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Abstract. Heegner points play an outstanding role in the study of the Birch and Swinnerton-Dyer
conjecture, providing canonical Mordell-Weil generators whose heights encode first derivatives of the
associated Hasse-Weil L-series. Yet the fruitful connection between Heegner points and L-series also
accounts for their main limitation, namely, that they are torsion in (analytic) rank > 1. This partly
expository article discusses the generalised Kato classes introduced in [BDR2] and [DR2], stressing
their analogy with Heegner points but explaining why they are expected to give non-trivial, canonical
elements of the idoneous Selmer group in settings where the classical L-function (of Hasse-Weil-Artin
type) that governs their behaviour has a double zero at the center.

The generalized Kato class denoted κ(f, g, h) is associated to a triple (f, g, h) consisting of an
eigenform f of weight two and classical p-stabilised eigenforms g and h of weight one, corresponding
to odd two-dimensional Artin representations Vg and Vh of Gal (H/Q) with p-adic coefficients for a
suitable number field H. This class is germane to the Birch and Swinnerton-Dyer conjecture over
H for the modular abelian variety E over Q attached to f . One of the main results of [BDR2] and
[DR2] is that κ(f, g, h) lies in the pro-p Selmer group of E over H precisely when L(E, Vgh, 1) = 0,
where L(E,Vgh, s) is the L-function of E twisted by Vgh := Vg ⊗Vh. In the setting of interest, parity
considerations imply that L(E,Vgh, s) vanishes to even order at s = 1, and the Selmer class κ(f, g, h)
is expected to be trivial when ords=1L(E,Vgh, s) > 2. The main new contribution of this article is a

conjecture expressing κ(f, g, h) as a canonical point in (E(H)⊗Vgh)GQ when ords=1L(E,Vgh, s) = 2.
This conjecture strengthens and refines the main conjecture of [DLR1], and supplies a framework for
understanding the results of [DLR1], [BDR2] and [DR2].
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1. Background and motivation

The theme of modularity of p-adic Galois representations has occupied center stage in number
theory for the last several decades, and Robert Coleman has been a major figure in many of its key
developments, notably through the theory of Coleman families of p-adic modular forms and of the
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Coleman-Mazur eigencurve parametrising these families and their associated Galois representations.
By way of background and motivation, this section explains how much of the progress achieved on
the Birch and Swinnerton-Dyer conjecture, including the results of [DLR1], [BDR2] and [DR2], can
be viewed as part of the larger program of understanding the modularity of (non-semisimple) p-adic
Galois representations.

One of the most celebrated modularity results is the statement that all elliptic curves over Q arise
as quotients of suitable modular curves: more precisely, that an elliptic curve E over Q of conductor
N is equipped with a surjective parameterization

(1) πE : X0(N) −→ E,

where X0(N) is the modular curve attached to Hecke’s congruence subgroup Γ0(N). This was proved
in [Wi95], [TW], and [BCDT] by showing that the p-adic representation

H1(E) := H1
et(EQ̄,Qp)(1) = (lim

←,n
E[pn]) ⊗Zp

Qp

of GQ := Gal (Q̄/Q) arises as a quotient of the étale cohomology group1

H1(X0(N)) := H1
et(X0(N)Q̄,Qp(1)).

The existence of a Galois-equivariant projection

(2) πE : H1(X0(N)) −→ H1(E)

is the real content of the breakthrough in [Wi95] and [TW], the ostensibly stronger geometric version
(1) being deduced from it by invoking the Tate conjecture for curves2.

Let E′ be an open subvariety of E, i.e., the complement of a zero-dimensional subvariety Σ of E
over Q. The p-adic Galois representationH1(E′) sits in the middle of the short exact excision sequence

0 −→ H1(E) −→ H1(E′) −→ H0(Σ)0 −→ 0

of étale cohomology groups, where the subscript of 0 denotes the degree 0 elements of H 0(Σ). By
analogy with (2), the curve E ′ is (provisionally) said to be modular if H1(E′) arises as a subquotient
of H1(Y ), where Y is an open sub-Shimura variety of X0(N)—the latter being defined, in the style of
La Palice, as the complement of a closed sub-Shimura variety.

To completely describe the open sub-Shimura varieties of the modular curve X0(N) over Q, note
that the latter is the coarse moduli space of elliptic curves A with a marked subgroup scheme of
order N , and that its closed sub-Shimura varieties are obtained by imposing additional endomorphism
rings, which can only be equal to orders in quadratic imaginary fields. Given such an order O ⊂ K,
the associated closed sub-Shimura variety ΣO ⊂ X0(N) consists of CM points for O, and is the
coarse moduli space of elliptic curves A with level N structure equipped with an optimal embedding
ι : O −→ End(A) (respecting the level structure) and acting in a prescribed way on the cotangent
space of A. By the theory of complex multiplication, the 0-dimensional variety ΣO is isomorphic over
K (at least, when the discriminant of O is prime to N) to φK(N) copies of spec(HO), where φK(N)
is the number of primitive ideals of K of norm N and HO is the ring class field of K attached to O,
whose Galois group over K is canonically identified with the Picard group of O via global class field
theory.

The complements

YO(N) := X0(N) − ΣO

thus provide an exhaustive list of the open sub-Shimura varieties of X0(N). Given the modularity of
E, the modularity of E′ amounts to the existence of a Galois-equivariant inclusion

i : H0(Σ)0 −→ H0(ΣO)0

1The systematic shorthand Hi(X) := Hi
et

(XQ̄, Qp(i)) for any variety X over Q is adopted henceforth to lighten the

notations.
2Subsequently, (2) has been generalised to a host of other p-adic Galois representations, while analogues of (1) remain

unavailable in all but the simplest geometric settings.
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for suitable O, realising H1(E′) as a subquotient of H1(YO(N)) via the pushforward under πE and
the pullback under ι of the first row in the following diagram with exact rows:

(3) 0 // H1(X0(N)) //

πE

��

H1(YO(N))

?

// H0(ΣO)0 // 0

0 // H1(E) // H1(E′) // H0(Σ)0

i

OO

// 0.

Consider the simplest non-trivial setting where Σ = {P1, P2} ⊂ E(Q) consists of two points defined
over Q, so that H0(Σ)0 = Qp with trivial Galois action. The resulting extension

(4) 0 // H1(E) // H1(E′) // Qp // 0

encodes the image of the point P2 − P1 ∈ E(Q) under the connecting homomorphism

δ : E(Q) −→ H1(Q, H1(E)) := Ext1GQ
(Qp, H

1(E))

of Kummer theory, where the Ext group is taken in the category of continuous p-adic representations
of GQ. The following statement, which gives a “modularity criterion” for E ′ and encapsulates many
of the deepest theorems on the Birch and Swinnerton-Dyer conjecture obtained in the last decades, is
of course expected to hold for all elliptic curves E, but the reader is cautioned that the proof of the
implication (d) ⇒ (a) currently requires that E be a semistable elliptic curve having at least one odd
prime of nonsplit multiplicative reduction or at least two odd primes of split multiplicative reduction.

Theorem 1.1. Assume that the point P2 − P1 is of infinite order in E(Q). Then the following are
equivalent:

(a) The curve E′ = E \ {P1, P2} is modular;
(b) the Hasse-Weil L-series L(E, s) has a simple zero at s = 1;
(c) the point P2 − P1 generates E(Q) ⊗ Q and LLI(E/Q) is finite;
(d) for all primes p, the group Ext1fin(Qp, H

1(E)) of extensions of p-adic representations of the
Galois group of Q that are cristalline at p is one-dimensional over Qp.

Sketch of proof. The modularity of E ′ amounts to the statement that there exists an order O in an
imaginary quadratic field K such that the extension (4) can be obtained as the pullback of (3) via an
inclusion i : Qp −→ H0(ΣO)GQ , whose image contains a degree 0 divisor

DK ∈ Div0(ΣO)GQ ⊂ Div0(X0(N))(Q).

This means that the point P1−P2 ∈ E(Q) is a non-zero multiple of the Heegner point PE,K := πE(DK).
The implication (a)⇒(b) therefore follows from the Gross-Zagier formula [GZ86] expressing the

height of PE,K as a non-zero multiple of

L′(E/K, 1) = L′(E, 1) · L(EK , 1),

where EK is the quadratic twist of E by K. The existence of a suitable K for which L(EK , 1) 6= 0
follows from a non-vanishing result of Waldspurger or can be deduced from analytic number theory
techniques (cf. [MM]).

The implication (b) ⇒ (c) was subsequently proved by Kolyvagin [Ko89], who parlayed the non-
triviality of PE,K into a bound on the Mordell-Weil rank and the Selmer group of E over K.

The implication (c) ⇒ (d) is a direct consequence of the definitions: in fact (d) is ostensibly weaker
than (c), Selmer groups being less subtle to control than Mordell-Weil and Shafarevich-Tate groups.

The striking implication (d) ⇒ (a) follows from Skinner’s “converse of the Gross-Zagier-Kolyvagin
Theorem” [Sk15]. This last step is the most recent, and combines several new ingredients: the powerful
techniques developed by Skinner and Urban to prove the Iwasawa-Greenberg Main Conjecture for
elliptic curves over Q [SU14], an important variant explored by Xin Wan in his PhD thesis [Wa], and
the p-adic analogue of [GZ86] formulated and proved in [BDP13].

More precisely, choose a prime p ≥ 5 of good ordinary reduction for E such that E[p] is an irreducible
GQ-representation and the image of the restriction map Selp(E) −→ E(Qp)/pE(Qp) does not lie in
the image of E(Qp)[p]. A result of Waldspurger ensures the existence of an odd quadratic character χ
such that L(E,χ, 1) 6= 0, which can be chosen so that χ(2) = χ(p) = 1. Let K denote the imaginary
quadratic field associated to χ. The p-adic Selmer group Ext1K,fin(Qp, H

1(E)) of E over K (defined
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as an Ext group in the category of cristalline representations of GK) decomposes as a direct sum of
eigenspaces

Ext1K,fin(Qp, H
1(E)) ' Ext1fin(Qp, H

1(E)) ⊕ Ext1K,fin(Qp, H
1(E))−

with respect to the action of complex conjugation. Because L(E,χ, 1) 6= 0, the results of Kolyvagin
(or of Kato) imply the triviality of Ext1K,fin(Qp, H

1(E))−. Assumption (d) therefore implies that

Ext1K,fin(Qp, H
1(E)) is one-dimensional over Qp. One can then argue as in [Sk15]. Namely, the

running hypotheses ensure that both Lemma 2.3.2 and Proposition 2.7.3 of loc.cit. apply, and hence,
that a p-adic L-function of the type that occurs in [Wa] and [BDP13] (which interpolates critical values
of the L-series of the Rankin convolution of the modular form f associated to E with suitable Hecke
characters of K of higher infinity-type) does not vanish at the trivial point, which lies outside its
region of classical interpolation. This in turn implies, in light of [Sk15, Corollary 2.6.2] resting on the
variant of the Gross-Zagier formula of [BDP13], that the Heegner point PE,K has non-trivial p-adic
formal group logarithm, and is therefore non-torsion. As already explained, the non-triviality of PE,K
is equivalent to (a), and the implication (d) ⇒ (a) follows. �

The Birch and Swinnerton-Dyer conjecture admits an extension to elliptic curves twisted by Artin
representations which arises very naturally in the context of the modularity questions framed above.
Let

% : Gal (H/Q) ↪→ Aut(V%) ' GLn(Q̄p)

be an n-dimensional representation of the Galois group of a finite extension H/Q, a so-called Artin
representation, viewed as having coefficients in Q̄p. The pair (E, %) gives rise to the Hasse-Weil-Artin
L-series

L(E, %, s) :=
∏

`

det(1 − `−s(Fr−1
` )(H1(E)⊗V%)I` )

−1,

where the product is taken over the rational primes `, the arithmetic frobenius element at ` is denoted
by Fr`, and I` denotes the inertia group at `. The equivariant Birch and Swinnerton-Dyer conjecture
for E and %, denoted BSD(E, %), asserts that

(5) ords=1L(E, %, s) = dimQ̄p
(E(H) ⊗ V%)

GQ .

As a first step to understanding BSD(E, %), it is natural to ask which κ ∈ Ext1fin(V%, H
1(E)) can

be realised as a subquotient of a suitable H1(YO(N)). The Artin representation H0(ΣO)0 which
appears in the upper rightmost term of the diagram (3) is readily analyzed using the theory of complex
multiplication. Namely, the slightly larger Artin representation H0(ΣO) decomposes as a direct sum

H0(ΣO) ⊗ Q̄p = ⊕
φK(N)
j=1 Wj , where Wj = ⊕ψVj(ψ), with Vj(ψ) ⊂ Vψ := IndQ

Kψ.

In this equation, the second direct sum is taken over the non-trivial, Q̄p-valued, finite order characters
ψ of Gal (HO/K) modulo the involution ψ 7→ ψ−1, and Vj(ψ) is a non-trivial irreducible constituent
of the two-dimensional representation Vψ obtained by inducing the Galois character ψ from GK to
GQ. The representation Vψ is irreducible precisely when ψ 6= ψ−1, and in this case a non-trivial class

κ ∈ Ext1fin(Vψ , H
1(E)⊗Q̄p) is expected to be modular if and only if (any of) the analogues of conditions

(b)-(d) of Theorem 1.1 are satisfied, namely:

(b’) The Hasse-Weil-Artin L-series L(E, Vψ, s) has a simple zero at s = 1;
(c’) the representation Vψ occurs with multiplicity one in E(H)⊗ Q̄p, and the Vψ-isotypic compo-

nent of the LLI(E/H) is finite;
(d’) the group Ext1fin(Vψ , H

1(E) ⊗ Q̄p) is one-dimensional over Q̄p, and generated by κ.

Although such a precise result does not seem to appear in the literature, all the ingredients needed to
prove it seem to be available in principle.

The rather narrow notion of modularity described above has a few visible drawbacks:

(1) Very few Artin representations arise in the cohomology of the 0-dimensional Shimura varieties
ΣO, which are not even rich enough to capture all of the irreducible two-dimensional Artin
representations of Q. The open Shimura varieties YO(N) thus appear to give no purchase on
BSD(E, %) when % is not induced from a ring class character of an imaginary quadratic field.
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(2) Theorem 1.1 suggests that the modularity of elements of Ext1fin(Vψ , H
1(E)) is purely a “rank

one phenomenon”: if this Ext group has dimension > 1, none of its elements are expected to
be realised in subquotients of any H1(YO(N)).

In order to relate a larger class of non-semisimple Galois representations to modular forms, it becomes
desirable to relax the notion of modularity. One way in which one might try to do this is by replacing the
curves YO(N) with more general “open Shimura varieties”. These should include all the varieties whose
cohomology (at least, after semisimplification) is directly related to automorphic forms via a suitable
generalisation of the Eichler-Shimura congruence, and would eventually encompass the complements
of sub-Shimura varieties in larger Shimura varieties, as well as Kuga-Sato varieties and other natural
varieties fibered over Shimura varieties, the complements of Heegner cycles in such varieties, and
so on. With this expanded notion of modularity, the program of characterising the non-semisimple
Galois representations that are modular becomes richer and more subtle. See [BDP14] for a fragment of
experimental mathematics that might be viewed as fitting into this program. The following question
seems like it might repay further investigation, given the paucity of evidence, both theoretical and
experimental, that has been gathered around it so far:

Question 1.2. Let V1 and V2 be Galois representations for which hom(V1, V2) is irreducible. Suppose
that there is a non-trivial κ ∈ Ext1fin(V1, V2) arising as a subquotient of the cohomology of an open
Shimura variety. Is Ext1fin(V1, V2) necessarily one-dimensional?

If the answer to this question were “yes”, it would imply that the open curve E−{P1, P2} discussed
in Theorem 1.1 is never modular when rank(E(Q)) > 1. (But see the inspiring article [NS], as well as
the striking ongoing work of Zhiwei Yun and Wei Zhang in the function field case, for some tantalizing
ideas in the opposite, more optimistic direction.)

A second idea for enlarging the class of p-adic Galois representations deemed to be modular is to
allow p-adic limits of Galois representations arising in the cohomology of (open) Shimura varieties.
This idea is very natural in light of the classical work of Deligne-Serre on Artin representations attached
to weight one forms, whereby such Artin representations are obtained by piecing together the Galois
representations attached to modular forms of higher weights which are realised in the cohomology of
Kuga-Sato varieties. It is via this broader notion of modularity that all odd, irreducible two-dimensional
Artin representations of Q can be related to modular forms. The idea of realising automorphic Galois
representations as p-adic limits has become pervasive in the subject, and led to important advances:
for example, it plays a key role in the recent construction [HLTT] by Harris, Lan, Taylor, and Thorne
of Galois representations attached to non-self-dual automorphic forms on GLn. Even more germane to
this article, p-adic limits of automorphic Galois representations appear to capture non-trivial extension
classes going beyond settings of “multiplicity one”, as is illustrated by the following theorem of Skinner
and Urban [SU06, Thm. B]:

Theorem 1.3. Let E be an elliptic curve over Q. If L(E, s) vanishes to even order ≥ 2 at s = 1, then
the Selmer group Ext1fin(Qp, H

1(E)) of E contains at least two linearly independent modular classes.

The modular classes in this theorem are constructed as p-adic limits of geometric Galois representa-
tions in the cohomology of Shimura varieties associated to the unitary group U(2, 2). Although these
geometric Galois representations are believed to be semisimple, Theorem 1.3 rests on the fact that this
feature need not persist in the limit.

The primary goal of this article is to discuss a different approach for constructing canonical extension
classes of % by H1(E) for a large class of self-dual Artin representations % of dimension 4 (and their
lower-dimensional subrepresentations, in case % is reducible) arising as the tensor product % = %1 ⊗ %2

of a pair of odd, two-dimensional Artin representations. The construction of these classes is one of the
main results of [DR2] (resp. [BDR2]) when both %1 and %2 are irreducible (resp.when exactly one of %1

and %2 is irreducible), and is based on p-adic limits of non-semisimple, but “geometrically modular”
Galois representations. These limit classes are referred to as generalised Kato classes because their
construction is inspired by the seminal work [Ka98] of Kato (cf. also [Sc], [BD14]) on BSD(E,χ) for
χ a Dirichlet character. Like Heegner points in the setting of BSD(E, Vψ), generalised Kato classes
enjoy close relations to (p-adic) Hasse-Weil-Artin L-functions attached to E and %, but unlike Heegner
points, they are expected to generate a non-trivial subgroup of the Selmer group attached to E and
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% precisely when ords=1L(E, %, s) = 2. The formulae of [DR2] (cf. Corollary 3.6 below) relating the
linear independence of two generalised Kato classes to the non-vanishing of certain p-adic L-series can
thus be regarded as a p-adic Gross-Zagier formula “in analytic rank two”.

The main new contribution of this article is a conjecture expressing the same generalised Kato
classes as canonical elements in (E(H) ⊗ V%)

GQ when this latter space is two-dimensional. This con-
jecture strengthens and refines the “elliptic Stark conjecture” of [DLR1], and provides a framework
for understanding the results of [DLR1], [BDR2] and [DR2]. The settings in which % is reducible often
take on special arithmetic interest and are described in detail in the last chapter.

2. Hida families and periods for weight one forms

This section provides background on certain canonical structures associated to a weight one form g,
arising from the Hida families specialising in weight one to (a p-stabilisation of) g. These are important
for the conjectures of Section 3.4, but Section 2 can be skipped on a first reading by the reader wishing
to get a quick feeling for the generalised Kato classes described in Sections 3.1 and 3.2. On the other
hand, it is also worth noting that Section 2 is entirely self-contained. Conjecture 2.1, which can be
viewed as a p-adic analogue of the Stark conjecture for the adjoint of the Galois representation attached
to a weight one form, appears to be new and may be of independent interest.

Let g ∈ S1(N,χ) be a newform of weight one and level N with Fourier coefficients in a field L, and
let

% : GQ −→ Aut(V ) ' GL2(L)

be the Artin representation associated to it by the construction of Deligne and Serre. We view %
as acting on a two-dimensional L-vector space V , where L ⊂ C can be chosen to be contained in a
cyclotomic field.

Let H be the number field cut out by %, so that % factors through Gal (H/Q). Fix a rational prime
p and choose a prime p of H above p. The latter determines a canonical inclusion

H ⊂ Hp ⊂ Q̄p

of H in its completion Hp at p. Assume that the pair (%, p) satisfies the following conditions:

(I) The prime p splits completely in L/Q, so that L is equipped with an embedding into Qp which
will be fixed from now on. This assumption, which is made solely to lighten the notations and
could easily be dispensed with, allows % to be viewed as a Qp-linear representation via the
natural action of GQ on the Qp-vector space V ⊗L Qp.

(II) The representation V is unramified at p. There is then a well defined arithmetic frobenius
element

Frp ∈ Gal (H/Q)

acting canonically on V , and the characteristic polynomial of %(Frp) is equal to the Hecke
polynomial

x2 − ap(g)x+ χ(p) =: (x − αg)(x − βg)

attached to g.
(III) The modular form g is regular at p, i.e., αg 6= βg. After possibly enlarging L, it may also be

assumed that this coefficient field contains the roots of unity αg and βg .
(IV) The representation %g is not induced from a character of a real quadratic field K in which the

prime p splits. The rationale for this condition, which seems to be essential for a number of
the constructions and conjectures proposed in this paper, is explained in [DLR1, §1.1].

The p-stabilisations of g at p are the normalised eigenforms of weight one with Fourier coefficients in
L defined by

gα := g(z) − βgg(pz), gβ := g(z)− αgg(pz).

They are eigenvectors for the Up-operator satisfying

Upgα = αggα, Upgβ = βggβ.

The Artin representation V decomposes naturally as a direct sum

V = V α ⊕ V β

into one-dimensional eigenspaces for Frp, with eigenvalues αg and βg respectively.
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By a theorem of Hida, there exists a finite flat extension Λg of the Iwasawa algebra Λ and a Hida
family g ∈ Λg [[q]] of tame level N and tame character χ passing through the p-stabilised weight one

eigenform gα. When g is cuspidal, the regularity hypothesis imposed on g implies that such a Hida
family is unique, thanks to a recent result of Belläıche and Dimitrov [BeDi].

The Hida family g comes equipped with the following canonical structures:

(a) There is a locally free Λg-module Vg of rank two, affording Hida’s ordinary Λ-adic Galois
representation

%g : GQ −→ AutΛg
(Vg)

which is realised in the inverse limit of ordinary étale cohomology groups associated to the
tower X1(Np

r) of modular curves. This representation interpolates the Galois representations
associated by Deligne to the classical specializations of g.

(b) The restriction of Vg to GQp
admits a stable filtration

0 −→ Ug −→ Vg −→ Wg −→ 0,

where both Ug and Wg are flat Λg[GQp
]-modules that are locally free of rank one over Λg , and

the quotient Wg is unramified, with Frp acting on Wg as multiplication by the p-th Fourier
coefficient ap(g).

(c) Let Qnr
p denote the maximal unramified extension of Qp and let Q̂nr

p denote its p-adic comple-
tion. In [Oh95], Ohta constructs a canonical Λg-adic period

ωg ∈ D(Wg) := (Q̂nr
p ⊗̂Wg)

GQp ,

corresponding to the normalised Λ-adic eigenform g under the isomorphism in Theorem (A)
of the introduction of [Oh95].

(d) There is a natural perfect Galois-equivariant duality, given in Theorem (B) of the introduction
of [Oh95],

Ug × Wg −→ Λg(det(%g)),

where GQ acts on the module Λg of the right-hand side via the determinant of %g.

Let

yg : Λg −→ Qp

be the specialization map attached to the p-stabilised weight one form gα. By specialising the structures
above attached to g via the map yg , we obtain

(a’) A non-canonical isomorphism of Qp[GQ]-modules

Φgα
: Vg := Vg ⊗yg

Qp
∼
−→ V ⊗L Qp.

(b’) A non-trivial GQp
-stable filtration

0 −→ Ug −→ Vg −→Wg −→ 0

of Vg by one-dimensional subspaces, where Ug := Ug ⊗yg
Qp and Wg := Wg ⊗yg

Qp. The
Frobenius element Frp acts on Wg and Ug as multiplication by αg and βg respectively. Since
these eigenvalues are assumed to be distinct, the exact sequence above splits canonically,
leading to the identifications

Ug = V βg , Wg = V αg , Vg = Ug ⊕Wg = V βg ⊕ V αg .

(c’) Specialising Ohta’s period leads to a canonical element

(6) ωgα
:= yg(ωg) ∈ D(V αg ) := (Qnr

p ⊗ V αg )GQp = (Hp ⊗ V αg )GQp .

(d’) The duality in (d) above specialises via yg to a canonical pairing of Qp-vector spaces

〈 , 〉 : V βg × V αg −→ Qp(χ),

which induces a pairing by functoriality (denoted by the same symbol by a slight abuse of
notation):

(7) 〈 , 〉 : D(V βg ) ×D(V αg ) −→ D(Qp(χ)).
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When this pairing is perfect, it can be used to define a period ηgα
∈ D(V βg ), as the unique

element satisfying

〈ηgα
, ωgα

〉 = g(χ) ⊗ 1,

where

g(χ) :=

fχ)∑

j=1

χ(j)e2πij/fχ

is the Gauss sum attached to the Dirichlet character χ, viewed as an element ofHp by assigning

an fχ-th root of unity in Hp to the complex number e2πi/fχ .

Making use of the above arsenal we now turn to introduce certain p-adic periods associated to g
and the choice of a L-structure on Vg . We assume for simplicity in the sequel that g is a cusp form,
and thus Vg is irreducible.

Fix a GQ-equivariant isomorphism jg : V ⊗L Qp −→ Vg and let V Lg := jg(V ) denote the associated

L-rational structure on Vg , which by Schur’s lemma is well-defined up to scaling by Q×p . Since jg
induces isomorphisms V αg ' V α ⊗L Qp and V βg ' V β ⊗L Qp, we may choose L-bases vαg and vβg for

V Lg ∩ V αg and V Lg ∩ V βg respectively, so that

V Lg ∩ V αg = 〈vαg 〉L and V Lg ∩ V βg = 〈vβg 〉L.

Define p-adic periods

(8) Ωgα
= Ωgα

(V Lg ) ∈ H
Frp=α−1

g
p , Ξgα

= Ξgα
(V Lg ) ∈ H

Frp=β−1

g
p

by setting

Ωgα
⊗ vαg = ωgα

, Ξgα
⊗ vβg = ηgα

.

These periods depend on the choice of the basis (vαg , v
β
g ) for V Lg , but only up to multiplication by L×.

Furthermore, for all µ ∈ Q×p ,

Ωgα
(µV Lg ) = µ−1 · Ωgα

(V Lg ), Ξgα
(µ · V Lg ) = µ−1 · Ξgα

(V Lg ).

It follows that the ratio

(9) Lgα
:=

Ωgα

Ξgα

∈ (Hp)
Frp=

βg
αg

is a number in H×p that is well-defined up to multiplication by elements in L×.
This expression is a canonical p-adic period attached to the eigenform gα, and can be viewed as a

p-adic avatar of the Petersson norm of g.
Definition 1.8 of [DLR1, §1.2] associates in many cases a canonical p-adic Stark unit ugα

attached
to gα as follows. Let Vad := End0(V ) be the three dimensional adjoint representation attached to V
consisting of trace zero endomorphisms of V . Since complex conjugation acts with eigenvalues −1,
−1 and 1 on Vad, it follows that homGQ

(Vad, (O
×
H )L) = L · ϕad for a suitable generator ϕad. If one

further assumes that αg 6= ±βg , then the subspace of Vad on which Frp acts as multiplication by
βg

αg
is

one-dimensional; after choosing an L-basis vgα
for it, one lets

(10) ugα
:= ϕad(vgα

).

This element is well defined up to multiplication by L×, and hypothesis (IV) above guarantees that it
is a non-zero vector of the Vad-isotypic subspace of (O×H)L. See [DLR1, §1.2] for further details.

Conjecture 2.1. The period in (9) satisfies

Lgα
= logp(ugα

) (mod L×).

Remark 2.2. It would be interesting to test this conjecture numerically. To the extent that Lgα
is a

p-adic avatar of the Petersson norm of g, Conjecture 2.1 can be viewed as a p-adic analogue of the
Stark conjecture for the L-function attached to the adjoint of g, in the form in which it is illustrated,
for example, in the concluding paragraphs of [St75].
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3. Generalized Kato classes

3.1. Definition. Let E be an elliptic curve over Q and let

%1, %2 : Gal (H/Q) −→ GL2(L)

be odd, irreducible two-dimensional Artin representations of GQ satisfying

χ := det(%1) = det(%2)
−1,

where L and H are finite extensions of Q (and L is chosen, as before, to be contained in a cyclotomic
field). Let V1 and V2 be L[Gal (H/Q]-modules which are two-dimensional over L and realise %1 and %2

respectively. Observe that

V12 := V1 ⊗L V2

is a four-dimensional L-linear representation of Gal (H/Q) with real traces, i.e., it is isomorphic to its
contragredient representation.

Fix a rational prime p and continue to assume that hypotheses (I-IV) of the previous section hold
for both the pairs (%1, p) and (%2, p).

The progress in modularity realised over the last two decades implies the existence of cusp forms f ,
g, and h attached to E, %1 and %2 respectively, whose associated p-adic representations, denoted Vf ,
Vg and Vh, satisfy

(11) H1(E) = Vf , V1 ⊗L Qp ' Vg , V2 ⊗L Qp ' Vh.

It is important to keep in mind that the last two isomorphisms, whose existence is proved by comparing
traces on both sides, are only well-defined up to multiplication by a scalar in Q×p (by Schur’s lemma),
and that the Qp-vector spaces Vg and Vh therefore admit no natural L-rational structure. Let

Vgh := Vg ⊗ Vh, Vfgh := Vf ⊗ Vgh

denote the tensor products of Qp-linear representations of GQ, and write

(12) jgh : V12 ⊗L Qp −→ Vgh

for the isomorphism induced from (11). Let

(13) V Lgh := jgh(V12)

denote the resulting GQ-stable L-rational structure on Vgh, which is well-defined up to multiplication
by a scalar in Q×p , even when Vgh is reducible, because Vg and Vh themselves are irreducible.

Because of (11), the Hasse-Weil and Artin L-functions attached to E, %1 and %2 are equal to the
Hecke L-functions attached to f , g and h respectively:

L(E, s) = L(f, s), L(%1, s) = L(g, s), L(%2, s) = L(h, s),

and therefore admit functional equations and analytic continuations to the entire complex plane. By
the theory of Rankin-Selberg and Garrett, the same is true of the degree 8 L-function L(Vfgh, s)
attached to the convolution of f , g and h.

Let N = lcm(Nf , Ng, Nh) denote the least common multiple of the conductors of E, %1 and %2 and
assume further that p does not divide N . As in the previous section, let

x2 − ap(g)x+ χ(p) =: (x− αg)(x− βg), x2 − ap(h)x+ χ−1(p) =: (x− αh)(x − βh)

be the Hecke polynomials at p attached to g and h respectively, and assume that the coefficient field
L contains the roots of unity αg , βg , αh and βh. Denote as before by

gα := g(z) − βgg(pz), gβ := g(z) − αgg(pz), hα := h(z) − βhh(pz), hβ := h(z) − αhh(pz)

the relevant p-stabilisations of g and h.
One of the running assumptions of [DR2] that is also enforced in this article is that the Artin

conductor of Vgh is relatively prime to the conductor of E. Under this assumption, [Pr, Theorem 1.4]
implies that the local root numbers that govern the sign in the functional equation for L(E, Vgh, s) are
equal to 1 at all places of Q, and the Hasse-Weil-Artin L-function attached to E and Vgh therefore
vanishes to even order at the symmetry point s = 1 for its functional equation.
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The article [DR2] describes the construction of four canonical (a priori non-trivial, and distinct)
generalised Kato classes

(14) κ(f, gα, hα), κ(f, gα, hβ), κ(f, gβ, hα), κ(f, gβ , hβ) ∈ H1(Q, Vfgh).

These classes are essentially obtained as p-adic limits

(15) κ(f, gα, hα) := lim
k−→1

κ(f, gk, hk),

as (gk, hk) range over the classical specialisations of weight k ≥ 2 of Hida families g and h specialising
to gα and hα respectively in weight one, and κ(f, gk, hk) arises from a geometric construction whereby
it is realised in the p-adic étale cohomology of some (open) variety over Q.

More precisely, let Vf (N) denote the f -isotypic component ofH1(X0(N)), which is (non-canonically)
isomorphic to a finite number of copies of Vf , indexed by the positive divisors of N/Nf . Let Vg(N)
and Vh(N) denote the similar spaces occurring as the weight one specialisations of the g and h-isotypic

parts of the inverse limits of the ordinary quotients of H1(X1(Np
s)), which are abstractly isomorphic

to a direct sum of finitely many copies of Vg and Vh respectively, endowed with all the structures
described in (a’)-(d’) of Section 2. The classes in (14) of [DR2] take values in the Galois representation

Vfgh(N) = Vf (N) ⊗ Vg(N) ⊗ Vh(N)

and the classes of (14) are obtained by applying to them a suitable surjective GQ-equivariant projection

(16) π : Vfgh(N) −→ Vfgh

compatible with the L-structure, filtration, Ohta periods and dualities described in (a’)-(d’). The
dependence of κ(f, gα, hα) on the choice of π is supressed from the notations but should be kept in
mind.

The generalised Kato classes belong to the global cohomology groupH1(Q, Vfgh) = Ext1GQ
(Qp, Vfgh),

where Qp stands for the one-dimensional p-adic representation of GQ with trivial action and the Ext
group is taken in the category of finite dimensional Qp-vector spaces equipped with a continuous
GQ-action (whose restriction to GQp

need not be de Rham).
When g and h are cuspidal Hida families, the “weight two” classes κ(f, g2, h2) attached to weight

two specialisations g2 and h2 of g and h are obtained from the p-adic étale Abel-Jacobi image of a
Gross-Kudla-Schoen diagonal cycles in the Chow group of null-homologous codimension two cycles in
the triple product of the modular curve X1(Np

s). It is worth noting that when passing from k = 1
to k > 1, the local root number at ∞ attached to L(Vfgkhk

, s) changes sign (while the other root
numbers stay the same), so that this L-function vanishes to odd order at its center. The presence
of Gross-Kudla-Schoen diagonal cycles in this range is consistent with the Beilinson-Bloch conjecture
for L(Vfgkhk

, s) and in fact provides evidence for it. (Cf. the preprint [YZZ] of Yuan-Zhang-Zhang,
where the case k = 2 is studied.) The fact that the extension κ(f, gα, hα) does not arise directly in
p-adic étale cohomology, but only as a p-adic limit of geometric Galois representations, explains why
κ(f, gα, hα) need not be cristalline at p in general.

The analogy with the work of Kato [Ka98], [Sc] arises when the cuspidal Hida families g and h
are replaced by Hida families of Eisenstein series. A global class κ

BK
(f, gα, hα), designated as the

Beilinson-Kato class attached to (f, gα, hα), is then defined as in (15), but replacing the étale Abel-
Jacobi images κ(f, g2, h2) by p-adic étale regulators of Beilinson elements in the higher Chow group
K2(X1(Np

s)) = CH2(X1(Np
s), 2) attached to a pair of modular units whose logarithmic derivatives

give rise to g2 and h2. We refer the reader to [BD14] for more details in this setting.
In the intermediate setting where exactly one of g and h (say, g) is cuspidal (and thus h is Eisen-

stein), global classes κ(f, g2, h2) can be constructed geometrically as p-adic étale regulators of suitable
Beilinson-Flach elements in the higher Chow group K1(X1(Np

s)2) = CH2(X1(Np
s)2, 1) attached to

a modular unit whose logarithmic derivative is h2. The limit cohomology class arising in (15) is
then denoted κ

BF
(f, gα, hα), and called the Beilinson-Flach class attached to the triple (f, gα, hα).

The Beilinson-Flach classes in p-adic families were introduced and studied in [BCDDPR], [BDR1]
and [BDR2]. See also [LLZ] and [KLZ] for more recent work leading to substantial extensions and
refinements of the results of loc.cit. in the setting of Beilinson-Flach elements.

The p-adic Selmer group

(17) H1
fin(Q, Vfgh) := Ext1cris(Qp, Vfgh)
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attached to E and Vgh are the group of extensions of Qp by Vfgh in the category of Qp-linear repre-
sentations of GQ that are cristalline at p. Let

(E(H)L ⊗ V12)
Gal (H/Q), where E(H)L := E(H) ⊗Z L

denote the %12-isotypic part of the Mordell-Weil group of E. It is a finite-dimensional L-vector space
by the Mordell-Weil theorem, and is equipped with a natural inclusion

(18) (E(H)L ⊗ V12)
Gal (H/Q) ⊂ H1

fin(H,Vp(E) ⊗Qp
Vgh)

Gal (H/Q) = H1
fin(Q, Vfgh)

induced from the connecting homomorphism δ of Kummer theory for E(H) and the map jgh of (13).
When L(E, %gh, s) has a double zero at s = 1, Conjecture BSD(E, %gh) described in the previous

section predicts that the associated Mordell-Weil and Selmer group in (18) are 2-dimensional over L
and Qp respectively. The finiteness of the relevant Shafarevich-Tate group furnishes the Selmer group
with a natural L-rational structure

HomGQ
(V12, E(H)L) ⊂ H1

Sel(Q, Vfgh).

As mentioned above, the vanishing of the central critical value L(E, %gh, 1) implies that the gen-
eralised Kato classes in (14) are cristalline at p and thus belong to H1

fin(Q, Vfgh). The main goal of
this article is to give a precise conjectural description of the position of the generalised Kato classes
in H1

fin(Q, Vfgh) relative to the L-structure given by (18), in a way that recovers older conjectures of
Kato and Perrin-Riou in the setting of Beilinson-Kato classes when g and h are Eisenstein series, and
is consistent with the theorems and conjectures of [DR2] and [DLR1].

3.2. Basic properties. In this section we recall some of the main properties of the generalised Kato
classes already established in [DR2] and [DLR1].

Restricting (17) to GQp
, let

H1
fin(Qp, Vfgh) := Ext1fin,Qp

(Qp, Vfgh)

denote the group of cristalline extensions of Qp by Vfgh in the category of Qp-linear representations
of GQp

, and let H1
sing(Qp, Vfgh) := H1(Qp, Vfgh)/H

1
fin(Qp, Vfgh) denote the “singular quotient” of the

local cohomology at p. Recall that L has been chosen to be large enough to contain the frobenius
eigenvalues αg , βg, αh and βh, which therefore belong to Qp. Let

(19) V αg , V
β
g ⊂ Vg , V αh , V

β
h ⊂ Vh

be the eigenspaces in Vg and Vh respectively associated to these eigenvalues, and set

(20) V ααgh := V αg ⊗ V αh , V αβgh := V αg ⊗ V βh , V βαgh := V βg ⊗ V αh , V ββgh := V βg ⊗ V βh

of Vgh. Even though Vg and Vh are both assumed to be regular at p, the same need not be true for
Vgh, and in this case

(21) Vgh = V ααgh ⊕ V αβgh ⊕ V βαgh ⊕ V ββgh .

gives a strict refinement of the decomposition of Vgh into frobenius eigenspaces. In fact, some of the
most interesting arithmetic applications of the generalised Kato classes (notably those spelled out in
sections 4.3, 4.4, and 4.5) arise when Vgh is not regular at p.

The first basic result extends Kato’s explicit reciprocity law (corresponding to the case where g and
h are both Eisenstein series) to the setting where both g and h are cuspidal (Theorem C of [DR2]) as
well as to the intermediate Beilinson-Flach setting (Theorem 3.10 of [BDR2]).

Theorem 3.1. The natural image of κ(f, gα, hα) in H1
sing(Qp, Vfgh) belongs to H1

sing(Qp, Vf ⊗ V ββgh ),

and analogously for the remaining classes of (14). Moreover, the following are equivalent:

(1) For all choices of π in (16), the generalised Kato classes of (14) belong to the Bloch-Kato
Selmer group of Vfgh, i.e., their images in H1

sing(Qp, Vfgh) are trivial;

(2) the central critical value L(E, Vgh, 1) vanishes.

Assume from now on that L(E, Vgh, 1) = 0, so that

(1) the L-series L(E, Vgh, s) has a zero of even order ≥ 2 at s = 1;
(2) the generalised Kato classes of (14) belong to the Selmer group attached to E and Vgh.

One is then naturally interested in a formulating non-vanishing criterion for these Selmer classes:
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Conjecture 3.2. The generalised Kato classes in (14) generate a non-trivial subgroup of the Selmer
group of Vfgh for a suitable choice of π in (16), if and only if the following equivalent conditions are
satisfied:

(a) The L-series L(E, Vgh, s) has a double zero at s = 1;
(b) the Mordell-Weil group (E(H)L ⊗ V12)

GQ is two-dimensional over L;
(c) the Selmer group H1

fin(Q, Vfgh) is two-dimensional over Qp.

Remark 3.3. Although the equivalence of conditions (a), (b) and (c) certainly lies very deep, it is
part of a well-established conjecture, namely BSD(E, Vgh). The main novelty of Conjecture 3.2 is in
providing a criterion for the non-triviality of the space generated by the generalised Kato classes. Note
that Conjecture 3.2 does not predict that all four of the classes in (14) are non-trivial, nor even that
these four classes generate the Selmer group, when (a), (b), and/or (c) are satisfied. These stronger
conclusions are expected to be false in general, as illustrated by some of the examples in Chapter 4.

Let

κp(f, gα, hα) = resp(κ(f, gα, hα))

denote the image of the global class κ(f, gα, hα) in the local cohomology group

H1
fin(Qp, Vfgh) = (H1

fin(Hp, Vf ) ⊗ Vgh)
Gal (Hp/Qp) = (E(Hp) ⊗ Vgh)

Gal (Hp/Qp).

As we describe more explicitly below, Theorem D of [DR2] asserts that this image is controlled by
suitable p-adic avatars of the second derivative of the classical L-series L(f, Vgh, s) at the central critical
point s = 1.

These p-adic values were defined and explored in [DR2] and [DLR1] and are denoted

(22) Lp
gα(f̆ , ğ∗, h̆), Lp

gβ (f̆ , ğ∗, h̆), Lp
hα(f̆ , ğ, h̆∗), Lp

hβ (f̆ , ğ, h̆∗).

They depend on the choice of certain test vectors

(f̆ , ğ, h̆) ∈ S2(N ;L) ×M1(N,χ;L) ×M1(N,χ
−1;L)

with the same system of Hecke eigenvalues as f , g and h respectively, and with fourier coefficients in
L, and on the choice of dual test vectors

(ğ∗, h̆∗) ∈ Hom(M1(N,χ
−1;L), L)× Hom(M1(N,χ;L), L)

with the same system of Hecke eigenvalues as g and h. We refer to the introduction of [DR2] for more

details on their definition, contenting ourselves with remark that the p-adic L-value Lp
gα(f̆ , ğ∗, h̆) is

defined essentially as the p-adic limit of central critical values

Lp
gα(f̆ , ğ∗, h̆) := lim

`→1
E(f, g`, h) × C(f̆ , ğ∗, h̆) ×

L(Vf ⊗ Vg`
⊗ Vh, (`+ 1)/2)

〈g`, g`〉
,

as g` ranges over the specialisations of (odd) weight ` ≥ 3 of the Hida family g specialising to gα in
weight one. Here E(f, g`, h) is a p-adic multiplier arising from a recipe of Panciskin, whose presence

allows the p-adic interpolation of the special values above, and C(f̆ , ğ∗, h̆) is a product over the primes
dividing N · ∞ of local terms which depend in a simple way on the choice of test vectors.

Choose a basis of Vgh (over Qp, for now) which is compatible with the decomposition (21), i.e.,
choose non-zero vectors

(23) vααgh ∈ V ααgh , vαβgh ∈ V αβgh , vβαgh ∈ V βαgh , vββgh ∈ V ββgh .

Write

(24) κp(f, gα, hα) = Rαα ⊗ vββgh +Rαβ ⊗ vβαgh +Rβα ⊗ vαβgh +Rββ ⊗ vααgh .

The coordinate Rξ belongs to E(Hp)
Frp=ξ
Qp

, where ξ ranges over the index set

{αα = αgαh, αβ = αgβh, βα = βgαh, ββ = βgβh}.

Note that Rξ is even the image of a global point in E(H)Qp
, assuming the finiteness of the Shafarevich-

Tate group of E over H . Let

(25) logp : E(Hp)Qp
−→ Hp
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denote the formal group logarithm attached to an invariant differential on E/Q. The following theorem
is stated in Section 6.4 of [DR2]:

Theorem 3.4. When L(E, Vgh, 1) = 0, there exists a choice of π in (16) and of test vectors for f , g
and h such that the coordinates in (24) satisfy

(26) logp(Rαβ) ∼ Lp
gα(f̆ , ğ∗, h̆), logp(Rβα) ∼ Lp

hα(f̆ , ğ, h̆∗), logp(Rββ) = 0,

where ∼ denotes equality up to a non-zero p-adic period in H×p .

Remark 3.5. This theorem says nothing about the quantity logp(Rαα), which does not bear any direct
relationship with p-adic L-values introduced above. We expect that logp(Rαα) may rather be connected

with the first derivative of a putative refinement of Lp
f (f, gα, hα) in which all three modular forms

would be made to vary in a Hida family.

As explained in the introduction and in Section 6.3. of [DR2], Theorem 3.4 has the following corollary
which can be viewed as a p-adic Gross-Zagier formula in “analytic rank two”:

Corollary 3.6. If L(E, Vgh, 1) = 0 and Lp
gα(f̆ , ğ∗, h̆) 6= 0 for a suitable choice (f̆ , ğ∗, h̆) of test

vectors, then the two global classes

κ(f, gα, hα), κ(f, gα, hβ)

are linearly independent in the Selmer group H1
fin(Q, Vfgh) attached to E and Vgh, for a suitable choice

of π in (16).

Theorem 3.4 and its corollary motivated the experimental study undertaken in [DLR1] of the special
values of p-adic L-functions appearing in (26). This led to a precise conjecture for these values up to
a factor of L× rather than Q×p .

To formulate this conjecture, recall that the class κ(f, gα, hα) is expected to be trivial when
ords=1L(E, Vgh, s) > 2. Assume that this L-function has a double zero at the center, which implies,
by Conjecture BSD(E, Vgh), that (E(H)L ⊗ V12)

GQ is a two-dimensional L-vector space.

Fix vectors vααgh , . . . , v
ββ
gh chosen as in (23), with the difference that they belong to L-vector space

V12 rather than the Qp-vector space Vgh. Choose a basis (P,Q) for this L-vector space, and write

P = Pαα ⊗ vββgh + Pαβ ⊗ vβαgh + Pβα ⊗ vαβgh + Pββ ⊗ vααgh ,

Q = Qαα ⊗ vββgh +Qαβ ⊗ vβαgh +Qβα ⊗ vαβgh +Qββ ⊗ vααgh ,

where Pξ, Qξ are points in E(H)
Frp=ξ
L for every ξ ∈ {αα = αgαh, αβ = αgβh, βα = βgαh, ββ = βgβh}.

These points can be used to define a regulator attached to gα, whose entries are the p-adic formal

group logarithms of the coordinates attached to the vectors vααgh and vαβgh (and similarly for hα):

Definition 3.7. The regulators attached to E and V12 are

Reggα
(E, V12) = det

(
logp Pββ logp Pβα
logpQββ logpQβα

)
= logp Pββ · logpQβα − logpQββ · logp Pβα,

Reghα
(E, V12) = det

(
logp Pββ logp Pαβ
logpQββ logpQαβ

)
= logp Pββ · logpQαβ − logpQββ · logp Pαβ .

The main conjecture of [DLR1] is the following3, assuming
αg

βg
6= ±1 (resp. αh

βh
6= ±1) so that the

Stark unit ugα
(resp.uhα

) is well-defined:

Conjecture 3.8. Assume that L(E, Vgh, s) vanishes to order 2 at s = 1. Then there exists a choice

of test vectors (f̆ , ğ∗, h̆) and (f̆ , ğ, h̆∗) such that

Lp
gα(f̆ , ğ∗, h̆) =

Reggα
(E, V12)

logp ugα

, Lp
hα(f̆ , ğ, h̆∗) =

Reghα
(E, V12)

logp uhα

(mod L×).

3We warn the reader that here in this note we have chosen to state the main conjecture of [DLR1] in terms of the
arithmetic frobenius Frp at p, while in [DLR1] we rather employ the geometric frobenius σp = Fr−1

p . It is for this reason

that the roles of α and β are swapped in both formulations.
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Remark 3.9. Conjecture 3.8 lends itself to numerical verification and has been extensively tested in

[DLR1]. This is because the p-adic L-values Lp
gα(f̆ , ğ∗, h̆) and Lp

hα(f̆ , ğ, h̆∗) can be expressed in
terms of the rather concrete p-adic iterated integrals of loc.cit., which can be computed efficiently
using Alan Lauder’s [La] fast ordinary projection algorithms on the space of overconvergent modular
forms. In contrast, the generalised Kato classes themselves (like many objects constructed in étale
cohomology) seem difficult to compute in practice, even though their theoretical usefulness is amply
illustrated in [BDR2] and [DR2].

3.3. Enhanced regulators. The goal of this article is to combine the insights arising from Theorem
3.4 and Conjecture 3.8 to formulate a conjecture on the position of the generalised Kato classes them-
selves in (E(H)⊗Vgh)

GQ , specifying this position up to an ambiguity of L× rather than the less precise
Q×p ambiguity of Theorem 3.4.

The most important ingredients in the formulation of this conjecture are the so-called enhanced
regulators

R̃eg(E, V12) ∈ (E(H)L ⊗ V12)
GQ ⊗ (E(H)L ⊗ V12)

GQ ,

R̃egαα(E, V12) ∈ (Hp)
Frp=βgβh ⊗ (E(H)L ⊗ V12)

GQ ,

R̃eg(E, Vgh) ∈ (E(H)L ⊗ Vgh)
GQ ⊗ (E(H)L ⊗ Vgh)

GQ ,

R̃egαα(E, Vgh) ∈ D(V ααgh ) ⊗ (E(H)L ⊗ Vgh)
GQ ,

whose definition is somewhat in the spirit of the regulator RS defined in equation (2) of [Da92], and
which we now proceed to describe. As in (6), here D(V αα

gh ) := (Qnr
p ⊗ V ααgh )GQp = (Hp ⊗ V ααgh )GQp .

Definition 3.10. Choose an L-basis (P,Q) of the two-dimensional vector space (E(H)⊗V12)
GQ , and

set

(27) R̃eg(E, V12) := det

(
P P
Q Q

)
:= P ⊗Q−Q⊗ P.

It does not depend on the choice of basis that was made to define it, up to multiplication by L×.
The function logαα : (E(H)L ⊗ V12)

GQ −→ (Hp)
Frp=βgβh defined by

logαα(P ) := logp(Pββ)

induces a linear map

logαα⊗1 : (E(H)L ⊗ V12)
GQ ⊗ (E(H)L ⊗ V12)

GQ −→ (Hp)
Frp=βgβh ⊗ (E(H)L ⊗ V12)

GQ ,

and we set

(28) R̃egαα(E, V12) := (logαα⊗1)(R̃eg(E, V12)) = logp(Pββ) ⊗Q− logp(Qββ) ⊗ P.

Recall the embedding jgh : V12 −→ V Lgh ⊂ Vgh of (12). Although this embedding is completely

non-canonical and only defined up to scaling by Q×p , there is a canonical way of embedding V ⊗2
12 into

V ⊗2
gh . This is done by exploiting the canonical dualities on Vg and Vh described in Section 2, which

gives rise to perfect pairings

Vg × Vg −→ Qp(χ), Vh × Vh −→ Qp(χ
−1), Vgh × Vgh −→ Qp.

These pairings allow us to define L-rational structures V L∗
g , V L∗h and V L∗gh which are dual to V Lg , V Lh

and V Lgh respectively, by letting V L∗g be the L-dual of V Lg in Vg , and likewise for V L∗h and V L∗gh . We
may then choose GQ-equivariant embeddings

j∗g : V1 −→ V L∗g , j∗h : V2 −→ V L∗h , j∗gh := j∗g ⊗ j∗h : V12 −→ V L∗gh ,

which are well-defined up to scaling by L×. Replacing jgh by µ · jgh, for any µ ∈ Q×p , has the effect of

replacing j∗gh by µ−1 · j∗gh. Hence the map

jgh ⊗ j∗gh : V12 ⊗ V12 −→ Vgh ⊗ Vgh

is well defined up to scaling by L×.
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Definition 3.11. The enhanced regulator R̃eg(E, Vgh) associated to E and Vgh is

(29) R̃eg(E, Vgh) := (jgh ⊗ j∗gh)(R̃eg(E, V12)) ∈ (E(H) ⊗ Vgh)
GQ ⊗ (E(H) ⊗ Vgh)

GQ .

Finally, let

Logp : (E(H) ⊗ Vgh)
GQ −→ (Hp ⊗ Vgh)

GQp = D(Vgh)

be the canonical p-adic logarithm map induced from the p-adic logarithm of (25) via the fixed embed-
ding H ⊂ Hp, and let

Logαα : (E(H) ⊗ Vgh)
GQ −→ D(V ααgh )

be its composition with the functorial projection D(Vgh) −→ D(V ααgh ). This logarithm map is just the
more canonical counterpart of the map logαα: the latter depends on the choice of a basis vector vααgh
for V αα and is related to Logαα by the rule

Logαα := logαα⊗v
αα
gh .

We set

(30) R̃egαα(E, Vgh) := (Logαα⊗1)(R̃eg(E, Vgh)) = Logαα(P ) ⊗Q− Logαα(Q) ⊗ P.

It is worth noting that the enhanced regulator R̃egαα(E, Vgh) is a canonical invariant associated to

E and Vgh, i.e., it is well-defined up to multiplication by L×, while the less canonical R̃egαα(E, V12)
depends on the choice of a basis vααgh for V ααgh . The two regulators are related by

(31) R̃egαα(E, Vgh) = R̃egαα(E, V12) ⊗ vααgh .

3.4. The conjecture. Recall the periods

ωgα
∈ D(V αg ), ωhα

∈ D(V αh )

constructed in (6). The main conjecture of this note is:

Conjecture 3.12. Assume that r(E, Vgh) = 2. The generalised Kato class κ(f, gα, hα) belongs to
(E(H) ⊗ Vgh)

GQ and satisfies the relation

ωgα
ωhα

⊗ κ(f, gα, hα) ∼L R̃egαα(E, Vgh)

in D(V ααgh ) ⊗ (E(H) ⊗ Vgh)
GQ , where ∼L denotes an equality up to scaling by a factor in L which is

non-zero for a suitable choice of π in (16).

The following proposition shows that, under Conjecture 2.1 (relating the canonical period attached
to g to the Stark unit ugα

) and Conjecture 3.2 (a mild strengthening of BSD(E, %gh)), Conjecture 3.12
implies the main conjecture of [DLR1]. Before dismissing this proposition as mere conjectural relations
between conjectures, the reader is reminded that Conjecture 3.8 lends itself to experiment and has been
extensively tested numerically in [DLR1], while the strengthening described in Conjecture 3.12 lies for
the moment beyond the range of explicit calculations (cf. Remark 3.9).

Proposition 3.13. Assume Conjectures 2.1 and 3.2. Then Conjecture 3.12 implies Conjecture 3.8.

Proof. Consider the product of periods

ηgα
ωhα

= (Ξgα
⊗ vβg ) · (Ωhα

⊗ vαh ) = Ξgα
· Ωhα

⊗ vβαgh ∈ D(V βαgh )

defined in Section 2.
The pairing introduced in (7) gives rise to a pairing

〈 , 〉 : D(V αβgh ) ×D(V βαgh ) −→ D(Qp) = Qp.

As shown in the proof of [DR2, Theorem 6.10 (ii)],

(32)
〈
Logαβ κ(f, gα, hα), ηgα

ωhα

〉
= Lp

gα(f, g, h) (mod L×).

On the other hand, by the definition of the enhanced regulator,

Logαβ R̃egαα(E, Vgh) = (logp Pββ logpQβα − logpQββ logp Pβα) ⊗ vααgh ⊗ v∗αβgh

= Reggα
(E, V12) ⊗ vααgh ⊗ v∗αβgh (mod L×).
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Hence the following equality holds in D(V ααgh ):

(33) 〈Logαβ R̃egαα(E, Vgh), ηgα
ωhα

〉 = Ξgα
· Ωhα

· Reggα
(E, Vgh) ⊗ vααgh (mod L×).

By pairing the value of Logαβ at both sides of the displayed identity in Conjecture 3.12 with the class
ηgα

ωhα
and invoking (32) and (33), we obtain

ωgα
ωhα

⊗ Lp
gα(f, g, h) = Ξgα

· Ωhα
· Reggα

(E, V12) ⊗ vααgh ∈ D(V ααgh ) (mod L×).

Since
ωgα

ωhα
= Ωgα

· Ωhα
· vααgh (mod L×),

it follows that
Ωgα

Lp
gα(f, g, h) = Ξgα

Reggα
(E, V12) (mod L×),

and therefore that

Lp
gα(f, g, h) =

Reggα
(E, V12)

Lgα

(mod L×).

Conjecture 3.8 now follows directly from this equality after invoking Conjecture 2.1. �

Remark 3.14. As explained in a number of the examples covered in Chapter 4 below, it may happen that
all four of the p-adic iterated integrals in (22) are equal to zero even when some of the generalised Kato
classes are non-trivial. This suggests that Conjecture 3.12 is a genuine strengthening of Conjecture
3.8.

4. Special cases

This section examines Conjecture 3.12, and the special forms taken by the enhanced regulators

R̃egαα(E;V12), R̃egαβ(E;V12), R̃egβα(E;V12), R̃egββ(E;V12),

in the arithmetically interesting cases where Vgh is reducible. According to [DLR2, §2], the following
is a complete list of scenarios where this occurs:

(1) The original Beilinson-Kato setting where Vg and Vh are both reducible, i.e., where g and h
are both Eisenstein series of weight one;

(2) the Beilinson-Flach setting where exactly one of Vg or Vh is reducible, i.e., where exactly one
of g or h is cuspidal;

(3) the complex multiplication case where Vg and Vh are both induced from characters of a common
imaginary quadratic field;

(4) the real multiplication case where Vg and Vh are induced from characters of mixed signature
of a common real quadratic field;

(5) the adjoint case where h is (a twist of) the dual of g, so that Vgh is the direct sum of a
one-dimensional representation and a twist of the adjoint of Vg .

The reader will notice that some of the above settings arise when %g and/or %h are reducible, while
in §2 and §3 these representations were assumed to be irreducible. This assumption was imposed to
a large extent for the sake of simplicity of the exposition, and the statement (and presumed validity)
of Conjecture 3.12 does not rely on it. For completeness, we have therefore described the enhanced
regulators that appear in Conjecture 3.12 in all of the above cases.

4.1. Beilinson-Kato classes. Assume that g and h are both Eisenstein series. After possibly twisting
g or h, there is no real loss of generality in assuming that there exist Dirichlet characters χ1, χ2 such
that g and h are given by

g = E1(χ1, χ2), h = E1(1, χ
−1
12 ), where χ12 = χ1χ2.

We refer to e.g. [BDR1, §2.1.2] for the definition of these weight one Eisenstein series in terms of
their q-expansions. The Galois representations attached to g and h are reducible, namely,

(34) V1 = L(χ1) ⊕ L(χ2), V2 = L⊕ L(χ−1
12 ), V12 = L(χ1) ⊕ L(χ−1

1 ) ⊕ L(χ2) ⊕ L(χ−1
2 ),

where the coefficient field L is the cyclotomic field generated by the images of χ1 and χ2. These
representations factor through the Galois group Gal (H/Q) of an abelian extension H of Q. We may
set

αg = χ1(p), βg = χ2(p), αh = 1, βh = χ−1
12 (p).
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The regularity asumption implies that V1 and V2 decompose uniquely as a direct sum of two GQp
-stable

lines, which are also stable under GQ. More precisely,

V αα12 = L · vχ1
, V ββ12 = L · vχ̄1

, V αβ12 = L · vχ̄2
, V βα12 = L · vχ2

,

where (vχ1
, vχ̄1

, vχ̄2
, vχ2

) is a basis for V12 on which GQ acts via the characters χ1, χ̄1, χ̄2, and χ2

respectively.
The class κ(f, gα, hα) = κBK(f, gα, hα) was constructed by Kato as a p-adic limit of Beilinson

elements attached to pairs of modular units whose logarithmic derivatives are weight two Eisenstein
series. Theorem 3.1 in this case boils down to Kato’s reciprocity law, which asserts that κ(f, gα, hα)
belongs to the Selmer group of E over H if and only if the L-function

L(E, Vgh, s) = L(E,χ1, s)L(E, χ̄1, s)L(E,χ2, s)L(E, χ̄2, s)

vanishes at s = 1. In this case, it clearly vanishes to even order, and vanishes to order two if and only
if (after eventually interchanging the characters χ1 and χ2)

ords=1L(E,χ1, s) = ords=1L(E, χ̄1, s) = 1, L(E,χ2, 1), L(E, χ̄2, 1) 6= 0.

Assuming that this is the case, Conjectures BSD(E,χ1) and BSD(E,χ2) predict that (E(H)L⊗V12)
GQ

is two-dimensional over L and that a basis for it can be chosen to be

P := Pχ̄1
⊗ vχ1

, Q := Qχ1
⊗ vχ̄1

,

where Pχ̄1
and Qχ1

are global points in E(H)L generating the χ̄1 and χ1 eigenspaces respectively for
the natural action of GQ. With these notations, we have

Pαα = Pαβ = Pβα = 0, Pββ = Pχ̄1
,

Qαβ = Qβα = Qββ = 0, Qαα = Qχ1
.

This immediately implies that

R̃egαα(E, V12) = logp(Pχ̄1
) ·Q, R̃egαβ(E, V12) = 0,

R̃egβα(E, V12) = 0, R̃egββ(E;V12) = logp(Qχ1
) · P.

It follows that

Reggα
(E;V12) = Reggβ

(E;V12) = Reghα
(E;V12) = Reghβ

(E;V12) = 0.

This accounts for the fact that the p-adic iterated integrals

Lp
gα(f, g, h), Lp

gβ (f, g, h), Lp
hα(f, g, h), Lp

hβ (f, g, h)

systematically vanish4 when g and h are Eisenstein series that are regular at p. Conjecture 3.12 makes
the stronger prediction that the generalised Kato classes themselves are non-trivial, and is consistent
with a Conjecture of Perrin-Riou, since it predicts that

logββ(κ(f, gα, hα)) = logαα(κ(f, gβ , hβ)) = logp(Pχ̄1
) logp(Qχ1

) (mod L×).

4.2. Belinson-Flach classes. In the Beilinson-Flach setting, it can be assumed without loss of gen-
erality that g is a weight one cusp form with nebentypus character χ and Galois representation
Vg = V1 ⊗L Qp, and that h := E1(1, χ

−1) is the weight one Eisenstein series attached to the pair
(1, χ−1) of Dirichlet characters. The relevant four-dimensional representations are then equal to

Vgh = Vg ⊕ Vḡ ; V12 = V1 ⊕ V̄1,

and the Hasse-Weil-Artin L-series

L(E, Vgh, s) = L(E, Vg, s)L(E, V̄g , s)

has a double zero at s = 1 precisely when each of the primitive L-series L(E, Vg , s) and L(E, Vḡ , s)
have a simple zero at s = 1. Conjecture BSD(E, Vg) then implies that each of the L-vector spaces on
the right-hand side of

(E(H)L ⊗ V12)
GQ) = (E(H)L ⊗ V1)

GQ ⊕ (E(H)L ⊗ V̄1)
GQ ,

4But see the experiments described in [DLR1, §7] in the case where g is irregular at p, which suggest that the irregular
setting of Conjecture 3.12 would merit further investigation.
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is one-dimensional. Let P be an L-basis for (E(H)L ⊗ V1)
GQ and let P̄ be the associated L-basis for

(E(H)L ⊗ V̄1)
GQ , obtained by applying complex conjugation to the coefficients in L.

After fixing an ordering αg , βg ∈ L for the eigenvalues of Frp on V1, and setting

αh = 1, βh = χ−1(p) = (αgβg)
−1,

we have

V αα12 = V
αg

1 , V αβ12 = V̄
β−1

g

1 , V βα12 = V
βg

1 , V ββ12 = V̄
α−1

g

1 ,

and hence
Pαα = Pαg

, Pβα = Pβg
, Pαβ = 0 Pββ = 0,

P̄αα = 0 P̄βα = 0, P̄αβ = P̄β−1

g
, P̄ββ = P̄α−1

g
.

A direct calculation reveals that, up to multiplication by L×,

R̃egαα(E, V12) = logp(P̄α−1

g
) · P, R̃egαβ(E, V12) = logp(Pβg

) · P̄ ,

R̃egβα(E, V12) = logp(P̄β−1

g
) · P, R̃egββ(E;V12) = logp(Pαg

) · P̄ .

It follows that

Reggα
(E, V12) = logp(P̄α−1

g
) · logp(Pβg

), Reggβ
(E, V12) = logp(P̄β−1

g
) · logp(Pαg

),

Reghα
(E, V12) = 0, Reghβ

(E, V12) = 0.

as described in [DLR1, §6].

4.3. Complex multiplication classes and Heegner points. In this chapter we consider the setting
where g and h are theta series attached to characters ψg and ψh of the same imaginary quadratic field
K, and with inverse nebentypus character. Given any character ψ of GK , let ψ′ denote the character
obtained by conjugating it with the involution in Gal (K/Q). Then

Vg = IndQ
K ψg = IndQ

K ψ
′
g , Vh = IndQ

K ψh = IndQ
K ψ

′
h,

and therefore

Vgh = IndQK ψ•
⊕ IndQ

K ψ◦
, where ψ

•
= ψgψh, ψ

◦
= ψgψ

′
h.

The self-duality assumption implies that ψ
•

and ψ
◦

are are ring class characters, i.e., they satisfy

ψ′
•

= ψ−1
•
, ψ′

◦
= ψ−1

◦
.

Assume that the induced representations

V• := IndQ
K ψ•

, V◦ := IndQ
K ψ◦

appearing in the decomposition

(35) V12 = V• ⊕ V◦

(viewed as representations with coefficients in the number field L) are irreducible, which is always the
case unless ψ

•
or ψ

◦
is a quadratic, i.e., a genus character. (The more degenerate case where this arises

can be subsumed under the “adjoint setting” considered in Section 4.5.)
The Hasse-Weil-Artin L-series

L(E, Vgh, s) = L(E, V•, s)L(E, V◦, s) = L(E/K,ψ
•
, s)L(E/K,ψ

◦
, s)

has a double zero at s = 1 in one of the following two cases:

(1) the primitive L-series L(E, V•, s) and L(E, V◦, s) each have a simple zero at s = 1. This
setting, which resembles more closely the phenomena described in the previous two sections
on Beilinson-Kato and Beilinson-Flach elements, will be referred to as the rank (1,1) setting
of Conjecture 3.12.

(2) Exactly one of the primitive L-series L(E, V•, s) or L(E, V◦, s) has a double zero at s = 1,
and the other is non-vanishing at the center. This case shall be referred to as the rank (2,0)
setting of Conjecture 3.12. The possible non-triviality of the generalised Kato classes in the
presence of a “genuine” double zero of a primitive Hasse-Weil-Artin L-function represents a
novel feature that did not arise in the setting of Beilinson-Kato or Beilinson-Flach elements.
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4.3.1. The rank (1, 1) setting. In this case, Conjectures BSD(E, V•) and BSD(E, V◦) predict that the
Mordell-Weil groups (E(H)L ⊗ V•)

GQ and (E(H)L ⊗ V◦)
GQ are both one-dimensional L-vector spaces,

with generators P• and P◦ respectively. It is natural to write

(36) P• = Pψ
•
⊗ vψ′

•

+ Pψ′

•

⊗ vψ
•
, P◦ = Pψ

◦
⊗ vψ′

◦

+ Pψ′

◦

⊗ vψ
◦
,

where Pψ
•
, Pψ′

•

, Pψ
◦
, and Pψ′

◦

are generators for the one-dimensional subspaces of E(H)L on which

GK acts via the characters ψ
•
, ψ′

•
, ψ

◦
, and ψ′

◦
respectively.

The description of the enhanced regulators attached to V12 and to (P•, P◦) can be further subdivided
into two cases, with markedly different features: the case where the prime p is split in K, and the case
where it is inert in K.

a) The case where p is split in K. In this case, let p = p p′ be the factorisation of p into distinct primes
of K. We can then set

αg = ψg(p), βg = ψg(p
′), αh = ψh(p), βh = ψh(p

′),

so that

αgαh = ψ
•
(p), αgβh = ψ

◦
(p), βgαh = ψ

◦
(p′), βgβh = ψ

•
(p′).

The decomposition of the GKp
= GQp

representations attached to (35) into Frp-eigenspaces is also
stable under the action of the global Galois group GK , and is described by:

V αα12 = V
ψ
•

• , V αβ12 = V
ψ
◦

◦ , V βα12 = V
ψ′

◦

◦ , V ββ12 = V
ψ′

•

• .

It follows that, up to multiplication by L×,

R̃egαα(E, V12) = logp(Pψ′

•

) · P◦, R̃egαβ(E, V12) = logp(Pψ′

◦

) · P•,

R̃egβα(E, V12) = logp(Pψ◦ ) · P•, R̃egββ(E, V12) = logp(Pψ• ) · P◦,

and therefore that

Reggα
(E, V12) = logp(Pψ′

•

) · logp(Pψ′

◦

), Reggβ
(E, V12) = logp(Pψ• ) · logp(Pψ◦ ),

Reghα
(E, V12) = logp(Pψ′

•

) · logp(Pψ◦ ), Reghβ
(E, V12) = logp(Pψ• ) · logp(Pψ′

◦

).

The corresponding formulae for the p-adic iterated integrals Lp
gα(f, g, h), Lp

gβ (f, g, h), Lp
hα(f, g, h),

and Lp
hβ (f, g, h) were proved in [DLR1, §3], by using the p-adic Gross-Zagier formula of [BDP13] to

express these L-values in terms of products of p-adic logarithms of Heegner points. Theorem 3.3 of
loc.cit. is one of the few pieces of theoretical evidence in support of Conjecture 3.12.

b) The case where p is inert in K. In this case, the eigenvalues of the Frobenius automorphism Frp
acting on Vg and Vh are of the form

αg, βg = −αg, αh = α−1
g , βh = −α−1

g .

Let (vψg
, vψ′

g
) be a eigenbasis of Vg for the action of GK relative to the distinct characters ψg and ψ′g ,

and let (vψh
, vψ′

h
) be a similar basis for Vh. These vectors can be scaled so that Frp acts on them as

Frp(vψg
) = αg · vψ′

g
, Frp(vψ′

g
) = αg · vψg

, Frp(vψh
) = α−1

g · vψ′

h
, Frp(vψ′

h
) = α−1

g · vψh
,

and therefore we may set

V αg = L · (vψg
+ vψ′

g
), V βg = L · (vψg

− vψ′

g
), V αh = L · (vψh

+ vψ′

h
), V βh = L · (vψh

− vψ′

h
).

After setting

vψ
•

:= vψg
⊗ vψh

, vψ′

•

:= vψ′

g
⊗ vψ′

h
, vψ

◦
:= vψg

⊗ vψ′

h
, vψ′

◦

:= vψ′

g
⊗ vψh

,

and letting

v+
• := vψ

•
+ vψ′

•

, v−• := vψ
•
− vψ′

•

, v+
◦ := vψ

◦
+ vψ′

◦

, v−• := vψ
◦
− vψ′

◦

,

it is easy to see that

(37)
V αα12 = L · (v+

• + v+
◦ ), V αβ12 = L · (v−• + v−◦ ),

V βα12 = L · (v−• − v−◦ ), V ββ12 = L · (v+
• − v+

◦ ).
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Note that Frp acts on both V αα12 and V ββ12 with the eigenvalue 1, and on V αβ12 and V βα12 with the
eigenvalue −1. In particular, while Vg and Vh are always regular at p, the tensor product Vgh ' V12

never enjoys this property, even though the vector spaces described in (37) are one dimensional.
Keeping the same notations as in (36), let

P+
• := Pψ

•
+ Pψ′

•

, P−• := Pψ
•
− Pψ′

•

, P+
◦ := Pψ

◦
+ Pψ′

◦

, P−◦ := Pψ
◦
− Pψ′

◦

.

With these notations, the enhanced regulators describing the associated generalised Kato classes are
given by

R̃egαα(E, V12) = logp(P
+
• ) · P◦ − logp(P

+
◦ ) · P•, R̃egαβ(E, V12) = logp(P

−
• ) · P◦ − logp(P

−
◦ ) · P•,

R̃egβα(E, V12) = logp(P
−
• ) · P◦ + logp(P

−
◦ ) · P•, R̃egββ(E, V12) = logp(P

+
• ) · P◦ + logp(P

+
◦ ) · P•.

The four regulators Reggα
(E, V12), Reggβ

(E, V12), Reghα
(E, V12), and Reghβ

(E, V12) are all seen to be

simple L×-multiples of the expression

(38) logp(P
+
• ) · logp(P

−
◦ ) − logp(P

+
◦ ) · logp(P

−
• ).

The resulting formula for Lp
gα(f, g, h) predicted by Conjecture 3.8 has been extensively tested numer-

ically in [DLR1, §3.3].

Remark 4.1. Even though the points P+
• , P−• , P+

◦ , and P−◦ that figure in the generalised Kato classes
are in principle expressed as linear combinations of Heegner points, the methods used to prove Con-
jecture 3.8 when p is split in K, which are based on the p-adic Gross-Zagier formula of [BDP13] and
on properties of the Katz p-adic L-function attached to K, seem to break down completely when p is
inert in K. A theoretical understanding of the p-adic iterated integrals of [DLR1] in this setting would
seem to require a new idea.

Remark 4.2. It is worth contrasting the expressions arising in (38) with the simpler formulae

logαα R̃egββ(E, V12) = logββ R̃egαα(E, V12) = logp(P
+
• ) · logp(P

+
◦ ),

logαβ R̃egβα(E, V12) = logβα R̃egαβ(E, V12) = logp(P
−
• ) · logp(P

−
◦ ).

In certain very special settings–notably, when the elliptic curve E has multiplicative reduction at
p–these expressions arise as the leading terms of the p-adic L-series

Lp
f (f, gα, hα), . . . , Lp

f (f, gβ, hβ).

Methods based on the Cerednik-Drinfeld theory of p-adic uniformisation of Shimura curves make it
possible to relate these leading terms to the p-adic logarithms of Heegner points, leading to some
indirect theoretical evidence for Conjecture 3.12 in the setting where p is inert in K. See [DR3] for a
description of this approach.

4.3.2. The rank (2, 0) setting. Assume, after possibly interchanging V• and V◦, that L(E, V•, s) has a
double zero at s = 1 and that L(E, V◦, 1) 6= 0. In this case, Conjectures BSD(E, V•) and BSD(E, V◦)
predict that

(E(H)L ⊗ V12)
GQ = (E(H)L ⊗ V•)

GQ

is two-dimensional over L. Choose a basis (P,Q) for this vector space. It is natural to write

P = Pψ
•
⊗ vψ′

•

+ Pψ′

•

⊗ vψ
•
, Q = Qψ

•
⊗ vψ′

•

+Qψ′

•

⊗ vψ
•
,

where (Pψ
•
, Qψ

•
) and (Pψ′

•

, Qψ′

•

) are bases for the two-dimensional subspaces of E(H)L on which GK
acts via the characters ψ

•
and ψ′

•
respectively.

As in the rank (1, 1) setting, the shape of the enhanced regulators attached to V12 and to the basis
(P,Q) depend very much on whether the prime p is split or inert in K.

a) The case where p is split in K. In this case, letting p = p p′ be the factorisation of p into distinct
primes of K, we can set

αg = ψg(p), βg = ψg(p
′), αh = ψh(p), βh = ψh(p

′),

so that

αgαh = ψ
•
(p), αgβh = ψ

◦
(p), βgαh = ψ

◦
(p′), βgβh = ψ

•
(p′).
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The decomposition of the GKp
= GQp

representations attached to (35) into Frp-eigenspaces is also
stable under the action of the global Galois group GK , and is described by:

V αα12 = V
ψ
•

• , V αβ12 = V
ψ
◦

◦ , V βα12 = V
ψ′

◦

◦ , V ββ12 = V
ψ′

•

• .

It follows that, up to multiplication by L×,
(39)

R̃egαα(E, V12) = logp(Pψ′

•

) ·Q− logp(Qψ′

•

) · P, R̃egαβ(E, V12) = 0,

R̃egβα(E, V12) = 0, R̃egββ(E, V12) = logp(Pψ• ) ·Q− logp(Qψ• ) · P.

This suggests that the generalised Kato classes κ(f, gα, hα) and κ(f, gβ, hβ) give non-trivial elements
of the two-dimensional vector space (E(H)L ⊗ V•)

GQ , while the generalised Kato classes κ(f, gα, hβ)
and κ(f, gβ , hα) should vanish. Furthermore, a direct calculation shows that

Reggα
(E, V12) = Reggβ

(E, V12) = Reghα
(E, V12) = Reghβ

(E, V12) = 0,

which is consistent with the fact, proved in [DLR1, §3.2], that all the p-adic iterated integrals attached
to (f, g, h) vanish in the rank (2, 0) setting when p is split in K. In this case the generalised Kato
classes carry more arithmetic information that the p-adic iterated integrals which describe (certain
of) their p-adic logarithms. This represents yet another setting where Conjecture 3.12 is a genuine
strengthening of Conjecture 3.8 of [DLR1].

b) The case where p is inert in K. After scaling the points Pψ
•
, and Pψ′

•

, Qψ
•

and Qψ′

•

in such a way

that

Frp(Pψ
•
) = Pψ′

•

, Frp(Pψ′

•

) = Pψ
•
, Frp(Qψ

•
) = Qψ′

•

, Frp(Qψ′

•

) = Qψ
•

and letting

P± := Pψ
•
± Pψ′

•

, Q± := Qψ
•
±Qψ′

•

,

the enhanced regulators are given by
(40)

R̃egαα(E, V12) = logp(P
+) ·Q− logp(Q

+) · P, R̃egαβ(E, V12) = logp(P
−) ·Q− logp(Q

−) · P,

R̃egβα(E, V12) = logp(P
−) ·Q− logp(Q

−) · P, R̃egββ(E, V12) = logp(P
+) ·Q− logp(Q

+) · P.

In this case, the four regulators Reggα
(E, V12), . . . ,Reghβ

(E, V12) attached to (f, g, h) are explicit
multiples of the expression

(41) logp(P
+) · logp(Q

−) − logp(Q
+) · logp(P

−).

See [DLR1, Ex. 3.14] for some numerical verifications of the agreement between this value and the
p-adic iterated integrals attached to (f, g, h).

Equations (39) and (40) combined with Conjecture 3.12 suggest that the generalised Kato classes
always generate the Mordell-Weil group (E(H)L ⊗ V•)

GQ (tensored over L with Qp) in the rank (2, 0)
setting. Since the irreducible representation V• occurs with multiplicity two in E(H)L, none of the V•-
isotypic part of the Mordell-Weil group is expected to be accounted for by Heegner points, as discussed
in the introduction.

4.4. Real multiplication classes and Stark-Heegner points. In this chapter we consider the
setting where g and h are theta series attached to characters ψg and ψh of mixed signature of the same
real quadratic field K. In that case, we have, exactly as in Section 4.3,

Vg = IndQ
K ψg, Vh = IndQ

K ψh,

and

Vgh = V• ⊕ V◦ := IndQ
K ψ•

⊕ IndQ
K ψ◦

, where ψ
•

= ψgψh, ψ
◦

= ψgψ
′
h.

The characters ψ
•

and ψ
◦

are also ring class characters of K, with one totally even, and the other
totally odd. Once again, it is convenient to assume that V• and V◦ are both irreducible, i.e., that
neither ψ

•
nor ψ

◦
is a genus character of K.

As in the case where K is imaginary, the study of the generalised Kato classes divides naturally
into the rank (1, 1) and rank (2, 0) settings, depending on the orders of vanishing of L(E/K,ψ

•
, s) and

L(E/K,ψ
◦
, s) (or, alternately, on the dimensions of (E(H)L⊗V•)

GQ and (E(H)L⊗V◦)
GQ), and continue

to depend in a crucial way on whether p is split or inert in K. In all four cases, the formulae for the
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enhanced regulators are identical to those obtained in Section 4.3, so it is unecessary to reproduce them
here, contenting ourselves with the following comments in connection with the rank (1, 1) setting.

a) The case where p is split in K. This setting, where the greatest amount of theoretical evidence
was available when K is imaginary quadratic, thanks to the theory of Heegner points, is a lot more
mysterious when K is real quadratic. With notations being the same as in Section 4.3.1, we have

(42)
R̃egαα(E, V12) = logp(Pψ′

•

) · P◦, R̃egαβ(E, V12) = logp(Pψ′

◦

) · P•,

R̃egβα(E, V12) = logp(Pψ◦ ) · P•, R̃egββ(E, V12) = logp(Pψ• ) · P◦,

and

(43)
Reggα

(E, V12) = logp(Pψ′

•

) · logp(Pψ′

◦

), Reggβ
(E, V12) = logp(Pψ• ) · logp(Pψ◦ ),

Reghα
(E, V12) = logp(Pψ′

•

) · logp(Pψ◦ ), Reghβ
(E, V12) = logp(Pψ• ) · logp(Pψ′

◦

).

This setting has special appeal in connection with an eventual (for now, highly conjectural, and not
even clearly fomulated) theory of Stark-Heegner points over ring class fields of real quadratic fields.
It would be of great interest to relate (conjecturally, at least) the regulators in (42) and in (43) to
generalised Kato classes and p-adic iterated integrals, respectively.

The obstruction to doing this is that the modular forms g and h (more precisely, their stabilisations)
fail to obey Hypothesis IV in Section 2. When g is a modular form of RM type which is regular at a
prime p which splits in K, the Stark unit ugα

is also unavailable, and an analogue of Conjecture 3.8 has
yet to be formulated precisely in this setting. Because of the tantalising connection with Stark-Heegner
points defined over ring class fields of K, it would be of great interest to extend the Conjectures of
[DLR1], as well as Conjecture 3.12, to the real quadratic context. A first step has been made in [DLR3]
towards understanding the periods of §2 in this setting.

b) The case where p is inert in K. The formulae for the enhanced regulators are identical to those in
Part b) of Section 4.3.1, namely:

R̃egαα(E, V12) = logp(P
+
• ) · P◦ − logp(P

+
◦ ) · P•, R̃egαβ(E, V12) = logp(P

−
• ) · P◦ − logp(P

−
◦ ) · P•,

R̃egβα(E, V12) = logp(P
−
• ) · P◦ + logp(P

−
◦ ) · P•, R̃egββ(E, V12) = logp(P

+
• ) · P◦ + logp(P

+
◦ ) · P•.

The p-adic logarithms of these enhanced regulators ought to involve linear combinations of products of
logarithms of so-called Stark-Heegner points. This prediction has been extensively tested numerically
in [DLR1, §4.2].

Remark 4.3. The logarithms of the generalised Kato classes that are not amenable to expressions in
terms of p-adic iterated integrals are expected to admit particularly simple expressions, as suggested
by the formulae

logαα R̃egββ(E, V12) = logββ R̃egαα(E, V12) = logp(P
+
• ) · logp(P

+
◦ ),

logαβ R̃egβα(E, V12) = logβα R̃egαβ(E, V12) = logp(P
−
• ) · logp(P

−
◦ ).

In the special case where E has multiplicative reduction at p, the article [DR3] in progress proves a
formula of the shape

logαα κ(f, gα, hα) = logp(P
?±
• ) · logp(P

?±
◦ ),

where P ?±
• and P ?±

◦ are the Stark-Heegner points of [Da01], and the sign that arises depends on
whether E has split or non-split multiplicative reduction at p.

4.5. Adjoint classes. The case where h is dual to g is of considerable arithmetic interest, since in
that case the representation

Vgh = Qp ⊕Mg, (where Mg := Ad0(Vg)),

admits the trivial representation as a constituent. The generalised Kato classes attached to g and hmay
then, in appropriate circumstances, contribute to the Mordell-Weil group E(Q), and it is interesting
to understand when this occurs.

The Hasse-Weil-Artin L-series

L(E, Vgh, s) = L(E, s)L(E,Mg, s)

has a double zero at s = 1 in one of the following three cases:
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(1) the rank (0, 2) setting where L(E, 1) 6= 0 and L(E,Mg, s) has a double zero at s = 1;
(2) the rank (1, 1) case where L(E, s) and L(E,Mg, s) each vanish to order 1 at s = 1;
(3) the rank (2, 0) setting where L(E, s) has a double zero at the center and L(E,Mg, 1) 6= 0. This

case is particularly intriguing for its direct connection with the arithmetic of elliptic curves of
rank two over Q.

In all the examples that will be treated below, we always set

αh = α−1
g , βh = β−1

g ,

so that

αgαh = 1, αgβh = αg/βg , βgαh =
βg
αg
, βgβh = 1.

4.5.1. The rank (0, 2) setting. Let (P,Q) be an L-basis for (E(H)L ⊗V12)
GQ = (E(H)L ⊗Mg)

GQ , and
write

P = Pα
β
⊗ vβ/α + P1 ⊗ v1 + P β

α
⊗ vα/β ,

Q = Qα
β
⊗ vβ/α +Q1 ⊗ v1 +Q β

α
⊗ vα/β ,

where vβ/α, v1, and vα/β are bases for the Frp-eigenspaces of Wg attached to the eigenvalues
βg

αg
, 1,

and αg/βg respectively. Then the four enhanced regulators are given, up to L×, as follows:

R̃egαα(E, V12) = logp(P1) ·Q− logp(Q1) · P, R̃egαβ(E, V12) = logp(P β
α
) ·Q− logp(Q β

α
) · P,

R̃egβα(E, V12) = logp(Pα
β
) ·Q− logp(Qα

β
) · P, R̃egββ(E, V12) = logp(P1) ·Q− logp(Q1) · P.

Conjecture 3.12 suggests in this case that the generalised Kato class κ(f, gα, hβ) generates the kernel
of the map logαβ in the two dimensional Qp-vector space (E(H)L ⊗Mg)

GQ ⊗L Qp.
We refer the reader to [DLR1, Example 5.4] for the numerical verification of Conjecture 3.8 for two

different instances in this setting.

4.5.2. The rank (1, 1) setting. Let P be a generator of E(Q)L and let Q be a generator of (E(H)L ⊗
Mg)

GQ . With the same notational conventions as before, we find:
(44)

R̃egαα(E, V12) = logp(P ) ·Q− logp(Q1) · P, R̃egαβ(E, V12) = logp(Q β
α
) · P,

R̃egβα(E, V12) = logp(Qα
β
) · P, R̃egββ(E, V12) = logp(P ) ·Q− logp(Q1) · P.

In contrast, we have

(45)
Reggα

(E, V12) = logp(P ) · logp(Q β
α
) Reggβ

(E, V12) = logp(P ) · logp(Qα
β
),

Reghα
(E, V12) = logp(P ) logp(Qα

β
), Reghβ

(E, V12) = logp(P ) · logp(Q β
α
).

Many numerical examples where the p-adic iterated integrals atttached to (f, g, h) are seen to agree
with these regulators are described in in [DLR1, §5]. It is worth noting that the expression logp(Q1)
that appears in the enhanced regulators of (44) disappears from the regulators (45) that arose in
[DLR1].

4.5.3. The rank (2, 0) setting. Let (P,Q) be an L-basis of the two-dimensional L-vector space E(Q)L.
With the same notational conventions as before, we find:

R̃egαα(E, V12) = logp(P ) ·Q− logp(Q) · P, R̃egαβ(E, V12) = 0,

R̃egβα(E, V12) = 0, R̃egββ(E, V12) = logp(P ) ·Q− logp(Q) · P.

In other words, the generalised Kato classes κ(f, gα, hα) and κ(f, gβ , hβ) give (essentially, the same,
up to L×-multiples) canonical element of E(Q)Qp

, which is expected to be non-trivial precisely when

L′′(E, 1) 6= 0, L(E,Mg, 1) 6= 0.

Note that on the other hand

Reggα
(E, V12) = Reggβ

(E, V12) = Reghα
(E, V12) = Reghβ

(E, V12) = 0.

This last example gives yet another instance where Conjecture 3.12 represents a genuine strengthening
of the elliptic Stark conjectures of [DLR1]. It predicts that that generalised Kato classes of the form
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κ(f, gα, ḡ1/α) ought to give non-trivial elements in the pro-p-Selmer groups of elliptic curves of rank
two over Q, when the auxiliary L-value L(E,Mg, 1) is non-zero. Testing this prediction experimentally
seems to present an interesting challenge.
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