ocyc ⊂ QpJj−joK be the ring of bounded analytic functions
on an open disc Ucyc centred at jo = (ko − lo −mo)/2, and let κ−jcyc : GQ → O∗cyc be
defined by κ−jcyc(g) = expp(−j · logp(χcyc(g))). Denote by Ōfgh the tensor product
Ofgh⊗̂Qp

Ocyc and define the Ōfgh[GQp
]-module

(137) M̄(f , g,h)f = M(f , g,h)f ⊗̂Qp
Ocyc

(
ω−jocyc · κ−jcyc

)
.

Denote by Z = Zfgh the set of integers such that j ≡ jo (mod p − 1) and set
Σ̄ = Σ × Z. For all w = (k, l,m) ∈ Σ let Ψw : GQp

→ L∗ be the composition of
Ψ with evaluation at w on Ofgh and define M(fk, gl,hm)f = M(f , g,h)f ⊗w L as
the base change of M(f , g,h) under evaluation at x on Ofgh, which is isomorphic to
L(Ψw)a for some positive integer a > 1. If x = (w, j) ∈ Σ̄ then evaluation at x on
Ōfgh induces a natural isomorphism of L[GQp

]-modules

ρx : M̄(f , g,h)f ⊗x L ∼= M(fk, gl,hm)f (−j).

If
Λfgh = Λf ⊗̂OΛg⊗̂OΛh

then
M(f , g,h)f = M(f , g,h)f [1/p]

for a Λfgh[GQp
]-module M(f , g,h)f , free of finite rank over Λfgh. Let Ẑnr

p = W (F̄p)
be the ring of Witt vectors of an algebraic closure of Fp and define

D(f , g,h)f =
(
M(f , g,h)f ⊗̂ZpẐ

nr
p

)GQp

[1/p]

and
D̄(f , g,h)f = D(f , g,h)f ⊗̂Qp

Ocyc.

(Note that D(f , g,h)f is naturally isomorphic to D(f)−⊗̂LD(g)+⊗̂LD(h)+, cf.
Equation (124).) As M(f , g,h)f is unramified and free over Λfgh, D(f , g,h)f is a free
Ofgh-module of the same rank as M(f , g,h)f . For all classical triples w = (k, l,m)
in Σ the specialisation maps (106) induce a natural isomorphism

ρw : D(f , g,h)f ⊗w L ∼= Dcris(M(fk, gl,hm)f )

Let to denote Fontaine’s p-adic analogue of 2πi, which depends on a fixed choice of a
compatible sequence ζp∞ of pn-th roots of unit for n > 0. The element t = t−1

o ⊗ζp∞ is
a canonical generator of Dcris(Qp(1)), and gives rise to a generator ti of Dcris(Qp(i))
for each i ∈ Z. For any x = (w, j) in Σ̄ define the isomorphism

(138) ρx : D̄(f , g,h)f ⊗x L ∼= Dcris

(
M(fk, gl,hm)f (−j)

)
.

by the formulae ρx(α⊗̂β) = β(j) ·ρw(α)⊗ t−j , for each α ∈ D(f , g,h)f and β ∈ Ocyc.
If j < 0 then the Bloch–Kato exponential map gives an isomorphism

expx : Dcris

(
M(fk, gl,hm)f (−j)

) ∼= H1(Qp,M(fk, gl,hm)f (−j)),
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and one writes logx for its inverse. If j > 0 denote by

exp∗x : H1(Qp,M(fk, gl,hm)f (−j)) −→ Dcris(M(fk, gl,hm)f (−j))

the Bloch–Kato dual exponential map. The following proposition is a consequence
of the work of Ochiai [Och03] and Loeffler–Zerbes [LZ14], which extends previous
work of Coleman–Perrin-Riou [Col79, PR94] (see also Theorem 8.2.3 of [KLZ17]).

Proposition 7.1. — There exists a unique morphism of Ōfgh-modules

L̄f : H1(Qp, M̄(f , g,h)f ) −→ D̄(f , g,h)f

such that for any x = (w, j) in Σ̄ with Ψw(Frobp) 6= p1+j and any Z in
H1(Qp, M̄(f , g,h)f ) one has

L̄f (Z )x =

(
1− pj

Ψw(Frobp)

)(
1− Ψw(Frobp)

p1+j

)−1

·

{
(−1)j+1

(−j−1)! logx(Zx) if j < 0

j! exp∗x(Zx) if j > 0
,

where L̄f (Z )x and Zx are shorthands for ρx ◦ L̄f (Z ) and ρx∗(Z ) respectively.

7.1.1. Ofgh-adic differentials. — Recall the Of -modules D∗(f)± (resp., D(f)±) in-
troduced in Equations (115) and (120) (resp., Equation (124)), and define similarly
D∗(ξ)± and D(ξ)± for ξ = g,h. Then (cf. Section 7.1)

D̄(f , g,h)f = D(f)−⊗̂LD(g)+⊗̂LD(h)+⊗̂QpOcyc,

and one defines dually

D̄∗(f , g,h)f = D∗(f)+⊗̂LD∗(g)−⊗̂LD∗(h)−⊗̂Qp
Ocyc,

so that the perfect dualities 〈·, ·〉ξ, for ξ = f , g,h (cf. Equation (125)) yield a pairing

(139) 〈·, ·〉fgh : D̄(f , g,h)f ⊗Ōfgh D̄
∗(f , g,h)f −→ Ōfgh.

Moreover, identifying Dcris(Qp(i)) = Qp · ti with Qp (i ∈ Z), the isomorphisms (116),
(121), (126) (and their analogues for g and h) give specialisation isomorphisms

(140) ρx : D̄(f , g,h)f ⊗x L ∼= Fil0VdR(fk)⊗L VdR(gl)/Fil0 ⊗L VdR(hm)/Fil0

and

(141) ρx : D̄∗(f , g,h)f ⊗x L ∼= V ∗dR(fk)/Fil1 ⊗L Fil1V ∗dR(gl)⊗L Fil1V ∗dR(hm),

for each classical 4-tuple x = (k, l,m, j) in Σ̄ with k, l,m > 2.
Define the Ōfgh-adic differential (cf. Equations (118) and (122))

(142) ηfωgωh = ηf ⊗ ωg ⊗ ωh ⊗ 1 ∈ D̄∗(f , g,h)f .

According to Equation (119), Equation (123), and the discussion following Equation
(126), for each x = (k, l,m, j) ∈ Σ̄ with k, l,m > 2 and each µ in D̄(f , g,h)f one has

(143) 〈µ, ηfωgωh〉fgh (x) = (p− 1)ap(k) ·
〈
ρx(µ), ηfk⊗ ωgl⊗ ωhm

〉
fkglhm

,

where 〈·, ·〉fkglhm is the product of the perfect dualities 〈·, ·〉ξ introduced in Equation
(32), for ξ equal to fk, gl and hm.
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Define the four-variable f -big logarithm

(144) L̄f = L̄og(f , g,h)
def
=
〈
L̄f (·), ηfωgωh

〉
fgh

: H1(Qp, M̄(f , g,h)f ) −→ Ōfgh

to be the composition of L̄f with the linear form 〈·, ηfωgωh〉fgh on D̄(f , g,h)f .
Mutatis mutandis the previous constructions apply after replacing f with a = g,h.

One obtains four-variable a-big logarithms L̄a : H1(Qp, M̄(f , g,h)a) −→ Ōfgh.

7.1.1.1. Weight-one specialisations. — With the notations introduced in the last
part of Section 5 (cf. Equations (127)–(129)), the isomorphisms (140) and (141) and
the definition of the pairing 〈·, ·〉fkglhm extend to all classical 4-tuples x = (k, l,m, j)

in Σ̄, independently on whether the weights k, l and m are geometric or not (id est
equal to 1). Moreover, if k > 2, Equation (143) still holds.

7.2. The balanced Selmer group. — Define the continuous character

Ξfgh : GQ −→ O∗fgh

by the formula

Ξfgh(g) = ωcyc(g)(4−ko−lo−mo)/2 · κcyc(g)(4−k−l−m)/2,

for every g in GQ, and the Ofgh[GQ]-representation

V (f , g,h) = V (f)⊗̂LV (g)⊗̂LV (h)⊗Ofgh Ξfgh.

Equations (103) and (114) imply that V (f , g,h) is Kummer self-dual: the product
of the perfect dualities [·, ·]ξ : V (ξ) ⊗Oξ V (ξ) −→ Oξ(1 + κUξ + χξ) defined by
[x, y]ξ = 〈x,w−1

Np(y)〉ξ yields a perfect, skew-symmetric duality (cf. Assumption 1.2)

[·, ·]fgh : V (f , g,h)⊗Ofgh V (f , g,h) −→ Ofgh(1),

whose adjoint identifies V (f , g,h) with its own Kummer dual. Moreover, for all
w = (k, l,m) in Σ the specialisation maps (106) induce isomorphisms

(145) ρw : V (f , g,h)⊗w L ∼= V (fk, gl,hm)

(cf. Equation (47)), where · ⊗w L denotes the base change under evaluation at w.
Define a decreasing filtration F ·V (f) on V (f) by F jV (f) = V (f) for every j 6 0,

F 1V (f) = V (f)+ and F jV (f) = 0 for j > 2, and similarly F ·V (g) and F ·V (h).
Let F ·V (f , g,h) be the tensor product filtration:

FnV (f , g,h) =

[ ∑
p+q+r=n

F pV (f)⊗̂LF qV (g)⊗̂LF rV (h)

]
⊗Ofgh Ξfgh.

This is a decreasing filtration of V (f , g,h) by Ofgh[GQp
]-submodules, satisfying

F 4V (f , g,h) = 0 and F 0V (f , g,h) = V (f , g,h). The annihilator of F iV (f , g,h)
under the duality [·, ·]fgh is equal to F 4−iV (f , g,h), hence the adjoint of [·, ·]fgh
induces isomorphisms of Ofgh[GQp

]-modules

(146) griV (f , g,h) ∼= HomOfgh(gr3−iV (f , g,h),Ofgh(1))

(where griV (f , g,h) = F iV (f , g,h)/F i+1). If one sets

V (f , g,h)f = V (f)−⊗̂LV (g)+⊗̂LV (h)+ ⊗Ofgh Ξfgh,
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and defines similarly V (f , g,h)g and V (f , g,h)h, then

(147) gr2V (f , g,h) = V (f , g,h)f ⊕ V (f , g,h)g ⊕ V (f , g,h)h

as Ofgh[GQp
]-modules. It follows form Equation (146) and the definitions that the

inertia subgroup IQp(µp) of the absolute Galois group of Q(µp) acts on gr3V (f , g,h)

and gr0V (f , g,h) via the characters κ(k+l+m−2)/2
cyc and κ(4−k−l−m)/2

cyc respectively. In
addition, Equations (146) and (147) show that gr2V (f , g,h) and gr1V (f , g,h) are
isomorphic respectively to the direct sum of a finite number of copies of

κ
l+m−k

2
cyc ⊕ κ

l+k−m
2

cyc ⊕ κ
k+m−l

2
cyc and κ

k−l−m+2
2

cyc ⊕ κ
m−l−k+2

2
cyc ⊕ κ

l−k−m+2
2

cyc

as IQ(µp)-modules (where κ•cyc = Ofgh(κ•cyc)). In particular, for each i ∈ Z one has

(148) H0(Qp, griV (f , g,h)) = 0.

Define the balanced local condition

H1
bal(Qp, V (f , g,h)) = H1(Qp,F

2V (f , g,h)).

In light of Equation (148), the morphism induced on the first GQp -cohomology groups
by the inclusion F 2V (f , g,h) ↪−→ V (f , g,h) is injective, hence we can, and will,
identify the balanced local condition with a submodule of H1(Qp, V (f , g,h)), namely

H1
bal(Qp, V (f , g,h)) = Im

(
H1(Qp,F

2V (f , g,h)) −→ H1(Qp, V (f , g,h))
)
.

For · = f, g, h, one denotes by p· both the natural GQp -equivariant projection

p· : F 2V (f , g,h) −� V (f , g,h)·

arising from Equation (147) and the morphism

p· : H1
bal(Qp, V (f , g,h)) −→ H1(Qp, V (f , g,h)·)

it induces in cohomology.
For all morphisms of L-algebras ϕ : Ofgh −→ Oϕ, set

Vϕ(f , g,h)· = V (f , g,h)· ⊗ϕ Oϕ and F ·Vϕ(f , g,h) = F ·V (f , g,h)⊗ϕ Oϕ,

denote again by by p· : Vϕ(f , g,h)� Vϕ(f , g,h)· the natural projections, and define

H1
bal(Qp, Vϕ(f , g,h)) = Im

(
H1(Qp,F

2Vϕ(f , g,h)) −→ H1(Qp, Vϕ(f , g,h))
)
.

If w = (k, l,m) is a triple in Σ and ϕ is evaluation at w, we identify Vϕ(f , g,h) with
V (fk, gl,hm) under the specialisation isomorphism ρw (cf. Equation (145)).

One has the following crucial lemma.

Lemma 7.2. — If w = (k,m, l) ∈ Σbal is a balanced classical triple, then

(149) H1
bal(Qp, V (fk, gl,hm)) = H1

fin(Qp, V (fk, gl,hm)),

where H1
fin(Qp, ·) is the Bloch–Kato finite local condition (cf. Lemma 3.5). As a

consequence, the Bloch–Kato exponential map gives an isomorphism

expp : VdR(fk, gl,hm)/Fil0 ∼= H1
bal(Qp, V (fk, gl,hm)).
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Proof. — Set V = V (fk, gl,hm), and consider the exact sequence of GQp
-modules

0 −→ F 2V −→ V −→ V/F 2 −→ 0.

The discussion preceding Equation (148) shows that F 2V has Hodge–Tate weights
k + l +m− 2

2
,
k + l −m

2
,
k +m− l

2
and

l +m− k
2

,

while V/F 2 has Hodge–Tate weights
k − l −m+ 2

2
,
l − k −m+ 2

2
,
m− k − l + 2

2
and

4− k − l −m
2

.

Since w is a balanced classical triple, it follows that all the Hodge–Tate weights of
F 2V (resp., V/F 2) are positive (resp., non-positive), hence

(150) tgdR(F 2V ) = DdR(F 2V ) and Fil0DdR(V/F 2) = DdR(V/F 2)

(where tgdR(·) = DdR(·)/Fil0). The second equality implies that H1
exp(Qp, V/F 2)

vanishes (cf. Corollary 3.8.4 of [BK90]), and since F 2V is isomorphic to the Kummer
dual of V/F 2, this in turn implies H1(Qp,F 2V ) = H1

geo(Qp,F 2V ) (cf. Proposition
3.8 of [BK90]). As H1

fin(Qp, V ) = H1
geo(Qp, V ) by Lemma 3.5, one deduces that

H1
fin(Qp, V ) contains the balanced subspace H1

bal(Qp, V ). On the other hand, Equa-
tion (150) shows that the inclusion F 2V ↪−→ V induces an isomorphism between the
tangent space of F 2V and that of V . It follows that H1

exp(Qp, V ) is contained in
the image of H1

exp(Qp,F 2V ), hence a fortiori in the balanced subspace H1
bal(Qp, V ).

Since H1
exp(Qp, V ) = H1

fin(Qp, V ) by Lemma 3.5, this concludes the proof of the first
statement. The second statement follows from the first and Lemma 3.5.

7.3. The three-variable big logarithms. — Let w = (k, l,m) be a classical
triple in Σ. If w ∈ Σbal is balanced, then the differential ηαfk⊗ ωgl⊗ ωhm belongs
to Fil0V ∗dR(fk, gl,hm) by Equation (53). In this case denote by

logp : H1
bal(Qp, V (fk, gl,hm)) ∼= VdR(fk, gl,hm)/Fil0

the inverse of the Bloch–Kato exponential (cf. Lemma 7.2), and define

logp(·)f = logp(·)
(
ηαfk⊗ ωgl⊗ ωhm

)
: H1

bal(Qp, V (fk, gl,hm)) −→ L

to be the composition of logp with evaluation on ηαfk⊗ ωgl⊗ ωhm . Here one identifies
VdR(fk, gl,hm)/Fil0 with the dual of Fil0V ∗dR(fk, gl,hm) under the product of the
perfect dualities 〈·, ·〉ξu introduced in Equation (31), for ξu = fk, gl,hm.

If w belongs to Σf denote by

exp∗p : H1(Qp, V (fk, gl,hm)) −→ Fil0VdR(fk, gl,hm)

the Bloch–Kato dual exponential map, and by

exp∗p(·)f = exp∗p(·)
(
ηαfk⊗ ωgl ⊗ ωhm

)
: H1(Qp, V (fk, gl,hm)) −→ L

its composition with evaluation at ηαfk ⊗ ωgl ⊗ ωhm . As above, here one identifies
Fil0VdR(fk, gl,hm) with a subspace of the dual of V ∗dR(fk, gl,hm) under the tensor
product of the pairings 〈·, ·〉ξu defined in (31) and (128). (If either l or m is equal to
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1, the definitions of VdR(fk, gl,hm) and V ∗dR(fk, gl,hm) given in Equations (50) and
(51) are understood in light of the conventions of Section 5, cf. Equation (127).)

To ease notation set αk = ap(k), βk = χf (p)pk−1/αk, αl = bp(l) et cetera. Recall
that for each classical triple w = (k, l,m) in Σ one writes cw = (k + l + m − 2)/2
(which belongs to N by Assumption 1.2).

Proposition 7.3. — There is a unique morphism of Ofgh-modules

Lf = Log(f , g,h) : H1
bal(Qp, V (f , g,h)) −→ Ofgh

such that, for all w = (k, l,m) ∈ Σ with αkβlβm 6= pcw and Z ∈ H1
bal(Qp, V (f , g,h))

Lf (Z)(w) = (p− 1)αk ·

(
1− βkαlαm

pcw

)
(

1− αkβlβm
pcw

) · { (−1)cw−k

(cw−k)! logp(Zw)f if w ∈ Σbal

(k − cw − 1)! exp∗p(Zw)f if w ∈ Σf
,

where Zw = ρw∗(Z). Moreover Lf factors through

pf∗ : H1
bal(Qp, V (f , g,h))→ H1(Qp, V (f , g,h)f ).

Proof. — Set M̄f = M̄(f , g,h)f , V = V (f , g,h) and Vf = V (f , g,h)f . Let

ϑ : Ōfgh −→ Ofgh

be the surjective morphism of L-algebras which sends the analytic function
F (k, l,m, j) to its restriction F (k, l,m, (k − l − m)/2) to the hyperplane de-
fined by the equation 2j = k − l −m. (Here we implicitly shrink the discs Uf , Ug
and Uh if necessary, in order to guarantee that (k − l −m)/2 takes values in the
disc Ucyc fixed in Section 7.1.) Unwinding the definitions one finds that ϑ induces an
isomorphism of Ofgh[GQp ]-modules (denoted by the same symbol)

(151) ϑ : M̄f ⊗ϑ Ofgh ∼= Vf .

We claim that this map entails an isomorphism

(152) ϑ∗ : H1(Qp, M̄f )⊗ϑ Ofgh ∼= H1(Qp, Vf ).

Granting this, one can define Lf by the composition

Lf : H1
bal(Qp, V (f , g,h))

pf∗−→ H1(Qp, V (f , g,h)f )

ϑ−1
∗−→ H1(Qp, M̄(f , g,h)f )⊗ϑ Ofgh

L̄f⊗id−→ Ofgh,

where L̄f is the four-variable f -big logarithm defined in Equation (144). Unravelling
the definitions, one checks that the interpolation property satisfied by Lf is a direct
consequence of Proposition 7.1. It then remains to prove the claim (152).

As M̄f is a free module over the domain Ōfgh, the claim (152) is equivalent to the
vanishing of the (2j − k + l+m)-torsion submodule of H2(Qp, M̄f ). Set

Λ̄ = Λfgh⊗̂ZpΛcyc,

where Λcyc is the Zp-module of functions in Ocyc bounded by one. The O-algebra
Λ̄fgh is isomorphic to a power series ring in four variables with coefficients in O.
In particular, it is a regular local complete Noetherian ring with finite residue field
(hence a UFD). Write M̄f = M̄f [1/p] for a Λ̄[GQp

]-module M̄f free of finite rank over
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Λ̄. For every discrete or compact Λ̄-module · write D(·) = Homcont(·,Qp/Zp) for its
Pontrjagin dual. According to the local Tate duality and the Pontrjagin duality

(153) H2(Qp, M̄f )[2j − k + l+m] = D
(
D(M̄f (−1))GQp

/
(2j − k + l+m)

)
[1/p].

Let Frobp be the arithmetic Frobenius in Gnr
p = Gal(Qnr

p /Qp) and let γ be a topo-
logical generator of Gtr

p = Gal(Qp(µp∞)/Qp) (recall that p is odd). By construction
(after identifying Gab

Qp
with the product of Gnr

p and Gtr
p ) Frobp acts on M̄f as multi-

plication by Ψo = Ψ(Frobp) and γ acts on M̄f (−1) as multiplication by the inverse of
Γo = ω1+jo

o · γ1+j
o , where ωo = ωcyc(γ) and γo = κcyc(γ). This yields

D(M̄f (−1))GQp
/

(2j − k + l+m) ∼=
a⊕
i=0

D

(
Λ̄

(Ψo − 1,Γo − 1)
[2j − k + l+m]

)
for some positive integer a (cf. Equation (137)). We prove that the module

Λ̄

(Ψo − 1,Γo − 1)
[2j − k + l+m]

is killed by a power of p, which together with Equation (153) proves the claim (152).
If jo 6= −1, the function Γo − 1 is a unit in Λcyc[1/p], hence Λ̄/(Ψo − 1,Γo − 1) is
killed by a power of p. Assume then jo = −1 and let F = F (w, j) be an element of
Λ̄ whose image in Λ̄/(Ψo − 1,Γo − 1) is killed by 2j − k + l+m. This implies that

(l+m− k − 2) · F (w,−1) = (Ψo(w)− 1) ·G(w)

for some G(w) in Λfgh. As jo = −1 there is a classical triple w = (k, l,m) ∈ Σ
such that l + m − k − 2 = 0 and such that p does not divide the conductor of fk, gl
and hm. According to the Ramanujan–Petersson conjecture the inverse of Ψo(w) has
complex absolute value √p for every such w (cf. Equation (136)). As a consequence
l+m−k− 2 is not an irreducible factor of Ψo− 1, hence the latter divides F (w,−1)
by the previous equation. This proves that F belongs to the ideal generated by Ψo−1
and j + 1. As (Γo − 1)/(1 + j) is a unit in Λcyc[1/p], it follows that pN(γo) · F maps
to zero in Λ̄/(Ψo − 1,Γo − 1) for a non-negative integer N(γo) independent of F , as
was to be shown.

We call Lf the three variable f -big logarithm. Mutatis mutandis, for a = g,h one
defines a-big logarithms

La : H1
bal(Qp, V (f , g,h)) −→ Ofgh,

which factor through pa∗ : H1
bal(Qp, V (f , g,h)) −→ H1(Qp, V (f , g,h)a) and satisfy

similar interpolation properties.

8. Proof of Theorem A

This section proves Theorem A stated in the Introduction.
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8.1. Construction of κ(f , g,h). — Fix a nonnegative integer ı > 1, which will be
made sufficiently large below. For ξ = f , g,h and · = ∅, ′ set A·ξ = A·Uξ,ı, A

·
ξ = A·Uξ,ı

D·ξ = D·Uf ,ı and D·ξ = D·Uξ,ı (cf. Section 4 for the relevant definitions). Similarly, for
any u ∈ Uξ ∩ Z, set A·u = A·u,ı, D·u = D·u,ı, A

·
u = A·u,ı and D·u = D·u,ı.

Set
(T× T)0 =

{
(t1, t2) ∈ T× T | det(t1, t2) ∈ Z∗p

}
,

where det((x1, x2), (y1, y2)) = x1y2−x2y1. Let (T×T)0 be the complement of (T×T)0

in T × T. Note that (T × T)0 and (T × T)0 are open compact subsets of T × T,
preserved by the diagonal action of Γ0(pZp). Identify Ag⊗̂Ah = Ag⊗̂OAh with a
space of locally analytic functions on T × T, homogeneous of weights κg = κUg and
κh = κUh in the first and second variable respectively. The orthonormal basis of
Ag⊗̂Ah arising from Remark 4.1 gives a decomposition of Γ0(pZp)-modules

Ag⊗̂Ah = (Ag⊗̂Ah)0 ⊕ (Ag⊗̂Ah)0,

where (Ag⊗̂Ah)0 and (Ag⊗̂Ah)0 consist in locally analytic functions supported on
(T × T)0 and (T × T)0 respectively. Let Λfgh = Λf ⊗̂OΛg⊗̂OΛh and define the
characters κ∗f : Z∗p → Λ∗fgh and κ∗fgh : Z∗p → Λ∗fgh by

κ∗f (u) = ω(u)(lo+mo−ko−2)/2 · 〈u〉(l+m−k−2)/2

and κ∗fgh(u) = ω(u)(ko+lo+mo−6)/2 · 〈u〉(k+l+m−6)/2

for every u = ω(u) · 〈u〉 in Z∗p = F∗p × 1 + pZp. (Recall by the discussion preceding
Equation (97) that κf (u) is equal to ω(u)ko−2 · 〈u〉k−2, and similarly for κg and κh.)
Here one uses Assumption 1.2, which guarantees that the quantity ko + lo +mo is an
even integer. Define similarly κ∗g and κ∗h, so that κ∗fgh = κ∗f + κ∗g + κ∗h (again with
additive notation). After noting that det : Z2

p × Z2
p → Zp maps T′ × T to Z∗p, let

Det = DetfghN,p : T′ × T× T −→ Λfgh

be the function which vanishes identically on T′×(T×T)0 and on an element (x,y, z)
in T′ × (T× T)0 takes the value

Det(x,y, z) = det(x,y)κ
∗
h · det(x, z)κ

∗
g · det(y, z)κ

∗
f .

Because κ∗g+κ∗h = κf , one has Det(u·x,y, z) = κf (u)·Det(x,y, z) for every u ∈ Z∗p,
hence for ı big enough Det(x,yo, zo) belongs to A′f for every (yo, zo) ∈ T × T.
Similarly Det(xo,y, zo) ∈ Ag and Det(xo,yo, z) ∈ Ah for every (xo, zo) ∈ T′ × T
and (xo,yo) ∈ T′ × T respectively. Moreover

Det(x · γ,y · γ,z · γ) = det(γ)κ
∗
fgh ·Det(x,y, z)

for every γ ∈ Γ0(pZp). As a consequence Det can be identified with an element of
A′f ⊗̂Ag⊗̂Ah(−κ∗fgh), which is invariant under the diagonal action of Γ0(pZp) (cf.
Section 4.2). Since the Γ0(pZp)-representation A′f ⊗̂Ag⊗̂Ah corresponds to the pro-
sheaf A′f ⊗ Ag ⊗ Ah on Y = Y1(N, p) under the functor ·ét (cf. loco citato) this
yields

(154) DetfghN,p ∈ H
0
ét(Y,A

′
f ⊗Ag ⊗Ah(−κ∗fgh)).
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Let Γ = Γ1(N, p) and let d : Y −→ Y 3 be the diagonal embedding. Define

(155) κ(f , g,h) =
1

ap(k)
· κ(f , g,h)o ∈ H1(Q, V (f , g,h)),

where
κ(f , g,h)o = AJfghét

(
DetfghN,p

)
is the image of the big invariant DetfghN,p under the big Abel–Jacobi map AJfghét defined
by the following composition.

H0
ét(Y,A

′
f⊗Ag ⊗Ah(−κ∗fgh))

d∗−→ H4
ét(Y

3,A′f �Ag �Ah(−κ∗fgh)⊗Zp Zp(2))

HS−→ H1
(
Q, H3

ét

(
Y 3
Q̄,A

′
f �Ag �Ah

)
(2 + κ∗fgh)

)
K−→ H1

(
Q, H1(Γ, A′f )⊗̂LH1(Γ, Ag)⊗̂LH1(Γ, Ah)(2 + κ∗fgh)

)
(156)

(wp⊗id⊗id)∗−→ H1
(
Q, H1(Γ, Af )⊗̂LH1(Γ, Ag)⊗̂LH1(Γ, Ah)(2 + κ∗fgh)

)
sfgh∗−→ H1

(
Q, H1(Γ, D′f )60⊗̂LH1(Γ, D′g)60⊗̂LH1(Γ, D′h)60(2− κ∗fgh)

)
prfgh∗−→ H1

(
Q, V (f)⊗̂LV (g)⊗̂LV (h)(−1− κ∗fgh)

)
= H1(Q, V (f , g,h)).

Here κ∗fgh : GQ → Λ∗fgh denotes the composition of κ∗fgh with the p-adic cyclotomic
character χcyc. The first arrow is the push-forward by the diagonal embedding d.
The morphism HS arises from the Hochschild–Serre spectral sequence and Equation
(80). (Note that H4

ét(Y
3
Q̄
,F ) vanishes for every pro-sheaf F ∈ S(Y 3

ét), as follows
easily from Equation (75) and [Mil80, Chapter VI, Theorem 7.2].) The map K comes
from the Künneth decomposition and the projection in Equation (79). The morphism
(wp⊗ id⊗ id)∗ is the one induced in cohomology by the GQ-equivariant Atkin–Lehner
operator wp : H1(Γ,A′f )→ H1(Γ,Af ) (cf. Sections 4.1.2 and 4.2). The penultimate
arrow sfgh∗ is induced by the tensor product of the morphisms of GQ-modules

H1(Γ, Aa) −� H1(Γ, Aa)60 sa−→ H1(Γ, D′a)60(−κUa)

for a = f , g,h, where the first map is the projection to the slope 6 0 part and
sa = sUa,0 is defined in Equation (83). Finally prfgh denotes the tensor product of
the GQ-equivariant projections pra defined in Equation (105).

8.2. Balanced specialisations of κ(f , g,h). — Let w = (k, l,m) ∈ Σbal be a
balanced triple of classical weights, let r = (k − 2, l − 2,m − 2) = w − 2, and let
r = (r1 + r2 + r3)/2. Recall the diagonal classes

κ̃Np,r ∈ H1
geo(Q,WNp,r) and κNp,r = sr∗(κ̃Np,r) ∈ H1

geo(Q, VNp,r)

introduced in Equations (43) and (46), and define the twisted diagonal class
(157)
κ†(fk, gl,hm) = prfkglhm∗

(
sr∗

(
(w′p ⊗ id⊗ id)∗

(
κ̃Np,r

)))
∈ H1

geo(Q, V (fk, gl,hm)).

Here prfkglhm is the projection defined in Equation (48) and

(w′p ⊗ id⊗ id)∗ : H1(Q(µp),WNp,r) −→ H1(Q(µp),WNp,r)
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is the map induced by the dual Atkin–Lehner operator

w′p : H1
ét(Y1(Np)Q̄,Sr1) ∼= H1

ét(Y1(Np)Q̄,Sr1)

(cf. Section 2.3.1) and the Künneth decomposition on WNp,r. A priori the class
κ†(fk, gl,hm) then lives in the geometric subgroup of H1(Q(µp), V (fk, gl,hm)). On
the other hand the forms fk, gl and hm have level Γ1(N, p) = Γ1(N)∩Γ0(p), hence the
cohomology class κ̃Np,r is in the image of the map induced in GQ-cohomology by the
pull-back H3

ét(Y1(N, p)3
Q̄
,S[r])(cw) −→ H3

ét(Y1(Np)3
Q̄
,S[r])(cw) = WNp,r. Because

the Atkin–Lehner operator w′p acting on H1
ét(Y1(N, p)Q̄,Sk−2) is GQ-equivariant,

this implies that κ†(fk, gl,hm) is fixed by the action of the Galois group of Q(µp)
over Q, hence can naturally be viewed as a geometric class in H1(Q, V (fk, gl,hm)).

With the notations already introduced one has the following

Theorem 8.1. — For each balanced triple w = (k, l,m) in Σbal one has

(p− 1)αfk · ρw
(
κ(f , g,h)

)
=

(
1−

αfkβglβhm
pr+2

)
· κ†(fk, gl,hm).

Before giving the proof of Theorem 8.1 we deduce the following

Corollary 8.2. — κ(f , g,h) lies in the balanced Selmer group H1
bal(Q, V (f , g,h)).

Proof. — By definition one has to prove that the class

resF ,p(κ(f , g,h)) ∈ H1(Q, V (f , g,h)/F 2V (f , g,h))

is zero, where resF ,p is the composition of the restriction at p and the map induced by
V (f , g,h) � V (f , g,h)/F 2. According to Proposition 3.2 for every balanced triple
w = (k, l,m) in Σbal one has

resp
(
κ†(fk, gl,hm)

)
∈ H1

geo(Qp, V (fk, gl,hm)).

Let Σobal be the set of (k, l,m) in Σbal such that p does not divide the conductors of
fk, gl and hm. One has

H1
geo(Qp, V (fk, gk,hm)) = ker

(
H1(Qp, V (fk, gl,hm))→ H1(Qp, V (fk, gl,hm)/F 2)

)
and

αfkβglβhm 6= pr+2

for all w = (k, l,m) in Σobal (by the Ramunajan–Petersson conjecture). The previous
two equations and Theorem 8.1 imply that the class resF ,p(κ(f , g,h)) specialises to
zero in H1(Qp, V (fk, gl,hm)/F 2) at every w in Σobal. Because Σobal is dense in Uf ×
Ug×Uh, to conclude the proof it is then sufficient to show thatH1(Qp, V (f , g,h)/F 2)
is Ofgh-torsion free (hence a submodule of a reflexive Ofgh-module), which implies
that

⋂
w∈Σobal

(k−k, l− l,m−m) ·H1(Qp, V (f , g,h)/F 2) = 0. This is a consequence
of the following claim. If ℘ ∈ Ofgh is irreducible and one sets O℘ = Ofgh/(℘), then

(158) H0(Qp, V (f , g,h)/F 2 ⊗Ofgh O℘) = 0.

The rest of the proof is then devoted to the proof of this claim.
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Section 7.2 shows that there is a short exact sequence of GQp(µp)-modules

O℘(θf )⊕a ⊕ O℘(θg)⊕a ⊕ O℘(θh)⊕a ↪−→ V (f , g,h)/F 2 ⊗Ofgh O℘ −� O℘(θfgh)⊕a,

where a is a positive integer and the characters θ· : GQp(µp) → O∗℘ are defined by

θfgh = κ(4−k−l−m)/2
cyc · ǎp(k) · b̌p(l) · čp(m),

θf = κ(k−l−m+2)/2
cyc · χf · b̌p(l) · čp(m) · ǎp(k)−1

and similarly for θg and θh. Set ℘fgh = 4−k−l−m, set ℘f = k−l−m+2 and define
similarly ℘g and ℘h. Denote by ℘a and θa one of ℘· and θ· respectively. If ℘ ·Ofgh is
different from one of the ideals ℘a ·Ofgh, then H0(IQp(µp), V (f , g,h)/F 2 ⊗Ofgh O℘)
is trivial and (158) holds true. Assume now ℘ = u · ℘a for a unit u in Ofgh, so that
θa is an unramified character of GQp(µp). According to the Ramanujan–Petersson
conjecture one has

|θa(Frobp)(w)| = √p
for all w ∈ Σobal ∩ V (℘) (where | · | is the complex absolute value and V (℘) is the zero
locus of ℘). Shrinking the discs U· if necessary, we can assume that Σobal ∩ V (℘) is
non-empty (otherwise ℘ would be a unit). The previous equation then implies that
the characters θ· are non-trivial and (158) follows.

Proof of Theorem 8.1. — According to [Mil06, Section II.7] for every n, i > 1 there
is a trace isomorphism

TraceY n : H2n+3
ét,c (Y n,O/mi(n+ 1)) ∼= O/mi.

(See Chapter II, Section 2 of loc. cit. for the definition of H ·ét,c(Y n, ·), denoted
H ·c(Y

n, ·) there.) For all finite smooth sheaves F of O/mi-modules on Y nét , TraceY n

and the cup-product define perfect pairings

(159) (·, ·)Y n = TraceY n ◦ ∪ : Hj
ét(Y

n,F )⊗L H2n+3−j
ét,c (Y n,G (n+ 1)) −→ O/mi,

where G is the dual of F (cf. Chapter II, Corollary 7.7 of [Mil06]). Denote by F ·u in
Sf (Yét) the sheaf associated to Fili,jA·u,ı for u > 0 and fixed j > i > 0, and by G ·u the
O/mi-dual of F ·u . One has a Hecke equivariant diagram of adjoint morphisms, where
the Hecke operators are defined by constructions similar to those of Section 2.3.
(160)

H0
ét(Y,F

′
r1 ⊗Fr2 ⊗Fr3(r))

d∗

��

× H5
ét,c(Y,G ′r1 ⊗ Gr2 ⊗ Gr3(2− r))

(·,·)Y // O/mi

H4
ét(Y

3,F ′r1 �Fr2 �Fr3(r + 2)) × H5
ét,c(Y 3,G ′r1 � Gr2 � Gr3(2− r))

d∗

OO

(·,·)Y 3 // O/mi

Let A·· and A·· be shorthands for A··,ı and A··,ı respectively. Similarly as above,
the orthonormal basis of Au⊗̂Av arising from Remark 4.1 gives a decomposition of
Γ0(pZp)-modules

Au⊗̂Av = (Au⊗̂Av)0 ⊕ (Au⊗̂Av)0,
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where (Ar⊗̂As)0 (resp., (Ar⊗̂As)0) can be identified with a space of locally analytic
functions on T × T supported on (T × T)0 (resp., (T × T)0). This in turn induces
similar decompositions

Fu ⊗Fv = (Fu ⊗Fv)0 ⊕ (Fu ⊗Fv)
0 and Gu ⊗ Gv = (Gu ⊗ Gv)0 ⊕ (Gu ⊗ Gv)

0.

Let t : Y1(Np) → Y1(N, p) = Y be the natural projection. To ease notations, let
Det ∈ H0

ét(Y,A
′
r1 ⊗Ar2 ⊗Ar3(r)) denote the image of DetrNp under the composition

of the push-forward t∗ with the natural map

H0
ét(Y,Sr1 ⊗Sr2 ⊗Sr3(r)) −→ H0

ét(Y,A
′
r1 ⊗Ar2 ⊗Ar3(r)).

For j = j(i) large enough, let D = Dri,j ∈ H0
ét(Y,F

′
r1 ⊗Fr2 ⊗Fr3(r)) be a represen-

tative of Det(mod mi) (cf. Section 4.2), and let D0 = Dri,j,0 be its projection to the
cohomology group H0

ét(Y,F
′
r1 ⊗ (Fr2 ⊗Fr3)0(r)). By construction

(161) (p− 1) · ρw(Det) = lim
←i

Dri,j,0.

For all z in H5
ét,c(Y 3,G ′r1�Gr2�Gr3(2−r)) one has the equalities (cf. Equation (160))(

d∗(D− D0), 1⊗ U⊗2
p (z)

)
Y 3 =

(
D− D0, d

∗(1⊗ U⊗2
p (z)

))
Y

=
(
D− D0, δ

∗(1⊗ δ∗(1⊗ U⊗2
p (z)

)))
Y

= (D, δ∗(1⊗ Up(1⊗ δ∗(z))))Y(162)

= pr−r1 ·
(
D, δ∗

(
U ′p ⊗ 1 (1⊗ δ∗(z))

))
Y

= pr−r1 ·
(
D, d∗

(
U ′p ⊗ 1⊗ 1(z)

))
Y

= pr−r1 ·
(
d∗(D), U ′p ⊗ 1⊗ 1(z)

)
Y 3 ,

where δ : Y → Y 2 is the diagonal embedding. To justify the third equality one notes
that

1⊗ δ∗ ◦ 1⊗ U⊗2
p − 1⊗ Up ◦ 1⊗ δ∗

(resp., 1⊗Up ◦1⊗δ∗) takes values in the submodule H5
ét,c(Y,G ′r1⊗(Gr2⊗Gr3)0(2−r))

(resp., inH5
ét,c(Y,G ′r1⊗(Gr2⊗Gr3)0(2−r))), and thatH5

ét,c(Y,G ′r1⊗(Gr2⊗Gr3)0(2−r)) is
orthogonal toH0

ét,c(Y,F ′r1⊗(Fr2⊗Fr3)0(r)). (Compare with the proof of Proposition
5.4 of [GS20].)

All the other equalities in Equation (162) but the fourth are standard. To prove the
remaining equality, let π : Y → Spec(Z[1/Np]) and π = π× π : Y 2 → Spec(Z[1/Np])
be the structural maps. Let Rπ! and Rπ! be the δ-functors associated in [FK88,
Chapter I, Definition 8.6] with the compactifiable maps π and π, so that by definition
Hq

ét,c(Y, ·) = Hq
ét,c(Z[1/Np], Rπ!·) and Hq

ét,c(Y 2, ·) = Hq
ét,c(Z[1/Np], Rπ!·) for any

q > 0 (cf. Section II.7 of [Mil06]). If G denotes the étale sheaf G ′r1�(Gr2⊗Gr3)(2−r)
on Y 2, one can lift the Hecke operators 1⊗Up and U ′p⊗1 onH ·ét,c(Y 2,G ) to morphisms
(denoted by the same symbols) Rπ!G −→ Rπ!G (cf. Section 2.3). The diagonal
embedding δ∗ : Y −→ Y 2, the morphism of sheaves

β : δ∗G = G ′r1 ⊗ Gr2 ⊗ Gr3 (2− r) −→ O/mi(2)
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defined by the cup product with D, and the trace morphism

trY : Rπ!O/m
i(2) −→ O/mi[−2]

(see the discussion preceding Theorem 7.6 in [Mil06, Chapter II, Section 7]) induce
a map ϑ = trY ◦ β ◦ δ∗ : Rπ!G −→ O/mi[−2]. In order to prove the forth equality
in Equation (162) it is then sufficient to prove that the composition Ξ = ϑ ◦ 1 ⊗ Up
agrees with Ψ = χ̄f (p)pr−r1 · ϑ ◦ U ′p ⊗ 1. By using the Künneth isomorphism

Rπ!G ∼= Rπ!G
′
r1 ⊗

L
O Rπ!(Gr2 ⊗ Gr3(2− r)),

the sought for equality Ξ = Ψ follows from the same formal computation as in the
proof of Proposition 2.9 of [GS20].

Since the operators 1⊗U⊗2
p and U ′p⊗1⊗1 acting on H5

ét,c(Y 3,G ′r1�Gr2�Gr3(2−r))
are the adjoints under (·, ·)Y 3 of the operators 1 ⊗ U⊗2

p and U ′p ⊗ 1 ⊗ 1 acting on
H4

ét(Y
3,F ′r1 �Fr2 �Fr3(r + 2)), and since (·, ·)Y 3 is perfect, Equation (162) yields

(1⊗ Up ⊗ Up) ◦ d∗(D− D0) = pr−r1 · (U ′p ⊗ 1⊗ 1) ◦ d∗(D).

In light of Equation (161), this implies

(p− 1) · (1⊗ Up ⊗ Up) ◦ K ◦ HS ◦ d∗ ◦ ρw(Det)(163)

=
(
1⊗ Up ⊗ Up − pr−r1 · U ′p ⊗ 1⊗ 1

)
◦ K ◦ HS ◦ d∗(Det)

in H1
ét

(
Q, H1(Γ, A′r1)⊗̂LH1(Γ, Ar2)⊗̂LH1(Γ, Ar3)(r+2)

)
, where A·u is a shorthand for

A·u,ı, and the morphisms K, HS and d∗ are defined as in Equation (156), after replacing
the big étale sheaf A′f ⊗Ag ⊗Ah with A′r1 ⊗Ar2 ⊗Ar3 . To ease notations write ♥
(resp., ♠) for the left (resp., right) hand side of Equation (163).

For each nonnegative integer u and Fu = Su,Lu, let

H1
ét(Y1(Np)Q̄,Fu)o ↪−→ H1

ét(Y1(Np)Q̄,Fu)L

be the L-direct summand on which the diamond operator 〈d〉 acts trivially for each
integer d coprime to p and congruent to one modulo N , so that the pull-back t∗

yields an isomorphism between H1
ét(YQ̄,Fu)L and H1

ét(Y1(Np)Q̄,Fu)o, with inverse
1
p−1 times the push-forward t∗. For · = ∅, ′ denote by

c·u : H1
ét(Y1(Np)Q̄,Su)o −→ H1(Γ, A·u)

the composition of t∗ with the comparison morphism introduced in Equation (72).
By construction

(c′r1⊗̂cr2⊗̂cr3)∗ ◦ K (κ̃Np,r) = K ◦ HS ◦ d∗(Det)

(where the morphism K which appear in the left hand side refers to the Künneth
decomposition of WNp,r = H3

ét(Y1(Np)Q̄,S[r])(r + 2)), hence

♠ = (c′r1⊗̂cr2⊗̂cr3)∗ ◦
(
1⊗ U ′p ⊗ U ′p − pr−r1 · Up ⊗ 1⊗ 1

)
◦ K (κ̃Np,r)

(cf. the discussion following Equation (72)). Since wp ◦ c′u = cu ◦ w′p, where w′p
is the Atkin–Lehner operator defined in Section 2.3.1 and wp is the one defined in
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Equation (66), and since w′pUp = 〈p〉N U ′pw′p as endomorphisms of H1
ét(Y1(Np)Q̄,Su),

one deduces

(164) wp,f∗(♠) = cr∗ ◦
(
1⊗ U ′p ⊗ U ′p − pr−r1 · 〈p〉N U

′
p ⊗ 1⊗ 1

)
◦ w′p,f∗ ◦ K (κ̃Np,r),

where wp,f = wp ⊗ id⊗ id, w′p,f = w′p ⊗ id⊗ id and cr = cr1⊗̂cr2⊗̂cr3 .
Taking h = 0 and replacing AU and D′U with Au and D′u (for u ∈ N) respectively in

the definition of the map sU,h (cf. Equation (83)) yields a GQ-equivariant morphism

su,0 : H1(Γ, Au)60(u) −→ H1(Γ, D′u)6
′0,

which intertwines the action of Up on the source with that of U ′p on the target. If

compu : H1(Γ, D′u)6
′0 −→ H1

ét(Y1(Np)Q̄,Lu)6
′0

o

denotes the composition of t∗ : H1
ét(YQ̄,Lu)L −→ H1

ét(Y1(Np)Q̄,Lu)o with the com-
parison isomorphism defined in Equation (73), then (cf. Equation (44))

(165) compu ◦ su,0 ◦ cu =
1

p− 1
· su∗

as maps from H1
ét(Y1(Np),Su)6

′0
L (u) to H1(Γ,Lu)6

′0
L . Set sr,0 = sr1,0⊗sr2,0⊗sr3,0

and compr = compr1 ⊗ compr2 ⊗ compr3 . It then follows from Equation (164) and
the definition of the twisted diagonal class κ†(fk, gl,hm) that the equality
(166)

prfkglhm∗ ◦compr∗ ◦sr,0∗ ◦wp,f∗(♠) =
αglαhm
p− 1

(
1−

χ̄f (p)pr−r1αfk
αglαhm

)
·κ†(fk, gl,hm)

holds in H1
ét(Z[1/Np], V (fk, gl,hm)). (Here prfkglhm is the tensor product of the

projections pr· defined in Equation (23), for · equal to fk, gl and hm.)
By construction, one has

K ◦ HS ◦ d∗ ◦ ρw(Det) = ρw ◦ K ◦ HS ◦ d∗(Det),

where the maps K, HS and d∗ which appear in the right hand side are the ones in-
troduced in Equation (156). Since the maps ρw and compr are Hecke-equivariant,
and since su,0 intertwines the action of Up on H1(Γ, Au)60 with that of U ′p on
H1(Γ, D′u)6

′0 (for each nonnegative integer u), it follows that

(167) ♦ = (p− 1)αglαhm · prfkglhm ◦ compr∗ ◦ sr,0∗ ◦ wp,f∗ ◦ ρw ◦ K ◦ HS ◦ d∗(Det),

where one defines

♦ = prfkglhm∗ ◦ compr∗ ◦ sr,0∗ ◦ wp,f∗(♥).

One has wp,f∗ ◦ρw = ρw ◦wp,f∗. Moreover the diagram (84) and Equation (165) yield

compu ◦ su,0 ◦ ρu+2 =
1

p− 1
· su∗ ◦ c−1

u ◦ ρu+2 =
1

p− 1
· compu ◦ ρu+2 ◦ sUξ,0

as morphisms fromH1(Γ, Aξ)
60(κξ) −→ H1

ét(Y1(Np)Q̄,Lu)6
′0

o , for (ξ, u) equal to one
of the pairs (f , k−2), (g, l−2) and (h,m−2), (cf. the discussion following the diagram
(84)). (With a slight abuse of notation, in the previous equation one writes c−1

u for the
inverse of the isomorphism between H1

ét(Y1(Np)Q̄,Su)6
′0

o and H1(Γ, Au)60 induced
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by cu.) Finally, with the notations introduced in Equations (105) and (106), one has
the following equality of GQ-equivariant maps from H1(Γ, D′ξ)

60(1) to V (fk):

prξu ◦ compu ◦ ρu+2 = ρu+2 ◦ prξ.

It then follows from Equation (167) and the definitions of (♦ and) κ(f , g,h)o that

(168) prfkglhm∗ ◦ compr∗ ◦ sr,0∗ ◦ wp,f∗(♥) = αglαhm · ρw
(
κ(f , g,h)o

)
.

As χfχgχh = 1 by Assumption 1.2, and by definition αglβgl = χg(p)pr2+1,
αhmβhm = χh(p)pr3+1 and 2r = r1 + r2 + r3, the theorem follows from Equations
(163), (166) and (168). (Recall that κ(f , g,h)o = ap(k) · κ(f , g,h).)

8.3. p-stabilisation of diagonal classes. — Write in this section

Y1(M) = Y1(M)Q,

for every integer M > 3. Recall the degeneracy maps pri : Y1(Np) → Y1(N), for
i = 1, p, defined in Section 2.2.

Let w ∈ Σbal and r = w − 2 be as in the previous section. Assume k, l,m > 3
and that p does not divide the conductors of fk, gl and hm. As in Section 6 let
f = fk (resp., g = gl and h = hm) be the cusp form of weight k (resp., l, m), level
Γ1(N) and character χf (resp., χg, χh) whose ordinary p-stabilisation is fk (resp.,
gl, hm). It is an eigenvector for the Hecke operator T`, with the same eigenvalue as
fk (resp., gl, hm), for every prime ` - Np, and an eigenvector for Tp with eigenvalue
ap(f) = αfk + βfk (resp., ap(g) = αgl + βgl , ap(h) = αhm + βhm). Assume without
loss of generality that βa belongs to L for a = fk, gl,hm, and denote by

Πα
r∗ : VNp,r ⊗Qp

L −→ VN,r ⊗Qp
L

the morphism (cf. Equations (20) and (45))

Πα
r∗ =

(
pr1∗ −

βfk
pk−1

· prp∗

)
⊗
(

pr1∗ −
βgl
pl−1

· prp∗

)
⊗
(

pr1∗ −
βhm
pm−1

· prp∗

)
.

(169)

A direct computation shows that the composition prfgh ◦ Πα
r∗ factors through the

projection prfkglhm , hence Πα
r∗ induces a morphism

Πα
fkglhm∗ : V (fk, gl,hm) −→ V (fk, gl, hm)

of L[GQ]-modules, which is indeed an isomorphism (see Equation (48) for the defini-
tion of the projections prfgh and prfkglhm). Note that r = (r1, r2, r3) and (fk, gl, hm)

satisfy Assumption 3.1 and Assumption 3.4 respectively, hence the class κ(fk, gl, hm)
in H1(Q, V (fk, gl, hm)) is defined. Denote again by

Πα
fkglhm∗ : H1(Q, V (fk, gl,hm))→ H1(Q, V (fk, gl, hm))

the morphism induced in Galois cohomology by Πα
fkglhm∗.
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Proposition 8.3. — Assume k, l,m > 3 and that p does not divide the conductors
of fk, gl and hm. Then

Πα
fkglhm∗

(
κ†(fk, gl,hm)

)
is equal to

(p− 1)αfk

(
1−

βfkαglβhm
pr+2

)(
1−

βfkβglαhm
pr+2

)(
1−

βfkβglβhm
pr+2

)
· κ(fk, gl, hm).

Proof. — Fix a geometric point η : Spec(C)→ Y (1, N(p)), corresponding to the class
of z in H under the isomorphism (6). With a slight abuse of notation denote again by
η the complex point νp ◦ η : Spec(C) → Y (1, N), and by η̌ both the complex points
ϕp ◦ η : Spec(C) → Y (1(p), N) and ν̌p ◦ ϕp ◦ η : Spec(C) → Y (1, N). Then η and η̌
correspond respectively to the classes of z and p · z under the analytic isomorphisms
(6). With the notations of Section 2.3 (see in particular the diagram (9)) write

T(p) = R1v1,N(p)∗Zp(1), T (p) = R1v1(p),N∗Zp(1) and T = R1v1,N∗Zp(1)

for the relative Tate modules of E(1, N(p)) → Y (1, N(p)), E(1(p), N) → Y (1(p), N)
and E(1, N) → Y (1, N) respectively (cf. Section 2.3). There are then natural iso-
morphisms

(170) T(p),η
∼= Zp ⊕ Zp · z ∼= Tη and T

(p)
η̌
∼= Zp ⊕ Zp · pz ∼= Tη̌.

Here the subscripts η and η̌ denote the stalks at η and η̌ respectively, and for each ω
in H one writes

Zp ⊕ Zp · ω = H1(C/Λω,Z)⊗Z Zp

for the p-adic completion of the integral homology of the complex elliptic curve C/Λω,
where Λω = Z⊕Z ·ω. As in Sections 3 and 4.2, after identifying T(p),η with Zp ⊕Zp
under the Zp-basis {1, z}, the natural action of the étale fundamental group G(p) =

πét
1 (Y (1, N(p)), η) (resp., G(p) = πét

1 (Y (1(p), N), η̌)) on T(p),η (resp., T
(p)
η̌ ) gives a

continuous representation %(p) : G(p) → Γ(1, N(p)) ⊗Z Zp ↪→ GL2(Zp) (%(p) : G(p) →
Γ(1(p), N)⊗Z Zp ↪→ GL2(Zp)), where Γ(1, N(p)) (resp., Γ(1(p), N)) is the subgroup
of matrices in

(
a b
c d

)
in SL2(Z) with c ≡ 0, d ≡ 1 (mod N) and c ≡ 0 (mod p) (resp.,

b ≡ 0 (mod p)). For each i > 0 set

S(p),i = Symmi
ZpT(p)(−1) and S

(p)
i = Symmi

ZpT
(p)(−1),

where as in Section 2.3 the Tate twists T(p)(−1) and T (p)(−1) are identified with
the duals of T(p) and T (p) under the Weil pairings on E(1, N(p)) and E(1(p), N)

respectively. Then the stalks of S(p),i and S
(p)
i at η and η̌, viewed as representations

of G(p) and G(p) respectively, correspond via %(p) and %(p) to the Γ(1, N(p))-module
Si = Si(Zp) and the Γ(1(p), N)-module Si (cf. Section 3). As a consequence, for each
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j > 0 and u ∈ Z there is a natural inclusion (cf. Section 4.2)

(171) H0(Γ(1, N(p)), Si ⊗ det−u) // H0(G(p), Si ⊗ det−u)

H0
ét(Y (1, N(p)),S(p),i ⊗Zp Zp(u)),

and an isomorphism

Hj
ét(Y (1, N(p))Q̄,S(p),i) ∼= Hj(Γ(1, N(p)), Si),

and similarly for the data (Γ(1(p), N),G(p),S
(p)
i ) in place of (Γ(1, N(p)),G(p),S(p),i).

As already explained in Section 3, there are similar isomorphisms after replacing %(p)

with the representations % : G → GL2(Zp) (resp., %̌ : Ǧ → GL2(Zp)) arising from the
action of G = πét

1 (Y (1, N), η) (resp., Ǧ = πét
1 (Y (1, N), η̌)) on the stalk at η (resp., η̌)

of Si = Si(Zp). Under these isomorphisms, the maps

λip∗ = (λip∗)η̌ : Si ∼= (S(p),i)η −→ (S
(p)
i )η̌ ∼= Si(172)

and λi∗p = (λi∗p )η : Si ∼= (S
(p)
i )η̌ −→ (S(p),i)η ∼= Si

induced respectively on the stalks at η̌ and η by the morphisms (16) are given by

(173) λip∗(P ) =

(
1 0
0 p

)
· P and λi∗p (P ) =

(
p 0
0 1

)
· P,

for P in Si. Indeed the base change λη̌ : C/Λz = E(1, N(p))×η C −→ E(1(p), N)×η̌
C ∼= C/Λpz of the p-isogeny λp along η̌ is induced by multiplication by p on C, hence
the map λη̌∗ : T (p) −→ T(p) it induces on the Tate modules is represented by

(
p 0
0 1

)
,

once one identifies T(p) and T (p) with Z2
p under the Zp-bases {1, z} and {1, pz} (cf.

Equation (170)). Because the dual isogeny λ′η̌ of λη̌ is the map C/Λpz → C/Λz
induced by the identity on C, and λη̌∗ and λ′η̌∗ are adjoint to each other under the
Weil pairings on C/Λz and C/Λpz, Equation (173) follows.

After this preliminary discussion, we divide the proof into three steps. For each
triple i, j, k of elements of {1, p} write

prijk∗ = pri∗ ⊗ prj∗ ⊗ prk∗ : ZNp,r(n)→ ZNp,r(n),

for n ∈ Z and Z = V or Z = W , and denote by the same symbol the map they induce
in GQ-cohomology. For any curve X over Q write d : X −→ X3 for the diagonal
embedding.

Step 1. One has the identities in H1(Q, VN,r(r + 2)):

(174) pr111∗(κNp,r) = (p2 − 1) · κN,r and prppp∗(κNp,r) = (p2 − 1)pr · κN,r.

As the element Detr = DetrN is invariant under GL2(Zp), it defines under the
inclusion (171) an element Detr in H0

ét(Y (1, N(p)),S(p),i(r)), and similarly elements
(denoted by the same symbol) in H0

ét(Y (1(p), N),S(p),i(r)) and H0
ét(Y (1, N),Si(r)).

According to Equation (173) and the definition of Detr in Equation (41) one has

(175) λrp∗(Detr) = pr ·Detr,
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where λrp∗ = λr1p∗ ⊗ λr2p∗ ⊗ λr3p∗ ⊗ id : Sr ⊗ det−r → Sr ⊗ det−r, hence (since ν̌p has
degree p+ 1)

ν̌p∗ ◦ ϕp∗ ◦ λrp∗(Detr) = (p+ 1)pr · Detr ∈ H0
ét(Y (1, N),Sr(r)).

Retracing the definitions of Section 2.3 and using Equation (21) this gives

prp∗(Det
r) = (p2 − 1)pr · Detr.

The previous equation and the functoriality of the Hochschild–Serre spectral sequence
implies (cf. Section 3)

prppp∗(κNp,r) = sr∗◦HS◦prppp∗◦d∗(Detr) = sr∗◦HS◦d∗◦prp∗(Det
r) = (p2−1)pr ·κN,r.

This proves the second identity in Equation (174). The first one is proved by a similar
(and simpler) argument.

Step 2. The following identities hold in H1(Q, VN,r(r + 2)):
(176)
prp11∗(κNp,r) = (p− 1) · Tp ⊗ id⊗ id(κN,r); pr1pp∗(κNp,r) = (p− 1)pr−r1 · T ′p ⊗ id⊗ id(κN,r);

pr1p1∗(κNp,r) = (p− 1) · id⊗ Tp ⊗ id(κN,r); prp1p∗(κNp,r) = (p− 1)pr−r2 · id⊗ T ′p ⊗ id(κN,r);

pr11p∗(κNp,r) = (p− 1) · id⊗ id⊗ Tp(κN,r); prpp1∗(κNp,r) = (p− 1)pr−r3 · id⊗ id⊗ T ′p(κN,r).

We prove the second identity in the first line. Note that the finite étale cover ν̌p is
not Galois. To remedy this let ϑ : Y −→ Y (1, N) be a finite étale Galois morphism
which factors through ν̌p ◦ ϕp : Y (1, N(p)) −→ Y (1, N), say ϑ = ν̌p ◦ ϕp ◦ α with
α : Y −→ Y (1, N(p)). Denote by G = Gal(ϑ) its Galois group. For each u > 1
denote by πu1∗ = νp∗ : H1(Y (1, N(p)),S(p),u) → H1(Y (1, N),Su), and similarly set
πu∗1 = ν∗p . Set

πup∗ = ν̌p∗ ◦ ϕp∗ ◦ λup∗,
πu∗p = λu∗p ◦ ϕ∗p ◦ ν̌∗p ,
πr∗ijk = πr1∗i ⊗ πr2∗j ⊗ πr3∗k

and πrijk∗ = πr1i∗ ⊗ π
r2
j∗ ⊗ π

r3
k∗,

where i, j, k is any triple of elements of {1, p}. Moreover for each morphism a : X → Y
of curves over Q write a = a×Q a×Q a : X3 → Y 3. With these notations it follows
directly from the definitions that

(177) πr1pp∗ ◦ πr∗ppp = (p+ 1)2pr2+r3 · T ′p ⊗ id⊗ id.

On the other hand, after setting

κ?Np,r = sr∗ ◦ HS ◦ d∗ ◦ ϑ∗(Detr),

one has (p+ 1) deg(α) · κN,r = ϑ∗(κ
?
Np,r), hence

(p+ 1) deg(α)4 · πr∗ppp(κN,r) = λr∗p ◦α∗ ◦ ϑ
∗ ◦ ϑ∗(κ?Np,r)

=
∑

(g1,g2,g3)∈G3

λr∗p ◦α∗ ◦ (g1 × g2 × g3)∗(κ
?
Np,r).
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For each g, h ∈ G one has πrip∗ ◦ λri∗p ◦ α∗ ◦ g∗ = pri · ϑ∗ = pri · ϑ∗ ◦ h∗, hence the
previous equation yields

(p+1) deg(α)4 · πr1pp∗ ◦ πr∗ppp(κN,r)

(178)

= pr2+r3
∑

(g1,g2,g3)∈G3

(
νp∗ ◦ λr1∗p ⊗ ν̌p∗ ◦ ϕp∗ ⊗ ν̌p∗ ◦ ϕp∗

)
◦α∗ ◦ g1∗(κ

?
Np,r)

= (p+ 1)3pr2+r3 deg(α)4 · (νp∗ ⊗ ν̌p∗ ◦ ϕp∗ ⊗ ν̌p∗ ◦ ϕp∗) ◦ (λr1∗p ⊗ id⊗ id)(κ•Np,r),

where κ•Np,r = sr∗ ◦HS ◦d∗ ◦ (ν̌p ◦ϕp)∗(Detr). According to Equations (41) and (173)

λrp∗(κ
•
Np,r) = λr1p∗ ⊗ λr2p∗ ⊗ λr3p∗(κ•Np,r) = pr · κ•Np,r

and λr1∗p ◦ λr1p∗(P ) =

(
p 0
0 p

)
· P = pr1 · P,

for P in Sr1 , hence (since 2r = r1 + r2 + r3) one can rewrite Equation (178) as

(179) πr1pp∗ ◦ πr∗ppp(κN,r) = (p+ 1)2pr · πr1pp∗(κ•Np,r).

(Note that, regarding the natural isomorphism of Equation (171) and its analogue for
Y (1, N(p)) as equalities, the pullback by ν̌p ◦ ϕp is identified with the identity.) In
addition Equation (8) gives

(180) pr1pp∗(κNp,r) = πr1pp∗ ◦ µp∗(κNp,r) = (p− 1) · πr1pp∗(κ•Np,r).

Equations (177), (179) and (180) finally give

(p+ 1)2pr · pr1pp∗(κNp,r) = (p− 1)(p+ 1)2pr2+r3 · T ′p ⊗ id⊗ id(κN,r).

This proves the second identity in the first line of Equation (176). The other equalities
in the second column (resp., the equalities in the first column) are proved by a similar
(resp., similar and simpler) argument.

Step 3. We can now conclude the proof of the proposition.
Applying the projector prfkglhm (see Equation (48)) to the identities (174) and

(176) gives

pr111∗(κNp,r)fgh = (p2 − 1) · κ(f, g, h);

prppp∗(κNp,r)fgh = pr(p2 − 1) · κ(f, g, h);

prp11∗(κNp,r)fgh = (p− 1)χ̄f (p)ap(f) · κ(f, g, h);

pr1pp∗(κNp,r)fgh = (p− 1)pr−r1ap(f) · κ(f, g, h);(181)
pr1p1∗(κNp,r)fgh = (p− 1)χ̄g(p)ap(g) · κ(f, g, h);

prp1p∗(κNp,r)fgh = (p− 1)pr−r2ap(g) · κ(f, g, h);

pr11p∗(κNp,r)fgh = (p− 1)χ̄h(p)ap(h) · κ(f, g, h);

prpp1∗(κNp,r)fgh = (p− 1)pr−r3ap(h) · κ(f, g, h).

Here (f, g, h) = (fk, gl, hm), prijk∗(κNp,r)fgh is a shorthand for the image of
prijk∗(κNp,r) under prfgh∗ = prfkglhm∗, and we used the identity T ′p = Tp ◦ 〈p〉′ as
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endomorphisms of H1
ét(Y1(N)Q̄,Li(j))Qp

. Because the map

si : H1
ét(Y1(Np)Q̄,Si)→ H1

ét(Y1(Np)Q̄,Li)(−i)

intertwines the action of the dual Atkin–Lehner operators w′p on both sides, it follows
from the definitions that

(182) Πα
fgh∗

(
κ†(fk, gl,hm)

)
= prfgh∗

(
Πα
r∗

((
w′p ⊗ id⊗ id

)
∗(κNp,r)

))
.

It it easily checked that

prp∗ ◦ w′p = pi · pr1∗ and pr1∗ ◦ w′p = 〈p〉′ · prp∗

as morphisms from H1
ét(Y1(Np)Q̄,Li) to H1

ét(Y1(N)Q̄,Li). As a consequence, setting
〈p〉′f = 〈p〉′ ⊗ id⊗ id and writing αf = αfk , βf = βfk , αg = αgl et cetera, one has

Πα
r∗ ◦

(
w′p ⊗ id⊗ id

)
=

(
〈p〉′ · prp∗ −

βf
p
· pr1∗

)
⊗
(

pr1∗ −
βg
pr2+1

· prp∗

)
⊗
(

pr1∗ −
βh
pr3+1

· prp∗

)
= 〈p〉′f · prp11∗ −

βf
p
· pr111∗ −

βg 〈p〉′f
pr2+1

· prpp1∗ −
βh 〈p〉′f
pr3+1

· prp1p∗ +
βfβg
pr2+2

· pr1p1∗

+
βfβh
pr3+2

· pr11p∗ +
βgβh 〈p〉′f
pr2+r3+2

· prppp∗ −
βfβgβh
pr2+r3+3

· pr1pp∗.

Together with Equations (181) and (182) this yields

Πα
fgh∗

(
κ†(fk, gl,hm)

)
= (p− 1) · Ef (f, g, h) · κ(f, g, h),

where (recalling that ap(ξ) = αξ + βξ and αξβξ = χξ(p)p
s−1 for ξ ∈ Ss(N,χξ), that

2r = r1 + r2 + r3 and that χfχgχh(p) = 1 by Assumption 1.2)

Ef (f, g, h) = αf + βf − βf −
βf
p
− χf (p)βgαh
pr2+r3−r+1

− χf (p)βgβh
pr2+r3−r+1

− χf (p)αgβh
pr3+r2−r+1

− χf (p)βgβh
pr3+r2−r+1

+
χ̄g(p)βfαgβg

pr2+2
+
χ̄g(p)βfβ

2
g

pr2+2
+
χ̄h(p)βfβhαh

pr3+2
+
χ̄h(p)βfβ

2
h

pr3+2

+
χf (p)βgβh
pr2+r3−r+1

+
χf (p)βgβh
pr2+r3−r+2

− αfβfβgβh
pr1+r2+r3−r+3

−
β2
fβgβh

pr1+r2+r3−r+3
(183)

= αf ·
(

1− βfβgαh
pr+2

− βfαgβh
pr+2

− βfβgβh
pr+2

+
χh(p)β2

fβ
2
g

pr1+r2+3

+
χ̄f (p)β2

f

pr1+2
+
χg(p)β2

fβ
2
h

pr1+r3+3
−
χ̄f (p)β3

fβgβh

pr+r1+4

)

= αf ·
(

1− βfαgβh
pr+2

)(
1− βfβgαh

pr+2

)(
1− βfβgβh

pr+2

)
.

This concludes the proof of the proposition.
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8.4. p-stabilisation of de Rham classes. — Let w = (k, l,m) be a classical triple
in Σ, such that p does not divide the conductors of fk, gl and hm. As in the previous
section denote by fk, gl and hm the modular forms of level Γ1(N) with ordinary p-
stabilisations fk, gl and hm respectively. For each integerM > 3 denote by V ∗dR,r(M)

the (k+ l+m− 2)/2-th Tate twist of the tensor product of the de Rham cohomology
groups H1

dR(Y1(M)Qp
,SdR,rj )L, for j = 1, 2, 3. Then the restriction of the morphism

V ∗dR,r(N) −→ V ∗dR,r(Np)

defined by(
pr∗1 −

βfk
pk−1

· pr∗p

)
⊗
(

pr∗1 −
βgl
pl−1

· pr∗p

)
⊗
(

pr∗1 −
βhm
pm−1

· pr∗p

)
to the (f, g, h)-isotypic component of V ∗dR,r(N) gives a p-stabilisation isomorphism

Πα∗
fkglhm

: V ∗dR(fk, gl, hm) ∼= V ∗dR(fk, gl,hm).

Lemma 8.4. — Assume that p does not divide the conductors of fk, gl and hm.
Then

Πα∗
fkglhm

(
ηαfk ⊗ ωgl ⊗ ωhm

)
= (p− 1)αfk

(
1−

βfk
αfk

)(
1−

βfk
pαfk

)
· ηαfk⊗ ωgl⊗ ωhm .

Proof. — Set Πα∗
k = pr∗1 −

βfk
pk−1 · pr∗p, set Πα

k∗ = pr1∗ −
βfk
pk−1 · prp∗ and define simi-

larly Πα∗
l and Πα∗

m . By the definition of p-stabilisation (cf. Equation (54)), one has
Πα∗
k (ωξ) = ωξα for any ξ ∈ Sk(N,L)fk , and similarly for Πα∗

l and Πα∗
m . In particular

(184) Πα∗
l (ωgl) = ωgl and Πα∗

m (ωhm) = ωhm .

According to Equation (3.4.5) on Page 76 of [Shi71], one has

(aw, bw)M = Mn−2 · (a, b)M
for any cuspidal forms a and b of weight n and level Γ1(M), where we recall that
·w = wM (·) is a shorthand for the image of · under the Atkin–Lehner operator wM
defined in Equation (33), and (·, ·)M is the Petersson product on Sn(M,C) defined
after Equation (35). It follows that (cf. Equation (34) and the discussion following it)

(185)
〈
ηfk , wNp ◦Πα∗

k (ωξ)
〉
fk

=
(fwk , ξ

w
α )Np

(fwk ,f
w
k )Np

=
(fk, ξα)Np
(fk,fk)Np

=
(fk, ξ)N
(fk, fk)N

.

for each ξ in Sk(N,L)fk , where ξwα = wNp(ξα).
The (easily verified) relations wNp ◦pr∗1 = pr∗p ◦wN and wNp ◦pr∗p = pk−2 ·pr∗1 ◦wN

yield

Πα
k∗ ◦ wNp ◦Πα∗

k =

(
pr1∗ −

βfk
pk−1

· prp∗

)
◦
(

pr∗p −
βfk
p
· pr∗1

)
◦ wN

= (p− 1)

(
T ′p −

2(p+ 1)βfk
p

+
β2
fk

pk
· Tp

)
◦ wN .
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As ap(fk) = αfk + βfk and T ′p ◦ wN and Tp ◦ wN act respectively as ap(fk) · wN and
χ̄f (p)ap(fk) · wN on V ∗dR(fk), a direct computation then gives (cf. Equation (183))

Πα
k∗ ◦ wNp ◦Πα∗

k = (p− 1)αfk

(
1−

βfk
αfk

)(
1−

βfk
pαfk

)
· wN

as morphisms from V ∗dR(fk) to V ∗dR(f∗k ). Because Πα∗
k and Πα

k∗ are adjoint to each
other under the pairings 〈·, ·〉fk and 〈·, ·〉fk , this implies

〈Πα∗
k (ηfk), wNp ◦Πα∗

k (ωξ)〉fk
(p− 1)αfk

(
1− βfk

αfk

)(
1− βfk

pαfk

) = 〈ηfk , wN (ωξ)〉fk(186)

=
(fwk , ξ

w)N
(fwk , f

w
k )N

=
(fk, ξ)N
(fk, fk)N

for each ξ in Sk(N,L)fk = Fil1V ∗dR(fk). As the composition wNp ◦ Πα∗
k gives an

isomorphism between Sk(N,L)fk and Sk(Np,L)f∗k , and the isomorphism

Πα∗
k : V ∗dR(fk) ∼= V ∗dR(fk)

commutes with the action of the Frobenius endomorphism on both sides, comparing
Equation (185) with Equation (186) yields the identity

Πα∗
k (ηαfk) = (p− 1)αfk

(
1−

βfk
αfk

)(
1−

βfk
pαfk

)
· ηαfk

(cf. Equation (37) for the definition of the differential ηαfk). The lemma follows from
the previous equation and Equation (184).

8.5. Conclusion of the proof. — This section concludes the proof of Theorem A.
According to Corollary 8.2 the class κ(f , g,h) belongs to H1

bal(Q, V (f , g,h)). Let
Σobal be the set of balanced triples (k, l,m) such that k, l,m > 3 and p does not divide
the conductors of fk, gl and hm. Let ξ denote one of f , g and h. Because Σobal is
dense in Uf × Ug × Uh, in order to prove Theorem A it is sufficient to show that

(187) Lξ

(
κ(f , g,h)

)
(w) = L ξ

p (fk, gl,hm)

for every w = (k, l,m) in Σobal, where to ease the notation one writes

Lξ(κ(f , g,h)) = Lξ(resp(κ(f , g,h))).

Fix such a triple w and to ease notation set αf = αfk , βf = βfk , αg = αgl et cetera.
Consider first the case ξ = f . Write as usual r = (r1, r2, r3) = (k− 2, l− 2,m− 2).

Since p does not divide the conductor of fk, gl and hm, the Ramanujan–Petersson
conjecture gives (

1− βf
αf

)(
1− βf

pαf

)(
1− αfβgβh

pr+2

)
6= 0.

Moreover fk = fα (resp., gl = gα, hm = hα) is the ordinary p-stabilisation of a cusp
form f = fk (resp., g = gl, h = hm) of level Γ1(N). Proposition 7.3, the definition of
logp(·)f and Lemma 8.4 then prove that

(−1)r−r1(r − r1)! ·Lf

(
κ(f , g,h)

)
(w)
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is equal to (
1− βfαgαh

pr+2

)
(

1− βf
αf

)(
1− βf

pαf

)(
1− αfβgβh

pr+2

) · logp
(
κ(f , g,h)w

)(
Πα∗
fgh

(
ηαf ⊗ ωg ⊗ ωh

))
,

where κ(f , g,h)w ∈ H1
bal(Qp, V (fk, gl,hm)) is the image of κ(f , g,h) under the spe-

cialisation map ρw (and as usual logp(·) is a shorthand for logp(resp(·)) for all global
classes · in H1

bal(Q, V (fk, gl,hm))). As Πα∗
fgh is the transpose of Πα

fgh∗, the functori-
ality under correspondences of the Faltings comparison isomorphism for E·1(N) and
of the Leray spectral sequence (from which Equation (26) is deduced) imply that

(188) logp
(
κ(f , g,h)w

)
◦Πα∗

fgh = logp

(
Πα
fgh∗

(
κ(f , g,h)w

))
as functionals on Fil0V ∗dR(f, g, h). According to Theorem 8.1 and Proposition 8.3

Πα
fgh∗

(
κ(f , g,h)w

)
equals (

1− αfβgβh
pr+2

)(
1− βfαgβh

pr+2

)(
1− βfβgαh

pr+2

)(
1− βfβgβh

pr+2

)
· κ(f, g, h).(189)

The previous three equations show that Lf

(
κ(f , g,h)

)
(w) is equal to the product of

(−1)r−r1

(r − r1)!

(
1− βfαgαh

pr+2

)(
1− βfαgβh

pr+2

)(
1− βfβgαh

pr+2

)(
1− βfβgβh

pr+2

)
(

1− βf
αf

)(
1− βf

pαf

)
and

logp
(
κ(f, g, h)

)
(ηαf ⊗ ωg ⊗ ωh),

which in turn is equal to L f
p (fk, gl,hm) by the explicit reciprocity law Proposition

3.6. This proves Equation (187), and with it Theorem A, for ξ = f .
The proofs of Equation (187) for ξ = g,h are similar. We give the details for

ξ = g. Exchanging the roles of f and g in the constructions of Sections 7.1, 7.3, and
8.4, (the resulting) Propositions 7.3 and 8.4 proves that

(−1)r−r2(r − r2)! ·Lg

(
κ(f , g,h)

)
(w)

is equal to (
1− αfβgαh

pr+2

)
(

1− βg
αg

)(
1− βg

pαg

)(
1− βfαgβh

pr+2

) · logp
(
κ(f , g,h)w

)(
Πα∗
fgh

(
ωf ⊗ ηαg ⊗ ωh

))
.

Equations (188)–(189) (which are symmetric in (f , g,h)) then prove that the special
value Lg(κ(f , g,h))(w) is the product of

(−1)r−r2

(r − r2)!
·

(
1− αfβgαh

pr+2

)(
1− αfβgβh

pr+2

)(
1− βfβgαh

pr+2

)(
1− βfβgβh

pr+2

)
(

1− βg
αg

)(
1− βg

pαg

) .
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and
logp

(
κ(f, g, h)

)
(ωf ⊗ ηαg ⊗ ωh)

This is precisely the formula for L g
p (fk, gl,hm) obtained by replacing the triple

(fk, gl,hm) with (gl,fk,hm) in the statement of the explicit reciprocity law Propo-
sition 3.6, thus concluding the proof of Theorem A.

9. Proof of Theorem B

This section proves Theorem B stated in the Introduction. The notations and
assumptions are as in Section 1.2. Then (f , g,h) is a level-N test vector for (f ], g],h])
and wo = (k, l,m) is an unbalanced triple in Σf .

For the convenience of the reader, we briefly describe the contents of the different
subsections. Section 9.1 proves Theorem B assuming that wo is not exceptional in
the sense of Section 1.2. Section 9.2 proves an exceptional zero formula for the big
logarithm Lf when wo is exceptional of type (5), viz. in the exceptional case arising
from the vanishing at wo of the analytic f -Euler factor E∗f (f , g,h) introduced in
Equation (4). Section 9.3 constructs the improved diagonal classes κ∗g(f , g,h) and
κ∗h(f , g,h) introduced in Section 1.2. Their construction is nontrivial only when the
g-Euler factor Eg(f , g,h) defined in Equation (1) vanishes at wo, that is when wo is
exceptional of type (3) (cf. Section 1.2). Section 9.4 finally proves Theorem B when
wo is exceptional.

9.1. Proof in the non-exceptional case. — This section proves Theorem B when
wo is not exceptional.

Lemma 9.1. — The Bloch–Kato finite, exponential and geometric subspaces of the
local cohomology group H1(Qp, V (fk, gl,hm)) are all equal.

Proof. — We use the notations introduced in the proof of Lemma 3.5. As in loco
citato, it is sufficient to prove that Dϕ=1,N=0

st vanishes.
Since k > l+m, one has ordp(α

f
w) 6 − 1 and ordp(β

·
w) 6 − 1 for · = ∅, g, h, hence

Dϕ=1
st is contained in the L-module generated by aw,a

g
w,a

h
w and bfw. Moreover

|αw|∞ = p(εw−1)/2, |αξw|∞ = p(εw−2·εξ−1)/2 and |βfw|∞ = p(2·εf−εw−1)/2

for ξ = g, h (cf. loco citato for the notation). It follows that Dϕ=1
st is equal to zero if

εw = 0 or εw = 2. If εw = 3, then Dϕ=1
st is contained in L · agw ⊕ L · ahw and

N(r · agw + s · ahw) = (r + s) · bfw + r · bhw + s · bgw,

for each r, s in L, hence Dϕ=1,N=0
st = 0. If εw = εξ = 1 for ξ = g, h and {ξ, ζ} = {g, h},

then Dϕ=1
st is contained in the L-module generated by aw and aζw, and

N(r · aw + s · aζw) = r · aξw + s · bfw,

hence Dϕ=1,N=0
st = 0. Finally, if εw = εf = 1, one has

N(r · aw + s · agw + t · ahw + u · bfw) = r · afw + s · bhw + t · bgw + u · bw,
hence Dϕ=1,N=0 vanishes also in this case, concluding the proof of the lemma.
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In light of Lemma 9.1, in order to prove Theorem B it is sufficient to show that

(190) exp∗p(κ(fk, gl,hm)) = 0 if and only if L(f ]k⊗g
]

l⊗h
]

m, (k+ l+m−2)/2) = 0,

where exp∗p is the Bloch–Kato dual exponential and exp∗p(·) = exp∗p(resp(·)) for any ·
in the global cohomology group H1(Q, V (fk, gl,hm)).

Set

(191) V ·(fk, gl,hm)± = V ·(fk)± ⊗L V ·(gl)⊗L V ·(hm)(c·),

where c· = (4 − k − l − m)/2 and c· = (k + l + m − 2)/2 if · = ∅ and · = ∗
respectively. Because k > l + m the inclusion V ∗(fk, gl,hm)+ ↪−→ V ∗(fk, gl,hm)
and the projection V (fk, gl,hm) −� V (fk, gl,hm)− induce isomorphisms

Dst(V
∗(fk, gl,hm)+) ∼= V ∗dR(fk, gl,hm)/Fil0(192)

and Fil0VdR(fk, gl,hm) ∼= Dst(V (fk, gl,hm)−)

respectively. (If gl or hm is a weight-one modular form, the modules VdR(fk, gl,hm)
and V ∗dR(fk, gl,hm) are defined using the conventions introduced in the last item of
Sections 5, cf. Equations (127) and (129) and Section 7.1.1.1.) Let

〈·, ·〉fkglhm : Fil0VdR(fk, gl,hm)⊗L V ∗dR(fk, gl,hm)/Fil0 −→ L

be the perfect pairing induced on the de Rham modules by the specialisation at wo (cf.
Equations (106)–(109)) of the tensor product of the pairings 〈·, ·〉ξ defined in Equation
(103), for ξ = f , g,h. (According to Equation (109), if k, l andm are all geometric this
is also induced by the tensor product of the pairings 〈·, ·〉ξ introduced in Equation
(31), for ξ = fk, gl,hm.) By construction V (fk, gl,hm)f is a GQp

-submodule of
V (fk, gl,hm)−, and the image of

Dcris(V (fk, gl,hm)f ) ↪−→ Dst(V (fk, gl,hm)−) ∼= Fil0VdR(fk, gl,hm)

(cf. Equation (192)) is orthogonal under 〈·, ·〉fkglhm to the kernel of the projection

V ∗dR(fk, gl,hm)/Fil0 ∼= Dst(V
∗(fk, gl,hm)+) −� Dcris(V

∗(fk, gl,hm)f ),

where V ∗(fk, gl,hm)f is the c∗-th Tate twist of V ∗(fk)+ ⊗L V ∗(gl)− ⊗L V ∗(hm)−.
Moreover, after setting xo = (wo, (k − l −m)/2) (and identifying Dcris(Qp(i)) with
Qp · ti), one has by definition (cf. Section 7)

Dcris(V (fk, gl,hm)f ) = D̄(f , g,h)f ⊗xo L
and Dcris(V

∗(fk, gl,hm)f ) = D̄∗(f , g,h)f ⊗xo L.
By Corollary 8.2 the class κ(f , g,h) is balanced, viz. its restriction at p is the

image of a (unique) class κ̌(f , g,h) in H1(Qp,F 2V (f , g,h)). Let κ̌(fk, gl,hm)
be the specialisation of κ̌(f , g,h) at wo, and let κ(fk, gl,hm)f be its image in
H1(Qp, V (fk, gl,hm)f ) under the morphism pf∗ (cf. Section 7.2). As the diagram

(193) H1(Qp,F 2V (fk, gl,hm))

pf∗

��

// H1(Qp, V (fk, gl,hm))

��
H1(Qp, V (fk, gl,hm)f ) // H1(Qp, V (fk, gl,hm)−)
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commutes, the previous paragraph reduces the proof of Equation (190) to the following
claim.

(α) The Garrett L-function L(f ]k ⊗ g
]

l ⊗ h]m, s) vanishes at s = (k + l +m− 2)/2
if and only if 〈

exp∗p(κ(fk, gl,hm)f ), µ
〉
fkglhm

= 0

for all differentials µ in D̄(f , g,h)f ⊗xo L. Here exp∗p is the Bloch–Kato dual
exponential on H1(Qp, V (fk, gl,hm)f ) and 〈·, ·〉fkglhm is the specialisation at
xo of the bilinear form 〈·, ·〉fgh defined in Equation (139).

As (f , g,h) varies through the level-N test vectors for (f ], g],h]), the speciali-
sations at xo of the associated Ōfgh-adic differentials ηfωgωh (cf. Equation (142))
generate D̄∗(fk, gl,hm)f ⊗xo L. This follows from the results of Sections 2.5, 5 and
7.1.1. As a consequence the claim (α) is equivalent to

(β) The Garrett L-function L(f ]k ⊗ g
]

l ⊗ h]m, s) vanishes at s = (k + l +m− 2)/2
if and only if 〈

exp∗p(κ(fk, gl,hm)f ), ηfkωglωhm
〉
fkglhm

= 0

for all level-N test vectors (f , g,h) for (f ], g],h]), where ηfkωglωhm in
Dcris(V

∗(fk, gl,hm)f ) is the specialisation of ηfωgωh at xo (cf. Section 7.1.1).

Remark 9.2. — As explained in Remark 1.3(3), the class κ(f , g,h), hence κ̌(f , g,h)
and a fortiori κ(fk, gl,hm)f , is independent of the choice of the level-N test vector
(f , g,h) for (f ], g],h]).

Assume in the rest of this section that wo is not exceptional. This implies that

βfkαglαhm 6= p(k+l+m−2)/2

for each test vector (f , g,h). (As usual βfk = χf (p)pk−1/ap(k), hence the previous
equation is a consequence of Equation (5) and the Ramanujan–Petersson conjecture.)
According to Theorem A, (the proof of) Proposition 7.3 and the previous equation,
for each level-N test vector (f , g,h) one has

L f
p (fk, gl,hm) = Ewo ·

〈
exp∗p(κ(fk, gl,hm)f ), ηfkωglωhm

〉
fkglhm

for a non-zero algebraic number Ewo . The statement (β) can then be rephrased as
(γ) L(f ]k ⊗ g

]

l ⊗ h]m, (k + l + m − 2)/2) = 0 if and only if L f
p (fk, gl,hm) = 0 for

all level-N test vectors (f , g,h) for (f ], g],h]).
Under the current Assumption 1.7 on the local signs ε`(f ]k, g

]

l , h
]
m), the claim (γ) is a

consequence of Jacquet’s conjecture proved by Harris–Kudla in [HK91]. Indeed, as
wo is not exceptional, there exist test vectors (f , g,h) such that L f

p (fk, gl,hm) is a
non-zero multiple of the complex central value L(f ]k ⊗ g

]

l ⊗ h]m, (k+ l+m− 2)/2) (cf.
Section 6 and [DR14, Theorems 4.2 and 4.7]).
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9.2. Derivatives of big logarithms I. — Assume in this section that the unbal-
anced classical triple wo in Σf satisfies the conditions displayed in Equation (5) of
Section 1.2. In particular wo = (2, 1, 1).

Denote by I = Iwo the ideal of functions in Ofgh which vanish at wo. The
exceptional zero condition (5) and Proposition 7.3 imply that the big logarithm Lf

takes values in I . According to loc. cit. Lf factors through the morphism induced
by the projection pf : F 2V (f , g,h)) −→ V (f , g,h)f and we write again

Lf : H1(Qp, V (f , g,h)f ) −→ I

for the resulting map. The aim of this section is to prove Proposition 9.3 below, which
gives a formula for the derivative of Lf at wo, namely for the the composition of Lf

with the projection I → I /I 2. In order to state it we need to introduce further
notations.

Since χ̄f (p) = χgχh(p) and χ̄f (p) · ap(2) = bp(1) · cp(1) under the current assump-
tions, the GQp -representation

V (f2)−ββ
def
= V (f , g,h)f ⊗wo L = V (f2)− ⊗L V (g1)+ ⊗L V (h1)+

is isomorphic to the direct sum of a finite number of copies of the trivial p-adic
representation of Gp = GQp (cf. Section 7.2). Let Gab

p be the Galois group of the
maximal abelian extension of Qp, and let

recp : Q∗p⊗̂Qp
∼= Gab

p ⊗̂Qp

be the reciprocity map of local class field theory, normalised by requiring that
recp(p

−1) is an arithmetic Frobenius. Identify H1(Qp,Qp) = Homcont(G
ab
p ,Qp) with

Homcont(Q
∗
p,Qp) under recp, so that

H1(Qp, V (f2)−ββ) = Homcont(Q
∗
p,Qp)⊗Qp

V (f2)−ββ(194)

and Dcris(V (f2)−ββ) = V (f2)−ββ .

Under these identifications the Bloch–Kato dual exponential exp∗p onH1(Qp, V (f2)−ββ)
satisfies

(195) exp∗p(ψ ⊗ v) = ψ(e(1)) · v ∈ V (f2)−ββ

for all ψ ⊗ v in Homcont(Q
∗
p,Qp)⊗Qp

V (f2)−ββ , where

e(1) = (1 + p)⊗̂ logp(1 + p)−1 ∈ Z∗p⊗̂Qp.

Similarly the GQp
-module

V ∗(f2)+
ββ

def
= V ∗(f2)+ ⊗L V ∗(g1)− ⊗L V ∗(h1)−

is isomorphic to the direct sum of several copies of the trivial representation of GQp ,
hence Dcris(V

∗(f2)+
ββ) = V ∗(f2)+

ββ and Paragraph 7.1.1.1 give a perfect pairing

〈·, ·〉f2g1h1
: V (f2)−ββ ⊗L V

∗(f2)+
ββ −→ L.
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For each z = ψ⊗ v in H1(Qp, V (f2)−ββ), with ψ ∈ Homcont(Q
∗
p,Qp) and v ∈ V (f2)−ββ ,

and each q in Q∗, define (cf. Equation (129) and the discussion preceding it)

z(q) = ψ(q) · v ∈ V (f2)−ββ

and
z(q)f = (p− 1)ap(2) ·

〈
z(q), ηf2 ⊗ ωg1 ⊗ ωh1

〉
f2g1h1

∈ L.

Let z in H1(Qp, V (f2, g1,h1)) be the specialisation at wo of a balanced class Z in
H1

bal(Qp, V (f , g,h)), that is z = ρwo∗(Z). Then Z is the natural image of a unique
class Y in H1(Qp,F 2V (f , g,h)). Define

yf = pf∗
(
ρwo∗(Y)

)
∈ H1(Qp, V (f2)−ββ)(196)

and exp∗p(z)f =(p− 1)ap(2) ·
〈

exp∗p(yf ), ηf2 ⊗ ωg1 ⊗ ωh1

〉
f2g1h1

.

The following key proposition studies the derivatives of the logarithm Lf , extend-
ing some of the results of [Ven16]. Its proof exploits the existence of an improved big
logarithm for the restriction of Lf to the improving plane Hf defined by the equation
k = l +m. Part 1 of the proposition is a crucial ingredient in the proof of the main
result of our contribution [BSV20a], and Part 3 is essential for the ongoing proof of
Theorem B in the exceptional case (cf. Section 9.4). Part 2 is not used elsewhere in
the paper and is stated for completeness (and with future applications of this work
in mind). Before stating the proposition, we introduce some notation.

For the proof of Theorem B, we are especially interested in the improving line Hfg
in Uf ×Ug×Uh defined by the equations k = l+1 andm = 1; it is the intersection of
the improving planes Hg (introduced in Section 1.2) and Hf . Let resfg : Ofgh −→ Og
be the morphism sending the analytic function F (k, l,m) to its restriction F (l+1, l, 1)
to the improving lineHfg. For each Ofgh-moduleM , denote byM |Hfg = M⊗resfgOg
the base chance of M along resfg, and for each m in M denote by m|Hfg the image
of m under the projection M −→M |Hfg . Set

V (fg,h1) = V (f , g,h)|Hfg and V (fg,h1)f = V (f , g,h)f |Hfg .
Shrinking Ug and Uh if necessary, assume that l+m belongs to Uf for each (l,m)

in Ug × Uh, and recall the analytic f -Euler factor

(197) E∗f (f , g,h) = 1− bp(l) · cp(m)

χ̄f (p) · ap(l+m)
∈ Og⊗̂LOh

introduced in Equation (4). (We also recall that ap(k), bp(l) and cp(m) are the p-th
Fourier coefficients of the primitive Hida families f ], g] and h] associated respectively
with f , g and h.) In the present exceptional zero scenario (cf. Equation (5)) it vanishes
at (l,m) = (1, 1). Denote by

E∗f (fg,h1) = E∗f (f , g,h)|Hfg ∈ Og

the restriction of E∗f (f , g,h) to Hfg. Finally define the analytic L -invariants

Lan
f = −2 ·d log ap(k)|k=2, Lan

g = −2 ·d log bp(l)|l=1 and Lan
h = −2 ·d log cp(m)|m=1.

We can now state the main result of this section.

Proposition 9.3. —
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1. Let Z ∈ H1(Qp, V (f , g,h)f ) and let z = ρwo(Z) ∈ H1(Qp, V (f2)−ββ). Then

2(1− 1/p) ·Lf (Z) ≡
(
z(p−1)f − Lan

f · z(e(1))f

)
· (k − 2)

+
(
Lan
g · z(e(1))f − z(p−1)f

)
· (l− 1)

+
(
Lan
h · z(e(1))f − z(p−1)f

)
· (m− 1)

(
mod I 2

)
.

2. Let Z be a local balanced class in H1
bal(Qp, V (f , g,h)) and let z = ρwo(Z) be its

wo-specialisation in H1
bal(Qp, V (f2, g1,h1)). Then

2(1− 1/p) ·Lf (Z)

is congruent modulo I 2 to((
Lan
g − Lan

f

)
· (l− 1) +

(
Lan
h − Lan

f

)
· (m− 1)

)
· exp∗p(z)f .

3. There exists a morphism

L ∗V (fg,h1)f
: H1(Qp, V (fg,h1)f ) −→ Og

such that, for each local class Z in H1(Qp, V (fg,h1)f ) and each positive integer
l > 1 in Ug congruent to 1 modulo p− 1, one has

E (l) ·L ∗V (fg,h1)f
(Z)(l) = (p− 1)ap(l + 1) · 〈exp∗p(z), ηfl+1

ωglωh1
〉fl+1glh1

,

where E (l) = 1− χ̄f (p)·ap(l+1)
p·bp(l)·cp(1) and z = ρl(Z) in H1(Qp, V (fl+1, gl,h1)f ) is the

weight-l specialisation of Z. Moreover, the following diagram commutes.

H1(Qp, V (f , g,h)f )
Lf //

resfg∗

��

Ofgh

resfg

��
H1(Qp, V (fg,h1)f )

E∗f (fg,h1)·L ∗V (fg,h1)f // Og

Proof. — Let ε : Ōfgh −→ Ofgh be the map which sends the analytic function
F (k, l,m, j) in Ōfgh to its restriction F (k, l,m, 0) ∈ Ofgh to the hyperplane j = 0
(see Section 7.1 and note that jo = 0). Because M(f , g,h)f is equal (by definition)
to the base change M̄(f , g,h)f ⊗ε Ofgh, this induces in cohomology

ε∗ : H1(Qp, M̄(f , g,h)f ) −→ H1(Qp,M(f , g,h)f ).

A slight generalisation of [Ven16, Proposition 3.8] stated in Lemma 9.4 below gives
an improved big dual exponential

L∗f : H1(Qp,M(f , g,h)f ) −→ D(f , g,h)f

such that, for all classes Z in H1(Qp,M(f , g,h)f ) and all w = (k, l,m) ∈ Σ, one has

(198)
(
1− p−1 ·Ψw(Frobp)

)
· L∗f (Z)(w) = exp∗(Zw),

where Ψw is the composition of the unramified character Ψ : GQp
−→ O∗fgh introduced

in Equation (136) with evaluation at w, exp∗ is the Bloch–Kato dual exponential on
H1(Qp,M(fk, gl,hm)f ), and Zw is a shorthand for ρw∗(Z). (Precisely, after setting
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R = Ofgh, M = M(f , g,h)f and Φ = Ψ, then one has L∗f = Exp∗Ψ with the notations
of Lemma 9.4.) Recall the big logarithm L̄f introduced in Equation (144), and let

L ∗f : H1(Qp,M(f , g,h)f ) −→ Ofgh

be the composition of L∗f with the base change

〈·, ηfωgωh〉fgh ⊗ε Ofgh : D(f , g,h)f → Ofgh

of the linear form 〈·, ηfωgωh〉fgh along ε. Equation (198) and Proposition 7.1 yield

(199) ε ◦ L̄f =
(
1−Ψ(Frobp)

−1
)
·L ∗f ◦ ε∗.

Define % = ρwo : Ōfgh −→ Ocyc by %(F (k, l,m, j)) = F (wo, j) and denote by
M̄(f2, g1,h1)f the base change M̄(f , g,h)f ⊗%Ocyc. Note that in the present setting
GQp acts on M̄(f2, g1,h1)f via the character κ−jcyc, and for all integers j divisible by
p− 1, evaluation at j on Ocyc induces a natural isomorphism (cf. Sect. 7.1)

(200) V (f2)−ββ(−j) = M̄(f2, g1,h1)f ⊗j L.

The results of Coleman and Perrin-Riou (see Section 4 of [PR94]) then give a mor-
phism of Ocyc-modules

Lcyc : H1(Qp, M̄(f2, g1,h1)f ) −→ Ocyc

such that, for all classes Z in H1(Qp, M̄(f2, g1,h1)f ) and all integers j > 0 satisfying
j ≡ 0 (mod p− 1), one has

(201) Lcyc(Z)(j) = j!

(
1− pj

)
(1− p−j−1)

exp∗(Zj)f .

Here Zj is the image of Z in H1(Qp, V (f2)−ββ(−j)) under the morphism induced by
(200) and one writes again

exp∗(·)f = (p− 1)ap(2) ·
〈

exp∗(·), ηf2ωg1ωh1

〉
f2g1h1

for the composition of the linear form (p− 1)ap(2) ·
〈
·, ηf2ωg1ωh1

〉
f2g1h1

on V (f2)−ββ
with the Bloch–Kato dual exponential map

exp∗ : H1(Qp, V (f2)−ββ(−j)) −→ V (f2)−ββ ⊗Qp
Qp · t−j ∼= V (f2)−ββ

(cf. Section 7.1 and Equation (194)). According to Proposition 3.6 of [Ven16] (see
also [Ben14, Proposition 2.2.2]), for all classes Z in H1(Qp, M̄(f2, g1,h1)f ) one has

(202)
d

dj
Lcyc(Z)j=0 = (1− 1/p)−1 · z(p−1)f ,

where z is a shorthand for Z0. Moreover Proposition 7.1 and Equation (201) yield the
identity

(203) % ◦ L̄f = Lcyc ◦ %∗.

Let Z be a class in H1(Qp, V (f , g,h)f ) and let z = ρwo(Z) ∈ H1(Qp, V (f2)−ββ)

be its specialisation at wo. As explained in the proof of Proposition 7.3 (see in
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particular Equations (151) and (152)), the class Z can by lifted to an element Z in
H1(Qp, M̄(f , g,h)f ) via the map induced in cohomology by the isomorphism

M̄(f , g,h)f/(2j − k + l+m) · M̄(f , g,h) ∼= V (f , g,h)f ,

and one has

(204) Lf (Z)(k, l,m) = L̄f (Z )(k, l,m, (k − l−m)/2),

for any such lift Z . As (cf. Equation (136))

2 ·
(
1−Ψ(Frobp)

−1
)

= Lan
g · (l− 1) + Lan

h · (m− 1)− Lan
f · (k − 2) + · · · ,

where the dots denote the terms of higher degree in the Taylor expansion at wo,
Equations (199) and (203) yield that 2(1− 1/p) · L̄f (Z ) is equal to

2
(
1−Ψ(Frobp)

−1
)

(1− 1/p) ·L ∗f (ε∗(Z )) + 2(1− 1/p) ·Lcyc(%∗(Z )) + · · · ,

which in turn agrees with

z(e(1))f ·
(
Lan
g · (l− 1) + Lan

h · (m− 1)− Lan
f · (k − 2)

)
+ 2 · z(p−1)f · j + · · ·

by Equations (195), (198) and (202). This proves Part 1 in the statement.
To prove Part 2 let Z,Y, z and yf be as in Equation (196), so that

(205) exp∗p(z)f = yf (e(1))f

(cf. Equation (195)). Note that the L[Gp]-module F 2V (f2, g1,h1) splits as the direct
sum of its submodules V (f2)+

αβ = V (f2, g1,h1)g, V (f2)+
βα = V (f2, g1,h1)h and

V (f2)ββ = V (f2)⊗L V (g1)+ ⊗L V (h1)+

(cf. Section 7.2). Moreover, if V (f2)+
ββ denotes the tensor product of V (f2)+, V (g1)+

and V (h1)+ (that is F 3V (f2, g1,h1) with the notations of Section 7.2), the projection
V (f2)ββ −� V (f2)−ββ gives rise to a short exact sequence of GQp -modules

(206) 0 −→ V (f2)+
ββ

i+−→ V (f2)ββ
π−−→ V (f2)−ββ −→ 0.

It follows that the image of H1(Qp,F 2V (f2, g1,h1)) under pf∗ equals that of
H1(Qp, V (f2)ββ) under π−, hence

(207) yf ∈ π−∗
(
H1(Qp, V (f2)ββ)

)
.

The short exact sequence (206) defines an extension class qf in

Ext1
L[Gp]

(
V (f2)−ββ , V (f2)+

ββ

) ∼= H1(Qp, L(1))⊗L HomL

(
V (f2)−ββ , V (f2)+

ββ(−1)
)
.

After identifying H1(Qp, L(1)) with Q∗p⊗̂L under the Kummer isomorphism, this
defines a morphism

Lqf : H1(Qp, V (f2)−ββ) ∼= Homcont(Q
∗
p, L)⊗L V (f2)−ββ

−→ V (f2)+
ββ(−1) ∼= H2(Qp, V (f2)+

ββ),

where the last isomorphism arises from the invariant map H2(Qp, L(1)) ∼= L of local
class field theory. A direct computation, carried out in Lemma 9.5 below, shows
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that Lqf is equal to the connecting morphism H1(Qp, V (f2)−ββ) −→ H2(Qp, V (f2)+
ββ)

associated with the exact sequence (206). It then follows from Equation (207) that

(208) Lqf (yf ) = 0.

According to Theorem 3.18 of [GS93] qf is of the form qf ⊗ δf for some linear
form δf : V (f2)−ββ −→ V (f2)+

ββ and qf in Q∗p⊗̂L such that ordp(qf ) 6= 0 and

Lan
f = logp(qf )/ordp(qf ).

Then
logqf

= logp−Lan
f · ordp ∈ Homcont(Q

∗
p, L)

is the branch of the p-adic logarithm which vanishes at qf and L · logqf
⊗LV (f2)−ββ

is contained in the kernel of Lqf . Taking the long exact sequence associated with
(206) one easily checks that the kernel of Lqf has the same dimension as V (f2)−ββ ,
hence L · logqf

⊗LV (f2)−ββ is equal to the kernel of Lqf . Equation (208) then yields
yf = logqf

⊗vf for some vf in V (f2)−ββ , hence

(209) yf (p−1) = Lan
f · vf = Lan

f · yf (e(1)).

Part 1 of the proposition and Equations (205) and (209) give

2(1− 1/p) ·Lf (Z) = 2(1− 1/p) ·Lf ◦ pf∗(Y)

Part 1≡
(
yf (p−1)f − Lan

f · yf (e(1))f

)
· (k − 2)

+
(
Lan
g · yf (e(1))f − yf (p−1)f

)
· (l− 1) +

(
Lan
h · yf (e(1))f − yf (p−1)f

)
· (m− 1)

Eq. (209)
≡ yf (e(1))f ·

((
Lan
g − Lan

f

)
· (l− 1) +

(
Lan
h − Lan

f

)
· (m− 1)

)
Eq. (205)
≡ exp∗(z)f ·

((
Lan
g − Lan

f

)
· (l− 1) +

(
Lan
h − Lan

f

)
· (m− 1)

)
(mod I 2),

as was to be shown.
We finally prove Part 3. Taking R = Og, M = V (fg,h1)f and Φ = resfg ◦ Ψ in

Lemma 9.4 gives an improved big dual exponential

Exp∗V (fg,h1)f
: H1(Qp, V (fg,h1)f ) −→ D(fg,h1),

where D(fg,h1)f = (V(fg,h1)f ⊗̂ZpẐ
nr
p )GQp [1/p] and V(fg,h1)f is a GQp

-invariant
Λg-lattice in V (fg,h1)f . Note that D(fg,h1)f is naturally isomorphic to the base
change of D(f , g,h)f along resfg : Ofgh −→ Og, and define

L ∗V (fg,h1)f
: H1(Qp, V (fg,h1)f ) −→ Og

to be the composition of Exp∗V (fg,h1)f
with the base change

〈·, ηfωgωh〉 ⊗resfg Og : D(fg,h1)f −→ Og

along resfg of the linear form 〈·, ηfωgωh〉fgh on D(f , g,h)f . After noting that

1−Ψ(Frobp)
−1(l+m, l,m) = E∗f (f , g,h) and 1− p−1 ·Ψw(Frobp) = E (l)

for each positive integer l > 1 in Ug congruent to 1 modulo p−1, where w = (l+1, l, 1)
in Hfg, the interpolation property satisfied by LV (fg,h1)f and the commutativity of
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the diagram in the statement follow directly from Equation (143) (cf. Section 7.1.1.1
for the case l = 1), Proposition 7.3 (and its proof) and Lemma 9.4.

The following two lemmas have been invoked in the proof of Proposition 9.3.

Lemma 9.4. — Let R be a complete local Noetherian ring with finite residue field of
characteristic p, and let R = R[1/p]. LetM be a free R-module of finite rank, equipped
with the action of GQp

given by a continuous unramified character Φ : GQp
−→ R∗.

Set M = M [1/p]. Then there exists a morphism of R-modules

Exp∗Φ : H1(Qp,M ) −→ (M⊗̂ZpẐ
nr
p )GQp [1/p]

such that, for each continuous morphism of Zp-algebras ν : R → Q̄p and each class
Z ∈ H1(Qp,M ), one has

ν
(
Exp∗Φ(Z)

)
=
(
1− p−1 · Φν(Frobp)

)−1 · exp∗p(Zν),

where the notations are as follows. Set Oν = ν(R) and Lν = Frac(Oν). The un-
ramified character Φν : GQp

−→ O∗ν is the composition of Φ with ν, the class Zν in
H1(Qp, Lν(Φν)) is the image of Z under the map induced in cohomology by ν, and

exp∗p : H1(Qp, Lν(Φν)) −→ Dcris(Lν(Φ)) = (Oν(Φν)⊗̂ZpẐ
nr
p )GQp [1/p]

is the Bloch–Kato dual exponential.

Proof. — When R = Of and M = Of (ǎp(k)), this is [Ven16, Proposition 3.8].
Mutatis mutandis, the proof of loco citato works in this more general setting.

Lemma 9.5. — Let M and N be two finite dimensional L-vector spaces, equipped
with the trivial action of the absolute Galois group Gp of Qp, let

(210) 0 −→M(1)
α−→ V

β−→ N −→ 0

be a short exact sequence of (continuous) L[Gp]-modules, and let

qV ∈ Ext1
L[Gp](N,M(1)) ∼= Q̂∗p ⊗Zp HomL(N,M)

be the corresponding extension class (where one identifies H1(Qp,Zp(1)) with the
p-adic completion Q̂∗p of Qp via the Kummer map). Then the connecting morphism

δV : H1(Qp, N) −→ H1(Qp,M(1))

associated with the short exact sequence is equal to the composition

LV : H1(Qp, N) ∼= Homcont(Q̂
∗
p,Zp)⊗Zp N

eV−→M ∼= H2(Qp,M(1)),

where the first isomorphism arises from the local Artin map recp : Q∗p −→ Gab
p (send-

ing p−1 to an arithmetic Frobenius), the second isomorphism arises from the invariant
map invp : H2(Qp,Zp(1)) ∼= Zp, and eV is evaluation at qV (under the product of the
natural dualities Q̂∗p ⊗Zp Homcont(Q̂

∗
p,Zp) −→ Zp and HomL(N,M)⊗L N −→M).
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Proof. — Identify M(1) with a subspace of V via the injective morphism α, and fix
an L-linear section σ : N −→ V of β. Under the natural isomorphisms

Ext1
L[Gp](N,M(1)) = Ext1

L[Gp](L,HomL(N,M)(1)) = H1(Qp,HomL(N,M)(1)),

the extension class of (210) is represented by the 1-cocylce

ξV = ξV,σ : Gp −→ HomL(M,N)(1)

defined by the formulae

g(σ(n))− σ(n) = ξV (g)(n)

for each g in Gp and each n in N .
For each 1-cocycle (id est continuous morphism of groups) ϕ : Gp −→ N , the image

of ϕ under the connecting map δV is represented by the 2-cocycle δoV (ϕ) defined by

δoV (ϕ)(g, h) = g
(
σ(ϕ(h))

)
− σ

(
ϕ(gh)

)
+ σ(ϕ(g)) = ξV (g)(ϕ(h)) = ξV ∪ev ϕ (g, h),

where ∪ev : C•cont(Gp,HomL(N,M)(1))⊗LC•cont(Gp, N) −→ C•cont(Gp,M(1)) denotes
the cup-product induced on continuous cochains by the evaluation pairing

ev : HomL(N,M)⊗L N −→M

(cf. Sections 3.4.1.2 and 3.4.5.1 of [Nek06]). If 〈·, ·〉ev denotes the composition of the
cup-product pairing induced in (1, 1)-cohomology by ∪ev with theM -linear extension

invM : H2(Qp,M(1)) = H2(Qp,Zp(1))⊗Zp M
∼= M

of the local invariant map invp, it follows that

(211) invM (δV (ϕ)) = 〈cl(ξV ), ϕ〉ev ,

where cl(·) denotes the class represented by ·. Under the natural isomorphisms

H1(Qp,HomL(N,M)(1)) = H1(Qp,Zp(1))⊗Zp HomL(N,M)

and H1(Qp, N) = H1(Qp,Zp)⊗Zp N , the pairing 〈·, ·〉ev corresponds to the product
of ev and the local Tate duality

〈·, ·〉 : H1(Qp,Zp(1))⊗Zp H
1(Qp,Zp)

∪−→ H2(Qp,Zp(1))
invp−→ Zp

associated with the multiplication pairing Zp(1)⊗Zp Zp −→ Zp. Finally one has

〈κ(q), χ〉 = χ(recp(q))

for each χ in H1(Qp,Zp) and each q in Q∗p, where κ : Q∗p −→ H1(Qp,Zp(1)) denotes
the Kummer map (cf. Proposition 1 in Section 2.3 of [Ser67]), hence

〈cl(ξV ), ϕ〉ev = eV (ϕ),

which combined with Equation (211) concludes the proof.
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9.3. Improved diagonal classes. — This section proves the existence of the big
g-improved diagonal class introduced in Equation (2) of Section 1.2.

Section 8.1 associates to the ordered triple of Hida families (f , g,h) the big diag-
onal class κ(f , g,h) (which is symmetric in the forms g and h). After identifying
the big GQ-representations V (f , g,h), V (g,f ,h) and V (h,f , g) under the natural
isomorphisms, a priori the three classes

κ(f , g,h), κ(g,f ,h) and κ(h,f , g)

in H1(Q, V (f , g,h)) may be different. This is indeed not the case.

Lemma 9.6. — The classes κ(f , g,h), κ(g,f ,h) and κ(h,f , g) are equal.

Proof. — Let Σobal be the set of balanced triples w = (k, l,m) such that p does not
divide the conductors of fk, gl and hm. Since H1(Q, V (f , g,h)) is a torsion-free
Ofgh-module and Σobal is dense in Uf × Ug × Uh, one has⋂

w∈Σobal

(k − k, l− l,m−m) ·H1(Q, V (f , g,h)) = 0.

It is then sufficient to prove that the three classes in the statement have the same
specialisation at each balanced classical triple w in Σobal. Because the map Πα

fkglhm∗
(defined after Equation (169)) is an isomorphism at each point (k, l,m) of Σobal, this
is a consequence of Theorem 8.1 and Proposition 8.3.

We now construct the g-improved balanced diagonal class

(212) κ∗g(f , g,h) ∈ H1
bal(Q, V (f , g,h)|Hg )

satisfying Equation (2) of Section 1.2.
Set Λgh = Λg⊗̂OΛh, so that Ogh = Λgh[1/p]. For every Λgfh-module M , define

M |Hg = M ⊗νg Λgh

to be the base change of the Λgfh-module M under the morphism νg : Λgfh −→ Λgh
sending the analytic function F (k, l,m) to its restriction F (l −m + 2, l,m) to the
g-improving plane Hg (cf. Section 1.2). A similar notation applies to Ogfh-modules
and sheaves of Λgfh or Ogfh-modules.

Remark 9.7. — The space A′g⊗̂Af ⊗̂Ah|Hg is identified with a subspace of the
Λgh-valued functions f on T′ × T× T that are locally analytic and such that

f (tx · x, ty · y, tz · z) = νg(t
κf
x tκgy tκhz ) · f (x, y, z) .

(This can be seen by applying [GS16, Lemma 7.3] with X = T′ × T × T to reduce
the statement to the fact that the formation of locally analytic function - without the
homogeneity property imposed - is compatible with base change.) Conversely, such a
function f can be assumed to be in the image of A′f ⊗̂Ag⊗̂Ah|Hg , by increasing the
radius of convergence in the definition of A·f = A·Uf ,ı, A

·
g = A·Ug,ı and A

·
h = A·Uh,ı. .
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Consider the analytic function D∗g : T′ × T× T −→ Λgfh defined by the formula

D∗g(x,y, z) = det(x,y)κ
∗
h · det(x, z)κ

∗
f · det(y, z)(k+m−l−2)/2

for each (x,y, z) in T′ × T × T with a = (a1, a2) for a = x,y, z. (Because we
apply an integer power to the last determinant, there is no need to restrict to the
domain T′ × (T × T)0 as we did in the definition of Det in Section 8.1.) Then
Det∗g := νg ◦ D∗g : T′ × T × T −→ Λgh is a locally analytic function satisfying the
homogeneity property of Remark 9.7. It also satisfies the invariance property

Det∗g(x · γ,y · γ,z · γ) = det(γ)νg◦κ
∗
gfh ·Det∗g(x · γ,y · γ,z · γ).

Applying Remark 9.7 and recalling that κg = νg ◦ κ∗gfh, we have thus defined

(213) Det∗g ∈ H0(Γ0(pZp),A′g⊗̂Af ⊗̂Ah|Hg (−κg)).

With the notations of Sections 4.2 and 8.1, let

A′g�Af�Ah|Hg = A′g⊗̂Af ⊗̂Ah|étHg and A′g⊗Af⊗Ah|Hg = d∗
(
A′g�Af�Ah|Hg

)
be the étale sheaf on Y 3 associated with the representation Af ⊗̂A′g⊗̂Ah|Hg in
M(Γ0(pZp)

3) and its pull back under the diagonal embedding d : Y −→ Y 3

respectively, so that one has a natural inclusion

(214) H0(Γ0(pZp),A′g⊗̂Af ⊗̂Ah|Hg (−κg)) ↪−→ H0
ét(Y,A

′
g ⊗Af ⊗Ah|Hg (−κg)).

On the other hand, consider the following composition.

H0
ét(Y,A

′
g ⊗Af ⊗Ah|Hg (−κg))

d∗−→ H4
ét(Y

3,A′g �Af �Ah|Hg (−κg)⊗Zp Zp(2))(215)
HS−→ H1

(
Q, H3

ét

(
Y 3
Q̄,A

′
g �Af �Ah|Hg

)
(2 + κg)

)
Because H4

ét(Y
3
Q̄
,F ) vanishes for every pro-sheaf F ∈ S(Y 3

ét) (cf. the discussion fol-
lowing Equation (156)), one has a natural isomorphism

H3
ét

(
Y 3
Q̄,A

′
g �Af �Ah|Hg

)
= H3

ét

(
Y 3
Q̄,A

′
f �Ag �Ah

)
|Hg .

Moreover, as in Equation (156), the base change along νg of the projection arising
from the Künneth decomposition et cetera induce a map

(216) H1
(
Q, H3

ét

(
Y 3
Q̄,A

′
f �Ag �Ah

)
|Hg (2 + κg)

)
−→ H1(Q, V (g,f ,h)|Hg ),

and we denote by

(217) AJgfhét : H0
ét(Y,A

′
g ⊗Af ⊗Ah|Hg (−κg)) −→ H1(Q, V (g,f ,h)|Hg )

the composition of the maps (215) and (216).
Identifying V (f , g,h)|Hg and V (g,f ,h)|Hg , one defines the sought for g-improved

diagonal class (212) to be the image of Det∗g under the big Abel–Jacobi map defined
in Equation (217), multiplied by the normalising factor 1

bp(l) (cf. Equation (155)):

κ∗g(f , g,h) =
1

bp(l)
·AJgfhét

(
Det∗g

)
.
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(Here one views Det∗g as a global section of the étale sheaf A′g⊗Af⊗Ah|Hg (−κg) via
the inclusion (214).) The balancedness of κ∗g(f , g,h) follows from a similar argument
as the one in the proof of Corollary 8.2.

We now verify that κ∗g(f , g,h) satisfies the identity displayed in Equation (2):

(218) κ(f , g,h)|Hg = Eg(f , g,h) · κ∗g(f , g,h).

Let Hcl
g be the intersection of Hg with U cl

f × U cl
g × U cl

h . As H1(Q, V (f , g,h)|Hg ) is
a torsion-free Ogh-module, in order to prove the previous equation it is sufficient to
show that

(219) ρw∗(κ(f , g,h)) = Eg(fk, gl,hm) · ρw∗(κ∗g(f , g,h))

for each classical triple w = (k, l,m) in the subset

Hbal
g = {(k, l,m) ∈ Hcl

g | m > 3}

of Hcl
g , where ρw : V (f , g,h) −→ V (fl, gl,hm) is the specialisation map (cf. Equation

(145)) and Eg(fk, gl,hm) is the value of Eg(f , g,h) at (l,m). The set Hbal
g is the

intersection of Hg with the balanced region Σbal. Moreover Lemma 9.6 and Theorem
8.1 yield

(p− 1)bp(l) · %w∗(κ(f , g,h)) = Eg(fk, gl,hm) · κ†(gl,fk,hm)

for each w = (k, l,m) in Hbal
g . (Recall from Equation (157) that the definition of

the twisted diagonal class κ†(gl,fk,hm) is not symmetric in the forms fk, gl and hm.
Indeed, after identifying V (gl,fk,hm) with V (fk, gl,hm), it follows from Theorem 8.1
and Lemma 9.6 that the class κ†(gl,fk,hm) is in general not equal to κ†(fk, gl,hm).)
To prove Equation (219), and with it Equation (218), it then remains to prove that

(p− 1)bp(l) · ρw∗
(
κ∗g(f , g,h)

)
= κ†(gl,fk,hm)

for each w = (k, l,m) in Hbal
g . After unwinding the definition, this is in turn a direct

consequence of the identity
ρw(Det∗g) = Det

r(w)
Np ,

where r(w) = (l− 2, k− 2,m− 2), which holds true in Sr(w) ↪−→ A′l−2⊗̂Ak−2⊗̂Am−2

for each balanced triple w = (k, l,m) in Hbal
g by the very definitions of the invariants

Det∗g and DetrNp (cf. Equations (213) and (41)).

9.4. Conclusion of the proof. — Assume that wo = (2, 1, 1) is exceptional. As
in Section 9.2, denote by Hfg the intersection of the improving planes Hg and Hf ,
that is the set of triples in Uf × Ug × Uh of the form (l+ 1, l, 1). Denote by

L f
p (fg,h1) = L f

p (f , g,h)|Hfg ∈ Og

the analytic function on Ug which on l takes the value L f
p (fl+1, gl,h1) (cf. Equation

(55)). Define similarly

E∗f (fg,h1) = E∗f (f , g,h)|Hfg ∈ Og and Eg(fg,h1) = Eg(f , g,h)|Hfg ∈ Og.



88 MASSIMO BERTOLINI, MARCO ADAMO SEVESO, AND RODOLFO VENERUCCI

Lemma 9.8. — Let h1 be the modular form of weight one and level Γ1(N) with
p-stabilisation h1. One has

L f
p (fg,h1) = E∗f (fg,h1) · Eg(fg,h1) ·L f∗

p (fg, h1),

where L f∗
p (fg, h1) is the analytic function in Og which on the classical point l > 1

in U cl
g takes the value

L f∗
p (fl+1, gl, h1) =

(wN (f)l+1, h1 · gl)Np
(wN (f)l+1, wN (f)l+1)Np

.

Moreover, the following two conditions are equivalent.
1. L f∗

p (f2, g1, h1) is zero for all level-N test vectors (f , g,h) for (f ], g],h]).
2. The complex central value L(f ]2 ⊗ g

]

1 ⊗ h
]

1, 1) vanishes.

Proof. — Set U = Ug, denote by (·, ·)U : Sord
U (N, χ̄f ) ⊗O(U) S

ord
U (N, χ̄f ) −→ O(U)

the O(U)-adic Petersson product (cf. Section 7 of [Hid93]) and define

L f∗
p (fg, h1) =

(wN (f)+1, eord(h1 · g))U
(wN (f)+1, wN (f)+1)U

.

Here wN (f) is the Hida family introduced in Lemma 6.1, wN (f)+1 is the family in
Sord
U (N, χ̄f ) whose specialisation at the classical point m > 2 equals wN (fm+1) and
eord is Hida’s ordinary projector from the space of O(U)-adic cusp forms of tame level
N and character χ̄f onto Sord

U (N, χ̄f ), cf. [Hid93]. (Concretely eord(h1 · g)l equals
eord(h1 ·gl) for each classical point l in U cl, where the idempotent eord occurring in the
right hand side is equal to limn→∞ Un!

p .) By construction the value of L f∗
p (fg, h1)

at a classical point m > 1 equals L f∗
p (fl+1, gl, h1).

Recall the operator V = Vp on L[[q]] defined by V (
∑
cnq

n) =
∑
cnq

np. Then

h1 = (1− βh1
· V )h1 and h

[p]
1 = (1− αh1

· V )h1

with αh1
· βh1

= χh(p), and similarly g[p]
l = (1 − αgl · V )gl. Since g[p]

l · V (h1) is
p-depleted (viz. its n-th Fourier coefficient is zero if p|n), it is killed by eord, hence(

wN (fl+1), gl · V(h1)
)
Np

= αgl ·
(
wN (fl+1), V(gl · h1)

)
Np

=
αgl

χ̄f (p)αfl+1

·
(
wN (fl+1), gl · h1

)
Np
.

(To justify the last equality, note that eord ◦ V = U−1
p · eord and Up acts on wN (fl+1)

as χ̄f (p) · αfl+1
.) Then

(
wN (fl+1), eord

(
gl · h

[p]
1

))
Np

=

(
1−

αglαh1

χ̄f (p)αfl+1

)
·
(
wN (fl+1), gl · h1

)
Np
.

Similarly the vanishing of eord(g
[p]
l · V (h1)) yields

(
wN (fl+1), gl · h1

)
Np

=

(
1−

χ̄g(p)αgl
αh1

αfl+1

)
·
(
wN (fl+1), gl · h1

)
Np
.
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Using once again the identity eord(g
[p]
l ·V (h1)) = 0 one deduces that g[p] ·h1−gl ·h

[p]
1

is killed by eord, hence the previous two equations give (cf. Equations (55) and (131))

L f
p (f , g,h)(w) =

(wN (fl+1), eord(g
[p]
l · h1))Np

(wN (fl+1), wN (fl+1))

=

(
1−

αglαh1

χ̄f (p)αfl+1

)(
1−

χ̄g(p)αgl
αh1αfl+1

)
·

(wN (fl+1), gl · h1)Np

(wN (fl+1), wN (fl+1))Np

= E∗f (f , g,h)(w) · Eg(f , g,h)(w) ·L f∗
p (fl+1, gl, h1)

for each l > 1, where w = (l+ 1, l, 1). (See Equations (1) and (197) for the definitions
of Eg(f , g,h) and E∗f (f , g,h) respectively.) This proves the first statement.

The second statement follows from the main result of [HK91] and Theorem 3 of
[DN10]. (Note that (wN (f2), g1 · h1)Np = 0 for each level-N test vectors (f , g,h) for
(f ], g],h]), cf. the discussion preceding the statement of [DN10, Theorem 3].)

As in Section 9.2, for each Ofgh-module M denote by M |Hfg = M ⊗resfg Og the
base change of M along the morphism resfg : Ofgh −→ Og sending F (k, l,m) to
F (l + 1, l, 1), and for each m in M denote by m|Hfg the natural image of m in the
quotient M |Hfg of M . Finally, if ξ is equal to one of f, g and h, define

F •V (fg,h1) = F •V (f , g,h)|Hfg and V (fg,h1)ξ = V (f , g,h)ξ|Hfg .

Lemma 9.9. — The map

H1(Qp,F
2V (fg,h1)) −→ H1(Qp, V (fg,h1))

induced by the inclusion F 2V (fg,h1) ↪−→ V (fg,h1) is injective.

Proof. — SetM = V (fg,h1) andMξ = V (fg,h1)ξ. The statement follows from the
vanishing of H0(Qp, V (fg,h1)/F 2), which in turn follows from the claim:

(220) H0(Qp, gr0M) = H0(Qp, gr1M) = 0.

To prove the claim, recall from Section 7.2 that the inertia subgroup of GQ(µp) acts on
gr0M = M/F 1M via the character κ1−l

cyc , henceH0(Qp, gr0M) = 0. Moreover, denote
by Φf , Φg and Φh the Og-valued unramified characters of GQp sending an arithmetic
Frobenius to χ̄f (p)·ap(l+1)

bp(l)·cp(1) , χ̄g(p)·bp(l)
ap(l+1)·cp(1) and χ̄h(p)·cp(1)

ap(l+1)·bp(l) respectively. Then GQp(µp)

acts on Mf ,Mg and Mh via the characters Φf , Φg ·κlcyc and Φh ·κcyc respectively (cf.
Section 7.2). According to the Ramanujan–Petersson conjecture the complex numbers
ap(l+1) and bp(l) have absolute values pl/2 and p(l−1)/2 respectively for each classical
point l > 3 in Ug, hence H0(Qp,Mξ(j)) = 0 for ξ = f, g, h and each integer j.
Since gr2M is isomorphic to the direct sum of Mf ,Mg and Mh, and since gr1M is
isomorphic to the Kummer Og-dual of gr2M (cf. Section 7.2), the claim follows.

We can now conclude the proof of Theorem B in the exceptional case.
Recall the g-improved balanced class κ∗g(f , g,h) in H1

bal(Q, V (f , g,h)|Hg ) con-
structed in Section 9.3. By the definition of the balanced condition (cf. Section 7.2),
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the restrictions at p of the classes κ(f , g,h) and κ∗g(f , g,h) are the images of classes

κ̌(f , g,h) ∈ H1(Qp,F
2V (f , g,h)) and κ̌∗g(f , g,h) ∈ H1(Qp,F

2V (f , g,h)|Hg )

respectively. Denote by

κ̌(fg,h1) = κ̌(f , g,h)|Hfg and κ̌∗g(fg,h1) = κ̌∗g(f , g,h)|Hfg
their restrictions to the improving line Hfg, and set

κ(fg,h1)f = pf∗(κ̌(fg,h1)) and κ∗g(fg,h1) = pf∗(κ̌
∗
g(fg,h1)),

where pf : F 2V (fg,h1) −→ V (fg,h1)f is the natural projection (cf. Section 7.2).
According to Equation (218) and Lemma 9.9 one has

κ(fg,h1)f = Eg(fg,h1) · κ∗g(fg,h1)f .

It then follows from Theorem A, Part 3 of Proposition 9.3 and Lemma 9.8 that

L f∗
p (fg, h1) = L ∗V (fg,h1)f

(κ∗g(fg,h1)).

Evaluating both sides of the previous equation at l = 1 and using once again Part 3
of Proposition 9.3 one gets the identity

(221) L f∗
p (f2, g1, h1) = p · ap(2) ·

〈
exp∗p(κ

∗
g(f2, g1,h1)f ), ηf2ωg1ωh1

〉
f2g1h1

where κ∗g(f2, g1,h1)f is the weight-1 specialisation of κ∗g(fg,h1)f :

κ∗g(f2, g1,h1)f = ρ1∗(κ
∗
g(fg,h1)f ) ∈ H1(Qp, V (f2)−ββ).

Similarly as in Section 9.1, we claim that the following statements are equivalent.
(a) The complex central value L(f ]2 ⊗ g

]

1 ⊗ h
]

1, 1) vanishes.
(b) L f∗

p (f2, g1, h1) = 0 for all level-N test vectors (f , g,h) for (f ], g],h]).
(c) exp∗p(κ

∗
g(f2, g1,h1)f ) = 0.

(d) exp∗p(resp(κ
∗
g(f2, g1,h1))) = 0.

(e) κ∗g(f2, g1,h1) is crystalline at p.
(As usual, here κ∗g(f2, g1,h1) in H1(Qp, V (f2, g1,h1)) denotes the specialisation of
κ∗g(f , g,h) at wo.) The equivalence between (a) and (b) is proved in Lemma 9.8.

As (f , g,h) varies through the level-N test vectors for (f ], g],h]), the differen-
tials ηf2ωg1ωh1 generate the L-module V ∗(f2)+

ββ = DdR(V ∗(f2)+
ββ) (cf. Section 9.2).

Equation (221) then proves that (b) and (c) are equivalent to each other. (Recall that
κ(f , g,h), hence κ∗g(f , g,h), is independent of the choice of the level-N test vectors
(f , g,h) for (f ], g],h]), cf. Remark 1.3(3).)

The equivalence between (c) and (d) follows, as in Section 9.1, from the balanced-
ness of the improved diagonal class. More precisely, the projection

p− : V (f2, g1,h1) −→ V (f2, g1,h1)−

induces an isomorphism between Fil0VdR(f2, g1,h1) and DdR(V (f2, g1,h1)−), hence
(d) is equivalent to the vanishing of the dual exponential of p−∗ (resp(κ(f2, g1,h1))). In
addition, since V (f2)−ββ = V (f2, g1,h1)f is a GQp

-direct summand of V (f2, g1,h1)−

(cf. Section 9.2), and since κ∗g(f2, g1,h1) is balanced at p, the diagram (193) yields

p−∗
(
resp

(
κ∗g(f2, g1,h1)

))
= κ∗g(f2, g1,h1)f ,
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thus proving the equivalence between (c) and (d).
Finally, the equivalence between (d) and (e) follows from Lemma 9.1. This con-

cludes the proof of Theorem B in the exceptional case.
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BALANCED DIAGONAL CLASSES AND RATIONAL POINTS
ON ELLIPTIC CURVES

by

Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci

Abstract. — Let A be an elliptic curve over the rationals with multiplicative re-
duction at a prime p, and let K be a quadratic field in which p is inert. Under a
generalised Heegner assumption, our previous contribution [BSV20] to this volume
attaches to (A, p,K) balanced diagonal classes in the Selmer groups of the p-adic
Tate module of A over certain ring class fields of K. These classes are obtained as
p-adic limits of geometric classes in the cohomology of higher-dimensional Kuga–Sato
varieties. The main result of this paper relates these diagonal classes to p-adic loga-
rithms of Heegner or Stark–Heegner points, depending on whether K is complex or
real respectively.

To Bernadette Perrin-Riou on her 65th birthday
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1. Description and statement of results

Let (f , gα,hα) be a triple of p-adic Hida families of common tame level N . Assume
that f interpolates the weight 2 cusp form attached to an elliptic curve A/Q with
multiplicative reduction at p, and that gα and hα respectively specialise in weight 1 to
(p-stabilised) theta-series gα and hα associated to the same quadratic extension K/Q,
having good reduction at p and inverse characters. Let κ(f , gα,hα) be the diagonal
class constructed in our previous contribution [BSV20] to this volume. This article
builds on the main results of loc. cit. to relate (a component of) the Bloch–Kato
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logarithm of the specialisation at (2, 1, 1) of κ(f , gα,hα) to the product of the formal
group logarithms of two Heegner points, respectively Stark–Heegner points when K is
imaginary, respectively real. See Theorem A below for the precise statement, holding
under Assumption 1.1.

Our strategy goes along the following lines. Let L f
p (f , gα, hα) denote the restric-

tion to the line (k, 1, 1) of the triple product p-adic L-function L f
p (f , gα,hα) defined

in loc. cit.. Section 3 shows that L f
p (f , gα, hα)2 factors as a product of two Hida-

Rankin p-adic L-functions attached to A/K. A suitable extension of main result of
[BD07], resp. [BD09] for K imaginary quadratic, resp. real quadratic shows that the
second derivative at k = 2 of the above mentioned Hida–Rankin p-adic L-functions
is equal to the square of the formal group logarithm of a Heegner point, resp. Stark–
Heegner point. Theorem A of [BSV20] describes L f

p (f , gα, hα) as the image by
a branch of the Perrin–Riou logarithm of the restriction of κ(f , gα,hα) to the line
(k, 1, 1). Theorem A of this paper then follows from Proposition 2.2, which extends
results of [Ven16] to obtain a formula for the second derivative of the Perrin-Riou
logarithm of the above class at k = 2.

More precisely, let A/Q be an elliptic curve of conductor Nfp, having multiplicative
reduction at a prime p > 3 (hence p - Nf ). Let K/Q be a quadratic extension of
discriminant dK coprime with Nfp and quadratic character εK : (Z/dKZ)∗ → µ2.
Let

f =
∑
n>1

an(A) · qn ∈ S2(Nfp,Z)new

be the weight-two newform associated with A by the modularity theorem of Wiles,
Taylor–Wiles et al., and let

νg : GK −→ Q̄∗ and νh : GK −→ Q̄∗

be two ray class characters of K. Write Nf = N+
f ·N

−
f , where N−f is the product of

the prime divisors of Nf which are inert in K/Q. We make the following

Assumption 1.1. —
1. (Heegner hypothesis) p is inert in K/Q, N−f is square-free and εK(−N−f ) = +1.
2. (Modularity) When K/Q is real, both νg and νh have mixed signature.
3. (Cuspidality) The characters νg and νh are not induced by Dirichlet characters.
4. (Self-duality) The central characters of νg and νh are inverse to each other.
5. (Local signs) The conductors of νg and νh are coprime to p · dK ·Nf .
6. (Residual irreducibility) The Fp[GQ]-module Ap(Q̄) of p-torsion points of A is

irreducible.

Let νξ denote either νg or νh and let L/Qp be a finite extension containing the
Fourier coefficients of f and the values of νξ. In light of Assumption 1.1, the two-
dimensional L-representation IndKQ(νξ) of GQ induced by νξ : GK −→ L∗ is odd and
irreducible. Thanks to the work of Hecke [Miy06, Section 4.8], it arises from the
cuspidal weight-one theta series

ξ =
∑
a

νξ(a) · qNa ∈ S1(Nξ, χξ).
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Here the sum runs over the ideals a of OK which are coprime to the conductor fξ of νξ,
Na denotes the norm of a, Nξ = dK ·Nfξ and χξ = εK ·νcen

ξ , where νcen
ξ : GQ −→ Q̄∗

is the central character of νξ. The form ξ is primitive of conductor Nξ and the dual
of its Deligne–Serre L-representation is isomorphic to IndKQ(νξ).

Since p is inert in K/Q, one has ap(ξ) = 0 so that the p-th Hecke polynomial of ξ
is equal to

X2 + χξ(p).

Let αξ ∈ O∗ be a fixed square root of −χξ(p), and write

(1) ξα = ξ(q)− βξ · ξ(qp) ∈ S1(Nξp, χξ), with βξ =
χξ(p)

αξ
= −αξ

for the corresponding p-stabilisation. (Here we assume that L contains αξ.) Since
χg · χh is the trivial character, without loss of generality we may assume that the
roots αg, βg, αh, βh are ordered in such a way that

(2) αg · αh = βg · βh = ap(A) = ±1.

As explained in Section 5 of our contribution [BSV20], the work of Hida and Wiles
implies the existence of a unique triple (f ], g]α,h

]

α) of L-rational primitive Hida fami-
lies of tame conductors (Nf , Ng, Nh) and tame characters (χf , χg, χh) which specialises
to the triple (f, gα, hα) at wo. Note that the triple (f ], g],h]) satisfies Assumptions
1.1 and 1.2 stated in Section 1 of [BSV20] (cf. Equation (1) and Assumption 1.1.3),
and that wo = (2, 1, 1) is exceptional in the sense of Section 1.2 of loc. cit. (cf.
Equation (2)).

With notations as in Section 1.1 of loc. cit., denote by N the least common multiple
ofNf , Ng andNh, by V (f , gα,hα) the big Galois representation attached to any choice
of level-N test vector for (f ], g]α,h

]

α) (cf. Remark 1.3(3) of loc. cit.), and by

κ(f , gα,hα) ∈ H1
bal(Q, V (f , gα,hα))

the corresponding diagonal class. In [Hsi20] Hsieh constructs a distinguished level-N
test vector (f , gα,hα) (denoted (f?, g?α,h

?
α) in [BSV20, Section 6.1]) for (f ], g]α,h

]

α),
and computes explicitly the local constants which appear in the interpolation formulae
satisfied by the p-adic L-function L f

p (f , gα,hα) (cf. Sections 1.1 and 6.1 of loc. cit.).
Let Vp(A) = Tap(A) ⊗Z Q be the p-adic Tate module of A with Qp-coefficients,

let Y1(Nfp) be the open modular curve over Q of level Γ1(Nfp), and let V (f) be the
f -isotypic quotient of H1

ét(Y1(Nfp)Q̄,Qp(1)) (cf. Sections 2.1 and 2.4 of [BSV20]).
Fix a modular parametrisation

℘∞ : Y1(Nfp) −→ A.

This induces an isomorphism of GQ-modules

(3) ℘∞∗ : V (f) ∼= Vp(A)

which we often consider as an equality in what follows. Set

V (f, g, h) = Vp(A)⊗Qp
V (g)⊗L V (h),

where V (ξ) = V (ξα) is the canonical model of the dual of the Deligne–Serre represen-
tation of ξ = g, h arising from the specialisation of V (ξα) at weight one (cf. Section 5
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of [BSV20]). The fixed test vector (f , gα,hα) and modular parametrisation ℘∞ de-
termine a projection V (f2, gα1,hα1) −� V (f, g, h) (denoted $? in Section 2 below),
mapping the specialisation at wo of κ(f , gα,hα) to a global class

καα(f, g, h) ∈ H1(Q, V (f, g, h)).

Let c be the non-trivial element of Gal(K/Q) and let νcξ : GK → L∗ be the
conjugate of νξ by c. By Assumption 1.1(4) the characters

ϕ = νg · νh and ψ = νg · νch
are ring class characters of K (i.e., ϕc = ϕ−1 and ψc = ψ−1). Note the factorisation
of GQ-representations

(4) V (f, g, h) ∼= Vp(A)⊗ IndKQ(ϕ)⊕ Vp(A)⊗ IndKQ(ψ).

In particular the Bloch–Kato Selmer group Sel(Q, V (f, g, h)) decomposes as

(5) Sel(Q, V (f, g, h)) ∼= Sel(Kϕ, Vp(A))ϕ ⊕ Sel(Kψ, Vp(A))ψ,

where K·/K denotes the ring class field having the same conductor as · and
Sel(K·, Vp(A))· is the submodule of the Selmer group Sel(K·, Vp(A)) ⊗Qp

L of
Vp(A)⊗Qp

L over K· on which Gal(K·/K) acts via the inverse of ·.
It follows from Equation (4) and the Artin formalism that the Garrett triple prod-

uct L-function L(f ⊗ g⊗ h, s) = L(V (f, g, h), s) factors as the product of the Rankin
L-functions L(A/K,ϕ, s) and L(A/K,ψ, s), which have both sign −1 in their func-
tional equation by Assumption 1.1.1. In particular L(f⊗g⊗h, s) vanishes to order at
least two at s = 1. Theorem B of [BSV20] in the exceptional case then proves that
the diagonal class καα(f, g, h) is crystalline at p, hence belongs to the Bloch–Kato
Selmer group Sel(Q, V (f, g, h)) of the representation V (f, g, h) of GQ:

καα(f, g, h) ∈ Sel(Q, V (f, g, h)).

Write % for either ϕ or ψ. The articles [BD07] and [BD09] (see also [GSS16])
associate to f and % a p-adic L-function

Lp(f/K, %) ∈ Of ,

interpolating the central values of the L-series L(fk/K, %, s) of the base change of fk
to K twisted by %. Their definition, which depends only on the primitive family f ],
is recalled in Section 3.2 below.

Write Kp for the completion of K at the inert prime p. Noting that p splits
completely in K%/K, let Frobp in Gal(K%/Q) be the Frobenius element determined
by the fixed embedding of Q̄ into Q̄p, mapping K% to Kp. Denote by

logωf : A(Kp)L = A(Kp)⊗̂L −→ Kp ⊗Qp
L

the L-linear extension of the composition

A(Kp)⊗̂Qp
∼= H1

fin(Kp, V (f))
logp−→ tanKp(f) ∼= Kp,

where H1
fin is the finite subspace of H1, tanKp(f) is the tangent space of the de Rham

module H0(Kp, V (f)⊗Qp
BdR), the first isomorphism arises from the map ℘∞∗ and

Kummer theory, logp is the Bloch–Kato logarithm and the second isomorphism is
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evaluation at the canonical differential ωf in the dual of tanKp(f) associated with
f (see Section 2.5 of [BSV20], in particular Equations (29), (30) and (32)). Under
our running assumptions, the p-adic L-function Lp(f/K, %) vanishes at k = 2 to
order at least two. An extension of the main results of [BD07] and [BD09] in
the imaginary quadratic and real quadratic setting respectively – see in particular
[GSS16, LMH20, LV14, Mok11] – prove the existence of a non-zero algebraic
constant Q ∈ Q̄∗ such that

(6) c2f ·
d2

dk2Lp(f/K, %)k=2 = Q · log2
ωf

(P ε% ),

where cf = cf (℘∞) ∈ K∗p is an explicit non-zero p-adic constant (depending on ℘∞)
introduced in Section 2.2 below (see also Remark 1.2), and the point P ε% in A(Kp)L
are defined as follows.

If K is imaginary quadratic, choose a primitive Heegner point P in A(K%) and let

P% =
∑

σ∈Gal(K%/K)

%(σ)−1 · Pσ and P ε% = P% + ε · PFrobp
% for ε = ap(A).

Note that the global point P ε% is viewed in Equation (6) as a local point via our fixed
embedding of Q̄ into Q̄p. When % is quadratic one checks that Frobp acts on P% via
a sign ε% (see for example the discussion in Section 4 of [BD07]).

If K is real quadratic, the local point P% in A(Kp) is defined as in the above
formula, by exploiting the action of Pic(O%) on a Stark–Heegner point P ∈ A(Kp)
attached to K%, where Pic(O%) ∼= Gal(K%/K) is the Picard group of the order O% of
K corresponding to K% via class field theory.

Remark 1.2. — The main results of [BD07, BD09] are stated in terms of the
logarithm

logA = logqA ◦ϕ
−1
Tate : A(Kp) −→ Kp,

where qA is the Tate period of AQp
, ϕTate : K∗p/q

Z
A
∼= A(Kp) is the Tate parametri-

sation and logqA : K∗p −→ Kp is the branch of the p-adic logarithm which vanishes
at qA (see Section 2.2 below for more details). The p-adic constant cf ∈ K∗p (de-
fined in Equation (14) below) accounts for the discrepancy between logA and the
logarithm logωf introduced above (cf. Lemma 2.1 below). The nontrivial element
of Gal(Kp/Qp) acts on cf as multiplication by ε = ap(A), hence c2f belongs to Q∗p.
Similarly log2

ωf
(P ε% ) belongs to L, so that the identity (6) takes place in L.

Denote by
L f
p (f , gα, hα) ∈ Of

the restriction of L f
p (f , gα,hα) to the line (k, 1, 1). Theorem 3.1 below shows the

factorisation formula

(7) L f
p (f , gα, hα)2 = A · Lp(f/K,ϕ) · Lp(f/K,ψ),

where A is a bounded analytic function on Uf such that A (2) is an element of Q̄∗.
Under the assumptions of this section, Proposition 2.2 gives a formula for the

second derivative of the Perrin-Riou big logarithm of a balanced class along the line
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(k, 1, 1) at the point k = 2. Combined with [BSV20, Theorem A], this gives the
equality

(8) c2f ·
d2

dk2 L f
p (f , gα, hα)k=2 = Q · logββ

(
resp(καα(f, g, h))

)
,

where Q is an explicit constant in Q∗ and logββ
(
resp(καα(f, g, h))

)
is the evaluation

of the p-adic Bloch–Kato logarithm of resp(καα(f, g, h)) at a canonical differential
ωf ⊗ ωgα ⊗ ωhα (see Section 2 for details).

Combining Equations (6), (7) and (8) yields

Theorem A. — For Q in Q̄∗ one has the equality

logββ
(
resp

(
καα(f, g, h)

))
= Q · logωf (P εϕ) · logωf (P εψ).

Recall that the complex L-function L(f ⊗ g ⊗ h, s) attached to V (f, g, h) vanishes
to order at least 2 at s = 1 by Assumption 1.1.

Corollary B. — Let K be imaginary quadratic. If % = ϕ or ψ is quadratic, assume
that ε = ε%. Then

d2

ds2
L(f ⊗ g ⊗ h, s)s=1 6= 0 ⇐⇒ logββ

(
resp

(
καα(f, g, h)

))
6= 0.

Proof. — Under the current assumptions P ε% is non-zero whenever P% is non-zero.
Corollary B then follows from Theorem A combined with S.-W. Zhang’s proof of the
Gross–Zagier formula for Shimura curves [Zha01].

Remark C. — Theorem A and a suitable converse to the Gross–Zagier–Kolyvagin
theorem show that the equivalent statements of Corollary B are also equivalent to the
equality

(9) Sel(Q, V (f, g, h)) = L · καα(f, g, h)⊕ L · κββ(f, g, h),

that is the Selmer group Sel(Q, V (f, g, h)) is generated by the global class καα(f, g, h)
and its counterpart κββ(f, g, h) defined by replacing the pair (gα,hα) with (gβ ,hβ)
(cf. Equation (2)).

To show that the equality (9) follows from the non-vanishing of the second deriva-
tive of L(f ⊗ g ⊗ h, s), one notes that this condition implies that Sel(Q, V (f, g, h))
is two-dimensional by the Gross–Zagier–Kolyvagin theorem. The classes καα(f, g, h)
and κββ(f, g, h) are both non-trivial by Corollary B, hence one is reduced to prove
that they are linearly independent. This follows again from Corollary B, noting that

logββ
(
resp(κββ(f, g, h))

)
= 0

since the Selmer class κββ(f, g, h) arises from the balanced class κ(f , gβ ,hβ).
Conversely, assume that the classes καα(f, g, h) and κββ(f, g, h) generate the

Selmer group Sel(Q, V (f, g, h)), so that

(10) dimL Sel(Q, V (f, g, h)) 6 2.

Granting a converse of the Gross–Zagier–Kolyvagin theorem of the form

(11) dimL Sel(K%, Vp(A))% 6 1 =⇒ ords=1L(f/K, %, s) = dimL Sel(K%, Vp(A))%
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for % equal to ϕ and ψ as above, one concludes readily as follows. Since the sign
of the functional equation of L(f/K, %, s) is −1, Equations (10) and (11) imply that
L(f/K, %, s) has a simple zero at s = 1 for % = ϕ and ψ, hence L(f ⊗ g ⊗ h, s)
has a double zero at s = 1. The above converse theorem may be approached by an
extension of the methods of the forthcoming work [BLV17], which prove Birch and
Swinnerton-Dyer formulae for general families of anticyclotomic characters of p-power
conductor and are suited to extend such formulae to arbitrary ring class characters.

In the real quadratic setting, the next result relates the (local) Stark–Heegner
points to the (global) Selmer group Sel(Q, V (f, g, h)).

Corollary D. — Assume that K is real quadratic. If the Stark–Heegner points P εϕ
and P εψ are both non-trivial, then dimL Sel(Q, V (f, g, h)) > 2.

Proof. — Theorem A implies that καα(f, g, h) and κββ(f, g, h) are non-zero. The
same argument as in Remark C shows that these classes are linearly independent.

Remark E. — Under the assumptions of Corollary D, the definition of καα(f, g, h)
and κββ(f, g, h) combined with Theorem A imply that the Stark–Heegner point P ε%
(% = ϕ,ψ) arises as the restriction at p of a Selmer class in Sel(K%, Vp(A))%. We
refer the reader to the contribution [DR20] by Darmon–Rotger to this volume for an
extensive discussion of this application (see in particular Theorem A of loc. cit.).

2. Derivatives of big logarithms II

This section should be regarded as a continuation of [BSV20, Section 6], where a
study of multivariable Perrin-Riou logarithms is undertaken. After the preliminary
Sections 2.1 and 2.2, Proposition 2.2 in Section 2.3 establishes a formula for the second
derivative of the Perrin-Riou big logarithm of a balanced class along the line (k, 1, 1)
at the point k = 2, which constitutes a crucial ingredient in the proof of Theorem A.

Let (f, g, h) and (f ], g]α,h
]

α) be as in Section 1. Denote by (f , gα,hα), or more
simply (f , g,h), any level-N test vector for (f ], g]α,h

]

α) (where N is as in Section
1). Throughout this section Assumption 1.1 is in force. In particular Assumption
6.3 of loc. cit. is satisfied (as Ap(Q̄) is p-distinguished by Tate’s theory, since p > 5,
cf. Section 2.2 below), hence one can consider the distinguished level-N test vector
(f?, g?α,h

?
α) introduced in Section 6.1 of loc. cit.. (To ease notations, the latter was

simply denoted (f , gα,hα) in Section 1).

2.1. The projection $fgh and the class καα(f, g, h). — Associated with the
choice of a test vector (f , g,h) = (f , gα,hα) we define a GQ-equivariant projection

(12) $fgh : V (f2, g1,h1) −→ V (f, gα, hα)

by the following recipe. Let ξ denote one of f , gα or hα. For each positive integer d
dividing N/Nξ denote by

vd : Y1(N, p) −→ Y1(Nξ, p)
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the degeneracy map corresponding to multiplication by d on H under the analytic
isomorphism defined in Equation (6) of loc. cit.. The Q-rational map vd induces
pull-backs v∗d : V ∗(ξ])· −→ V ∗(ξ)· (for · = ∅,±), which in turn induce morphisms
v∗d : D∗(ξ])± −→ D∗(ξ)± and v∗d : H1(Qp, V

∗(ξ])·) −→ H1(Qp, V
∗(ξ)·) between the

associated period rings and Galois cohomology groups. As d runs over the positive
divisors of N/Nξ, the images of D∗(ξ])± under the operators v∗d generate D∗(ξ)±

over Oξ. As a consequence, if ω·ξ and η·ξ (for · = ∅, ]) denote the Oξ-adic differentials
associated to ξ· in Equations (118) and (122) of loc. cit. respectively, one has

ηf = v∗f (η]f ), ωg = v∗g(ω]g) and ωh = v∗h(ω]h)

with Oξ-linear combinations v∗ξ of the operators v∗d. (See Section 5 of [BSV20],
especially Equation (95), Equations (117)–(123) and the discussion following them,
for more details.) Denote by vξ∗ : V (ξ) −→ V (ξ]) the dual of v∗ξ under the perfect
pairing (103) of loc. cit. and set

$fgh = vf∗ ⊗ vg∗ ⊗ vh∗ : V (f , g,h) −→ V (f ], g]α,h
]

α).

With a slight abuse of notation, the map (12) is defined as the base change of$fgh un-
der evaluation at wo = (2, 1, 1) on Ofgh (cf. Equations (106) and (107) of [BSV20]).

Recall the modular parametrisation

℘∞ : Y1(Nfp) −→ A

fixed in Section 1 (cf. Equation (3)) and set

$? = ℘∞∗ ⊗ id ◦$f?g?αh?α : V (f2, g1,h1) −→ V (f, gα, hα) ∼= V (f, g, h),

(where id denotes the identity on V (gα)⊗L V (hα) = V (g)⊗L V (h).) Then with the
notation of Section 1 (cf. Remark 1.3(3) and Theorem B of [BSV20])

καα(f, g, h) = $?(κ(f2, g1,h1)) ∈ Sel(Q, V (f, g, h)).

For each local crystalline class z in H1
fin(Qp, V (f, gα, hα)) define the ββ-component

of its p-adic logarithm by

logββ(z) =
〈

logp(z), ωf ⊗ ωgα ⊗ ωhα
〉
fgαhα

,

where ωf is the differential associated with f in Equation (30) of [BSV20], the weight-
one differentials ωgα and ωhα are the specialisations of ω]gα and ω]hα at weight one
(cf. Equation (129) of [BSV20]), and the pairing 〈·, ·〉fgαhα arises from the product
of perfect dualities 〈·, ·〉ξ introduced in Equations (31) and (128) of [BSV20], for
ξ = f, gα, hα. Finally for any global Selmer class κ in Sel(Q, V (f, g, h)) define (cf.
Equation (8))

logββ(resp(κ)) = logββ(κp),

where κp ∈ H1
fin(Qp, V (f, gα, hα)) is defined by ℘∞∗ ⊗ id(κp) = resp(κ).
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2.2. Tate’s theory and the constant cf . — The Tate parametrisation (cf. Chap-
ter V of [Sil94]) yields a rigid analytic isomorphism

ϕTate : EqA −→ AKp

between the Tate curve
EqA = Grig

m,Kp
/qZA

over Kp and the base change AKp of A to Kp. Here Grig
m,Kp

is the rigid multiplicative
group over Kp and qA ∈ pZp is the Tate period of AQp

(cf. loc. cit.).
Denote again by

ϕTate : Vp(EqA) ∼= Vp(A)

the isomorphism of GKp -modules induced by the Tate parametrisation on the p-adic
Tate modules with Qp-coefficients, and define

℘Tate = ϕ−1
Tate ◦ ℘∞∗ : V (f) ∼= Vp(EqA)

as the composition of its inverse with ℘∞∗ : V (f) ∼= Vp(A) (cf. Equation (3)). It
induces a morphism of filtered modules (denoted by the same symbol)

℘Tate : DdR,Kp(V (f)) ∼= DdR,Kp(Vp(EqA)),

where DdR,Kp(·) = H0(Kp, · ⊗Qp BdR) is Fontaine’s de Rham functor.
The projection Grig

m,Kp
−→ EqA gives rise to an exact sequence of GKp -modules

(13) 0 −→ Qp(1) −→ Vp(EqA) −→ Qp −→ 0.

Applying Fontaine’s de Rham functor DdR,Kp(·) = H0(Kp, ·⊗Qp
BdR) to the previous

exact sequence yields a morphism DdR,Kp(Vp(EqA)) −→ DdR,Kp(Qp) = Kp, which
restricts to an isomorphism Fil0DdR,Kp(Vp(EqA)) ∼= Kp. Define

1A ∈ Fil0DdR,Kp(Vp(EqA))

for the generator corresponding to the identity of Kp under this isomorphism. On the
other hand, the newform f corresponds (under Faltings’ comparison isomorphism) to
a canonical generator ωf of Fil0DdR,Kp(V (f)) = Fil1V ∗dR(f) ⊗Qp

Kp (cf. Equations
(29) and (30) of [BSV20], noting that V (f)(−1) = V ∗(f)). The non-zero p-adic
constant

cf ∈ K∗p
which appears in Equation (6) of Section 1 is defined by the identity

(14) ℘Tate(ωf ) = cf · 1A.

With the notations of Section 1, the following lemma shows that Equation (6) is a
restatement of the main results of [BD07, BD09] (cf. Remark 1.2).

Lemma 2.1. — Up to sign, one has the identity

logωf =
cf

deg(℘∞)
· logA .
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Proof. — Let u ∈ O∗Kp be a p-adic unit and let P = ϕTate(u) be its image in A(Kp)

under the Tate parametrisation, so that

(15) logA(P ) = logp(u),

where logp : K∗p −→ Kp is the p-adic logarithm.
For V equal to one of Qp(1), Vp(A), Vp(EqA) and V (f), denote by tangKp(V ) the

tangent space of DdR,Kp(V ) and by

logV : H1
fin(Kp, V ) −→ tangKp(V )

the Bloch–Kato logarithm (viz. the inverse of the Bloch–Kato exponential map for
V , which is an isomorphism). After identifying O∗Kp⊗̂Qp, resp. A(Kp)⊗̂Qp with the
finite subspace of H1(Kp,Qp(1)), resp. H1(Kp, Vp(A)) via Kummer theory, one has
(16)
logp(u) =

〈
logQp(1)(u), 1

〉
m

=
〈

logVp(EqA )(u),1A
〉
W

=
〈

logVp(A)(P ), ϕTate(1A)
〉
W
,

where

〈·, ·〉m : DdR,Kp(Qp(1))⊗Kp DdR,Kp(Qp) −→ DdR,Kp(Qp(1)) = Kp

is the pairing associated with the multiplication m : Qp(1) ⊗Qp
Qp −→ Qp(1), and

for A equal to either AKp or EqA , the morphism

〈·, ·〉W : tangKp(Vp(A))⊗Kp Fil0DdR,Kp(Vp(A)) −→ DdR,Kp(Qp(1)) = Kp

is the one induced by the Weil pairing W : Vp(A) ⊗Qp
Vp(A) −→ Qp(1). (The first

identity in Equation (16) is well known, while the others follow from the functoriality
of the Bloch–Kato logarithm and of the Weil pairing, after noting that the Weil pairing
on EqA and the multiplication map m are compatible via the exact sequence (13).)

Under the natural isomorphism between Vp(A) and H1
ét(AQ̄,Qp(1)), the Weil pair-

ing agrees (up to sign) with the cup-product pairing

H1
ét(AQ̄,Qp(1))⊗Qp

H1
ét(AQ̄,Qp(1)) −→ H2

ét(AQ̄,Qp(2)) ∼= Qp(1)

associated with the multiplication map Qp(1)⊗Qp Qp(1) −→ Qp(2), hence〈
logVp(A)(P ), ϕTate(1A)

〉
W

= deg(℘∞) ·
〈

logV (f)(℘
−1
∞∗(P )), ℘−1

∞∗ ◦ ϕTate(1A)
〉
f
.

By the definitions of logωf and cf , the right hand side of the previous equation equals

deg(℘∞)

cf
· logωf (P ).

Together with Equations (15)–(16), this prove that logωf (P ) and cf
deg(℘∞) · logA(P ) are

equal for each point P ∈ A(Kp) in the image of O∗Kp under the Tate parametrisation.
Since O∗Kp has finite index in EqA(Kp), this concludes the proof.
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2.3. An exceptional zero formula and Equation (8). — As above, denote by
(f , g,h) = (f , gα,hα) a level-N test vector for (f ], g]α,h

]

α). Let

Z ∈ H1
bal(Qp, V (f , g,h))

be a local balanced class such that

z
def
= ρwo(Z) ∈ H1

fin(Qp, V (f2, g1,h1)).

In other words we assume that the specialisation z of Z at wo = (2, 1, 1) belongs to the
Bloch–Kato Selmer finite subspace of H1(Qp, V (f2, g1,h1)). The aim of this section
is to prove the following exceptional zero formula for the analytic function

Lf (Z;k, 1, 1) = Log(f , g,h)(Z)|(k,l,m)=(k,1,1) ∈ Of ,

viz. the restriction to the line (k, 1, 1) of the image of Z under the Perrin-Riou loga-
rithm Lf = Log(f , g,h) (cf. [Ven16]). In light of Theorems A and B of our article
[BSV20], taking (f , g,h) = (f?, g?α,h

?
α) and Z = resp(κ(f , g,h)) in its statement

yields the key Equation (8) used in Section 1 to derive Theorem A.

Proposition 2.2. — One has ordk=2Lf (Z; k, 1, 1) > 2 and (up to sign)

c2f ·
d2

dk2 Lf (Z;k, 1, 1)k=2 =
deg(℘∞)

2ordp(qA)

(
1− 1

p

)−1

· logββ
(
$fgh(z)

)
.

We first prove a simple lemma. As in Section 1.1 of [BSV20], denote by Λf the
ring of analytic functions on Uf bounded by one, so that Of = Λf [1/p]. Let

Φ : GQp
−→ Λ∗f

be a continuous character such that Φ(·)k=2 is the trivial character, and let V be a
free Of -module of finite rank on which GQp

acts via Φ ·χcyc. Let V = V ⊗2 L be the
base change of V under evaluation at k = 2 on Of . Multiplication by k − 2 on V
gives rise to an exact sequence

(17) · · · −→ Hi(Qp,V )
k−2−→ Hi(Qp,V ) −→ Hi(Qp, V )

δ−→ Hi+1(Qp,V ) −→ · · · .

As Φ(·)k=2 is the trivial character of GQp
the representation V is the direct sum of a

finite number of copies of L(1), hence there are natural isomorphisms

H1(Qp, V ) ∼= Q∗p⊗̂V (−1) and H2(Qp, V ) ∼= V (−1)

arising from Kummer’s theory and the invariant map invp : H2(Qp,Qp(1)) ∼= Qp

respectively. One considers the previous isomorphisms as identities in the rest of this
section. Define

βV : Q∗p⊗̂V (−1)
δ−→ H2(Qp,V ) −→ H2(Qp,V )⊗2 L ∼= V (−1),

where the second map is the natural projection (and the isomorphism comes from
the exact sequence (17), since H3(Qp,V ) vanishes). Because Φ(·)k=2 is the trivial
character its derivative defines a morphism

d

dk
Φ(·)k=2 ∈ H1(Qp, L) ∼= Homcont(Q

∗
p, L),
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where the isomorphism is induced by the reciprocity map

recp : Q∗p⊗̂Qp
∼= Gab

Qp
⊗̂Qp

(normalised as in [BSV20, Section 9.2]). Taking the tensor product over L with
V (−1) this induces a morphism (denoted by the same symbol)

d

dk
Φ(·)k=2 : Q∗p⊗̂V (−1) −→ V (−1).

Lemma 2.3. — βV = d
dkΦ(·)k=2.

Proof. — Without loss of generality one can assume that V is equal to Of (Φ · χcyc),
hence V = L(1). Let x = q⊗̂v be an element of Q∗p⊗̂L and let cx : GQp

→ L(1) be
a 1-cocycle representing it. Let c̃x : GQp

→ Of (Φ · χcyc) be the 1-cochain defined
by viewing cx as a function with values in Of . Clearly c̃x(·)k=2 = cx. If d denotes
the differential in the complex C•cont(Qp,Of (Φ · χcyc)) of inhomogeneous continuous
cochains of GQp with values in Of (Φ · χcyc), then

dc̃x(σ, τ) = (Φ(σ)− 1) ·χcyc(σ) · cx(τ) =
d

dk
Φ(σ)k=2 ·

(
χcyc(σ) · cx(τ)

)
· (k− 2) + · · · ,

where the dots denote higher terms in the Taylor expansion at k = 2. This and local
class field theory yield

βV (x) = invp

( d

dk
Φ(·)k=2 ∪ cl(cx)

)
=

d

dk
Φ(q)k=2 · v,

where ∪ is the cup-product associated with the multiplication map L⊗LL(1) −→ L(1).
The lemma follows.

Proof of Proposition 2.2. — By assumption Z = ı∗(Y) is the image of a (unique)
cohomology class Y in H1(Qp,F 2V (f , g,h)) under the map induced by the inclusion
ı : F 2V (f , g,h)→ V (f , g,h). Set

y = ρwo∗(Y) ∈ H1(Qp,F
2V (f2, g1,h1)),

so that z = ρwo∗(Z) is the image of y under the natural map. By construction (cf.
[BSV20, Proposition 7.3])

(18) Lf (Z) = Lf (pf∗(Y)).

If • and ◦ denote either α or β, define as in Section 9.2 of loc. cit. (cf. the proof of
Proposition 9.3 of loc. cit.)

V (f2)·•◦ = V (f2)· ⊗L V (g1)• ⊗L V (h1)◦,

where · = ∅,± and V (ξ1)β = V (ξ1)+ and V (ξ1)α = V (ξ1)− for ξ = g,h. In
the present setting the form ξ1 is regular, viz. αξ1 and βξ1 = −αξ1 are distinct,
hence V (ξ1)• is equal to the subspace V (ξ1)Frobp=• of V (ξ1) on which an arithmetic
Frobenius Frobp acts as multiplication by •ξ1 (cf. Section 9.2 of loc. cit.). It follows
that for · = ∅ and · = ± there are canonical direct sum decompositions

(19) V (f2, g1,h1)· = V (f2)·αα ⊕ V (f2)·αβ ⊕ V (f2)·βα ⊕ V (f2)·ββ
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of L[GQp
]-modules. In particular V (f2, g1,h1)f = V (f2)−ββ is a direct summand of

V (f2, g1,h1)− (cf. Equation (191) of loc. cit.), hence

pf∗(y) = 0

since by assumption z is crystalline (cf. Section 9.1 of loc. cit., in particular Equation
(193)). As a consequence

(20) pf∗(Y) = (k − 2) ·Yk + (l− 1) ·Yl + (m− 1) ·Ym
for classes Y· in H1(Qp, V (f , g,h)f ) (cf. the proof of Proposition 7.3 of loc. cit. or
[Ven16, Lemma 5.6]). Set

yk = ρwo∗(Yk) ∈ H1(Qp, V (f2, g1,h1)f ).

Because Lf is Ofgh-linear, Equation (18), Proposition 9.3(1) of loco citato and The-
orem 3.14 of [GS93] give
(21)(

1− 1

p

)
· d

2

dk2 Lf (Z,k, 1, 1)k=2 = yk(p−1)f − Lan
f · yk(e(1))f =

−1

ordp(qA)
· yk(qA)f ,

where
−1

2
· Lan
f = dlogap(k)k=2

is the logarithmic derivative at k = 2 of the p-th Fourier coefficient ap(k) of f ]

(cf. Section 9.2 of [BSV20]). In particular this implies that the quantity yk(qA)f is
independent of the choice of Yk satisfying Equation (20).

As shown in the proof of Proposition 9.3 of loc. cit. the class of the extension

(22) 0 −→ V (f2)+
ββ −→ V (f2)ββ −→ V (f2)−ββ −→ 0

in
Ext1

L[GQp ](V (f2)−ββ , V (f2)+
ββ) ∼= Q∗p⊗̂QpHomL(V (f2)−ββ , V (f2)+

ββ(−1))

is equal to
qf2 = qA⊗̂δf2

for an isomorphism δf2 : V (f2)−ββ → V (f2)+
ββ(−1), and the connecting morphisms ∂if2

associated to (22) satisfy

(23) ∂0
f2

(v) = qA⊗̂δf2(v) = qf2∪v and ∂1
f2

(ϕ⊗v) = −ϕ(qA)·δf2(v) = −qf2∪(ϕ⊗v)

for all ϕ in Homcont(Q
∗
p, L) and v in V (f2)−ββ , where ∪ is the cup-product induced by

the evaluation map. Define

V (f)·ββ =
(
V (f)· ⊗Of

κ1−k/2
cyc

)
⊗L V (g1)+ ⊗L V (h1)+.

These are Of [GQp ]-modules, sitting in a short exact sequence

0 −→ V (f)+
ββ −→ V (f)ββ −→ V (f)−ββ −→ 0

which specialises to (22) under evaluation at k = 2 on Of . Identify the Of -module
V (f)ββ with the direct sum of V (f)+

ββ and V (f)−ββ under a fixed Of -splitting of the
previous exact sequence. There is then a continuous map

qf : GQp −→ HomOf
(V (f)−ββ , V (f)+

ββ)
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satisfying the following properties. For all v± ∈ V (f)±ββ and σ ∈ GQp
(cf. Equation

(101) of loc. cit.)

(24) σ(v+) =
ωcyc(σ) · κk/2cyc (σ)

ψfψg1ψh1
(σ)

·v+ and σ(v−) =
ψf (σ)κ

1−k/2
cyc (σ)

ψg1ψh1
(σ)

·v−+qf (σ,v−),

where ψf : Gnr
Qp
−→ Λ∗f is the unramified character of GQp which sends an arith-

metic Frobenius Frobp to ap(k), and similarly ψg1 , ψh1
: Gnr

Qp
−→ O∗ are defined by

ψg1(Frobp) = bp(1) and ψh1(Frobp) = cp(1) respectively. (Here one uses that both
χf and χg · χh are equal to the trivial character.) Moreover the specialisation

qf (·)k=2 : GQp
−→ Qp(1)⊗Qp

HomOf (V (f2)−ββ , V (f2)+
ββ(−1))

of qf at k = 2 (via HomOf
(V (f)−ββ , V (f)+

ββ) ⊗2 L ∼= HomL(V (f2)−ββ , V (f2)+
ββ)) is a

1-cocycle satisfying

(25) cl
(
qf (·)k=2

)
= qf2 .

For future reference denote by Φf : GQp −→ Λ∗f the character

(26) Φf = κk/2−1
cyc · ψ−1

f · ψ−1
g1
· ψ−1
h1
,

so that Φf (·)k=2 is the trivial character and GQp
acts on V (f)+

ββ via χcyc · Φf .
Denote by

Yββ ∈ H1(Qp, V (f)ββ) and Yk,ββ ∈ H1(Qp, V (f)−ββ)

the images of Y and Yk under the maps induced by the projections

F 2V (f , g,h) −� F 2V (f , g1,h1) −� V (f)ββ

and
V (f , g,h)f −� V (f , g1,h1)f = V (f)−ββ

respectively. (Here V (f , g1,h1) = V (f)· ⊗L V (g1)⊗L V (h1)(κ
1−k/2
cyc

)
. Note that the

discussion leading to Equation (19) yields a similar canonical decomposition of the
Of [GQ]-module V (f , g1,h1).) According to Equation (20) the cohomology class Yββ

is represented by a 1-cocycle of the form

Yββ = Y +
ββ ⊕ (k − 2) · Y −ββ : GQp −→ V (f)ββ ,

for 1-cochains Y ·ββ : GQp → V (f)·ββ . Using Equation (24) the cocycle relation for
Yββ gives

(27) dY +
ββ(σ, τ) = −(k − 2) · qf (σ, Y −ββ(τ)) and dY −ββ = 0.

In particular the specialisations y·ββ : GQp → V (f2)·ββ of Y ·ββ at k = 2 are both
1-cocycles and by construction

(28) i+∗ (y+
ββ) = yββ and (k − 2) · cl(Y −ββ) = (k − 2) ·Yk,ββ ,

where y±ββ = cl(y±ββ) ∈ H1(Qp, V (f2)±ββ) are the classes represented by y±ββ , the
map i+∗ is the one induced by the inclusion i+ : V (f2)+

ββ ↪−→ V (f2)ββ and yββ in
H1(Qp, V (f2)ββ) is the image of y under the map induced by the projection onto the
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direct summand V (f2)ββ of F 2V (f2, g1,h1). The second identity in Equation (28)
implies

yk(qA)f = y−ββ(qA)f

(cf. the remark after Equation (21)), hence Equation (21) can be rephrased as

(29)
(

1− 1

p

)
· d

2

dk2 Lf (Z,k, 1, 1)k=2 =
−1

ordp(qA)
· y−ββ(qA)f .

In light of Equations (24)–(26) and Lemma 2.3, the first equalities in Equations (27)
and (28) yield

−∂1
f2

(y−ββ) = invp
(
cl
(
qf2(σ, y−ββ(τ))

))
(30)

= −βV (f)+ββ
(y+
ββ) = − d

dk
Φf (y+

ββ)k=2 = −1

2
· logqA(y

+
ββ).

More precisely, the first equality follows from Equation (23), the second from Equa-
tions (25) and (27) and the definition of βV (f)+ββ

, and the third from Lemma 2.3.
Finally, for each unit u in Z∗p, one has (cf. Equation (26))

d

dk
Φf (u)k=2 =

d

dk
κk/2−1

cyc (recp(u))k=2 =
d

dk

(
uk/2−1

)
k=2

=
1

2
· logp(u)

and
d

dk
Φf (p)k=2 = αg · αh ·

d

dk
ap(k)k=2 = −1

2
· Lan
f ,

which in light of the identity Lan
f =

logp(qA)

ordp(qA) proved in [GS93, Theorem 3.14] yields
the last equality in Equation (30). (Here one denotes again by

logqA : Q∗p⊗̂V (f2)+
ββ(−1) −→ V (f2)+

ββ(−1) ∼= Dcris(V (f2)+
ββ)

the morphism induced by logqA = logp−
logp(qA)

ordp(qA) · ordp : Q∗p → Qp).
As the connecting morphisms ∂0

f2
and −∂1

f2
are adjoint to each other under the

cup-product induced by 〈·, ·〉f2g1h1
, Equations (23), (29) and (30) combine to give

(31)(
1− 1

p

)
· d

2

dk2 Lf (Z,k, 1, 1)k=2 =
1

2ordp(qA)
·
〈

logqA(y
+
ββ), δ−1

f2

(
ηf2⊗ωg1⊗ωh1

)〉
f2g1h1

.

Since f has trivial character, one has V ∗(f)· = V (f)·(−1) for · = ∅,± (cf. Sections
2.5 and 5 of [BSV20]). There are then natural Gal(Kp/Qp)-equivariant isomorphisms

Fil1DdR,Kp(V ∗(f)) ∼= Fil0DdR,Kp(V (f)) ∼= Dcris,Kp(V (f)−) = V (f)− ⊗Qp Kp,

under which we identify the differential (cf. Section 2.5 of loco citato)

ωf ∈ Fil1V ∗dR(f) = Fil1DdR,Kp(V ∗(f))Gal(Kp/Qp)

with an element of V (f)−. Lemma 2.4 below proves that

δf (ωf ⊗ ωgα ⊗ ωhα) = ±
c2f

deg(℘∞)
· ηf ⊗ ωgα ⊗ ωhα
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in V ∗(f)+
ββ = V (f)+(−1)⊗Qp

V ∗(g)− ⊗L V (h)−, hence by construction

(32) δ−1
f2

(
ηf2 ⊗ ωg1 ⊗ ωh1

)
= ±deg(℘∞)

c2f
·$∗fgh

(
ωf ⊗ ωgα ⊗ ωhα

)
,

where$∗fgh = v∗f⊗v∗g⊗v∗h is the adjoint of$fgh under the Poicaré dualities 〈·, ·〉fgαhα
and 〈·, ·〉f2g1h1

. Finally, the first identity in Equation (28) gives

(33) logqA(y
+
ββ) = πββ(logp(z)),

where πββ is the composition

DdR(V (f2, g1,h1))/Fil0 ∼= Dst(V (f2, g1,h1)+) −� Dcris(V (f2)+
ββ)

arising from Equations (191) and (192) of [BSV20] and Equation (19). Since by con-
struction the ββ-logarithm logββ factors through the projection πββ , the proposition
is a direct consequence of Equations (31)–(33).

Lemma 2.4. — Let
∂f : V (f)− −→ K∗p ⊗̂V (f)+(−1)

be the connecting morphism associated with the exact sequence of GKp-modules

0 −→ V (f)+ −→ V (f) −→ V (f)− −→ 0.

Then ∂f = qA⊗̂δf for an isomorphism

δf : V (f)− −→ V (f)+(−1)

satisfying, up to sign, the following identity in V (f)+(−1):

δf (ωf ) =
c2f

deg(℘∞)
· ηf .

Proof. — Consider the following diagram of Qp[GKp ]-modules with exact rows, in
which all the vertical maps are isomorphisms.

(34) 0 // Qp(1)

ϕ+
Tate

��

// Vp(EqA)

ϕTate

��

// Qp
//

ϕ−Tate

��

0

0 // Vp(A)+ // Vp(A) // Vp(A)− // 0

0 // V (f)+

℘+
∞∗

OO

// V (f) //

℘∞∗

OO

V (f)− //

℘−∞∗

OO

0

Here ϕTate is the map induced on the p-adic Tate modules by the Tate uniformisation
EqA

∼= AKp , and the first row is the short exact sequence induced by the natural
projection Grig

m,Kp
−→ EqA (cf. Introduction).

The class in

Ext1
Qp[GKp ](Qp,Qp(1)) = H1(Kp,Qp(1)) ∼= K∗p ⊗̂Qp
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represented by the first row equals qA⊗̂1, hence the associated connecting morphism

∂Tate : Qp −→ K∗p ⊗̂Qp

satisfies

(35) ∂Tate(1) = qA⊗̂1.

After setting

γqA =
−1

ordp(qA)
· ordp ∈ Homcont(K

∗
p ,Qp) ∼= H1(Kp,Qp),

this implies

(36) 〈γqA , ∂Tate(1)〉m = 1,

where
〈·, ·〉m : H1(Kp,Qp)⊗Qp

H1(Kp,Qp(1)) −→ Kp

is the local Tate pairing attached to the multiplication m : Qp⊗Qp Qp(1) −→ Qp(1).
Moreover, the Diagram (34) and Equation (35) imply that the connecting morphisms

∂A : Vp(A)− −→ K∗p ⊗̂Vp(A)+(−1) and ∂f : V (f)− −→ K∗p ⊗̂V (f)+(−1)

associated respectively to the second and third rows of Diagram (34) are of the form

(37) ∂A = qA ⊗ δA and ∂f = qA ⊗ δf
for isomorphisms δA : Vp(A)− −→ Vp(A)+(−1) and δf : V (f)− −→ V (f)+(−1).

Up to sign, one has the identities

〈ωf , δf (ωf )〉f = 〈γqA ⊗ ωf , ∂f (ωf )〉f

=
1

deg(℘∞)
·
〈
γqA ⊗ ℘−∞∗(ωf ), ∂A(℘−∞∗(ωf ))

〉
Weil

=
c2f

deg(℘∞)
·
〈
γqA ⊗ ϕ−Tate(1), ∂A(ϕ−Tate(1))

〉
Weil

(38)

=
c2f

deg(℘∞)
·
〈
γqA ⊗ ϕ−Tate(1), ϕ+

Tate(∂Tate(1))
〉

Weil

=
c2f

deg(℘∞)
· 〈γqA , ∂Tate(1)〉m ,

where 〈·, ·〉Weil : H1(Kp, Vp(A)+)⊗QpH
1(Kp, Vp(A)−) −→ Kp is the local Tate pairing

associated with the Weil paring on Vp(A). Indeed, the first equality follows from
Equation (37). The second equality follows (up to sign) from the functoriality of
Poincaré duality under finite morphisms of curves and its compatibility with the Weil
pairing on elliptic curves. The third equality follows from the definition of cf (cf.
Equation (14)). The fourth equality follows from Diagram (34). The fifth and last
equality follows from the functoriality of the Weil paring under isogenies, after noting
that the Kummer duality between Qp(1) and Qp induced by the Weil pairing on
Vp(EqA) is equal (up to sign) to the multiplication map m.

Since V (f)+(−1) = Dcris(V (f)+) is a one-dimensional Qp-vector space generated
by ηf and 〈ωf , ηf 〉f = 1, the lemma follows from Equations (36) and (38).
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3. Factorisations of p-adic L-functions

This section is devoted to the proof of Theorem 3.1 below, viz. the crucial factori-
sation formula (7) of Section 1, under the assumptions listed therein. In light of the
discussion of Section 1 (see Equations (7) and (8)) and of Section 2, this is the last
step in our proof of Theorem A.

The reader is cautioned that the notations for p-adic L-functions in force here are
consistent with those of [BSV20, Section 6] and differ slightly from those of Section
1. Thus Lp(f ], g],h]) denotes the square of the triple product square-root p-adic
L-function L f

p (f?, g?,h?) attached to our fixed choice of test vector (f?, g?,h?), and
the restriction of Lp(f ], g],h]) to the line (k, 1, 1) is denoted

Lp(f
], g]1,h

]

1) = Lp(f
], gα, hα)

(recall that g] and h] interpolate the chosen p-stabilisations gα and hα respectively).
Accordingly, the Hida–Rankin p-adic L-functions associated to the ring class charac-
ters ϕ and ψ are denoted by Lp(f ], ϕ) and Lp(f ], ψ) (as observed in Section 1, they
depend only on the primitive family f ]).

Theorem 3.1. — Up to shrinking Uf if necessary, there is a factorisation

Lp(f
], g]1,h

]

1) = A · Lp(f ]/K,ϕ) · Lp(f ]/K,ψ),

where A ∈ O∗f is a bounded analytic function on Uf such that

A (2) ∈ Q(g]1,h
]

1)∗,

Q(g]1,h
]

1) being the field generated by the Fourier coefficients of g]1 and h]1.

3.1. The Mazur–Kitagawa p-adic L-function. — Let χ be a Dirichlet character
of conductor coprime to Nfp. For every classical point k ∈ U cl

f let L(f ]k, χ, s) be the
Hecke L-series of f ]k ⊗ χ, defined as the analytic continuation of the Dirichlet series∑
n>1 χ(n)an(f ]k)·n−s converging absolutely for <(s) > (k+1)/2. A result of Shimura

gives complex periods Ω∞(f ]k)+ and Ω∞(f ]k)− inC∗ satisfying the following properties.
One has

Ω∞(f ]k)+ · Ω∞(f ]k)− = (f ]k, f
]

k)Nfpr(k) ,

where r(k) is equal to one if k = 2 and to zero otherwise. Upon setting

Ω∞(f ]k, χ) = Ω∞(f ]k)sign(χ)

(sign(χ) being the sign of χ(−1)) the quantity

(39) L(f ]k, χ, k/2)alg =
(k/2− 1)! · g(χ̄) · L(f ]k, χ, k/2)

(−2πi)k/2−1 · Ω∞(f ]k, χ)
∈ Q(f ]k, χ)

belongs to the number field Q(f ]k, χ) generated over Q by the Fourier coefficients
of f ]k and the values of χ. Here g(χ̄) =

∑
a∈(Z/cχZ)∗ χ̄(a) · ζacχ is the Gauß sum of

χ̄ = χ−1, where cχ is the conductor of χ and ζcχ = e2πi/cχ . One calls L(f ]k, χ, k/2)alg

the algebraic part of the central critical value L(f ]k, χ, k/2).
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According to a result of Mazur and Kitagawa (cf. [Kit94, GS93, BD07]) the
algebraic central values L(f ]k, χ, k/2)alg, defined for k ∈ U cl

f , can be interpolated by
an analytic function

Lp(f
], χ) ∈ Of ,

which we call the Mazur–Kitagawa p-adic L-function of (f ], χ). More precisely, up
to shrinking Uf if necessary, there exist for every k ∈ U cl

f non-zero p-adic periods

λ+
k , λ

−
k ∈ Q̄∗p, with λ±2 = 1,

such that
(40)

Lp(f
], χ)(k) = λ

sign(χ)
k ·

(
1− pk/2−1χ(p)

ap(k)

)
·
(

1− εk(p) · p
k/2−1χ̄(p)

ap(k)

)
·L(f ]k, χ, k/2)alg,

where εk(p) = 0 if k = 2 (i.e. if f ]k is p-new) and εk(p) = 1 otherwise (i.e. if f ]k is
p-old).

Remark 3.2. — 1. The p-adic L-function Lp(f ], χ) is the restriction to the central
critical line s = k/2 of a two-variable p-adic L-function

LMK
p (f ], χ) = LMK

p (f ], χ)(k, j) ∈ Of ⊗̂Ocyc

of the weight variable k ∈ Uf and cyclotomic variable j (cf. [BSV20, Section 7.1]).
For every classical point k ∈ U cl

f one has

LMK
p (f ], χ)(k, j) = λ

sign(χ)
k · Lp(f ]k, χ)(j),

where Lp(f ]k, χ) = Lp(f
]

k, χ)(j) ∈ Ocyc is the cyclotomic p-adic L-function of f ]k⊗χ (cf.
[MTT86]) defined as the Mellin transform of a measure on Z∗p× (Z/cχZ)∗ associated
to the sign(χ)-modular symbol attached to f ]k. In order to construct LMK

p (f ], χ) one
interpolates these modular symbols, and the p-adic periods λ±k are the error terms
arising from the p-adic interpolation.

2. If k = 2 and
χ(p) = ap(2)

(with ap(2) = ap(A) = ±1), the Euler factor 1− pk/2−1χ(p)
ap(k) which appears in Equation

(40) vanishes. In this exceptional zero situation (cf. [MTT86]) Lp(f ], χ) vanishes at
k = 2 independently of whether the complex L-series L(f, χ, s) vanishes at s = 1 or
not.

3.2. Hida–Rankin p-adic L-functions attached to quadratic fields. — Let
K/Q be a quadratic field of discriminant coprime to Nfp, satisfying the Heegner
hypothesis given in Assumption 1.1(1). To lighten notations, assume in the real
quadratic case that N−f = 1 (so that one works with forms on GL2).

The Hida–Rankin p-adic L-function attached to the pair (f ], %) (% = ϕ or ψ)
introduced in [BD07] and [BD09] is an analytic function

Lp(f
]/K, %) ∈ Of
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satisfying the following interpolation property. For every classical point k ∈ U cl
f

(41) Lp(f
]/K, %)(k) = Ωp(f

]

k, %)2

(
1− pk−2

ap(k)2

)2

L(f ]k/K, %, k/2)alg,

where the algebraic part of L(f ]k/K, %, k/2) is defined by

(42) L(f ]k/K, %, k/2)alg =
(k/2− 1)!2 · d(k−1)/2

K

(2πi)k−2 · Ω∞(f ]k, %)
· L(f ]k/K, %, k/2) ∈ L.

Here L(f ]k/K, %, s) = L(f ]k ⊗ ϑ%, s) is the Rankin–Selberg convolution of f ]k and
the weight-one theta series ϑ% associated to %, and the complex and p-adic periods
Ω∞(f ]k, %) and Ωp(f

]

k, %) are defined as follows.
When K is real quadratic, then

Ω∞(f ]k, %) =
(
Ω∞(f ]k)sign(%)

)2
, Ωp(f

]

k, %) =
(
λ

sign(%)
k

)2
.

When K/Q is imaginary quadratic, one sets

Ω∞(f ]k, %) = (f ]k, f
]

k)
Nfpr(k)

,

where r(k) = 1 if k = 2 and r(k) = 0 otherwise.
We finally recall the definition of the p-adic periods Ωp(f

]

k, %) in the imaginary case.
With the notations of Assumption 1.1 let B/Q be the definite quaternion algebra with
discriminant N−f ∞. As explained in Section 2 of [BD07] the form f ]k gives rise, via
the Jacquet–Langlands correspondence, to a weight-k eigenform φk on B̂∗ of level
Σ0(pN+, N−) ⊂ B̂∗, having the same system of Hecke eigenvalues as f ]k. This form
is unique up to multiplication by a non-zero scalar. As in loc. cit., for every k > 2
(resp., k = 2) normalise φk by requiring that its Petersson norm is equal to 1 (resp.,
that it takes values in Z). This characterises φk up to sign for k > 2. According
to Theorem 2.5 of loc. cit. (up to shrinking Uf if necessary) there exists an Of -adic
family φ∞ of eigenforms on B̂∗ whose specialisation at a classical point k ∈ U cl is
equal to λB(k) · φk, for some

λB(k) ∈ L∗ with λB(2) = 1

(see Section 2 of loc. cit. for the details). The definition of Lp(f ]/K) given in Section 3
of loc. cit. depends on φ∞, and one sets Ωp(f

]

k, %) = λB(k). In particular Ωp(f, %) = 1.

3.3. Proof of Theorem 3.1. — The decomposition of Galois representations

V (g)⊗L V (h) = IndKQ(νg)⊗L IndKQ(νh) = IndKQ(ϕ)⊕ IndKQ(ψ)

yields for every k ∈ U cl
f a factorisation of complex L-functions

(43) L(f ]k ⊗ g ⊗ h, s) = L(f ]k/K,ϕ, s) · L(f ]k/K,ψ, s).

The imaginary case. Assume that K/Q is imaginary quadratic and let k be a
classical point in U cl

f ∩ Z>2. Then the complex period Ω∞(f ]k, %) is equal to the
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Petersson norm 〈f ]k, f
]

k〉Nfpr(k) , hence Equations (42), (43) and [BSV20, (133)], give
(44)
Γ(k, 1, 1)

2α(k,1,1)
·
L(f ]k ⊗ g ⊗ h, k/2)

π2(k−2) · (f ]k, f
]

k)2
Nf

=
22k−4−α(k,1,1)

dk−1
K

·L(f ]k/K,ϕ, k/2)alg·L(f ]k/K,ψ, k/2)alg.

With notations as in [BSV20, Section 6], one finds from Equations (1) and (2)

(45) E(f ]k, g
]

1,h
]

1) =

(
1− pk/2−1

ap(k)

)2(
1 +

pk/2−1

ap(k)

)2

=

(
1− pk−2

ap(k)2

)2

.

Since Ωp(f
]

k, %) is equal to the quaternionic period λB(k) for both % = ϕ and % = ψ (cf.
the discussion following Equation (41)), Equations (42), (41), (44), (45) and [BSV20,
(132), (135)] yield

(46) Lp(f
], g]1,h

]

1)(k) = A 2
B,k ·A o

k · Lp(f
]/K,ϕ)(k) · Lp(f ]/K,ψ)(k)

for every k ∈ U cl
f ∩ Z>2, where one writes

AB,k =
1

λB(k)2 · E0(f ]k) · E1(f ]k)
and A o

k =
22k−4−α(k,1,1)

dk−1
K

∏
v|N

Locv.

Since Locv is a non-zero constant in Q∗ for every v|N , and p does not divide dK , the
values A o

k ∈ Q∗ for k ∈ U cl
f are interpolated by a unit in O∗f . Equation (46) then

reduces the proof of Theorem 3.1 to the following statement.

Lemma 3.3. — There exists a bounded analytic function AB ∈ Of satisfying the
following properties.

1. AB(k) = AB,k for infinitely many classical points k ∈ U cl
f .

2. AB(2) is a non-zero element in Q∗.

We defer the proof of Lemma 3.3 to Section 3.4 below.
The real case. Assume that K is real quadratic and let k ∈ U cl

f ∩ Z>2. Define the
quantity

(47) AGL2,k =
1

λ+
k · λ

−
k · E0(fk) · E1(fk)

.

By a similar argument as in the imaginary case, one reduces the proof of Theorem
3.1 to the following statement.

Lemma 3.4. — There exists a bounded analytic function AGL2
∈ Of satisfying the

following properties.
1. AGL2

(k) = AGL2,k for infinitely many classical points k ∈ U cl
f .

2. AGL2
(2) is a non-zero element in Q∗.

3.4. Proofs of Lemma 3.3 and Lemma 3.4. — According to Proposition 5.2 of
[BD07] there exists an analytic function A B

GL2
∈ Of (denoted η in loc. cit.) such

that, for every k ∈ U cl
f ∩ Z>2

A B
GL2

(k) =
λB(k)2

λ+
k · λ

−
k

=
AGL2,k

AB,k
and A B

GL2
(2) ∈ Q∗.
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In particular, after shrinking Uf if necessary, the analytic function A B
GL2

is a unit in
Of . This implies that Lemma 3.3 follows from Lemma 3.4, hence to conclude the
proof of Theorem 3.1 it is sufficient to prove the latter.

To prove Lemma 3.4 we consider triple product p-adic L-functions associated to
f ] and two weight one Eisenstein series attached to the characters which appear in
the following lemma.

Lemma 3.5. — There exists two Dirichlet characters χ and ψ satisfying the follow-
ing properties.

1. The conductors cχ and cψ of χ and ψ are coprime to each other and coprime to
Nfp.

2. χ is even and χ(p) is different from ±1.
3. ψ is odd and ψ(p) = −ap(f).
4. Both L(f, χ, s) and L(f, ψ, s) do not vanish at s = 1.

Proof. — Let ` be a prime which does not divide Nfp. According to the main result
of [Roh84] there exists no ∈ N such that L(f, χ, 1) 6= 0 for every primitive Dirichlet
character χ of Gal(Q(µ`n)+/Q) = (Z/`nZ)∗/{±1} with n > no, where Q(µ`n)+ is
the maximal totally real subfield of the `n-th cyclotomic extension of Q. If n > no is
such that `n - p4 − 1, this shows that there exists a character χ such that

(a) the conductor cχ = `n of χ is coprime to Nfp.
(b) χ(−1) = +1 and χ(p) 6= ±1.
(c) L(f, χ, s) does not vanish at s = 1.
Let q be a fixed prime which divides Nf exactly, whose existence is guaranteed by

Assumption 1.1. For every quadratic character σ denote by sign(f ⊗ σ) the sign at
s = 1 in the functional equation satisfied by the Hecke L-function L(f, σ, s). Choose
any quadratic Dirichlet character ψ1 satisfying the following properties.

(d) The conductor c(ψ1) of ψ1 is coprime with ` ·Nfp.
(e) ψ1(−1) = +1 and ψ1(t) = +1 for every prime t which divides Nf/q.
(f) ψ1(p) = −ap(f) and ψ1(q) = ap(f) · sign(f).

One has (cf. Theorem 3.66 of [Shi71])

sign(f ⊗ ψ1) = sign(f) · ψ1(−Nfp) = −1,

hence the main result of [BFH90] shows that there exists a quadratic Dirichlet char-
acter ψ2 such that

(g) the conductor of ψ2 is coprime to ` · c(ψ2) ·Nfp.
(h) ψ2(−1) = −1 and ψ2(t) = +1 for every prime divisor t of Nfp.
(i) L(f, ψ1 · ψ2, s) does not vanish at s = 1.

According to (a)–(i) the characters χ and ψ = ψ1 ·ψ2 satisfy the required properties.

Fix two characters χ and ψ satisfying the conclusions of the previous lemma, and
set N = Nfcχcψ and

ξ = χ−1 · ψ−1.
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Since χ, ψ and ξ are non-trivial and ξ is odd, one can consider the weight one Eisen-
stein series

E(χ, ψ) =

∞∑
n=1

σ(χ, ψ)(n) · qn ∈M1(N, ξ−1)

and

E(ξ) = E(1, ξ) =
L(ξ, 0)

2
+
∑
n>1

σ(1, ξ) · qn ∈M1(N, ξ),

where σ(α, β)(n) =
∑
d|n α(n/d) ·β(d) for every Dirichlet characters α and β, and 1 is

the trivial character. Following Section 3 of [BD14], for every classical point k ∈ U cl
f

define

(48) Lp(f
]

k, E(χ, ψ)) =

(
f ]k, eord

(
dk/2−1Ě(ξ)× Ě(χ, ψ)

))
Np

(f ]k,f
]

k)Np
,

where Ě(ξ) = E(ξ)[p] ∈ M1(N, ξ) and Ě(χ, ψ) = E(χ, ψ)[p] ∈ M1(N, ξ−1) are the
p-depletions of E(ξ) and E(χ, ψ) (cf. [BSV20, Section 3.1]). The article [BD14]
shows that the function which to k ∈ U cl

f associates Lp(f ]k, E(χ, ψ)) extends to an
analytic function

Lp(f
], E(χ, ψ)) ∈ Of .

(The notation is justified by the following lemma, cf. Remark 3.7.) For all k ∈ U cl
f

define

Cχ,ψ(k) =
−iNf

2k−2 · χ(cψ) · ψ(cχ) · [Γ1(Nf ) : Γ1(N)]
.

For · = χ, ψ Section 3.1 associates to (f ], ·) the Mazur–Kitagawa p-adic L-function
Lp(f

], ·) ∈ Of .

Lemma 3.6. — 1. Let Q(χ, ψ) be the field generated over Q by the values of χ and
ψ. Then

Lp(f
], E(χ, ψ))(2) = (p+ 1) · Cχ,ψ(2) · Lp(f ], χ)(2) · Lp(f ], ψ)(2) ∈ Q(χ, ψ)∗.

In particular the p-adic L-function Lp(f ], E(χ, ψ)) does not vanish at k = 2.
2. (cf. [BD14]) For every classical point k ∈ U cl

f (strictly) greater than 2 one has

(49) Lp(f
], E(χ, ψ))(k) = AGL2,k · Cχ,ψ(k) · Lp(f ], χ)(k) · Lp(f ], ψ)(k),

Proof. — 1. Write for simplicity g = E(ξ) and h = E(χ, ψ), and consider the p-
stabilisations

gα(q) = g(q)− ξ(p) · g(qp), gβ(q) = g(q)− g(qp) and hα(q) = h(q)− ψ(p) · h(qp).

Then f (resp., gα, gβ , hα) is an eigenvector for the Up-operator with eigenvalue
αf = ap(2) = ±1 (resp., 1, ξ(p), χ(p)), hence Lemma 3.5 and the same computations
as in the proof of [DR14, Lemma 4.10] show that

2 · (f, gβ · hα)Np = (1− χ(p)/ap(2)) · (f, gα · hα)Np .
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As ξ(p) 6= 1 by Lemma 3.5, one can write g = (gα − ξ(p) · gβ)/(1 − ξ(p)), which
together with the previous equation and a direct computation gives the identity

(50) Lp(f
], E(χ, ψ))(2) = 2

(
1− χ(p)

ap(2)

)
·

(f, g · hα)Np
(f, f)Np

.

The L-series of the forms f and hα admit Euler product expansions, hence the Rankin
method (see the argument leading to Equation (18) of [BD14], or [Shi76, Theorem
2 and Lemma 1]) gives

(51) (f, g · hα)Np = −ig(ξ)Nfp · L(f ⊗ hα, 1),

where g(·) is the Gauß sum of the character ·. (Note that (·, ·)Np equals 8π2 times
the Petersson product defined in Equation 9 of [BD14].) Since the characters χ and
ψ have opposite parity, one has

(52) Ω∞(f, χ) · Ω∞(f, ψ) = (f, f)Nfp = [Γ1(Nf ) : Γ1(N)]−1 · (f, f)Np.

Moreover a direct comparison of Euler factors (cf. [Shi76, Lemma 1]) and Lemma
3.5 give

(53) L(f ⊗ hα, 1) =

(
1− ap(2)ψ(p)

p

)
L(f ⊗ h, 1) =

(
1 +

1

p

)
L(f, χ, 1) · L(f, ψ, 1).

As g(ξ) = g(χ−1) · g(ψ−1) · χ−1(cψ)ψ−1(cχ) (since (cχ, cψ) = 1), the statement is a
direct consequence of Equations (39)–(40), Equations (50)–(53) and Lemma 3.5.

2. This is proved in Proposition 3.3 of [BD14]. Since the setting of loc. cit. is
slightly different from ours, for the convenience of the reader we briefly review the
argument. Equations (35) and (41) and Proposition 3.2 of [BD14], together with
Proposition 4.6 of [DR14], show that for every classical point k > 2 one has

Lp(f
], E(χ, ψ))(k) =

E(f ]k, χ, ψ)

E0(f ]k) · E1(f ]k)
·
(
f ]k, δ

k/2−1E(ξ) · E(χ, ψ)
)
N

(f ]k, f
]

k)
N

,

where
δk/2−1 : M1(N, ξ) −→Man

k−1(N, ξ)

is the (k/2− 1)-th iterate of the Shimura–Maaß derivative operator. Here E0(f ]k) and
E1(f ]k) are as in Equation [BSV20, (135)], and

E(f ]k, χ, ψ) =

(
1− pk/2−1χ(p)

ap(k)

)(
1− pk/2−1χ̄(p)

ap(k)

)(
1− pk/2−1ψ(p)

ap(k)

)2

.

(Recall that ψ = ψ−1 is a quadratic character, cf. Lemma 3.5, and that Ei(f ]k) is
non-zero for k > 2.) The Rankin method (see Equations (18) and (19) of [BD14])
yields(
f ]k, δ

k/2−1E(ξ) · E(χ, ψ)
)
N

=
−iNfg(ξ) · (k/2− 1)!2

2k−2 · (−2πi)k−2
· L(f ]k, χ, k/2) · L(f ]k, ψ, k/2).

As in the proof of Part 1 the statement follows easily from the definitions and the
previous three equations.
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Since the analytic functions Lp(f ], E(χ, ψ)), Lp(f ], χ) and Lp(f ], ψ) do not vanish
at k = 2 by Lemma 3.6(1), and since Cχ,ψ(k) is clearly an invertible element of
Of , Lemma 3.6(2) implies that the values AGL2,k, defined for k ∈ U cl ∩ Z>2, are
interpolated by an analytic function AGL2(k) which does not vanish at k = 2. In
addition, the explicit formula for the value of Lp(f ], E(χ, ψ)) at k = 2 displayed in
Lemma 3.6(1) gives

AGL2
(2) = p+ 1.

This concludes the proof of Lemma 3.4, and with it the proofs of Lemma 3.3 and
Theorem 3.1.

Remark 3.7. — 1. The previous lemma (or better its proof) shows that
Lp(f

], E(χ, ψ)) can be though of as a p-adic Rankin–Selberg convolution, which
interpolates the critical values L(f ]k ⊗ E(χ, ψ), k/2) of the convolution of f ]k with
E(χ, ψ). One can also think of Lp(f ], E(χ, ψ)) = Lp(f

], E(ξ), E(χ, ψ)) as a square-
root triple-product p-adic L-function (cf. Equations (48) and [BSV20, (55)]), whose
square interpolates the complex central values L(f ]k ⊗ E(ξ)⊗ E(χ, ψ), k/2).

2. Note that the Euler factor E1(f ]k) = 1− pk−2

ap(k)2 vanishes at k = 2, as a manifes-
tation of the presence of an exceptional zero for Lp(f ], s) and Lp(f

], g]1,h
]

1) in the
sense of [MTT86] (cf. Remark 3.2(2)).
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