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Abstract

Let E be an elliptic curve over Q, and let %[ and %] be odd two-dimensional Artin representations
for which %[ ⊗ %] is self-dual. The progress on modularity achieved in recent decades ensures the
existence of normalized eigenforms f , g, and h of respective weights two, one, and one, giving
rise to E , %[, and %] via the constructions of Eichler and Shimura, and of Deligne and Serre. This
article examines certain p-adic iterated integrals attached to the triple ( f, g, h), which are p-adic
avatars of the leading term of the Hasse–Weil–Artin L-series L(E, %[⊗%], s) when it has a double
zero at the centre. A formula is proposed for these iterated integrals, involving the formal group
logarithms of global points on E—referred to as Stark points—which are defined over the number
field cut out by %[ ⊗ %]. This formula can be viewed as an elliptic curve analogue of Stark’s
conjecture on units attached to weight-one forms. It is proved when g and h are binary theta
series attached to a common imaginary quadratic field in which p splits, by relating the arithmetic
quantities that arise in it to elliptic units and Heegner points. Fast algorithms for computing p-adic
iterated integrals based on Katz expansions of overconvergent modular forms are then exploited
to gather numerical evidence in more exotic scenarios, encompassing Mordell–Weil groups over
cyclotomic fields, ring class fields of real quadratic fields (a setting which may shed light on the
theory of Stark–Heegner points attached to Shintani-type cycles on Hp ×H), and extensions of
Q with Galois group a central extension of the dihedral group D2n or of one of the exceptional
subgroups A4, S4, and A5 of PGL2(C).
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Introduction

The purpose of this article is to formulate an analogue of the Stark conjecture
on units in number fields in the setting of global points on elliptic curves.
We prove this ‘elliptic Stark conjecture’ in some cases and provide numerical
evidence in its support in many others. It is offered as a more constructive
alternative to the Birch and Swinnerton-Dyer (BSD) conjecture, since it often
allows the efficient analytic computation of p-adic logarithms of global points.
In contrast, the BSD conjecture (and its p-adic variant formulated by Mazur,
Tate, and Teitelbaum) gives the (p-adic) heights of such points, from which it
appears computationally more difficult to recover the points themselves [Si]. Our
conjecture gives a unifying perspective on the two currently known constructions
of global points on elliptic curves over Q (Heegner points and the still conjectural
Stark–Heegner points attached to real quadratic cycles on Hp × H), and
suggests a possible global underpinning for the latter. It also yields conjectural
constructions and explicit formulae, in situations of rank one and two, for global
points over cyclotomic fields, abelian extensions of quadratic fields which are
not necessarily anticyclotomic, and extensions of Q with Galois group a central
extension of A4, S4, or A5.

Let E be an elliptic curve over Q with Galois representation Vp(E) :=
H 1

et(EQ̄,Qp(1)), and let

% : GQ−→Aut(V%) ' GLn(L), dimL(V%) = n > 1

be an Artin representation—that is, a continuous Galois representation factoring
through a finite quotient Gal (H/Q) of GQ—with coefficients in some finite
extension L ⊂ C of Q. The Hasse–Weil–Artin L-series L(E, %, s) of E
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twisted by % is the L-function of the compatible system Vp(E) ⊗ V% of p-adic
representations of GQ. It is defined on the right half-plane Re(s) > 3/2 by an
absolutely convergent Euler product of degree 2n, and is expected to admit an
analytic continuation to the whole complex plane. Under this assumption, the
analytic rank of the pair (E, %) is defined to be

ran(E, %) := ords=1 L(E, %, s).

A natural Galois equivariant refinement of the Birch and Swinnerton-Dyer
conjecture predicts that

ran(E, %)
?= r(E, %), (1)

where r(E, %) is the multiplicity of V% as a subrepresentation of E(H)⊗ L when
% is irreducible, defined for general % by

r(E, %) := dimL HomGQ(V%, E(H)⊗ L).

Equality (1) has been proved when ran(E, %) = 0 and (in roughly chronological
order)

(I) % is the odd self-dual two-dimensional Galois representation induced from
a ring class character of an imaginary quadratic field, by a series of works
building on the breakthroughs of Gross and Zagier, and of Kolyvagin;

(II) % is a Dirichlet character, by the work of Kato [Kato];

(III) % is an odd irreducible two-dimensional Galois representation satisfying
some mild restrictions, by [BDR2];

(IV) % is an irreducible constituent of the tensor product %[ ⊗ %] of two odd
irreducible two-dimensional Galois representations which is self-dual and
satisfies some other mild restrictions, by [DR2].

The setting where ran(E, %) > 0 raises the challenge of constructing nonzero
elements in

E(H)%L :=
∑
ϕ

ϕ(V%), where ϕ runs over a basis of HomGQ(V%, E(H)⊗ L).

Devising strategies for constructing such global points is arguably the most
fundamental issue surrounding the Birch and Swinnerton-Dyer conjecture. Yet
very little is known in this direction beyond the setting alluded to in item I
above, where the methods of Gross, Zagier, and Kolyvagin can also be exploited
to establish (1) when ran(E, %) = 1, by using Heegner points (as recalled in
Section 3 below) to construct the predicted nontrivial elements of E(H)%L .
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As explained in the survey [BCDDPR], the techniques used to analyse settings
II, III, and IV can be organized under the common rubric of ‘Euler systems of
Garrett–Rankin–Selberg type’. The present work considers the same settings,
but in the less well-understood scenario of ‘analytic rank 6 2’. More precisely,
it will be assumed that % is an irreducible constituent of the tensor product %[⊗%],
where %[ and %] are odd, two-dimensional, but not necessarily irreducible, Artin
representations satisfying the self-duality condition

χ := det(%[)−1 = det(%]),

and that ran(E, %) = 1 or 2. The primary goal of this paper is to propose a
conjectural p-adic analytic formula relating global points in E(H)%L to ‘p-adic
iterated integrals’ attached to an appropriate triple of modular forms, and to
prove it in some cases.

The following general notation and background are required to formulate the
‘elliptic Stark conjecture’ (Conjecture ES) below. For any positive integer N ,
any Dirichlet character η : (Z/NZ)×→ Q̄×, and any field L , write Sk(N , η)L ⊆
Mk(N , η)L for the spaces of classical cusp forms and modular forms of weight k,
level N , and character η, with Fourier coefficients in F . (When η is suppressed
from the notation, it is to be understood that η is the trivial character.)

Thanks to Wiles’ proof of the Shimura–Taniyama conjecture, the elliptic
curve E is known to be modular: there is a normalized weight-two newform
f ∈ S2(N f )Q, where N f is the conductor of E , satisfying

L( f, s) = L(E, s).

The work of Khare and Wintenberger [KW] on Serre’s modularity conjecture
likewise implies that any odd, two-dimensional Artin representation arises from
a classical (cuspidal or Eisenstein) normalized newform of weight one. More
precisely, denoting by Ng and Nh the Artin conductors of %[ and %], there are
weight-one newforms g ∈ M1(Ng, χ

−1)L and h ∈ M1(Nh, χ)L satisfying

L(g, s) = L(%[, s), L(h, s) = L(%], s).

Henceforth, it will be convenient to use %g and %h to designate %[ and %], to write

%gh := %g ⊗ %h : Gal (H/Q)−→ SL4(L),

and to denote by Vg, Vh , and Vgh the L-vector spaces underlying %g, %h , and %gh ,
respectively.

When either g or h is an Eisenstein series, the Rankin–Selberg method yields
the analytic continuation and functional equation for the L-function

L(E, %gh, s) = L( f ⊗ g ⊗ h, s)
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relating its values at s and 2−s. This has been extended to the general case where
both g and h are cusp forms, by a result of Garrett. The self-duality condition
on %gh implies that the root number ε(E, %gh) that appears in this functional
equation is ±1, and that it determines the parity of ran(E, %gh). Furthermore, it
can be written as a product of local root numbers

ε(E, %gh) =
∏
v|N ·∞

εv(E, %gh) (where N := lcm(N f , Ng, Nh)),

and the local sign ε∞(E, %gh) is always equal to 1. The following hypothesis
on the local root numbers εv(E, %gh) at the non-Archimedean places, which is
discussed in further detail in Section 2, shall be imposed throughout this article.

HYPOTHESIS A (Local sign hypothesis). For all finite places v|N , the local
signs εv(E, %gh) are equal to +1. In particular, the same is true of the global
root number, and hence L(E, %gh, s) vanishes to even order at s = 1.

This hypothesis on the local sign is often satisfied: for instance, whenever
gcd(N f , Ng, Nh) = 1. Under Hypothesis A, the method of Garrett, Rankin, and
Selberg relates the central critical value L( f ⊗ g ⊗ h, 1) to the values of the
trilinear form

I : S2(N )C × M1(N , χ−1)C × M1(N , χ)C−→C

defined by
I ( f̆ , ğ, h̆) := 〈 f̆ , ğh̆〉,

where 〈 , 〉 denotes the Petersson scalar product on S2(N )C × M2(N )C. More
precisely, for any integer N , let TN denote the Hecke algebra generated by the
good Hecke operators Tn with n - N . If M is any TN -module and φ ∈ M is a
simultaneous eigenvector for the action of TN , satisfying T`φ = a`(φ)φ for all
` - N , let Iφ ⊂ TN be the ideal associated to this system of Hecke eigenvalues,
and denote by

M[φ] = Ker(Iφ) = {m ∈ M : T`m = a`(φ)m for all ` - N } (2)

the corresponding eigenspace. By the work [HaKu] of Harris and Kudla, the
restriction

I f gh : S2(N )[ f ] × M1(N , χ−1)[g] × M1(N , χ)[h] −→C (3)

of I to the product of isotypic components for f , g, and h is identically zero if
and only if the central critical value L( f ⊗ g ⊗ h, 1) vanishes. Since this article
is solely interested in the setting where %gh admits irreducible constituents % for
which L(E, %, 1) = 0, the following hypothesis is also assumed throughout.
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HYPOTHESIS B (Global vanishing hypothesis). The L-function L(E, %gh, s)
vanishes at s = 1, and hence the trilinear form I f gh in (3) is identically zero.

Under Hypotheses A and B, the L-function L(E, %gh, s) vanishes to order at
least two at s = 1. When L ′′(E, %gh, 1) 6= 0, the elliptic Stark conjecture of this
article expresses the values of certain p-adic iterated integrals attached to the
triple ( f, g, h) in terms of the formal group logarithms of global points in the
%gh-isotypic subspace E(H)%gh

L of E(H)⊗ L .
The definition of these p-adic iterated integrals is based on the theory of

p-adic and overconvergent modular forms. Let p be a prime number, and fix
an embedding of Q̄ in Q̄p. Let Cp denote the completion of Q̄p, and let Hp

and L p denote the p-adic closure of H and L in Cp with respect to the fixed
embedding. Assume that p is chosen in such a way that

ordp(N f ) 6 1 and p - Ng Nh, and set N := the prime-to-p part of N . (4)

(This hypothesis is made primarily for ease of exposition, and it would
eventually be interesting to relax it.)

The symbols S(p)k (N , χ) ⊂ M (p)
k (N , χ) refer to the spaces of p-adic cusp

forms (respectively modular forms) of weight k, level N , and character χ , with
coefficients in Cp, while Soc

k (N , χ) ⊂ Moc
k (N , χ) stand for the corresponding

subspaces of overconvergent modular forms. The relations between these various
spaces are summarized in the following sequence of natural inclusions of
Cp-vector spaces:

Sk(N p, χ)Cp
� � //

� _

��

Soc
k (N , χ)

� � //
� _

��

S(p)k (N , χ)� _

��
Mk(N p, χ)Cp

� � // Moc
k (N , χ)

� � // M (p)
k (N , χ).

These spaces are all endowed with an action of the Hecke algebra T(p)N generated
by the Hecke operators T` with ` - N p, and by the Hecke operator Up.
Let eord := limn U n!

p be Hida’s ordinary idempotent, and write Mord = eord ·M , for
any L p[Up]-module M . While the spaces Soc

k (N , χ) and Moc
k (N , χ) are infinite

dimensional over Cp, their ordinary parts Soc,ord
k (N , χ) and Moc,ord

k (N , χ) are
known to be finite dimensional. In fact, Hida’s classicality theorem asserts that,
for all k > 2, the natural inclusion

Mord
k (N p, χ)Cp ↪→ Moc,ord

k (N , χ)

is an isomorphism.
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Serre’s differential operator

d = q
d

dq
: M (p)

k (N , χ)−→M (p)
k+2(N , χ)

on p-adic modular forms sends overconvergent forms of weight zero to
overconvergent forms of weight two. For any f̆ ∈ Soc

2 (N ), the overconvergent
modular function (or modular form of weight zero)

F̆ := d−1 f̆ := lim
t→−1

d t f̆ ∈ Soc
0 (N )

is called the overconvergent primitive of f̆ . Here, the limit is taken over positive
integers t tending to−1 in weight space Z/(p−1)Z×Zp. The Fourier expansions
of f̆ and F̆ are related by

f̆ (q) =
∑
n>1

an( f̆ )qn, F̆(q) =
∑
p-n

an( f̆ )
n

qn.

For any k > 2, the p-adic iterated integral attached to the data

( f̆ , γ̆ , h̆) ∈ S2(N p)L × Mord
k (N p, χ)∨L × Mk(N p, χ)L

(in which the superscript ∨ denotes the L-linear dual) is defined to be∫
γ̆

f̆ · h̆ := γ̆ (eord(F̆ · h̆)) ∈ Cp. (5)

Expressions of this sort with k > 2 play an important role in [DR1, DR2], where
they are related (when f̆ , γ̆ , and h̆ are cuspidal eigenvectors) to the special values
of Garrett–Hida triple-product p-adic L-functions and to the images of certain
generalized Gross–Schoen diagonal cycles under the p-adic Abel–Jacobi map.
When γ̆ and/or h̆ arise from weight-two Eisenstein series, these expressions
are also related to p-adic regulators of Beilinson elements in the K -groups
K2(X1(N )) or in K1(X1(N )2) (see [BD2] and [BDR1], [BDR2], respectively).

On the computational side, using a method for computing with overconvergent
modular forms via Katz expansions developed in [La1], the article [La2]
describes an algorithm for the efficient numerical evaluation of these p-adic
iterated integrals, and uses it to calculate certain Chow–Heegner points on the
elliptic curve E which were first defined and studied by Shouwu Zhang. These
global points, which arise when k > 2 and γ̆ and h̆ are eigenvectors for TN with
the same eigenvalues, have a well-understood geometric provenance, and can
also be calculated by complex analytic means following the strategy described
in [DRS, DDLR].
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The setting k = 1 which is germane to the present work is significantly more
mysterious: the p-adic iterated integrals (and, indeed, the modular forms g and h
themselves) cease to enjoy geometric interpretations in terms of the cohomology
of Kuga–Sato varieties. On a more technical level, the space Moc,ord

1 (N , χ),
while still finite dimensional, may contain the space Mord

1 (N p, χ)Cp as a proper
subspace. Fix a root αg of the Hecke polynomial

x2 − ap(g)x + χ−1(p) = (x − αg)(x − βg)

attached to g at p, and let gα ∈ M1(N p, χ−1)L denote the corresponding p-
stabilization. It is an eigenform for the Hecke algebra T(p)N satisfying

Upgα = αg · gα.
The weight-one form g is said to be regular at p if αg 6= βg, that is, if g admits
two distinct p-stabilizations. Let g∗α = gα ⊗ χ denote the newform of level Ng

corresponding to the twist of gα by χ , the inverse of its nebentype character.
If φ is a simultaneous eigenvector for either the Hecke algebra T(p)N or TN p,

then, extending the definitions in (2), let

M[φ] := Ker(Iφ), M[[φ]] =
⋃
n>1

Ker(I n
φ )

denote the eigenspace and generalized eigenspace attached to its system of
eigenvalues.

The following assumption is a crucial substitute for the classicality theorem
when k = 1.

HYPOTHESIS C (Classicality property for gα). The cuspidal generalized
eigenspace Soc,ord

1 (N , χ)Cp [[g∗α]] is nontrivial and consists entirely of classical
forms.

When g is a cusp form, Proposition 1.1 of Section 1.1 establishes, as an
immediate consequence of the work of Cho and Vatsal [CV] and of Bellaı̈che
and Dimitrov [BeDi], that Hypothesis C holds—that is, that the natural inclusion

igα : S1(N p, χ)Cp [[g∗α]] ↪→ Soc,ord
1 (N , χ)[[g∗α]] (6)

is an isomorphism of Cp-vector spaces—whenever g satisfies the explicit
condition (1) of Hypothesis C′ below. (As discussed in Remark 1.2 of
Section 1.1, this condition is expected to be necessary as well as sufficient.)

When g is an Eisenstein series, Proposition 1.3 shows that the cuspidal
generalized eigenspace Soc,ord

1 (N , χ)[[g∗α]] is nonzero, that is, gα is a p-adic
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cusp form, if and only if g satisfies condition (2) of Hypothesis C′ below.
While the larger space Moc,ord

1 (N , χ)[[g∗α]] always contains nonclassical modular
forms in this setting (whose Fourier expansions can be written down explicitly),
it nonetheless seems plausible that Soc,ord

1 (N , χ)[[g∗α]] should consist solely of
classical forms, that is, that the natural map

igα : M1(N p, χ)Cp [[g∗α]] ∩ Soc,ord
1 (N , χ)[[g∗α]] ↪→ Soc,ord

1 (N , χ)[[g∗α]] (7)

should be an isomorphism. However, the analogue of the theorem of Bellaı̈che
and Dimitrov for irregular weight-one Eisenstein points does not appear to be
available in the literature, and therefore Hypothesis C could conceivably be
stronger than condition (2) of Hypothesis C′ in the Eisenstein setting.

Motivated by this discussion, the following Hypothesis C′, which has the
virtue of being entirely explicit, shall be assumed throughout along with
Hypothesis C. (It is worth keeping in mind that both hypotheses are quite likely
to be equivalent.)

HYPOTHESIS C′ (Classicality property for gα, bis). The modular form g satisfies
one of the following explicit conditions.

(1) It is a cusp form which is regular at the prime p (that is, %g is irreducible
and the Frobenius element at p acts on it with two distinct eigenvalues) and
it is not the theta series of a character of a real quadratic field in which p
splits.

(2) It is an Eisenstein series which is irregular at p. (In other words, %g is the
direct sum of two characters χ1 and χ2 for which χ1(p) = χ2(p).)

Thanks to Hypothesis C and its implication that the inclusions in (6) and
(7) are isomorphisms, it becomes possible to adapt the definition of the p-adic
iterated integrals to define a Cp-valued trilinear form

I ′p : S2(N p)L[ f ] × M1(N p, χ)∨L [gα] × M1(N p, χ)L[h] −→Cp (8)

by the simple rule

I ′p( f̆ , γ̆ , h̆) =
∫
γ̆

f̆ · h̆ := γ̆ (eg∗αeord(F̆ · h̆)),

where

eg∗α : Soc,ord
1 (N , χ)−→ Soc,ord

1 (N , χ)[[g∗α]] = M1(N p, χ)Cp [[g∗α]] (9)

is the projector onto the generalized eigenspace attached to g∗α for the action
of the Hecke algebra T(p)N . Note the crucial role played by Hypothesis C in the
definition of this trilinear form via the equality in (9).
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We are now almost ready to state Conjecture ES relating the trilinear form in
(8) to arithmetic data associated to (E, %g, %h). Since the prime p is unramified
in H , there is an embedding H −→Qur

p into the maximal unramified extension
of Qp. Fix such an embedding, and denote by σp ∈ Gal (H/Q) the associated
Frobenius element at p. If F is any finite extension of Qp, with ring of integers
OF , let

logp : O×F −→ F

be the usual p-adic logarithm, and let

logE,p : E(F)−→F

denote the canonical extension to E(F) of the p-adic formal group logarithm
associated to a Néron differential on E . Via the chosen embedding of H into Cp,
the maps logp and logE,p give rise to homomorphisms

logp : (OH )
×
L −→ Hp ⊗ L , logE,p : E(H)L −→ Hp ⊗ L .

Hypotheses A and B together imply that ran(E, %gh) > 2, and of course the
same is expected of the algebraic rank. When r(E, %gh) = 2, let (Φ1, Φ2) be an
L-vector space basis for HomGQ(Vgh, E(H)L).

Using Hypothesis C′, we make a choice of a one-dimensional GQp -stable
subspace of Vg, denoted V gα

g , according to the following recipe.

(1) When condition (1) in Hypothesis C′ is satisfied, the Frobenius element σp

acts on the Artin representations Vg with distinct eigenvalues αg and βg,
and thus determines a decomposition Vg = V gα

g ⊕V gβ
g into one-dimensional

σp-eigenspaces with eigenvalue αg and βg, respectively.

(2) When condition (2) in Hypothesis C′ is satisfied, we simply let V gα
g be any

one-dimensional subspace of the (reducible) representation Vg which is not
stable under GQ.

The choice of V gα
g then determines a canonical two-dimensional subspace of Vgh

by the rule
V gα

gh := V gα
g ⊗ Vh.

Fix an L-vector space basis (v1, v2) for this space.
The bases (Φ1, Φ2) and (v1, v2) give rise to a 2× 2 regulator matrix

Rgα (E, %gh) :=
(

logE,p(Φ1(v1)) logE,p(Φ1(v2))

logE,p(Φ2(v1)) logE,p(Φ2(v2))

)
,
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which is independent of the choice of basis (Φ1, Φ2) (respectively, of the basis
(v1, v2)) up to left (respectively, right) multiplication by a matrix in GL2(L).
The determinant of Rgα (E, %gh) is therefore well defined, up to multiplication by
L×. It can also be shown that this determinant does not depend on the choice of
V gα

g when Condition (2) of Hypothesis C′ is satisfied. In both cases (1) and (2),
it belongs to Qur

p ⊗ L , and σp acts on it with the same eigenvalue as on ∧2V gα
gh ,

namely, αgαhαgβh = αg/βg.
Let Adg := Hom0(Vg, Vg) denote the three-dimensional adjoint representation

attached to %g, on which the Frobenius element σp acts with eigenvalues 1,
αg/βg, and βg/αg. Section 1.2 attaches to gα a Stark unit ugα ∈ (OHg [1/p]×)Adg

L ,
where Hg is the number field cut out by Adg.

(1) When g satisfies condition (1) in Hypothesis C′ and αg/βg 6= −1, this unit
is determined up to scaling by the twin requirements that

ugα belongs to (O×Hg
)

Adg
L , σp(ugα ) =

αg

βg
ugα .

A more detailed discussion of ugα is given in Section 1.2. The unit ugα is
analogous to the Stark units of [St2, DuLi] whose logarithms encode the
Petersson scalar product of gα with itself. Section 1.2 explains the striking
connection between the existence of ugα and Hypothesis C′.

(2) When g satisfies condition (2) in Hypothesis C′, then

ugα belongs to (OHg [1/p]×)Adg
L .

Note that in this case Hg is the abelian extension cut out by the (odd)
Dirichlet character χ1/χ2, in which the prime p splits completely.

The main conjecture of the present work is the following.

CONJECTURE ES (Elliptic Stark conjecture). Assume that Hypotheses A, B and
C–C′ are satisfied, hence in particular ran(E, %gh) > 2. If r(E, %gh) > 2, then
the trilinear form I ′p of (8) is identically zero. If r(E, %gh) = 2, there exist ‘test
vectors’

( f̆ , γ̆ , h̆) ∈ S2(N p)L[ f ] × M1(N p, χ)∨L [gα] × M1(N p, χ)L[h]
for which ∫

γ̆

f̆ · h̆ = det(Rgα (E, %gh))

logp(ugα )
. (10)
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Note that both the numerator and denominator on the right-hand side of (10)
belong to the same eigenspace for σp, with eigenvalue αg/βg, and hence that the
ratio belongs to L p ⊂ Hp ⊗ L , consistent with the fact that this is clearly true of
the left-hand side.

The condition r(E, %gh) = 2 implies that either

(1) the Artin representation %gh admits a decomposition

%gh = %1 ⊕ %2 with r(E, %1) = 2, r(E, %2) = 0, (11)

where %1 is an irreducible constituent of %gh and %2 is possibly trivial, or
reducible; or

(2) the Artin representation %gh admits a decomposition

%gh = %1 ⊕ %2 ⊕ %3 with r(E, %1) = r(E, %2) = 1, r(E, %3) = 0, (12)

where %1 and %2 are irreducible constituents of %gh , and %3 is possibly trivial
or reducible.

These scenarios will be referred to respectively as the rank-2 and rank-(1, 1)
settings for the elliptic Stark conjecture. The apparent rarity of double zeroes
for primitive L-functions at central critical points suggests that rank-2 settings
may only occur sporadically, while a systematic supply of rank-(1, 1) settings
arises when the constituents %1 and %2 in (12) are self-dual and the signs in the
functional equations for L(E, %1, s) and L(E, %2, s) are both equal to −1. This
explains why more of the experiments reported on below have tested Conjecture
ES in the rank-(1, 1) setting (although enough data has been gathered to lend
convincing evidence for Conjecture ES in the rank-2 scenario as well).

Another attractive feature of the rank-(1, 1) setting is that it often leads to
explicit formulae for the p-adic logarithms of global points in E(H)%1

L and
E(H)%2

L . More precisely, the regulator Rgα (E, %gh) is said to be factorizable if,
after eventually interchanging αh and βh and/or %1 and %2, the Frobenius σp

acting on V%1 admits αgαh but not αgβh as an eigenvalue. Relative to a basis
(Φ1, Φ2) ∈ HomGQ(V%1, E(H)L)×HomGQ(V%2, E(H)L) and to a σp-eigenbasis
(v1, v2) for V gα

gh satisfying

σpv1 = αgαhv1, σpv2 = αgβhv2,

the regulator matrix Rgα takes on the simple form

Rgα (E, %gh) =
(

logE,p P1 0
logE,p Q logE,p P2

)
,
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where the points Pj belong to E(H)% j
L and are uniquely determined (up to L×)

by the requirement that

σp P1 = αgαh P1, σp P2 = αgβh P2. (13)

Conjecture ES then admits the simpler formulation∫
γ̆

f̆ · h̆ = logE,p(P1) · logE,p(P2)

logp(ugα )
.

The prototype for such a formula, discovered experimentally, is equation (45) in
Remark 3.4.

One of the important motivations for studying Conjecture ES is the connection
between the p-adic Rankin L-values it considers and the generalized Kato
classes

κ( f, gα, hα), κ( f, gα, hβ), κ( f, gβ, hα),
κ( f, gβ, hβ) ∈ H 1(Q, Vp(E)⊗ Vgh)

constructed in [DR2] (respectively, in [BDR2]) as p-adic limits of étale Abel–
Jacobi images of Gross–Kudla–Schoen diagonal cycles (respectively, of étale
regulators of Beilinson–Kato and/or Beilinson–Flach elements) when g and h
are cusp forms (respectively, when g and/or h are Eisenstein series). When
L(E, %gh, 1) = 0, these generalized Kato classes can be viewed as playing the
role of Heegner points in settings of (analytic) rank two; the reader is referred to
Theorems B and D and Section 6.3 of [DR2] for the relationship between their
p-adic logarithms and the p-adic iterated integrals attached to ( f, g, h). The
calculations performed in this work have also played a crucial role in the more
recent preprint [DR3], which conjectures a precise expression for the generalized
Kato classes as linear combinations of points in the relevant Mordell–Weil group.

Turning to a more detailed overview of the contents of the paper, Section 1
discusses Hypothesis C and defines the Gross–Stark unit ugα , showing that
Hypothesis C bears an intimate connection with the existence of this unit.

Building on the results of Harris and Kudla, and of Ichino, on trilinear periods
and Jacquet’s conjecture, Section 2 recasts the trilinear form I ′p as the value
of a Garrett–Hida triple-product p-adic L-function at a point lying outside
its region of classical interpolation. This connection with p-adic L-functions
justifies viewing Conjecture ES as an elliptic curve analogue of the (p-adic)
Stark conjectures. It also suggests that Conjecture ES might be regarded as a
p-adic limit of Jacquet’s conjecture on trilinear periods, prompting a possible
strategy for proving it in some cases and suggesting that it might be viewed as a
deep manifestation of the ‘Artin formalism’ for certain p-adic L-series.
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The rest of the paper is devoted to giving both theoretical and experimental
evidence in support of Conjecture ES.

Sections 3 and 4 treat the case where %g and %h are induced from characters
ψg and ψh of the same quadratic field K , and with inverse central characters.
The representation

Vgh = Vψ1 ⊕ Vψ2

then decomposes as the direct sum of a pair of representations induced from ring
class characters ψ1 and ψ2 of K .

Section 3 focusses on the setting where K is imaginary quadratic. Building on
the results of Section 2 and the precise formulae of Watson [Wa] and Woodbury
[Wo1], Conjecture ES is proved in Section 3.2 under the assumption that the
prime p splits in K and a Heegner hypothesis is satisfied. The main ingredients
in the proof are the p-adic Gross–Zagier formula of [BDP2] expressing Heegner
points in terms of values of a Katz-style p-adic Rankin L-series, the relation
established in [DR1] between p-adic iterated integrals and Garrett–Hida p-adic
L-series, and a subtle relation between these two types of L-series. It is in the
nontrivial comparison between periods used in their definitions that a value of
Katz’s two-variable p-adic L-function makes an appearance. The unit ugα can be
expressed in terms of elliptic units in this case, and emerges from Katz’s p-adic
analogue of the Kronecker limit formula.

Katz’s approach to p-adic L-functions (as well as the closely related approach
of [BDP2]) is based on the evaluation of p-adic modular forms at complex
multiplication (CM) points when they lie on the ordinary locus of the modular
curve, that is, when p is split in K . This approach breaks down entirely when p
is inert in the quadratic imaginary field. Section 3.3 gives numerical evidence in
support of Conjecture ES in the inert case, both in the rank-(1, 1) setting—where
the theory of elliptic units and Heegner points can still be used to produce the
global objects that should enter into the right-hand side of (10)—and in the more
mysterious rank-2 setting.

Section 4 attempts a parallel treatment when %g and %h are induced from
characters (of mixed signature) of the same real quadratic field K . In some cases,
the global points P1 and P2 can then be expressed, at least conjecturally, in terms
of the Stark–Heegner points of [Dar] and [Gre] attached to ‘real quadratic cycles
on Hp×H’. The resulting relation between the Stark points of the present work
and these Stark–Heegner points might be amenable to proof via the methods
of Section 3.2. The prospect of tying the real quadratic cycles on Hp × H to
global (but not necessarily motivic) cohomology classes in the Selmer groups of
E over ring class fields of real quadratic fields represents an encouraging first
step towards better understanding their global nature.
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Sections 5–7 consider the remaining interesting cases, all of which appear to
lie beyond the reach of previously available theory or conjectural construction.

Section 5 reports on a number of experiments in the setting where h is an
exotic weight-one form, whose associated Galois representation has projective
image A4, S4, or A5, and g = h∗ is its dual. The representation Vgh then breaks
up as

Vgh = L ⊕ Adg.

In the rank-(1, 1) setting, Conjecture ES leads to a p-adic analytic construction
of a global point on E over the field cut out by Adg. The setting where the
Hasse–Weil L-series L(E, s) has a double zero at the centre and L(E,Adg, 1)
6= 0 is particularly interesting: Conjecture ES then predicts the vanishing of the
p-adic iterated integrals, even though the generalized Kato class κ( f, gα, gᾱ)
is expected to be a canonical, nontrivial element of the pro-p Selmer group of
E/Q: we refer to [DR3] for a fuller discussion of this setting.

Section 6 takes up the setting where g ∈ S1(N , χ̄) is a cusp form and h :=
E1(1, χ) ∈ M1(N , χ) is the weight-one Eisenstein series attached to the pair
(1, χ) of Dirichlet characters. A novelty of this setting is that

Vgh = Vg ⊕ Vg∗

decomposes into a direct sum of two representations which are not self-dual in
general, and the regulator matrix Rgα (E, %gh) involves points in the isotypic parts
for these non self-dual representations.

Section 7 concludes with the setting in which g := E1(1, χ−1) is an (irregular)
Eisenstein series. The case where h := E1(χ1, χ2) is also an Eisenstein series
(with χ1χ2 = χ ) is particularly appealing, since

Vgh = χ1 ⊕ χ̄1 ⊕ χ2 ⊕ χ̄2

is then a direct sum of one-dimensional representations. In this setting—the
most ‘degenerate instance’ of the one described in Section 6—the relevant
‘generalized Kato classes’ coincide with the classes constructed by Kato from
p-adic families of Beilinson elements, whose behaviour has a bearing on
the arithmetic of elliptic curves over cyclotomic fields. Section 7 reports
on experimental evidence in support of Conjecture ES, where the regulators
attached to ( f, gα, hα) involve logarithms of points on E defined over the abelian
extension of Q cut out by either χ1 or χ2. The scenario in which these Dirichlet
characters are nonquadratic is particularly intriguing. According to predictions
of David et al. [DFK], the occurrence of global points over cyclic extensions
of degree greater than two is quite sporadic; the L-series that control them have
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nonreal coefficients, and their functional equation gives no indication as to the
parity of their order of vanishing at the centre. Although ostensibly rare, global
points over cyclic cubic extensions do occur in practice. Fairly extensive tables
of pairs (E, χ) with χ cubic for which ran(E, χ) > 0 have been drawn up by the
authors of [DFK], and the computationally more challenging task of verifying
that r(E, χ) > 0 for such pairs is carried out—albeit in more limited ranges—in
[Co]. Section 7.2 describes a few experimental verifications of Conjecture ES
involving the p-adic logarithms of such cyclic cubic points.

The article concludes with a table summarizing the main features of the
numerical experiments described in this work.

1. Overconvergent weight-one forms and Gross–Stark units

1.1. Classical and overconvergent modular forms of weight one. One of
the main results of this section is the following concrete criterion, following
directly from a result of Cho and Vatsal and of Bellaı̈che and Dimitrov, which
shows that Hypothesis C is frequently satisfied in practice.

PROPOSITION 1.1. Let g ∈ S1(N , χ−1) be a cusp form of weight one which
is regular at p, and let gα denote one of its p-stabilizations. Then the natural
inclusion

S1(N p, χ)Cp [g∗α] ↪→ Soc,ord
1 (N , χ)[[g∗α]]

is an isomorphism of Cp-vector spaces if and only if

%g is not induced from a character of a real quadratic field in which p splits.
(14)

Proof. Let Tk(N ) denote the Zp-algebra generated by the Hecke operators T`
(with ` - N ) and Uq (with q|N ), together with the diamond operators, acting on
the space Mk(N ) of classical modular forms on Γ1(N ). When k > 2, there is a
natural perfect duality

Tk(N )× Mk(N )−→Zp (15)

defined by 〈T, f 〉 := a1(T f ).
Hida’s Λ-adic Hecke algebra is defined to be

T(N ) = lim
←,t
(eordT2(N pt))⊗Zp Qp,

where the inverse limit is taken with respect to the natural projection maps. The
algebra T(N ) has a natural structure of a Λ ⊗Zp Qp-module arising from the
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action of the diamond operators, and it can also be viewed as a module over the
Λ ⊗ Qp-subalgebra T0(N ) of T(N ) generated by the ‘good’ Hecke operators
Tn with (n, pN ) = 1 and by Up. Let ϕk : Λ⊗ Qp −→Qp denote the ‘weight-k
specialization map’ sending a group-like element 〈a〉 ∈ 1+ pZp ⊂ Λ× to ak−1,
and let ℘k denote its kernel. The pairing of (15) induces a perfect duality

((T(N )/℘k)⊗Qp Cp)× Moc,ord
k (N )−→Cp.

In particular, the space Moc,ord
1 (N ) is naturally identified with the vector space of

Cp-linear homomorphisms Hom(T(N )/℘1,Cp). Under this identification, the
classical weight-one form gα ∈ Moc,ord

1 (N ), which is a normalized eigenvector
for the good Hecke operators Tn with (n, N p) = 1 and for Up, corresponds to an
algebra homomorphism

ϕgα ∈ Homalg(T0(N )/℘1,Cp).

Let ℘gα ⊂ T0(N ) be the kernel of ϕgα . Its image under the ‘projection map to
weight space’

Homalg(T0(N ),Cp)−→ Homalg(Λ,Cp)

induced by restriction is equal to ϕ1, that is, ℘gα contains the ideal ℘1T0(N ).
The eigenspace Moc,ord

1 (N )[g∗α] that arises in the statement of Proposition 1.1
can be identified with the dual of T(N )/℘gα :

Moc,ord
1 (N )[g∗α] = Hom(T(N )/℘gα ,Cp).

Furthermore,

Moc,ord
1 (N )[[g∗α]] = Hom(T(N )℘gα

/℘1,Cp),

where

T0(N )℘gα
:= lim
←,n

T0(N )/℘n
gα , T(N )℘gα

:= lim
←,n

T(N )/℘n
gα ,

denote the completions at the maximal ideal ℘gα of T0(N )⊗ Cp.
Hence the dual of the natural inclusion Moc,ord

1 (N )[g∗α] ↪→ Moc,ord
1 (N )[[g∗α]] is

the natural surjection

T(N )℘gα
/℘1−→T(N )/℘gα . (16)
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The ideal ℘1T0(N )℘gα
is equal to a positive power ℘ t

gα (with t > 1) of
the maximal ideal ℘gα in the local ring T0(N )℘gα

⊗ Cp. The map (16) is
an isomorphism if and only if t = 1, that is, if and only if the point of
Hom(T0(N )℘g ,Cp) attached to ϕgα is smooth and étale over weight space.
Under the regularity assumption on g at p, [BeDi, Theorem 1.1] implies that
this étaleness condition is satisfied precisely when (14) holds. The proposition
follows.

REMARK 1.2. When g is the theta series of a real quadratic field in which p
splits, explicit Fourier expansions of nonclassical forms in Soc,ord

1 (N , χ)[[g∗α]] are
described in [DLR2]. Such nonclassical forms are also expected to be present in
all settings where g is irregular at p: see [DLR3] for a study of the nonclassical
forms in the associated generalized eigenspace in this case. Hypothesis C and
condition (1) of Hypothesis C′ are thus expected to be equivalent when g is a cusp
form. The extension of Conjecture ES to settings where Soc,ord

1 (N , χ)Cp [[g∗α]]
contains nonclassical forms, which is far from routine and involves significant
new features, is taken up in [DLR3].

We next turn to the case where g = E1(χ1, χ2) is a weight-one Eisenstein
series with αg := χ1(p) and βg := χ2(p), and let

gα(q) := g(q)− χ2(p)g(q p), gβ(q) := g(q)− χ1(p)g(q p)

denote its (not necessarily distinct) p-stabilizations.

PROPOSITION 1.3. The cuspidal generalized eigenspace Soc,ord
1 (N , χ)[[g∗α]] is

nontrivial, that is, the eigenform gα is a p-adic cusp form, if and only if χ1(p) =
χ2(p).

Proof. Assume for simplicity that χ1 and χ2 are primitive with relatively prime
conductors N1 and N2, so that χ := χ1χ2 is primitive and N = N1 N2. We prove
the proposition by analysing the constant terms of gα and gβ at the cusps in the
ordinary locus of the modular curve X (N ; p) = X1(N ) ×X (1) X0(p) associated
to the congruence group Γ1(N ) ∩ Γ0(p). More precisely, let X1(N )ord

Cp
denote

the complement of the supersingular residue discs in X1(N )(Cp), regarded as an
affinoid domain. For a suitable wide open neighbourhood W of X1(N )ord

Cp
, let

s :W −→ X (N ; p)Cp

be the rigid analytic section of the natural projection X (N ; p)−→ X1(N ),
defined by sending the point attached to an ordinary pair (E, PN )/Cp ∈ W to
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the (moduli of the) triple (E, PN ,Ccan), where PN is a point of order N on E ,
and Ccan denotes the canonical subgroup of order p. The inclusion igα of (7) in
the Introduction is described geometrically in terms of s, as follows: letting ω
denote the sheaf over X (N ; p) with logarithmic poles at the cusps discussed in
[BDP2, Section 1.1], a classical weight-one form φ in the source of (7) may be
viewed as a section of ω over X (N ; p), and the map of (7) sends it to its pull-
back s∗(φ) ∈ H 0(W, ω), naturally identified with an overconvergent modular
form of level N .

The nonzero constant terms of the classical form g = E1(χ1, χ2) are
concentrated at the cusps of X1(N ) attached to the ‘Katz test objects’

cab := (Gm/qZ, ζ a
N1

qb/N2), dab := (Gm/qZ, qa/N1ζ b
N2
),

where Gm/qZ is the Tate generalized elliptic curve over Spec(Cp[[q]]), and ζN1

and ζN2 are fixed primitive N1 and N2th roots of unity; the indices (a, b) range
over (Z/N1Z)× × (Z/N2Z)×. If g is any weight-one modular form on Γ0(N )
with character χ , then the modular form gp on X (N ; p) whose q-expansion is
equal to g(q p) at the cusp∞= (Gm/qZ, ζN , µp) is defined on test objects of the
form (E, PN ,C p), with C p ⊂ E of order p, by the rule

gp((E, PN ,C p)) := χ−1(p)p−1ϕ∗C p
(g(E/C p, PN + C p)),

where ϕC p : E −→ E/C p is the natural quotient morphism. This can be seen
by checking this identity on the test object (Gm/qZ, ζN , µp) and invoking the q-
expansion principle. Let gab(q) and g′ab(q) ∈ Cp[[q1/N ]] denote the q-expansions
of g at the cusps cab and dab, respectively, and let xab and yab denote the
associated leading terms. The q-expansion of gp, viewed as a p-adic modular
form, at the cusps cab and dab is then given by the rule

gp(Gm/qZ, ζ a
N1

qb/N2) = χ−1(p)p−1ϕ∗(g(Gm/q pZ, ζ
pa
N1

q pb/N2))

= χ−1
2 (p)gab(q p)

dt
t

(17)

gp(Gm/qZ, qa/N1ζ b
N2
) = χ−1(p)p−1ϕ∗(g(Gm/q pZ, q pa/N1ζ

pb
N2
))

= χ−1
1 (p)g′ab(q

p)
dt
t
. (18)

Here, we have used the fact the canonical subgroup µp ⊂ Gm/qZ of the Tate
elliptic curve is the kernel of the map ϕ : Gm/qZ−→Gm/q pZ sending t to t p.
Equations (17) and (18) yield the constant terms of the forms g, gp, gα, and gβ
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at the cusps cab and dab, as summarized in the table below.

cab dab

g xab yab

gp χ−1
2 (p)xab χ−1

1 (p)yab

gα 0 (1− χ2/χ1(p))yab

gβ (1− χ1/χ2(p))xab 0

The proposition follows.

REMARK 1.4. If g = E1(χ1, χ2) is regular, then the fact that Soc,ord
1 (N , χ)

[[g∗α]] = 0 shows that the p-adic iterated integrals attached to ( f, gα, hα) vanish
identically, since the overconvergent weight-one forms eord(d−1 f̆ × h̆) belong to
Soc,ord

1 (N , χ). It is not hard to check that the regulator term det(Rgα (E, %gh))

attached to the subspace V gα
g = Cp(χ1) vanishes as well, in harmony with

Conjecture ES, which can be seen as amounting to the statement 0 = 0 when
g is a regular Eisenstein series.

1.2. The Gross–Stark unit attached to a weight-one form. The aim of this
section is to associate to a p-stabilized eigenform gα satisfying Hypothesis C′ a
global element ugα ∈ H×⊗ L (often well defined up to scaling by L×), whose p-
adic logarithm arises in Conjecture ES. This element belongs to the Adg-isotypic
subspace of H× ⊗ L , where

Adg := End0(Vg)

is the adjoint representation attached to Vg, the three-dimensional Artin
representation consisting of trace-zero L-linear endomorphisms of Vg on
which GQ acts by conjugation via %g.

In defining ugα , it shall be convenient to replace the field H of the introduction
by the smaller field Hg cut out by Adg, and L by any field over which the
representation Adg can be defined. To give a rough feeling for the nature of
ugα , let us mention at the outset that

L · ugα ⊂
{
(O×Hg

)
Adg
L if g is cuspidal,

(OHg [1/p]×)Adg
L if g is Eisenstein,

(19)

and
the Frobenius element σp acts on ugα with eigenvalue αg/βg.

As explained below, these requirements often characterize ugα uniquely up to
scaling by L×.
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Write σ∞ ∈ G := Gal (Hg/Q) for the involution given by complex
conjugation induced by the fixed choice of complex embedding of Hg ⊂ Q̄. The
representation Adg decomposes as a direct sum of + and − eigenspaces for the
action of σ∞, denoted Ad+g and Ad−g . These eigenspaces are of dimensions one
and two, respectively:

dimL Ad+g = 1; dimL Ad−g = 2. (20)

As suggested by (19), the nature of the invariant ugα depends on whether %g is
irreducible or not, and each case will be dealt with in turn.

1.2.1. The case where %g is irreducible. If %g is irreducible, then g is a cuspidal
eigenform of weight one. The definition of ugα rests on the following proposition.

PROPOSITION 1.5.

(1) The vector space HomGQ(Adg,O×Hg
⊗ L) is one dimensional.

(2) The Artin L-function L(Adg, s) has a simple zero at s = 0.

Proof. The finite group G = Gal (Hg/Q) acts faithfully on Adg and is identified
with the image of the projective representation attached to Vg. Note that
G∞ = 〈σ∞〉 is of order two, since Adg is not totally even. Dirichlet’s unit theorem
determines the structure of O×Hg

⊗ L as an L[G]-module:

O×Hg
⊗ L = (IndG

G∞ L)− L ,

where the two occurrences of L on the right refer to trivial representations (of
G∞ and G, respectively). The irreducibility of Vg implies that the representation
Adg contains no G-invariant vectors, by Schur’s lemma, and hence

HomG(Adg,O×Hg
⊗ L) = HomG(Adg, IndG

G∞ L).

By Frobenius reciprocity,

HomG(Adg, IndG
G∞ L) = HomG∞(Adg, L) = Hom(Ad+g , L).

The first part of the proposition now follows from (20). The second statement
follows from the shape of the Γ -factors in the functional equation of L(Adg, s)
determined by (20).

Choose a basis ϕ for the one-dimensional vector space HomG(Adg,O×Hg
⊗ L),

and let
(O×Hg

)
Adg
L := ϕ(Adg) ⊂ O×Hg

⊗ L .
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The L[G]-module (O×Hg
)

Adg
L is of dimension 63 over L and is abstractly

isomorphic to the unique irreducible subrepresentation of Adg containing Ad+g .
Recall the prime number p chosen in the introduction. The Frobenius element

σp acts on Adg with the (not necessarily different) eigenvalues 1, αg/βg, and
βg/αg. Define

Ugα :=
{

u ∈ (O×Hg
)

Adg
L such that σp(u) = αg

βg
u
}
.

LEMMA 1.6. Assume that Vg is regular. If %g is induced from a character of a
real quadratic field in which p splits, then Ugα = 0. Otherwise, dimL(Ugα ) > 1,
with equality if either

(1) αg 6= −βg, that is, Adg is regular, or

(2) %g is induced from a character of a quadratic field in which p is inert.

Proof. This lemma is proved by a case by case analysis, according to the
following possibilities for Vg.

(a) Vg has imaginary dihedral projective image.

(b) Vg has real dihedral projective image.

(c) g is an exotic weight-one form with projective image A4, S4, or A5.

(a) Imaginary dihedral forms. Assume that the representation Vg is induced from
a character ψg of an imaginary quadratic field K . Then

Adg = L(χK )⊕ Vψ , (21)

where χK is the quadratic Dirichlet character associated to K , and Vψ := IndQ
K ψ

is the two-dimensional representation induced from the ring class characterψ :=
ψg/ψ

′
g of K . Since σ∞ acts with eigenvalue −1 on the first factor L(χK ), it

follows that (O×Hg
)

Adg
L is a subrepresentation of Vψ .

If Vψ is irreducible, then
(O×Hg

)
Adg
L ' Vψ .

The eigenvalues of σp on Vψ are αg/βg and βg/αg if χK (p) = 1, and 1 and
−1 = αg/βg if χK (p) = −1. In either case, dimL(Ugα ) > 1, with equality if
either αg/βg 6= −1 or if p is inert in K .

If Vψ is reducible, the character ψ is necessarily quadratic, and Vψ further
breaks up as a sum of one-dimensional representations attached to odd and even
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Dirichlet quadratic characters χ− and χ+, respectively, satisfying χ+χ− = χK .
Because of this,

(O×Hg
)

Adg
L = (O×Hg

)
χ+
L ' L(χ+)

is isomorphic to the one-dimensional representation associated to χ+. The space
Ugα ⊂ (O×Hg

)
χ+
L is therefore of dimension at most one, with equality if and only

if αg/βg = χ+(p). This equality always holds when p = ℘℘̄ splits in K , since
in that case

αg/βg = ψ(℘) = ψ(℘̄) = χ+(p) = χ−(p).
(Note that the regularity assumption αg 6= βg that is made on g forces all these
expressions to be equal to−1 rather than 1.) If p is inert in K , then σp acts on Vψ
with eigenvalues 1 and −1, and hence αg/βg = βg/αg = −1. In that case, either
χ+(p) = −1 and dim(Ugα ) = 1, or p splits in the real quadratic field K+ cut out
by χ+, and Ugα = 0. In this last scenario, the representations Vψ and Vg are also
induced from a character of the real quadratic field K+, in which p splits.

(b) Real dihedral forms. If the representation Vg is induced from a character ψg

of signature (+,−) of a real quadratic field K , then the character ψ = ψg/ψ
′
g is

a totally odd ring class character of K , and it cuts out an abelian extension of K
of dihedral type. The decomposition (21) continues to hold, but now, since σ∞
acts with eigenvalue 1 on L(χK ), it follows that

(O×Hg
)

Adg
L ' L(χK ) (22)

in all cases. If p splits in K , then χK (p) = 1 6= αg/βg, and hence Ugα = 0. If p
is inert in K , then χK (p) = αg/βg = −1, and hence Ugα is also one dimensional,
and is generated over L by a fundamental unit of the real quadratic field K .

(c) Exotic forms. Assume to conclude that the projective image G of the
representation Vg is isomorphic to A4, S4, or A5. Since these groups admit
no faithful irreducible representations of dimension <3, it follows that Adg is
irreducible, and hence

(O×Hg
)

Adg
L ' Adg.

The lemma follows directly in this case, since σp acts on Adg with eigenvalues
1, αg/βg, and βg/αg.

REMARK 1.7. Note that Condition (14), which was shown in Section 1.1 to
imply Hypothesis C for gα, is precisely what guarantees the nontriviality of the
group Ugα .

REMARK 1.8. The scenarios considered in (a) and (b) in the above proof are
not mutually exclusive, and can arise simultaneously in certain cases where ψg
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is quadratic and %g has image isomorphic to the dihedral group of order eight:
some of the numerical examples below focus on such settings.

DEFINITION 1.9. A nonzero element ugα of Ugα is called a Stark unit attached
to gα.

REMARK 1.10. Lemma 1.6 furnishes us with many concrete instances where the
unit ugα is well defined up to multiplication by L×. This happens, for instance,
when %g is induced from a character of a real quadratic field K in which p is
inert, when the vector space Ugα is always generated by the fundamental unit
of K . The case where p splits in K is more mysterious, since Ugα = 0, and a
natural definition of ugα does not seem to be available, consistent with the failure
of Hypothesis C.

More generally, dimL(Ugα ) > 1 occurs precisely when αg/βg = ±1. In the
special case where Vg is induced from a character of an imaginary quadratic
field in which p splits, there is nonetheless a natural candidate for ugα which is
well defined up to scaling by L×: see Section 3.2 for more details.

REMARK 1.11. Several results in the literature relate the Petersson norm of g
to L ′(Adg, 0), which in turn is expected to admit an elementary expression as
the logarithm of units in the subspace of (O×Hg

)
Adg
L on which σ∞ = 1. See for

example [St1, Section 6], or [DuLi, Proposition 4.1]. It is in this sense that the
p-adic logarithm of ugα might be viewed as a p-adic avatar of 〈gα, gα〉.

1.2.2. The case where %g is reducible. Consider now the case where g
corresponds to the Eisenstein series E1(χ1, χ2) ∈ M1(N , χ), where χ1 and χ2

are odd and even Dirichlet characters satisfying (as motivated in Section 1.1) the
condition

χ1(p) = χ2(p). (23)

In that case,

Vg = L(χ1)⊕ L(χ2), Adg = L ⊕ L(η)⊕ L(η−1) where η := χ1/χ2.

Condition (23) implies that η(p) = 1, and hence p splits completely in the
abelian extension Hη/Q cut out by η.

To define ugα , choose a prime ideal ℘ of OHη over p inducing the embedding
Hη ↪→ Cp chosen at the outset, and let u℘ ∈ OHη [1/p]× be a generator of the
principal ideal ℘h , where h is the class number of Hη:

℘h = (u℘), u℘ ∈ (OHη [1/℘])× (mod O×Hη).

The unit ugα is defined as follows (in additive notation).
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DEFINITION 1.12. Let

eη := 1
#G

∑
σ∈G

η−1(σ )σ, eη−1 := 1
#G

∑
σ∈G

η(σ )σ,

be the usual idempotents in L[G] giving the projection onto the η and η−1-
isotypic component for the action of G. Set

ugα = eηu℘ + eη−1 u℘ .

The unit ugα is a linear combination of Gross–Stark units attached to the
characters η and η−1, whose p-adic logarithms

log℘(ugα ) =
1

#G

∑
σ∈Gal (Hη/Q)

(η(σ )+ η−1(σ )) log℘(σ (u℘))

account for the derivative at zero of the Kubota–Leopoldt p-adic L-function of
η. In this formula, log℘ denotes Iwasawa’s logarithm satisfying log℘(p) = 0,
composed with the p-adic embedding of Hη attached to ℘. It is not hard to see
that the following hold.

(1) Although the unit u℘ is only well defined modulo O×Hη , there is no resulting
ambiguity in the unit ugα , since η and η−1 are odd characters, and hence the
idempotents eη and eη−1 annihilate O×Hη ⊗ L .

(2) The unit u℘ , and hence also the unit ugα , depends crucially (and not just
by scaling by L×!) on the choice of the ideal ℘ above p, but the expression
log℘ ugα is independent of this choice, up to multiplication by a root of unity.

2. Iterated integrals and the Garrett–Hida p-adic L-function

The main goal of this section is to recast the p-adic iterated integral that arose
in the introduction as the value of a p-adic L-function at a point which lies
outside its region of classical interpolation. This interpretation is crucial for the
proof of Theorem 3.3 of Section 3.2, which provides the main piece of theoretical
evidence for Conjecture ES in a setting where the p-adic trilinear form I ′p does
not vanish.

We begin by briefly recalling a few key facts about Garrett’s triple-product
classical L-function and the work of Harris–Kudla, Ichino, Watson, and
Woodbury on Jacquet’s conjecture on trilinear periods.

Let (k, `,m) be a triple of positive integers, and let

gk ∈ Mk(Ng, χg), f` ∈ M`(N f , χ f ), hm ∈ Mm(Nh, χh)
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be three newforms (assumed to be cuspidal if the weight is at least two)
satisfying χgχ f χh = 1. Note that this forces k + ` + m to be even. Set
N = lcm(N f , Ng, Nh), and write Q(gk, f`, hm) for the number field generated
by the Fourier coefficients of the three forms.

Let L(gk ⊗ f` ⊗ hm, s) denote Garrett’s triple-product L-function associated
to (gk, f`, hm). It is a self-dual L-function defined by an Euler product of
degree eight and satisfying a functional equation with central critical point
c = (k + `+ m − 2)/2 and root number

ε =
∏
v|N∞

εv(gk ⊗ f` ⊗ hm) with εv(gk ⊗ f` ⊗ hm) ∈ {±1}.

The Archimedean sign ε∞ is equal to one if and only if the triple (k, `,m) of
weights is unbalanced, that is, one of the weights is greater or equal to the sum
of the other two. If v | N is a finite place, the main result of [Pr] asserts that
εv(gk ⊗ f` ⊗ hm) = +1 if and only if there exists a GL2(Qv)-invariant linear
form in the tensor product π f,v ⊗ πg,v ⊗ πh,v of local admissible representations
of GL2(Qv) associated to the three eigenforms. This is the case if v - gcd(N f ,

Ng, Nh), or if one of π f,v, πg,v or πh,v does not belong to the discrete series.
Motivated by the PhD thesis of Prasad, Jacquet formulated a conjecture

suggesting a necessary and sufficient criterion for the nonvanishing of the central
critical value L(gk ⊗ f` ⊗ hm, c) in terms of certain trilinear periods. This
conjecture was proved by Harris and Kudla in [HaKu], and several authors have
subsequently refined this result by providing explicit formulae relating the L-
value to the periods.

In order to describe the precise relationships between L-values and trilinear
periods, we assume for the rest of this section that

εv(gk ⊗ f` ⊗ hm) = +1 for all v | N∞. (24)

When (k, `,m) = (1, 2, 1) and (g1, f2, h1) = (g, f, h) are the modular forms
considered in the introduction, then L(gk ⊗ f`⊗ hm, s) = L(E/Q, %gh, s) is the
Hasse–Weil–Artin L-function considered there, and (24) is just Hypothesis A.
The above discussion yields sufficient conditions for Hypothesis A to hold, and
shows that this is not a very stringent assumption, in practice. Condition (24) at
v = ∞ implies that the triple (k, `,m) is unbalanced; assume for the sake of
definiteness that k > `+ m from now on.

As in the introduction, let

Sk(N , χg)[gk], S`(N , χ f )[ f`], Sm(N , χh)[hm]
denote the eigenspaces corresponding to the three forms in level N with respect
to the Hecke operators {Tn, n - N }.
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For any w > 1 and any Dirichlet character χ of conductor N , let Snh
w (N , χ)

denote the space of nearly holomorphic modular forms of weight w, level N ,
and nebentype χ , and let

δ = 1
2π i

(
d
dz
+ w

z − z̄

)
: Snh

w (N , χ)−→ Snh
w+2(N , χ)

denote the Shimura–Maass operator, as described for instance in [Hi2, Chapter
X]. Let also

〈 , 〉 : Snh
w (N , χ)× Snh

w (N , χ)−→C, 〈 f1, f2〉 =
∫
Γ1(N )\H

f1(z) f2(z) yw
dx dy

y2
,

denote the Petersson scalar product on these spaces.
Set t = (k − `− m)/2 > 0. A test vector for the triple (gk, f`, hm) is a triplet

(ğk, f̆`, h̆m) ∈ Sk(N , χg)L[gk] × S`(N , χ f )L[ f`] × Sm(N , χh)L[hm].
For such a test vector, recall that we denote g∗k = gk ⊗ χ−1

g , and define the
quantities

I (ğk, f̆`, h̆m) := 〈ğ∗k , δt( f̆`) · h̆m〉,
as well as

J (ğk, f̆`, h̆m) := I (ğk, f̆`, h̆m)/〈g∗k , g∗k 〉,
ω(ğk, f̆`, h̆m) := I (ğ∗k , f̆ ∗` , h̆∗m)/I (ğk, f̆`, h̆m). (25)

The following result is a direct consequence of the fundamental work of Ichino
[Ich]. The precise formulation given here is only valid under Assumption (24)
and follows by combining [Ich]. with a formula due to Hida for a special value
of the L-function of the adjoint of a modular form and the precise formulae of
Watson [Wa] and Woodbury [Wo1, Wo2].

PROPOSITION 2.1.
(a) For any test vector (ğk, f̆`, h̆m),

|I (ğk, f̆`, h̆m)|2 = a(k, `,m) · f(k, `,m) ·
∏
v|N∞

Cv(ğk, f̆`, h̆m) ·L(gk⊗ f`⊗hm, c),

(26)
where

(i) a(k, `,m) = ((k + `+ m − 4)/2)! · ((k + `− m − 2)/2)! · ((k − ` +
m − 2)/2)! · ((k − `− m)/2)! · π−2k;
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(ii) f(k, `,m) = A · 2B , where A ∈ Q× depends only on the levels of the
eigenforms and of their characters, and B = B(k, `,m) ∈ Z is a linear
function on the weights k,`,m;

(iii) for all v | N∞, the local term Cv(ğk, f̆`, h̆m) ∈ L depends only on the
admissible representations of GL2(Qv) associated to the three cusp forms
and on the local components at v of the choice of (ğk, f̆`, h̆m).

(b) There exists a test vector (ğk, f̆`, h̆m) for which Cv(ğk, f̆`, h̆m) 6= 0 for all
v | N∞.

(c) Assume that N is square free. Then there exists a particular test vector
(ğk, f̆`, h̆m) such that Wv := Cv(ğk, f̆`, h̆m) ∈ Q× is a rational constant for
all v | N.

Proof. Let ΓR(s) := π−s/2Γ (s/2) and ΓC(s) := 2(2π)−sΓ (s), where Γ (s) is
the usual gamma function. For any eigenform ϕ ∈ Sw(N , χ), let

L(Ad(ϕ), s) = L(sym2(ϕ), χ−1, s)

denote the L-function of the adjoint square of ϕ, and let

L∗(Ad(ϕ), s) = L∞(Ad(ϕ), s)L(Ad(ϕ), s)

denote the completed L-function, with

L∞(Ad(ϕ), s) := ΓR(s − w + 2)ΓC(s)

the idoneous factor at∞.
The Rankin–Selberg method relates the special value of L(Ad(ϕ), s) at

s = w to the Petersson norm of ϕ. A completely explicit formula is given in
[Hi1, Theorem 5.1], which, combined with the value of L∞(Ad(ϕ), s) at s = w,
yields

L∗(Ad(ϕ), w) = 2wAϕ × 〈ϕ, ϕ〉, (27)

where Aϕ ∈ Q× is a constant which depends only on the level of ϕ and conductor
of χ .

Likewise, let

L∗(gk ⊗ f` ⊗ hm, s) := L∞(gk ⊗ f` ⊗ hm, s)L(gk ⊗ f` ⊗ hm, s)

denote the completed Garrett L-function, where

L∞(gk⊗ f`⊗hm, s) := ΓC(s)ΓC(s+1−m)ΓC(s+1−`)ΓC(s+2−`−m). (28)
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The main result of [Ich] (see also [Wo1, Theorem 2.1] for a reformulation of
the same statement) asserts that, for any test vector (ğk, f̆`, h̆m),

|I (ğk, f̆`, h̆m)|2
〈gk, gk〉 · 〈 f`, f`〉 · 〈hm, hm〉 = C ·

∏
v|N∞ Cv(ğk, f̆`, h̆m) · L∗(gk ⊗ f` ⊗ hm, c)

L∗(Ad(gk), k)L∗(Ad( f`), `)L∗(Ad(hm),m)
,

(29)

where

• C ∈ Q× is an absolute constant which only depends on the normalization
taken for the Petersson scalar product; and

• for any v | N∞, Cv(ğk, f̆`, h̆m) ∈ Q(gk, f`, hm) is as described in (iii) above.

Combining (29) with (27), and evaluating (28) at s = c, it follows that

|I (ğk, f̆`, h̆m)|2 = a(k, `,m) · f(k, `,m) ·
∏
v|N∞

Cv · L(gk ⊗ f` ⊗ hm, c),

where we have set f(k, `,m) = 2−3k−`−m+4 ·C · (Agk A f` Ahm )
−1. This proves (a).

Statement (b) was originally known as Jacquet’s conjecture, and was proved by
Harris and Kudla in [HaKu]. As for (c), we refer to [Wo1, Theorem 5.1].

REMARK 2.2. The choice of test vector in (c) is a completely explicit one,
given by Watson [Wa] in the case when Ng = N f = Nh , and more recently
by Woodbury [Wo1] for arbitrary square-free levels. We shall refer to it as the
Watson–Woodbury test vector. The resulting value of Wv ∈ Q× for v | N is
also explicit (see [Wa, Theorem 3] and [Wo1, Theorem 5.1] for the recipes),
and we shall refer to it as the Watson–Woodbury local constant at v. Note
that we say nothing about C∞(ğk, f̆`, h̆m), although having a tight control of
it would be desirable. See [Wo2] for the latest developments, which assert that
in favourable scenarios (such as the one considered in Section 3.2 below) the
Watson–Woodbury test vector yields W∞ = 1.

Up to this point we have summarized the basic material we need about
Garrett triple-product classical L-functions. Fix as in the introduction a prime
number p - N , and let us discuss now the p-adic interpolation properties of
their central critical values. The vehicle that allows to do so is the notion of
Hida families, which are families of p-adic overconvergent ordinary modular
forms parameterized by a rigid analytic space: we refer to [DR1, Section 2.6]
and [DR2, Section 1.8] for a brief introduction to this subject, presented in a
language suitable for our purposes. Let

Ω := Hom(Z×p ,Z
×
p ) ' Z/(p − 1)Z× Zp (30)
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denote the weight space, which contains the integers as a dense subset by means
of the identification k ↔ ϕk , where ϕk ∈ Ω is the homomorphism defined by the
rule ϕk(n) = nk−1.

Let g, f, and h be three Hida families of new tame level Ng, N f , and Nh and
tame nebentype characters χg, χ f , and χh , respectively. Assume that χgχ f χh

= 1, as above.
Let Ug denote the parameter space of the Hida family g, and let kg : Ug → Ω

denote the finite-weight map associated to it. If confusion is not likely to arise,
in order to simplify the notation we may freely identify a point x ∈ Ug with its
image k = kg(x) ∈ Ω .

For any point x ∈ Ug, let x(g) denote the specialization of g at x . In general,
x(g) is an overconvergent ordinary modular form. Define U cl

g ⊆ Ug to be the
subset of points x ∈ Ug such that x(g) is a classical ordinary eigenform. By
the work of Hida, U cl

g contains all points of weight kg(x) = k ∈ Z>2. Points
of weight one may belong to U cl

g or not. Define further U ◦g to be the subset of
classical points x ∈ U cl

g such that the eigenform x(g) is old at p. For such points,
there exists a classical newform that we denote gk ∈ Mk(Ng, χg) whose ordinary
p-stabilization is the specialization of g at x . Phrased in terms of q-expansions,
this amounts to saying that

x(g)(q) = gk(q)− βgk(q p) ∈ Mk(Ng p, χg),

where β ∈ Cp is a root of the pth Hecke polynomial x2 − ap(gk)x + χg(p)pk−1

whose p-adic valuation is k − 1. Adopt throughout similar notation as above for
f and h.

Note that, for any triple of classical points (x, y, z) ∈ U ◦g ×U ◦f ×U ◦h of weights
(k, `,m), the subfield Q(gk, f`, hm) of Cp generated by the Fourier coefficients
of gk , f`, and hm is a finite extension of Q, whose degree varies in general as a
function of the weights (k, `,m).

Let ğ, f̆, and h̆ be Λ-adic test vectors of tame level N associated to g, f, and h,
as described in [DR1, Definition 2.16]. Such test vectors may be written down
explicitly as ğ =∑d|N/Ng

λdg(qd), where d ranges over the positive divisors of
N/Ng, and λd ∈ Λg = O(Ug) are Iwasawa functions on the domain Ug (and
similarly for f̆ and h̆).

Assume that gcd(N f , Ng, Nh) = 1, and that the three Hida families are
cuspidal, meaning that all their specializations at classical points of weight
greater than one (though not necessarily at points of weight one) are cuspidal
eigenforms. The first assumption implies that the local signs hypothesis (24)
holds for all triples (gk, f`, hm) at points (k, `,m) ∈ U ◦g × U ◦f × U ◦h .

Define a dense subset U ◦g f h ⊂ Ug × U f × Uh by

U ◦g f h = {(k, `,m) ∈ U ◦g × U ◦f × U ◦h such that k > `+ m}.
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Under the running assumptions, a three-variable p-adic L-function

L g
p (ğ, f̆, h̆) : Ug × U f × Uh −→ Cp (31)

was constructed in [DR1, Section 4.2], which is characterized by the following
interpolation property at triplets (k, `,m) ∈ U ◦f gh:

L g
p (ğ, f̆, h̆)(k, `,m) = e(k, `,m) · J (ğk, f̆`, h̆m), (32)

where

e(k, `,m) = E(gk, f`, hm)/E0(gk)E1(gk) = E(g∗k , f ∗` , h∗m)/E0(g∗k )E1(g∗k )

denotes the Euler factor introduced in [DR1, Theorem 1.3].
The next proposition spells out the interpolation property tying this p-adic

L-function to central critical L-values.

PROPOSITION 2.3. For any Λ-adic test vectors ğ, f̆, h̆, and every (k, `,m) ∈
U ◦f gh , the following formula is valid:

L g
p (ğ, f̆, h̆) ·L g

p (ğ
∗, f̆∗, h̆∗)(k, `,m)

= e(k, `,m)2 · a(k, `,m) · f(k, `,m) ·
∏
v|N∞

Cv(ğk, f̆`, h̆m)

× L
(
gk ⊗ f` ⊗ hm,

k+`+m−2
2

)
〈g∗k , g∗k 〉2

. (33)

Proof. Note that

|I (ğk, f̆`, h̆m)|2 = I (ğk, f̆`, h̆m) · I (ğk, f̆`, h̆m) = I (ğk, f̆`, h̆m) · I (ğ∗k , f̆ ∗` , h̆∗m),

and that
〈gk, gk〉 = 〈g∗k , g∗k 〉.

It thus follows from (32) and (26) that

L g
p (ğ, f̆, h̆) ·L g

p (ğ
∗, f̆∗, h̆∗)(k, `,m)

= e(k, `,m)2
|I (ğk, f̆`, h̆m)|2
〈g∗k , g∗k 〉2

= e(k, `,m)2 · a(k, `,m) · f(k, `,m) ·
∏
v|N∞

Cv(ğk, f̆`, h̆m)

× L(gk ⊗ f` ⊗ hm,
k+`+m−2

2 )

〈g∗k , g∗k 〉2
.
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REMARK 2.4. An inspection of the definition of the Watson–Woodbury test
vector shows that, when we let it vary along the Hida families g, f, and h, it
gives rise to a triplet (ğ, f̆, h̆) of Λ-adic test vectors of tame level N , whose
specialization at any (k, `,m) ∈ U ◦g ×U ◦f ×U ◦h is an eigenform with coefficients
in Q(gk, f`, hm), a finite extension of Q; and, moreover, the constants Wv =
Cv(ğk, f̆`, h̆m) ∈ Q× in Proposition 2.1(c) depend on v and N but not on the
triplet (k, l,m) of weights.

For the remainder of this section (and throughout the rest of the paper, as we
shall recall again in later sections), we impose the following hypothesis.

ASSUMPTION 2.5. There exists a point x ∈ U ◦g of weight kg(x) = 1 such that
the specialization gα := x(g) ∈ M1(Ng p, χg) satisfies Hypothesis C.

To make sure that the notation introduced in the Introduction and that in this
section are compatible, let us emphasize that gα is an eigenform of weight one
and level Ng p that is new at Ng and old at p. The eigenform gα is the p-
stabilization of a newform g := g1 ∈ M1(Ng, χg).

The next proposition relates this restriction of the Garrett–Hida p-adic L-
function to p-adic iterated integrals.

PROPOSITION 2.6. There exists a linear form

γ̆α : S1(N p, χ−1
g )L[g∗α] −→ L

with L = Q(g1, f2, h1) such that

L g
p (ğ, f̆, h̆)(1, 2, 1) =

∫
γ̆α

f̆2 · h̆1.

Proof. Fix a finite flat extension Λ† of Λ, sufficiently large so that it contains
the coefficients of all the Λ-adic modular forms considered below, and write
Sord(N ;Λ†) for the space of Λ-adic modular forms with coefficients in Λ†. The
Hida family g gives rise to a subspace

Sord(N ;Λ†)[g] := {ğ ∈ Sord(N ;Λ†) such that Tn ğ = an(g)ğ, ∀(n, N ) = 1}.

Letting L† denote the fraction field of Λ†, the vector space Sord(N ;L†)[g] is
finite dimensional over L† and has for basis the set

{g(qd)}d|(N/Ng) (34)
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of Λ-adic forms. By [DR1, Lemma 2.19], there exists a linear operator

J (ğ∗) : Sord(N ,Λ†)−→L† ⊗Λ Λ†, φ 7→ J (ğ∗,φ)

that is characterized uniquely by the following interpolation property: at every
point in U ◦g ∩ U ◦φ of weight k > 2, the specialization of J (ğ∗) is regular
(meaning that there is no pole at this point) and is described by the following rule:

νk
(
J (ğ∗)

) : Sord
k (N , χ−1

g )Qp(gk )−→Qp(gk), φ 7→ 〈ğ∗k , φ〉
〈g∗k , g∗k 〉

.

We turn now to analyse the specialization of J (ğ∗) in weight one. For any
d|(N/Ng), let cd : Sord(N ,L†)−→L† denote the functional which associates
to φ its coefficient in g(qd) with respect to the basis in (34). It follows from the
proofs of [DR1, Lemmas 2.12 and 2.19] that

J (ğ∗) =
∑

d|(N/Ng)

λd · cd,

where λd ∈ L† are elements which, viewed as functions of Z>2 by means of the
rule k 7→ νk(λd), can be expressed as polynomials in the expressions qk , aq(gk),
1/q , and 1/(q + 1) as q ranges over the divisors of N . This implies that the
specialization of J (ğ∗) in weight one is also regular, and hence gives rise to a
linear operator

γ̆α := ν1
(
J (ğ∗)

) : Soc,ord
1 (N , χ−1

g )L p −→ L p.

It factors through Soc,ord
1 (N , χ−1

g )L p [[g∗α]], which by the classicality hypothesis
imposed on g∗α is isomorphic to the corresponding space S1(N p, χ−1

g )L p [g∗α] of
classical modular forms.

As explained in the introduction, Hypothesis C equips Soc,ord
1 (N , χ−1

g )L p [[g∗α]]
with an L-rational structure, denoted Soc,ord

1 (N , χ−1
g )L[[g∗α]]. In view of

the description given above for λd as functions of k, it follows that
ν1(λd) ∈ L , and hence γ̆α is L-rational; that is to say, it belongs to S1(N p,
χ−1

g )L[g∗α]∨ = Soc,ord
1 (N , χ−1

g )L[[g∗α]]∨.
Let eord(d• f̆ [p]2 × h̆1) denote the Λ-adic modular form whose specialization

in weight k is eord(d (k−3)/2 f̆ [p]2 × h̆1) for all k ∈ Z>2. By [DR1, Definition 4.4],
L g

p (ğ, f̆2, h̆1) = J (ğ, eord(d• f̆ [p]2 × h̆1)) and, by construction,

L g
p (ğ, f̆2, h̆1)(1) = γ̆α(eord(d−1 f̆ [p]2 × h̆1)) =

∫
γ̆α

f̆2 · h̆1,

as was to be shown.
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Proposition 2.6 recasts the p-adic iterated integral of Conjecture ES with
(γ̆ , f̆ , h̆) = (γ̆α, f̆2, h̆1) as a p-adic avatar of the classical special value
L(E, %gh, 1). This suggests a possible strategy for proving Conjecture ES
in the rank-(1, 1) setting where %gh admits a decomposition of the form
%gh = %1 ⊕ %2 ⊕ %3 as in (12). Assuming that the regulator Rgα (E, %gh) is
factorizable, Conjecture ES might then be proved by constructing appropriate
‘p-adic Artin L-series’ Lp(Adgα ) associated to (the irreducible constituent
containing Ad+g in) Adg and ‘p-adic Hasse–Weil–Artin L-series’ Lp(E, %i)

attached to the irreducible constituents of %gh , and proving that

L g
p (ğ, f̆2, h̆1) · Lp(Adgα )

?= Lp(E, %1) · Lp(E, %2) · Lp(E, %3) (35)

and

Lp(Adgα )(1)
?= logp(ugα ), Lp(E, %1)(1)

?= logE,p(P1), (36)

Lp(E, %3)(1) ∈ L×, Lp(E, %2)(1)
?= logE,p(P2).

This is the strategy carried out in Section 3.2: see Theorem 3.9 for the variant of
(35) and (36) in the special setting considered therein. In general, identities like
(35) appear to lie quite deep, and we are not even able to provide an independent
definition of the p-adic L-values Lp(E, %i) that figure in its putative right-hand
side; they are perhaps somewhat akin to the ‘genuine’ p-adic L-functions sought
for in [Hi3].

3. Heegner points and theta series of imaginary quadratic fields

Let K be an imaginary quadratic field of discriminant −DK , and let NK/Q
denote the norm map on fractional ideals of K . The aim of this section is to
study Conjecture ES in the case where both g and h are theta series associated
to K . After setting up the basic notation and assumptions, the cases in which
the prime p splits or remains inert in K are treated separately in Sections 3.2
and 3.3.

Just as in the introduction, let E be an elliptic curve over Q, and let f ∈ S2(N f )

denote its associated newform. Given a finite-order character

ψ : G K −→C×

of conductor cψ ⊆ OK and central character χ (viewed as a Dirichlet character),
let

θψ ∈ M1(DK · NK/Q(cψ), χ)
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denote the theta series associated to ψ , and let Vψ := IndQ
K ψ denote the two-

dimensional induced representation of ψ from G K to GQ. It is known that θψ is
Eisenstein if and only if Vψ is reducible, which occurs precisely when ψ = ψ ′,
where ψ ′ denotes the character of G K defined by the rule ψ ′(σ ) = ψ(σ0σσ

−1
0 ).

Here, σ0 is any choice of element in GQ \ G K .
Fix two finite-order characters ψg and ψh of K of conductors cg and ch .

Assume that the central character χ of ψh is inverse to that of ψg, and set

g := θψg ∈ M1(Ng, χ̄), h := θψh ∈ M1(Nh, χ).

Define ψ1 = ψgψh and ψ2 = ψgψ
′
h . The characters ψ1 and ψ2 are ring class

characters of K , associated to orders Oc1 and Oc2 in OK of conductors c1 and c2,
respectively. Such characters are sometimes also called, synonymously, dihedral
or anticyclotomic characters of K . Note that ψg and ψh were not assumed to be
necessarily anticyclotomic.

One checks that there is a decomposition of Artin representations and, in
parallel to that, a factorization of L-series as follows:

Vgh = Vψ1 ⊕ Vψ2, L(E, %gh, s) = L(E/K , ψ1, s) · L(E/K , ψ2, s). (37)

Assume also that gcd(N f , cgch) = 1. This implies that, for all places of K
above any place v | N∞ of Q, the local signs of L(E/K , ψ1, s) and of L(E/K ,
ψ2, s) are all equal, and hence εv(E, %gh) = (±1)2 = 1. This automatically
implies that Hypothesis A holds.

Let H denote the ring class field of conductor c := lcm(c1, c2) of K , which
contains the fields cut out byψ1 andψ2. The field L of coefficients that is implicit
in (37) can be taken to be any finite extension of the field generated by the traces
of Vψ1 and Vψ2 .

3.1. Heegner points and elliptic units. In the rank-(1, 1) setting of
Conjecture ES in which r(E, Vψ1) = r(E, Vψ2) = 1, the global points and
units that arise on the right-hand side are expected to be expressible in terms of
Heegner points and elliptic units. Not surprisingly, these global constructions
are the key to the theoretical evidence that has been amassed in support of
Conjecture ES in the rank-(1, 1) setting when p is split in K .

The Heegner point construction is available under the following hypothesis.

Heegner hypothesis: The level of f may be factorized as N f = N+f N−f , where

• there exists an integral ideal N of K such that OK/N ' Z/N+f Z; and

• N−f is the square-free product of an even number of primes which are all inert
in K .
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This hypothesis implies that the signs which occur in the functional equations
for L(E, Vψ1, s) and L(E, Vψ2, s) are −1, and hence that the analytic ranks
ran(E, Vψ1) and ran(E, Vψ2) are both odd. In particular, Hypothesis B of the
introduction is automatically satisfied. It is further expected that, in ‘generic’
instances,

ran(E, Vψ1) = ran(E, Vψ2) = 1, (38)

and that these equalities certainly hold when the p-adic iterated integrals
attached to the triple ( f, g, h) are not identically zero.

The decomposition in (37) can be further refined to

%gh = %1 ⊕ %2 ⊕ %3, (39)

where

• for i = 1, 2, %i is the unique irreducible constituent of Vψi for which ran(E, %i)

is odd; and

• %3 is the GQ-stable complement of %1 ⊕ %2 in %gh .

This decomposition is uniquely determined by ( f, g, h), up to possibly switching
%1 and %2. When (38) is satisfied, the decomposition (39) satisfies the conditions

ran(E, %1) = ran(E, %2) = 1, ran(E, %3) = 0. (40)

As will be explained shortly, the work of Gross, Zagier, Kolyvagin, and Zhang
further shows that the same equations as in (40) hold for the corresponding
algebraic ranks:

r(E, %1) = r(E, %2) = 1, r(E, %3) = 0, (41)

consistent with the predictions made by the Birch and Swinnerton-Dyer
conjecture, and so we are in the rank-(1, 1) setting of Conjecture ES. It
also leads to the construction of explicit nontrivial elements in E(H)%1

L and
E(H)%2

L from Heegner points, which we now describe.
Let X be the Shimura curve associated to an Eichler order of level N+f in the

(indefinite, thanks to the Heegner hypothesis) quaternion algebra of discriminant
N−f over Q. Let

πE : Jac(X)→ E

denote a modular parameterization of E arising from the fact that E is an abelian
variety quotient of the Jacobian of X .

Let X (H)Oc ⊂ X (H) denote the set of Heegner points attached to the order
of conductor c in K . It is a finite set, and any two points in it are related by
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the action of an Atkin–Lehner involution and an element of G := Gal (H/K ).
A Heegner divisor of conductor c on X is any degree-zero divisor supported on
X (H)Oc , and a Heegner point on E of conductor c is the image of such a divisor.

After fixing a choice of P ∈ X (H)Oc , any ring class character ψ of conductor
c gives rise to a degree-zero divisor on X by setting

Dψ :=


∑
σ∈G

ψ−1(σ )Pσ if ψ 6= 1,

∑
σ∈G

Pσ − #G · ∞ if ψ = 1,
(42)

where ∞ is the degree-one divisor in Div(X) ⊗ Q defined by ∞ =
(1/(2g − 2))KX , and KX denotes the canonical class on X . The Heegner
point attached to ψ is then defined to be

Pψ := πE(Dψ) ∈ E(H)L .

Note that the point Pψ actually belongs to E(H)Vψ
L , and that the same is true

of Pψ̄ .

LEMMA 3.1. Assume that (40) is satisfied. Then (41) holds as well, and, for
i = 1 and 2, the Mordell–Weil group E(H)%i

L is generated by the vectors Pψi and
Pψ̄i . If ψi 6= ψ̄i , these points are linearly independent, and they form a basis for
E(H)%i

L . If ψi = ψ̄i (that is, if ψi is a genus character), then Pψi = Pψ̄i , and this
vector is a basis for E(H)%i

L .

Proof. Assumption (40) asserts that the central critical derivative L ′(E, %i , 1)
is nonzero. The Gross–Zagier formula and its extension to ring class characters
given in [Zh] show that the vectors Pψi and Pψ̄i have nonzero canonical height,
and hence are nonzero in E(H)

Vψi
L . The main theorem of [BD1] (and a suitable

extension to Heegner points arising from Shimura curves as given in [YZZ])
imply that r(E, Vψi ) = 1, and that E(H)%i

L is generated by the Heegner vectors
Pψi and Pψ̄i . The result follows.

Note that the points Pψi and Pψ̄i depend on the choice of a point P ∈ X (H)Oc

that was made in (42), but only up to multiplication by a root of unity. More
precisely, replacing P by wPσ0 for σ0 ∈ G and w a Fricke involution on X has
the effect of replacing Pψi by ±ψ̄i(σ0)Pψi and Pψ̄i by ±ψi(σ0)Pψ̄i . In particular,
the L-vector space in E(H)L spanned by Pψi is completely canonical and does
not depend on the choice of P .
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It will also be convenient to introduce a related basis of E(H)%i
L attached to a

choice of reflection τ in the dihedral Galois group Gal (H/Q), by setting

P+ψi
= Pψi + Pτ

ψi
, P−ψi

= Pψi − Pτ
ψi
. (43)

Sometimes, the basic Heegner point P used to define the points P±ψi
can be

chosen to be fixed (up to sign) by the reflection τ , that is, in such a way that
τ P = ±P . When this is the case,

P+ψi
= Pψi ± Pψ̄i , P−ψi

= Pψi ∓ Pψ̄i .

But this simpler expression for the basis (P+ψi
, P−ψi

) need not be invoked in
general.

Let
ψ0 := ψg/ψ

′
g

be the nontrivial ring class character attached to the adjoint representation of g.
In addition to the Heegner points Pψi and P±ψi

, Conjecture ES also involves the
elliptic unit u ∈ O×Hg

and its ψ0-component

uψ0 =
∑
σ∈G

ψ−1
0 (σ )uσ ∈ (O×Hg

)
Vψ0
L ,

where the group law in the unit group O×HG
is written additively, and the units

u±ψ0
relative to any choice of a reflection τ ∈ Gal (H/Q) are defined just as in

(43):
u+ψ0
= uψ0 + uτψ0

, u−ψ0
= uψ0 − uτψ0

. (44)

Note that, just as for the points Pψi and P±ψi
, the group Gal (H/K ) acts on the

element uψ0 through the character ψ0, but does not preserve the line spanned by
either u+ψ0

or u−ψ0
.

3.2. Conjecture ES when p splits in K . When p is split in K , the Frobenius
element σp belongs to Gal (H/K ), and the choice of a prime ℘ of K above p is
sufficient to determine σp as an element of this group. The choices of αg, βg, αh ,
and βh can then be made so that

αg = ψg(℘), βg = ψg(℘̄), αh = ψh(℘), βh = ψh(℘̄).

With the above choices,

αgαh = ψgψh(℘) = ψ1(σp), αgβh = ψgψ
′
h(℘) = ψ2(σp).

The following lemma describes the p-adic regulator det Rgα (E, %gh) that
enters into Conjecture ES.
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LEMMA 3.2. The regulator det(Rgα (E, %gh)) is given by the following
expressions.

(1) If r(E, Vψ1) = r(E, Vψ2) = 1,

det Rgα (E, %gh) = logE,p(Pψ1) · logE,p(Pψ2).

(2) If r(E, Vψ1) > 2 or r(E, Vψ2) > 2,

det Rgα (E, %gh) = 0.

Proof. The first part follows from the fact that, after choosing a σp-eigenbasis
for V gα

gh , the matrix Rgα (E, %gh) takes the form

Rgα (E, %gh) =
(

logE,p(Pψ1) 0
0 logE,p(Pψ2)

)
.

In the rank-2 setting, assume without loss of generality that r(E, Vψ1) = 2 and
that r(E, Vψ2) = 0. The two-dimensional subspace V gα

gh then intersects Vψ1 and
Vψ2 in one-dimensional subspaces which determine a decomposition of V gα

gh .
Choosing a basis (v1, v2) for V gα

gh which is compatible with this decomposition,
and a basis Φ1, Φ2 of HomGQ(Vψ1, E(H)L), produces a matrix Rgα (E, %gh)

whose second column is zero.

The lemma above motivates focusing our attention on the rank-(1, 1) setting
of Conjecture ES when p is split, which is what shall be done for the remainder
of Section 3.2. Assume as in Section 3.1 that the Heegner hypothesis is satisfied,
and let

P1 := Pψ1, P2 := Pψ2

be the Heegner points constructed in the previous section. The main result of this
section is the following.

THEOREM 3.3. Assume that N = lcm(N f , Ng, Nh) is square free and that
p - 2N. Assume also that Hypotheses C and C′ hold. If ran(E, Vψ1) > 1 or
ran(E, Vψ2) > 1, the iterated integrals attached to the triple ( f, g, h) vanish
identically. Otherwise, there exist a finite extension L of Q(ψg, ψh), a scalar
λ ∈ L×, and test vectors

( f̆ , γ̆gα , h̆) ∈ S2(N )L[ f ] × M1(N p, χ)∨L [gα] × M1(N , χ)L[h]
for which ∫

γ̆gα

f̆ · h̆ = λ · logE,p(P1) logE,p(P2)

logp(ugα )
.
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REMARK 3.4. We believe that in fact L can always be taken to be Q(ψg, ψh).
It would be interesting to be able to pin down a concrete choice of test vectors
( f̆ , γ̆gα , h̆) for which the precise value of λ ∈ L× could be computed explicitly.
For example, let χK denote a quadratic Dirichlet character of prime conductor
DK associated to an imaginary quadratic field K . Assume that N = DK and that
ψg = ψh = 1, so that

g = h = θ1 ∈ M1(DK , χK )

is the Eisenstein theta series associated to the trivial character of K . Since N f =
Ng = Nh = N , a natural choice of test vectors, which is unique up to scaling by
elements in L×, is simply ( f, γgα , h). The following explicit formula has been
verified experimentally in a number of examples, and should be amenable to a
proof by the methods of this section:∫

γgα

f · h = |E(Fp)|2 logE,p(PK )
2

p(p − 1)hK logp(u℘)
. (45)

Here, |E(Fp)| is the number of points on E over the finite field Fp, hK is the
class number of K , PK is the Heegner point in E(K ), and u℘ ∈ K× is any p-unit
satisfying (u℘) = ℘hK .

Formula (45) was first discovered experimentally by the authors (on Christmas
Day), after a long theoretical and experimental investigation trying to uncover
the arithmetic meaning of these p-adic iterated integrals. It is the prototype for
all the formulae in this paper.

The remainder of this section is devoted to proving Theorem 3.3. The proof
rests on a comparison between the Garrett–Hida p-adic L-function of the
previous section and two different types of ‘Katz-style’ p-adic L-functions
whose definitions are recalled below.

(1) The Katz two-variable p-adic L-function of an imaginary quadratic field.
Let c ⊆ OK be an integral ideal of the imaginary quadratic field K , and denote

by Σ the set of Hecke characters of K of conductor dividing c. Define ΣK =
Σ
(1)
K ∪Σ (2)

K ⊂ Σ to be the disjoint union of the sets

Σ
(1)
K = {ψ ∈ Σ of infinity type (κ1, κ2),with κ1 6 0, κ2 > 1},

Σ
(2)
K = {ψ ∈ Σ of infinity type (κ1, κ2),with κ1 > 1, κ2 6 0}.

For all ψ ∈ ΣK , the complex argument s = 0 is a critical point for the Hecke L-
function L(ψ−1, s), and Katz’s p-adic L-function is constructed by interpolating
the (suitably normalized) values L(ψ−1, 0) as ψ ranges over Σ (2)

K .
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More precisely, let Σ̂K denote the completion of Σ (2)
K with respect to the

compact open topology on the space of OL p -valued functions on a certain subset
of A×K , as described in [BDP2, Section 5.2]. By the work of Katz [Katz1], there
exists a p-adic analytic function

L p(K ) : Σ̂K −→Cp

which is uniquely characterized by the following interpolation property: for all
ψ ∈ Σ (2)

K of infinity type (κ1, κ2),

L p(K )(ψ) = a(ψ)× e(ψ)× f(ψ)× Ω
κ1−κ2
p

Ωκ1−κ2
× Lc(ψ

−1, 0), (46)

where

• a(ψ) = (κ1 − 1)!π−κ2 , e(ψ) = (1 − ψ(℘)p−1)(1 − ψ−1(℘̄)), and f(ψ) =
Dκ2/2

K 2−κ2 ;

• Ωp ∈ C×p is a p-adic period attached to K , as defined in [BDP1, (2–17)];

• Ω ∈ C× is the complex period associated to K defined in [BDP1, (2–15)];
and

• Lc(ψ
−1, s) is Hecke’s L-function associated to ψ−1 with the Euler factors at

primes dividing c removed.

Formula (46) is [BDP1, Proposition 3.1], which in turn follows from [Katz2,
Section 5.3.0] (see also [Gro, Theorem 2.3] and [deS, II, Theorem 4.14]; the
reader is cautioned that the latter reference needs to be slightly modified, for the
power of 2π is not correct there).

Letting NK denote the norm of K/Q regarded as a Hecke character of K of
infinity type (1, 1), Katz’s p-adic L-function satisfies the functional equation
L p(K )(ψ) = L p(K )((ψ ′)−1NK ) (see [Gro, page 90–91]).

The values of p-adic L-functions at classical points lying outside their region
of interpolation are frequently of great arithmetic interest, since they may encode
further invariants of the associated motives. An instance of this philosophy is
Katz’s p-adic analogue of the Kronecker limit formula (see [Katz1, Section
10.4, 10.5], [Gro, pages 90–91], [deS, Chapter II, Section 5.2]), expressing the
value of L p(K ) at a finite order character ψ of G K in terms of a suitable linear
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combination of p-adic logarithms of elliptic units:

L p(K )(ψ) =



1
2

(
1
p
− 1

)
· logp(u℘) if ψ = 1,

−1
24c

(1− ψ−1(℘̄))(1− ψ(℘)p−1)

·
∑
σ∈G

ψ−1(σ ) logp(σ (u)) if ψ 6= 1.

(47)

Here, as above, u℘ ∈ K× is any element satisfying (u℘) = ℘hK , and u ∈ UCM is
an elliptic unit; the integer c > 0 is the smallest positive integer in the conductor
ideal of ψ .

(2) The p-adic Rankin L-function attached to a cusp form and an imaginary
quadratic field. For any Hecke character ψ of K of infinity type (κ1, κ2), let

L( f, ψ, s) := L
(
π f × πψ , s − κ1 + κ2 + 1

2

)
denote the L-series associated with the product of the global automorphic
representations attached to the weight-two cusp form f and the Hecke character
ψ , normalized conveniently. As usual, L( f, ψ, s) = ∏q L (q)(q−s) is defined as
a product of Euler factors ranging over the set of prime numbers.

Fix a positive integer c > 1 which is relatively prime to pN f . Let Σ f,c be the
set of Hecke characters ψ ∈ Σ of conductor c and trivial central character for
which L( f, ψ−1, s) is self-dual and has s = 0 as its central critical point. This
set can be expressed as the disjoint union of the three subsets

Σ
(1)
f,c = {ψ ∈ Σ f,c of infinity type (1, 1)},

Σ
(2)
f,c = {ψ ∈ Σ f,c of infinity type (κ + 2,−κ), κ > 0},

and
Σ
(2′)
f,c = {ψ ∈ Σ f,c of infinity type (−κ, κ + 2), κ > 0}.

The three sets Σ (1)
f,c , Σ (2)

f,c , and Σ (2′)
f,c are each dense in the completion Σ̂ f,c of

Σ f,c with respect to the p-adic compact open topology as explained in [BDP2,
Section 5.2]. As shown in loc. cit., there exists a unique p-adic analytic function

L p( f, K ) : Σ̂ f,c−→Cp

interpolating the critical values L( f, ψ−1, 0) for ψ ∈ Σ (2)
f,c , suitably normalized.

The function L p( f, K ) is referred to as the p-adic Rankin L-function attached
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to the pair ( f, K ). By [BDP1, Proposition 3.11], the interpolation formula reads
precisely as follows: for any character ψ ∈ Σ (2)

f,c of infinity type (κ + 2,−κ),

L p( f, K )(ψ) = a( f, ψ)× e2( f, ψ)× f( f, ψ)× Ω
4κ+4
p

Ω4κ+4
× L( f, ψ−1, 0), (48)

where

• a( f, ψ) = κ!(κ + 1)!π 2κ+1, e( f, ψ) = 1− ap( f )ψ−1(℘̄)+ ψ−2(℘̄)p, and

• f( f, ψ) = (2/c√DK )
2κ+1 ·∏q|c (q − χK (q))/(q − 1) · ω( f, ψ)−1.

Here, ω( f, ψ) denotes the complex number defined in [BDP2, (5.1.11)]. It is
an algebraic scalar of absolute value 1 relative to any complex embedding of Q̄.

Consider now a Hecke character ψNK ∈ Σ (1)
f,c , where ψ has finite order. The

character ψNK lies outside the region of interpolation of L p( f, K ), and the main
theorem of [BDP2]—see [Br] for a proof of it under the more relaxed Heegner
hypothesis imposed here—asserts that

L p( f, K )(ψNK ) =
(

1− ap( f )
ψ(℘̄)p

+ 1
ψ2(℘̄)p

)2

× logωE
(Pψ)2. (49)

We now turn to the comparison of the Rankin p-adic L-function with the
Garrett–Hida p-adic L-function of the previous section: the Katz p-adic L-
function then arises indirectly from the ratio of periods (51) used in constructing
these two p-adic L-functions.

Recall the theta series g of weight one, level Ng = DK NK/Q(c(ψg)), and
character χ−1 appearing in the statement of Theorem 3.3.

Let g be the primitive cuspidal Hida family of theta series of tame level Ng

and tame character χg = χ−1 constructed in for example [Hi2, pages 235–236]
and [Gh, Section 5], specializing in weight one to the p-stabilization gα of g
satisfying Up(gα) = αg · gα. It can be described explicitly by fixing a Hecke
character λ of infinity type (1, 0) and conductor ℘. Let Q(λ) denote the number
field generated by the values of λ, and let Qp(λ) be the completion of Q(λ)
at the prime determined by an embedding Q(λ) ↪→ Q̄p which is fixed at the
outset. Writing OQp(λ) for its ring of integers, decompose its group of units as
O×Qp(λ)

= µ×W , where µ is finite and W is free over Zp. Let 〈·〉 : O×Qp(λ)
→ W

denote the natural projection.
For every integer k > 1, define

ψ
(p)
g,k−1 = ψg〈λ〉k−1.

This definition does not depend on the choice of λ, for any other such choice
λ′ differs from λ by a finite character, and hence 〈λ′〉 = 〈λ〉. Let now ψg,k−1 be
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the Hecke character defined by

ψg,k−1(q) =
{
ψ
(p)
g,k−1(q) if q 6= ℘,

χ−1(p)pk−1/ψ
(p)
g,k−1(℘̄) if q = ℘.

The Hecke character ψg,k−1 has conductor c(ψg) and infinity type (k − 1, 0).
For any k ∈ Z>1 ∩ Ug, the weight k specialization of g is the ordinary p-
stabilization of the theta series gk = θψg,k−1 = θψ ′g,k−1

associated with ψg,k−1 (or
with its Gal (K/Q)-conjugate ψ ′g,k−1). In particular, ψg,0 = ψg is the character
we considered at the outset, and g1 = g.

Together with g, recall also the eigenforms f ∈ S2(N f ) and h ∈ M1(Nh, χ)

of the statement. Let (ğ, f̆ , h̆) be Watson–Woodbury’s test vector of level N
associated to these three modular forms as described in Remark 2.2, and let
also ğ denote Watson–Woodbury’s Λ-adic test vector discussed in Remark 2.4.
Recall that, as discussed in Section 2, Wv = Cv(ğk, f̆ , h̆) ∈ Q× are constants
independent of k for all v | N . Moreover, the results of [Wo2] guarantee that in
this setting C∞(ğk, f̆ , h̆) = 1 for all k.

Recall the triple-product p-adic L-functions introduced in the previous
section. Denote by k 7→ L g

p (ğ, f̆2, h̆1)(k) the restriction of L g
p (ğ, f̆, h̆) to

Ug × {2} × {1}. Because it does not involve the variation of f2 in a Hida family,
this restriction has the virtue of being defined a bit more generally, without any
ordinariness assumptions on f2.

Proposition 2.3 implies, for all k ∈ U ◦g , that

L g
p (ğ, f̆ , h̆)(k) ·L g

p (ğ
∗, f̆ , h̆∗)(k)

= e(k, 2, 1)2 · f(k, 2, 1) · a(k, 2, 1) ·
∏
v|N

Wv ·
L(gk ⊗ f ⊗ h, k+1

2 )

〈g∗k , g∗k 〉2
.

Here, the factors on the right are described in Proposition 2.3. In particular,

f(k, 2, 1) = A · 2B and a(k, 2, 1) =
((

k − 3
2

)
!
(

k − 1
2

)
!
)2

· π−2k .

For every integer k > 1, define the Hecke characters

Ψgh(k) = (ψ ′g,k−1)
−1 · ψ−1

h · N(k+1)/2
K

and
Ψgh′(k) = (ψ ′g,k−1)

−1 · (ψ ′h)−1 · N(k+1)/2
K .

While for k = 1 the characters Ψgh(1) = NK · (ψ ′gψh)
−1 and Ψgh′(1) = NK ·

(ψ ′gψ
′
h)
−1 lie in Σ (1)

f,c , for weights k ∈ U ◦g , k > 1, the characters Ψgh(k), Ψgh′(k)
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belong to Σ (2)
f,c with c = lcm(c1, c2), because their infinity type is (κ + 2,−κ)

with κ = (k − 3)/2 > 0.
It follows that, for weights k ∈ U ◦g , k > 1, the values L p( f, K )(Ψgh(k)),

L p( f, K )(Ψgh′(k)) and L g
p (ğ, f̆ , h̆)(k) all lie in the region of interpolation. An

inspection of the Euler factors defining their classical counterparts yields the
following relationship between critical values: for every k ∈ Ug there is a fudge
factor f0(k) 6= 0 such that

L
(

gk ⊗ f ⊗ h,
k + 1

2

)
= f0(k) · L( f, Ψ −1

gh (k), 0) · L( f, Ψ −1
gh′ (k), 0), (50)

and we shall prove the theorem by letting k ∈ U ◦g ∩ Z>1 in (50) tend p-adically
to 1 within Ug, so that the triplets (k, 2, 1) tend to (1, 2, 1).

Several of the fudge factors that arise in comparing different L-values, viewed
as functions of weight space, satisfy the property described in the following
definition.

DEFINITION 3.5. Let F be a number field. A function

f : U ◦g ∩ Z>1−→ Q̄

is F-admissible if it extends to an element of the fraction field Lg of the algebra
Λg = O(Ug) of Iwasawa functions on Ug, and if f(1) is well defined and belongs
to F×.

As in the statement of the definition, an F-admissible function f will
customarily be identified with the function on Ug ⊆ Zp which it induces.
In order to make the calculations described below easier to follow, vowels will
generally be used to denote nonadmissible functions (such as rational functions
of pk , π k or k!), and consonants to denote admissible ones (such as qk or aq(gk)

for some prime number q 6= p).
Instances of admissible functions were already encountered in the proof of

Proposition 2.6: using the notation employed there, the functions λd were shown
in loc. cit. to be Q(g1, h1)-admissible. Recall also that the fudge factor f0(k)
appearing in (50) accounts for the discrepancy of the Euler factors at the primes
q | cDK N f in the definitions of the above L-series. It may be computed
explicitly, but we are content to note here that it is Q(ψg, ψh)-admissible because
f0(k) is a rational function on qk for q | cDK N f with coefficients in Q(ψg, ψh),
with f0(k) 6= 0 for all k ∈ Z.

For every k ∈ U ◦g , k > 1, define

σ(k) := 〈g∗k , g∗k 〉 ×
(
πΩp

Ω

)2k−2

(51)
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and

e1(k) = e(k, 2, 1)2

e2( f, Ψgh(k))e2( f, Ψgh′(k))
, f1(k) =

∏
v|N Wv · f0(k) · f(k, 2, 1)

f( f, Ψgh(k))f( f, Ψgh′(k))
.

LEMMA 3.6. The function f1(k) is K (ψg, ψh)-admissible, and

L g
p (ğ, f̆ , h̆)(k) ·L g

p (ğ
∗, f̆ , h̆∗)(k) · σ(k)2

= e1(k)f1(k) · L p( f, K )(Ψgh(k)) · L p( f, K )(Ψgh′(k)).

Proof. We already saw that f0(k) is Q(ψg, ψh)-admissible, and Proposition
2.1(b)(ii) implies that f(k, 2, 1) = A · 2B(k) is Q-admissible because
p 6= 2 and B(k) is a linear function of k. It remains to prove that the
denominator of f1(k) is K (ψg, ψh)-admissible. Recall from (48) that f( f, ψ) =
(2/c
√

DK )
k−2 ·∏q|c (q − χK (q))/(q − 1) · ω( f, ψ)−1 for any Hecke character

ψ ∈ Σ (2)
f,c of infinity type ((k − 3)/2 + 2,−(k − 3)/2). The first two factors

are K -admissible, because p is assumed not to divide 2N . Hence, in order to
conclude, we need to show that the functions ω( f, Ψgh(k)) and ω( f, Ψgh′(k))
are admissible, or at least that their product is. By [BDP2, (5.1.11)],

ω( f, Ψgh(k)) · ω( f, Ψgh′(k)) = N2k−2
K (b)N k−1

(ψ ′g,k−1)
2ψhψ

′
h(b) · b2k−2

, (52)

where (b, pNc) = 1 and b · N = (b). This shows that the function in (52) is
K (ψg, ψh)-admissible, because p - bN, and its value at k = 1 is the nonzero
algebraic number ((ψ ′g)

2ψhψ
′
h(b))

−1 = (ψ ′g)2ψhψ
′
h(N), which does not depend

on the choice of b.
Finally, the factorization formula of Lemma 3.6 is a direct consequence of the

interpolating formulae (33) and (48), combined with (50), once one observes that
the factorial terms and powers of π on both sides cancel out.

At this point it is convenient to invoke the following classical formula.

LEMMA 3.7. There is a K -admissible function f2(k) such that

〈g∗k , g∗k 〉 =
(k − 1)!
π k

· f2(k) · L(ψ2
g,k−1 · χ, k).

Proof. Since the L-series of the adjoint of a CM-form factors as

L(Ad(g∗k ), s) = L(Ad(gk), s) = L(χK , s − k + 1)L(ψ2
g,k−1 · χ−1

g , s)
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and χg = χ−1, Lemma 3.7 follows directly from (27) after evaluating at s = k
and applying Dirichlet’s class number formula L(χK , 1) = 2πhK (|O×K |

√
D)−1.

It now becomes clear how Katz’s p-adic L-function enters in the calculation:
note that

L(ψ2
g,k−1 · χ, k) = f3(k) · Lc(ψ

2
g,k−1 · χ · N−k

K , 0), (53)

where again f3(k) accounts for the discrepancy between the Euler factors
at primes q | cDK defining both L-series above, and hence is Q(ψg, ψh)-
admissible.

Define
Ψg(k) := (ψ ′g,k−1)

−2χ−1Nk
K .

LEMMA 3.8. The following equality holds for every k ∈ U ◦g , k > 1:

L p(K )(Ψg(k)) = e(Ψg(k)) · f(Ψg(k))
f2(k) · f3(k) × 〈g∗k , g∗k 〉 ×

(
πΩp

Ω

)2k−2

.

Proof. In light of Katz’s interpolation formula (46), since the infinity type of
Ψg(k) is (κ1, κ2) = (k,−k + 2), it follows that

L(ψ2
g,k−1 · χ, k) = L((ψ ′g,k−1)

2 · χ, k)

= π−k+2

(k − 1)! ·
1

e(Ψg(k))
· f3(k)
f(Ψg(k))

· Ω
2k−2

Ω2k−2
p

· L p(K )(Ψg(k)).

Invoking Lemma 3.7 and (53), one finds that the powers of π and the factorials
(which, as functions of k, are not admissible) cancel out in the left-hand and
right-hand sides of the formula in Lemma 3.8, which then follows.

For all integers k ∈ U ◦g , k > 1, define

ω(k) = I (ğ∗k , f̆ , h̆∗) / I (ğk, f̆ , h̆)

as in (25), and

f(k) = f1(k)
ω(k)

(
f(Ψg(k))
f2(k)f3(k)

)2

.

Let g(χ) ∈ Q̄ ⊂ Cp denote the Gauss sum associated to the character χ , and
define the number field L0 = K (

√
Ng,
√

Nh, g(χ), ψg, ψh). Theorem 3.3 will
follow from the next result.



H. Darmon, A. Lauder and V. Rotger 48

THEOREM 3.9. The function f(k) is L0-admissible, and the following
factorization of p-adic L-series is valid:

L g
p (ğ, f̆ , h̆)(k)2 · L p(K )(Ψg(k))2

= f(k) · L p( f, K )(Ψgh(k)) · L p( f, K )(Ψgh′(k)). (54)

Moreover, there exist explicit elements λ1, λ2, λ3 ∈ Q(ψg, ψh)
× such that

L p( f, K )(Ψgh′(1)) = λ2
1 · logE,p(P1)

2,

L p( f, K )(Ψgh(1)) = λ2
2 · logE,p(P2)

2,

L p(K )(Ψg(1)) = λ3 · logp(ugα ).

(55)

Proof. We first prove (55): note that Ψg(1) = (ψ ′g)−2 · χ−1 · NK = (ψg/ψ
′
g)NK .

By the functional equation of Katz’s p-adic L-function quoted above, since
ψg/ψ

′
g is anticyclotomic, we have L p(K )((ψg/ψ

′
g)NK ) = L p(K )(ψg/ψ

′
g), and

hence (47) applies, yielding L p(K )(Ψg(k))(1) = λ2
3 logp(ugα ) for some explicit

value of λ3 ∈ Q(ψg, ψh)
×. Moreover,

c Ψgh(1) = (ψ ′g)−1 · ψ−1
h · NK = ψ2 · NK ,

Ψgh′(1) = (ψ ′g)−1 · (ψ ′h)−1 · NK = ψ1 · NK ,

and hence (49) can be applied, thereby proving (55).
In order to prove the admissibility of f and the factorization formula, recall

that we already saw in Lemma 3.6 that f1 is K (ψg, ψh)-admissible, and likewise
for f2 and f3. An inspection of the fudge factor f(Ψg(k)) shows that it also is.
Hence it remains to prove that ω(k) is L0-admissible. Let us first show that ω
interpolates to a meromorphic Iwasawa function on Ug such that (54) holds and
ω(1) ∈ C×p is a nonzero p-adic number, leaving for later that ω(1) actually lies
in L×0 .

Note that Lemmas 3.6 and 3.8 give rise to the following identity for all integers
k > 0:

L g
p (ğ, f̆ , h̆)(k) ·L g

p (ğ
∗, f̆ , h̆∗)(k) · L p(K )(Ψg(k))2

= e(k) · f1(k) ·
(

f(Ψg(k))
f2(k)f3(k)

)2

· L p( f, K )(Ψgh(k)) · L p( f, K )(Ψgh′(k)), (56)

where

e(k) := e(Ψg(k))2e1(k) =
(

e(Ψg(k)) · e(k, 2, 1)
e( f, Ψgh(k))e( f, Ψgh′(k))

)2

.

An inspection of the factors appearing above shows that

e(k) = 1 for all k > 0. (57)
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More precisely, one checks that the four factors in the numerator E(gk, f, h)
of e(k, 2, 1) are equal to the four factors appearing in e( f, Ψgh(k))e( f, Ψgh′(k)),
and hence cancel out. In addition, the two factors showing up in e(Ψg(k)) are
identical to those in the denominator of e(k, 2, 1), and thus also cancel out.

Since the unit ugα and the points P1 and P2 are nontorsion, it also follows
from (55) and (56) that neither L g

p (ğ, f̆ , h̆)(k) nor L g
p (ğ∗, f̆ , h̆∗)(k) vanishes

at k = 1. Note that (32) implies that

ω(k) = L g
p (ğ
∗, f̆ , h̆∗)(k)/L g

p (ğ, f̆ , h̆)(k), (58)

from which it follows that ω ∈ Lg, with no poles at k = 1 and satisfying
ω(1) 6= 0. The factorization formula claimed in the theorem is also a
consequence of (56)–(58).

To finish the proof, we need to show that ω(1) ∈ L0. To do that, let WN denote
the Atkin–Lehner operator induced by the matrix

(
0 −1
N 0

)
. As shown in [AL78]

and [Hi2, Chapter X], it commutes with the Shimura–Maass operator, and its
adjoint with respect to the Petersson scalar product is −WN . This implies that

I (ğk, f̆ , h̆) = I (WN (ğk),WN ( f̆ ),WN (h̆)).

By the formulae in [AL78], WN (h̆(q)) is a linear combination with
coefficients in Q(h) of the modular forms λh · h∗(qd), where d ranges over
the positive divisors of N/Nh and λh is the pseudoeigenvalue of the newform h
of level Nh in the sense of [AL78], characterized by the equation WNh (h)= λhh∗.
The analogous claim, with similar notation, holds for gk and f . It thus follows
from for example [DR1, Lemma 2.12] that the ratio

ω(k) = I (ğ∗k , f̆ , h̆∗)/I (WN (ğk),WN ( f̆ ),WN (h̆))

lies in Q(gk, f, h, λ f , λg, λh).
By [AL78, Theorem 2.1], since aNg (gk), aN f ( f ) and aNh (h) are all nonzero,

the pseudoeigenvalues of f , gk , and h are

λ f = −aN f ( f ), λg = N (k−2)/2
g g(χ−1)/aNg (gk), λh = g(χ)/(

√
Nh · aNh (h)).

This implies that ω(1) lies in L0, as claimed. Note that, since p - N and the
coefficients aNg (gk) are Iwasawa functions on Ug, the above formulae give rise to
a rather explicit expression of ω(k) as a p-adic continuous function. Theorem 3.9
follows.

To conclude the proof of Theorem 3.3, recall that Proposition 2.6 recasts
L g

p (ğ, f̆ , h̆)(1) as the p-adic iterated integral. Combined with Theorem 3.9, we
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deduce that(∫
γ̆α

f̆ · h̆
)2

· logp(ugα )
2 = f(1) logE,p(P1)

2 logE,p(P2)
2 (59)

up to squares in Q(ψg, ψh)
×. Set L = L0(

√
f(1)). Taking square roots in (59)

shows that ∫
γ̆α

f̆ · h̆ = λ · logE,p(P1) logE,p(P2)

logp(ugα )

for some λ ∈ L×, thereby proving Theorem 3.3.

3.3. Numerical evidence for inert primes. The proof of Conjecture ES
based on Katz-style p-adic L-series and their factorizations breaks down when
the prime p is inert in K . Yet the units and points that arise can still be expressed
in terms of elliptic units and Heegner points, at least in the rank (1, 1) setting,
making this a natural first testing ground for Conjecture ES.

3.3.1. General remarks. Retain all the notation and assumptions of
Section 3.2, but assume now that the prime p is inert in K .

Let K p denote the completion of K at p, a quadratic unramified extension
of Qp. Since the Frobenius element σp is a reflection in the dihedral group
Gal (H/Q), the prime p splits completely in H/K , and the choice of σp amounts
to choosing an embedding H ↪→ K p, which shall be fixed from now on.

Because %g and %h have dihedral projective image, it follows that σp acts on
Vg (respectively, on Vh) with eigenvalues λ and−λ (respectively, λ−1 and−λ−1),
for a suitable root of unity λ. Label the four values

αg = λ, βg = −λ, αh = λ−1, βh = −λ−1,

so that
αgαh = 1, αgβh = −1,

as shall be assumed from now on. The decomposition

Vgh ' Vψ1 ⊕ Vψ2

of Gal (H/Q)-modules continues to hold, but now σp acts on both Vψ1 and Vψ2

as reflections, with eigenvalues 1 and −1.
The asymmetry in the roles of g and h in the definition of the p-adic iterated

integral continues to determine a pair (ψ1, ψ2) of global characters of G K by
requiring that ψ1 and ψ2 ‘each be divisible by ψg’. This pair is uniquely defined
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up to the action of Gal (K/Q), since replacing ψg by ψ ′g has the effect of
replacing (ψ1, ψ2) by (ψ ′2, ψ

′
1). Fix vψ j ∈ Vψ j to be a nonzero vector in the

one-dimensional ψ j -eigenspace for the action of G K on Vψ j . With this choice
in hand, set vψ ′j := σpvψ j , as in the previous section. Given any P ∈ Hom(Vψ j ,

E(H)L), we shall write

Pψ j := P(vψ j ), Pψ ′j := P(vψ ′j ).

LEMMA 3.10. The regulator det(Rgα (E, %gh)) is given by the following.

(1) If r(E, Vψ1) = r(E, Vψ2) = 1,

det Rgα (E, %gh) = logE,p(Pψ1) · logE,p(Qψ2)− logE,p(Pψ ′1) · logE,p(Qψ ′2).

In particular, if ψ1 (say) is a quadratic (genus) character, so that the point
Pψ1 is a σp-eigenvector with eigenvalue ι = ±1, then

det Rgα (E, %gh) = logE,p(Pψ1) · logE,p(Qψ2 − ιQψ ′2).

(2) If r(E, Vψ1) = 2 and r(E, Vψ2) = 0,

det Rgα (E, %gh) = logE,p(Pψ1) · logE,p(Qψ ′1)− logE,p(Pψ ′1) · logE,p(Qψ1),

where (P, Q) is a basis for HomGQ(Vψ1, E(H)L).

Observe in particular that the regulator vanishes in the special case where
there are no global points (P1, P2) ∈ E(H)%1

L × E(H)%2
L belonging to distinct

eigenspaces for the action of σp; this exceptional scenario in which the regulator
is degenerate occurs precisely when

dim(%1) = dim(%2) = 1 (so that ψ2
1 = ψ2

2 = 1) and %1(p) = %2(p). (60)

If (60) holds, Conjecture ES predicts that the iterated integrals attached to
( f, g, h) vanish, in spite of the running hypothesis ran(E, %1) = ran(E, %2) = 1.
See Example 4.3 below for a numerical verification of this interesting
phenomenon.

Suppose for the rest of this section that (60) is not satisfied, so that, switching
%1 and %2 if necessary, it may be assumed that 1 and −1 are eigenvalues of
%1(σp) and %2(σp), respectively. Recall furthermore the points P±ψi

defined from
Heegner points in Lemma 3.1 and (43), and the unit u−ψ0

defined in (44) from
elliptic units. Assuming (38) or (40), Conjecture ES predicts that there is some
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choice of test vectors f̆ , γ̆ , and h̆ for which

∫
γ̆

f̆ · h̆=



logE,p(P
+
ψ1
) logE,p(P

−
ψ2
)− logE,p(P

−
ψ1
) logE,p(P

+
ψ2
)

logp(u
−
ψ0
)

if ψ2
1 , ψ

2
2 6= 1,

and Vψ1 6= Vψ2,

logE,p(P
+
ψ1
) logE,p(P

−
ψ2
)

logp(u
−
ψ0
)

otherwise.

(61)

3.3.2. Numerical evidence. The following experiment in support of (61) gave
the authors their first evidence that the p-adic iterated integrals continue to have
geometric meaning beyond the setting treated in Section 3.2.

EXAMPLE 3.11. Consider the elliptic curve

E : y2 + xy + y = x3 + x2 + x

of conductor 83 labelled 83a in Cremona’s tables, and write f for the associated
weight-two newform. Let χ be the odd quadratic character of conductor 83. The
space S1(83, χ) has dimension one, and is spanned by the theta series g := θψg

attached to a cubic character ψg of G = Gal (H/K ), where H is the Hilbert
class field of K = Q(

√−83), which has class number 3. The representation ρg

is equal to the induced representation Vψg . Let h = E(1, χ) ∈ M1(83, χ) be
the Eisenstein series attached to the pair (1, χ), whose Galois representation
%h is induced from the trivial character ψh = 1 of G. Since g and h have
rational Fourier coefficients, it will be enough to take L = Q (although the
representations are in fact defined over Q(ζ3)). The representations Vgg and Vgh

decompose into irreducible constituents as follows:

Vgg = Vψ2
g
⊕ Vψg ·ψ−1

g
= Vψg ⊕Q⊕Q(χ) =: %1 ⊕ %2 ⊕ %3,

Vgh = Vψg ·ψh ⊕ Vψg ·ψ−1
h
= Vψg ⊕ Vψg = %1 ⊕ %1.

A direct calculation shows that

r(E, %1) = r(E, %2) = 1, r(E, %3) = 0,

and similarly for the analytic ranks. More precisely, the Mordell–Weil group

E(H)Q = E(H)
Vψg
Q ⊕ E(Q)Q

is of rank 3, and is generated by the Heegner point

P = (t,−t2 − 2) ∈ E(H) where t3 − t2 + t − 2 = 0, (62)
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along with its Galois translates Pσ and Pσ 2 , where σ is a generator of
Gal (H/K ). The vector spaces E(Q)Q and E(H)

Vψg
Q are generated by

PQ := P + Pσ + Pσ 2 = (1,−3), and

{
P+ψg
:= 2P − Pσ − Pσ 2

,

P−ψg
:= Pσ − Pσ 2

.

Let p = 5, which is in inert in K . The cubic polynomial in (62) has exactly one
root over Q5. There is therefore a unique embedding of H into C5 for which the
Heegner point P maps to E(Q5); the images of the points Pσ and Pσ 2 are then
interchanged by the Frobenius element σ5.

The Stark unit that enters into the denominator of the conjectural expression
for the p-adic iterated integral is the elliptic unit defined by u−ψ0

= uσ/uσ
2 , so

that
logp(u

−
ψ0
) = logp(u

σ )− logp(u
σ 2
),

where u ∈ H is the unique root of the polynomial

x3 − 2x2 − 2x − 1

whose image under the previously chosen embedding of H belongs to Q5.
Let γ±1 ∈ Soc,ord

1 (83, χ)∨ be the dual basis to g±1 = g(q) ∓ g(q5) in the
space of 5-adic overconvergent modular forms, which maps g±1 to 1 and all
other generalized eigenspaces in Soc,ord

1 (83, χ) to 0. A numerical calculation of
5-adic iterated integrals shows to 70 digits of 5-adic precision∫

γ±1

f · g = −1688341751390720654446425615337716320464561776401,∫
γ±1

f · h = −2981481189608571355501040629889815717824676581453.

Let E(g±1, f, g) denote the algebraic factor defined at the start of Section 5.2. In
all the examples where p is inert, this factor is always equal to

E(g±1, f, g) :=
(

1− ap( f )
p
+ 1

p

)(
1+ ap( f )

p
+ 1

p

)
∈ Q.

The following identities were checked to 70 digits of 5-adic precision:∫
γ±1

f · g = 5 · E(g±1, f, g) · logE,5(PQ) logE,5(P
−
ψg
)

24 · log5(u
−
ψ0
)

, (63)∫
γ±1

f · h = −5 · E(g±1, f, h) · logE,5(P
+
ψg
) logE,5(P

−
ψg
)

24 · log5(u
−
ψ0
)

, (64)
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in perfect agreement with the prediction (61) for both γ+1 and γ−1. Note that u−ψ0

is a unit in the (−1)-eigenspace for σ5 while the numerators involve points in
both eigenspaces, so that the resulting ratio belongs to Q5.

Although the Heegner point P is only defined up to sign, it is worth noting
that the right-hand sides of (63) and (64) are unchanged if P is replaced by −P .

Formulae similar to (63) and (64) (with the terms 5 and 24 in the numerator
and denominator replaced by p and 4(p + 1), respectively) were verified to 15
digits of 13-adic precision (respectively, 10 digits of 19-adic precision) replacing
p = 5 by the inert primes p = 13 and p = 19. Similar experiments were also
performed with the class number 3 field K = Q(

√−331) and the inert prime
p = 7, where the same formulae (mutatis mutandis) were verified to 10
significant 7-adic digits.

The next example also involves Heegner points, but is one of the most
illuminating in this paper, insofar as it concerns a rank-(1, 1) setting of
Conjecture ES in which nonetheless the regulator Rgα (E, %gh) is not factorizable.
It illustrates a feature of Conjecture ES which initially surprised the authors,
namely, that the numerator on the right-hand side of Conjecture ES need not,
in contrast with what one might expect from Theorem 3.3, be the product of
logarithms of two points, but may involve a linear combination of such products.

EXAMPLE 3.12. Consider the curve

E : y2 + xy + y = x3 + x2 − 2x

of conductor 79 labelled 79a in Cremona’s tables, and write f for the associated
weight-two newform.

Let χ be the odd Dirichlet character of order 2 and conductor 79 associated
to the imaginary quadratic field K = Q(

√−79), of class number 5. As in
the previous example, denote by H the Hilbert class field of K , and set G =
Gal (H/K ). The space S1(79, χ) has dimension two, and is spanned by a pair of
dihedral eigenforms with coefficients in the field L = Q(

√
5) generated by the

golden ratio ω = (1+√5)/2, namely

g = q + (−1+ ω)q2 + (1− ω)q4 − ωq5 − q8 + q9 − q10 + · · ·

and its Galois conjugate g†. Let h = E(1, χ) ∈ M1(79, χ) be the Eisenstein
series attached to the pair (1, χ). After fixing a quintic character ψ of G, it can
be assumed that

Vg = Vψ2 = Vψ3, Vg† = Vψ = Vψ4, Vh = Vψh = L ⊕ L(χK ),



Stark points and p-adic iterated integrals 55

where ψh is the trivial character of G K . The representations Vg†g and Vg†h

decompose into irreducible summands as follows:

Vg†g = Vψ ·ψ−2 ⊕ Vψ ·ψ2 = Vψ ⊕ Vψ2 =: %1 ⊕ %2,

Vg†h = Vψ ·ψh ⊕ Vψ ·ψ−1
h
= Vψ ⊕ Vψ = %1 ⊕ %1.

A Heegner point calculation reveals that the Mordell–Weil group E(H) has rank
5, and is generated by the Heegner point

P =
(

t,
−t4 − 3t3 + 2t2 + 7t − 6

3

)
where t5 + t4 − 5t3 − 3t2 + 8t − 3 = 0,

and its Galois translates Pσ , Pσ 2 , Pσ 3 , and Pσ 4 , where σ is a generator of
Gal (H/K ), chosen in such a way that ψ(σ) = ζ5 with ζ5 a primitive fifth root
of unity satisfying ζ5 + ζ 4

5 = −ω. Let ω′ = (1−√5)/2 denote the conjugate of
the golden ratio. The L-vector space E(H)%1

L is then spanned by the points

P+1 = 2P − ωPσ − ω′Pσ 2 − ω′Pσ 3 − ωPσ 4
,

P−1 = (ζ5 − ζ 4
5 )(P

σ − ωPσ 2 + ωPσ 3 − Pσ 4
),

and E(H)%2
L has a similar basis (P+2 , P−2 ) obtained by replacing ζ5 by ζ 3

5 , and
thus ω by its conjugate ω′, in the above expressions for P+1 and P−1 .

Let p = 29 be the smallest prime which is inert in K but split in L/Q. (The
latter property is not essential to the conjectures, but makes it easier to calculate
the p-adic iterated integrals.) Fix the unique embedding of H into Cp for which
the image of P belongs to E(Qp), and for which σp interchanges Pσ with Pσ 4

and Pσ 2 with Pσ 3 .
For the elliptic unit, one may start with u as the unique root of x5 − 1014x4 +

299243x3−21035x2+195x−1 in H ∩Q29, and define ug†
±1

in exactly the manner
as P−2 was defined above (only replacing P by u and using additive notation for
(O×H )L); that is,

ug†
±1
:= (ζ 3

5 − ζ 2
5 )(u

σ − ωuσ
2 + ωuσ

3 − uσ
4
).

Note that ug†
±1

may be alternatively denoted u−ψ0
.

Let γ †
±1 ∈ Soc,ord

1 (79 · 23, χ)∨ be the dual element to g†
±1, defined as before. A

numerical calculation of p-adic iterated integrals reveals that∫
γ

†
±1

f · h = 371806430046362 mod 2910

∫
γ

†
±1

f · g = 259114157339642 mod 2910.
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The following identity was then verified to ten digits of 29-adic precision:∫
γ

†
±1

f · g

= p · E(g†
±1, f, g) · (logE,29(P

+
1 ) logE,29(P

−
2 )− logE,29(P

−
1 ) logE,29(P

+
2 ))

4 · 5 · √5 log29(ug†
±1
)

, (65)

where here
√

5 denotes the unique 29-adic square root of 5 which is congruent
to 18 modulo 29.

Turning to
∫
γ

†
±1

f · h, notice that E(g†
±1, f, h) = E(g†

±1, f, g) (= 864/841)
and the transcendental factor log29(ug†) expected on the right-hand side of the
formula is the same as for

∫
γ

†
±1

f · g. Thus these factors should cancel upon
taking a ratio, and indeed one observes (modulo 2910) the identity∫

γ
†
±1

f · g∫
γ

†
±1

f · h =
1
2
· logE,29(P

+
1 ) logE,29(P

−
2 )− logE,29(P

−
1 ) logE,29(P

+
2 )

logE,29(P
+
1 ) logE,29(P

−
1 )

= 1
2

(
logE,29(P

−
2 )

logE,29(P
−
1 )
− logE,29(P

+
2 )

logE,29(P
+
1 )

)
, (66)

which suggests that∫
γ

†
±1

f · h = p · E(g†
±1, f, h) · logE,29(P

+
1 ) logE,29(P

−
1 )

2 · 5 · √5 log29(ug†
±1
)

. (67)

Both equations (65) and (67) are in perfect agreement with Conjecture ES.

REMARK 3.13. It was a ratio identity like the one in (66) (for a simpler ratio in
Example 3.11) which first convinced the authors that the p-adic iterated integral
had geometric meaning in the setting where p is inert, even prior to their full
understanding of the logarithm of the Stark unit occurring in the denominator of
the identity of Conjecture ES.

We now turn to our first numerical example in the rank-2 setting, illustrating
a notable feature of Conjecture ES, namely that its right-hand side can be a
nontrivial p-adic combination of logarithms of global points in a ‘genuine rank-
2’ setting involving a primitive L-function with a double zero at the centre.

EXAMPLE 3.14. We take the curve

E : y2 + xy + y = x3 − 7x + 5
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of conductor 57 labelled 57b in Cremona’s tables, and write f for the attached
newform of weight two.

Let χ be the odd Dirichlet character of order 2 and conductor 23 associated
to the imaginary quadratic field K = Q(

√−23), of class number 3. The space
S1(23, χ) has dimension one, and is spanned by the theta series g := θψg attached
to a cubic character ψg of G = Gal (H/K ), where H is the class field of K . As
in Example 3.11, we find

Vgg = Vψg ⊕ L ⊕ L(χ) with L = Q(ζ3),

but a calculation reveals that here

r(E, Vψg ) = 2, r(E, L) = r(E, L(χ)) = 0,

and likewise for the analytic ranks. Here, the Heegner hypothesis is not satisfied,
but the descent code in MAGMA can be used to construct the required global
points in E(H)

Vψg
L . Over the cubic subfield

Q(a), a3 − a2 + 2a − 1 = 0

of H , the curve E has rank 2 with generators for the Mordell–Weil lattice

P := (9a2 − 4a + 17,−45a2 + 20a − 80), Q := (a2 + 3, 2a2 + 2).

We embed Q(a) into H = Q(b), where b6 − 6b4 + 9b2 + 23 = 0, by taking
a = (b4 − 2b2 + 1)/9. Taking σ as a generator for G, we compute four points

P+ψg
:= 2P − Pσ − Pσ 2

, P−ψg
:= Pσ − Pσ 2

,

Q+ψg
:= 2Q − Qσ − Qσ 2

, Q−ψg
:= Qσ − Qσ 2

,

and similarly a unit u−ψ0
starting from the root (b4 − 5b2 + 4)/9 of x3 − x − 1 in

H . We take p = 19, and find we may embed H into C19 so that P , Q, and u are
defined over Q19.

To compute the relevant 19-adic iterated integral we must work in 19-adic
level 3 · 23, and so choose a 3-stabilization ğ of g. We find x2 − a3(g)x +
χ(3) = (x − ζ3)(x − ζ 2

3 ) and take ğ to be the 3-stabilization with U3-eigenvalue
ζ3. (With the other choice the formula is exactly the same, except the algebraic
factor is replaced by its complex conjugate.) We embed Q(ζ3) into Q19 so that
ζ3 ≡ 7 mod 19, and find∫

γ̆±1

f · g = −25103076413984358720047537708218 mod 1925.
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One checks to 25 digits of 19-adic precision that∫
γ̆±1

f · g = 63ζ3 + 18
26 · 19

· logE,19(P
+
ψg
) logE,19(Q

−
ψg
)− logE,19(P

−
ψg
) logE,19(Q

+
ψg
)

logp u−ψ0

,

as predicted by Conjecture ES.

In the next example, the relevant Heegner point arises from a Shimura curve
rather than a classical modular curve parameterization. Note that Conjecture ES
in principle allows the efficient computation of these Heegner points in terms
of the Fourier expansions of classical modular forms rather than working with
their Jacquet–Langlands lifts. For the purpose of verifying Conjecture ES, the
authors did not actually calculate the Heegner points arising from the Shimura
curve parameterization, which raises significant computational challenges, but
rather found appropriate global points by general descent methods.

EXAMPLE 3.15. Consider the curve

E : y2 + y = x3 + x2 + 9x + 1

of conductor 35 labelled 35a in Cremona’s tables, and write f for the associated
weight-two newform. Let K = Q(

√−23) be the smallest imaginary quadratic
field of class number 3, and note that both primes dividing 35 are inert in K .
This is the simplest setting where there is no Heegner point on E arising from
a modular curve, and in which one must rather work with the Shimura curve
attached to the indefinite quaternion algebra ramified at 5 and 7.

Let χ be the quadratic Dirichlet character of conductor 23. Then S1(23, χ) is
one dimensional, and is spanned by the single dihedral form

g = q − q2 − q3 + q6 + q8 − q13 − q16 + · · · .
Let H be the Hilbert class field of K , set G = Gal (H/K ), and let %g be the
representation induced from a cubic character ψg of G with image contained in
L = Q(ζ3).

The representation Vgg decomposes as

Vgg = Vψg ·ψg ⊕ Vψg ·ψ−1
g
= Vψg ⊕ L(χ)⊕ L .

A direct calculation reveals that

r(E, Vψg ) = r(E, L(χ)) = 1, r(E, L) = rank(E(Q)) = 0,

and the same is true of the analytic ranks. Let PK be a generator of E(K ) up
to torsion, which lies in the −1 eigenspace for the action of the involution in
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Gal (K/Q), and let P be a Q[Gal (H/K )]-module generator of E(H)⊗Q. The
points PK and P were not constructed using Lemma 3.1, since the Heegner point
evoked in this lemma is difficult to compute directly in practice. Instead, one just
takes

PK :=
(
−5,
−5
√−23− 1

2

)
,

P :=
(−7t4 + 14t2 + 29

36
,

7t4 − 14t2 − 68
24

)
∈ E(H),

where t is a normal basis generator for H over Q satisfying the equation

t6 − 6t4 + 9t2 + 23 = 0.

The point P just turned out to be the first point in a basis for the rank-3 Mordell–
Weil group E(H) computed by MAGMA.

Let p = 5 be the smallest prime which is inert in K . After a suitable choice of
embedding of H into K5 for which P maps to E(Q5)

−, the Frobenius element
σ5 interchanges Pσ and Pσ 2 . With these conventions, we may set

P+ψg
:= 2P − (Pσ + Pσ 2

).

Both f and g are 5-adic overconvergent modular forms of level 7 and 23,
respectively. Stabilize g to an eigenform ğ = g(q)− g(q7) of level 161 = 7 · 23
with U7 eigenvalue 1. Then ğ has two stabilizations

ğ±1 = ğ(q)∓ ğ(q5)

at 5, which can be viewed either as classical modular forms of level 161 · 5 or
as 5-adic overconvergent forms of level 161. Write γ̆±1 ∈ Soc,ord

1 (7 · 23, χ)∨ for
the usual dual element to ğ±1. A direct evaluation of the 5-adic iterated integral
reveals that∫

γ̆+1

f · g = −
∫
γ̆−1

f · g = 376357248757242028241 mod 530.

Starting with the elliptic unit u which is the unique root of x3+ 6x2+ 29x − 1
in H ∩Q5, the unit u− is defined by u− = (uτ/uτ 2

). The following identity was
then checked to 30 digits of 5-adic precision:∫

γ̆+1

f · g = 3 · 7 · logE,5(PK ) · logE,5(P
+
ψg
)

2 · 5 · log5(u−)
,

as predicted by (61). Note that once the point PK is known, this identity leads
to an explicit analytic formula for a global point on E over the Hilbert class
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field H , namely P+ψg
, without passing through the calculation of the Shimura

curve parameterization of E , as would be necessary if one were to resort to
Heegner points instead of p-adic iterated integrals.

4. Stark–Heegner points and theta series of real quadratic fields

4.1 Theoretical preliminaries. This section focusses on the case where g
and h are theta series attached to characters—denoted ψg and ψh , respectively—
of mixed signature (+,−) of the same real quadratic field K . The self-duality
assumption on Vgh implies that

ψ1 := ψgψh, ψ2 := ψgψ
′
h

are dihedral characters of K , which are totally even and totally odd respectively,
and that

Vg = Vψg , Vh = Vψh , Vgh = Vψ1 ⊕ Vψ2 .

As in the previous section, the Hasse–Weil–Artin L-function factors as

L(E, %gh, s) = L(E/K , ψ1, s) · L(E/K , ψ2, s),

and Hypothesis A is fulfilled as soon as the conductors of ψg and ψh are coprime
to N f . In all examples where Conjecture ES is tested below, Hypothesis B holds
because L(E/K , ψ1, 1) = L(E/K , ψ2, 1) = 0.

Let p be a rational prime, at which the representations Vg and Vh are
unramified, and let αg and βg (respectively, αh and βh) denote as before the
Frobenius eigenvalues for Vg (respectively, Vh) attached to this prime. In order
for g to satisfy Hypotheses C and C′, it is necessary and sufficient to assume that

p is inert in K . (68)

In that case, by the remarks surrounding (22), the Stark unit ugα =: uK of
Conjecture ES can be taken to be equal to the fundamental unit of K , and in
particular it depends only on K and not on ψg.

Assumption (68) also implies that the Frobenius element σp corresponds to
reflections in the dihedral groups cut out by the representations Vψ1 and Vψ2 . As
in Section 3.3, it is assumed that

αgαh = 1, αgβh = −1, βgαh = −1, βgβh = 1.

The eigenvalues of σp on Vψ1 are (1,−1), and likewise for Vψ2 . Note in particular
that, in this setting, the representation Vgh is never regular at p, even though the
representations Vg, Vh , Vψ1 , and Vψ2 are all regular.
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Consider first the ‘generic’ setting where neither of the characters ψ1 or ψ2 is
a quadratic (genus) character, so that the representations Vψ1 and Vψ2 are both
irreducible. Conjecture ES then predicts the existence of points P1 ∈ E(H)

Vψ1
L

and P2 ∈ E(H)
Vψ2
L whose projections onto the different σp-eigenspaces

P+1 ∈ (E(H)Vψ1
L )σp=+1, P−2 ∈ (E(H)Vψ2

L )σp=−1,

P−1 ∈ (E(H)Vψ1
L )σp=−1, P+2 ∈ (E(H)Vψ2

L )σp=+1,

are related to a suitable p-adic iterated integral by∫
γ̆α

f̆ · h̆ ?= logE,p(P
+
1 ) logE,p(P

−
2 )− logE,p(P

−
1 ) logE,p(P

+
2 )

logp(uK )
. (69)

This conjecture becomes slightly easier to verify when one of the characters ψ1

orψ2 is a quadratic (genus) character. Assume without loss of generality that this
is the case for ψ1, so that

Vψ1 = L(χ1)⊕ L(χ2)

becomes reducible as a GQ-module, breaking up into two one-dimensional
representations attached to quadratic Dirichlet characters χ1 and χ2 satisfying
χ1χ2 = εK , so that in particular χ1(p) = −χ2(p). When the iterated integral of
the left-hand side of (69) is nonzero, Conjecture ES predicts that precisely one
of the characters χ1 or χ2 occurs in the Mordell–Weil group of E . Assume that
it is χ1 which arises, and set ι := χ1(p) = ±1.

One then has
P1 ∈ E(H)χ1

L .

Conjecture ES predicts that, for a suitable choice of test vectors,∫
γ̆α

f̆ · h̆ ?= logE,p(P1) logE,p(P
−ι
2 )

logp(uK )
. (70)

Finally, consider the case in which ψ2
1 = ψ2

2 = 1. The representation Vgh then
decomposes as a sum of one-dimensional summands, and Conjecture ES takes
the form ∫

γ̆α

f̆ · h̆ ?= logE,p(P1) logE,p(P2)

logp(uK )
, (71)

provided that the points P1 and P2, which both belong to quadratic extensions
of Q, belong to distinct eigenspaces for σp; in the case where they are in the
same eigenspace, Conjecture ES predicts a subtle vanishing of the p-adic iterated
integral arising from a degeneracy in the regulator term. This case is illustrated
in Example 4.3 below.
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4.2. Numerical evidence. Weight-one modular forms whose Artin
representations can be induced only from characters of class groups of real
quadratic fields are rather rare in small level. The first such occurrence is in level
145, where one finds such a form coming from a quartic character of Q(

√
5)

with conductor a prime of norm 29. The next example is concerned with this
modular form.

EXAMPLE 4.1. Let K = Q(
√

5), and let

ψg = ψ−1
h

be the quartic character of K which is ramified at the prime λ = (29,
(11+√5)/2) of norm 29. Let χ5 and χ29 be the quadratic and quartic Dirichlet
characters of conductors 5 and 29, respectively, and let χ := χ5χ29 be the odd
quartic character of conductor 5 · 29. Both ψg and χ take values in the field
L := Q(i) and are unique up to conjugation by Gal (L/Q). Fix a choice of these
characters in such a way that the theta series

g ∈ S1(5 · 29, χ−1), h ∈ S1(5 · 29, χ)

associated to ψg and ψh belong to spaces of weight-one modular forms with
those characters (and Fourier coefficients in L). The Artin representation Vgh is
given by

Vgh = L ⊕ L(χ5)⊕ Vψ ,

where ψ is the unique (up to conjugation) quartic ring class character of K of
conductor 29. Let H be the abelian quartic extension of K cut out byψ , and write
Gal (H/K ) =: 〈σ 〉. The field H is Galois over Q, with Galois group G = D8,
the dihedral group of order 8. The subfield of H fixed by the centre 〈σ 2〉 of G
is the totally real biquadratic field M := Q(

√
5,
√

29), and H is the quadratic
extension of M given by

H = M(
√
δ) = M(

√
δ′), δ =

(−29+ 3
√

29
2

)
, δ′ =

(−29− 3
√

29
2

)
.

Note that δ and δ′ are totally negative elements of M , and that δδ′ = 5 · 29.
Let f be the weight-two cusp form of level 17 attached to the unique elliptic

curve
E : y2 + xy + y = x3 − x2 − x − 14

of conductor 17 denoted 17a in the tables of Cremona. The conductor of E is
inert in the quadratic field K . An explicit calculation shows that

E(Q)L = 0, E(K )χ5
L = L · PK where PK =

(
379
20 ,

−1995+7218
√

5
200

)
.
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The group G admits four distinct one-dimensional representations, on which
σ 2 acts trivially, and a unique irreducible representation of dimension two with
rational traces, which is isomorphic to Vψ and on which σ 2 acts as multiplication
by −1. Hence

E(H)Vψ
Q = E(H)σ

2=−1
Q .

Considerations involving signs in the functional equations of L-series suggest
that the representation Vψ occurs with odd multiplicity in E(H) (see for
example the introduction of [Dar]). Note that the field H , a totally odd cyclic
quartic extension of K , contains no imaginary quadratic subfields. The classical
Heegner point construction is therefore unavailable to produce the global points
in E(H)Vψ

Q whose existence is predicted by the Birch and Swinnerton-Dyer
conjecture. The Stark–Heegner point algorithms described in [DP] can be used
as a substitute for the method based on Heegner points, and they yield four
nontrivial points in E(H) given by

P =
(−220777− 17703

√
145

5800
,

214977+ 17703
√

145
11600

+ 28584525+ 3803103
√

5+ 1645605
√

29+ 2364771
√

145
290000

√
δ

)
Pσ =

(−220777+ 17703
√

145
5800

,
214977− 17703

√
145

11600

+ 28584525+ 3803103
√

5− 1645605
√

29− 2364771
√

145
290000

√
δ′
)

Pσ 2 =
(−220777− 17703

√
145

5800
,

214977+ 17703
√

145
11600

− 28584525+ 3803103
√

5+ 1645605
√

29+ 2364771
√

145
290000

√
δ

)
Pσ 3 =

(−220777+ 17703
√

145
5800

,
214977− 17703

√
145

11600

− 28584525+ 3803103
√

5− 1645605
√

29− 2364771
√

145
290000

√
δ′
)
.

These four Galois conjugate points are constructed from periods arising from
a p-adic integration on H17 ×H based on the minus modular symbol of f , as
described in [Dar]. The conjectures of loc.cit. predict that these points should
lie in the minus eigenspace for complex conjugation, which coincides in this
case with the central involution σ 2 of Gal (H/Q). It can indeed be observed
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that σ 2 P = −P and that σ 3 P = −σ P . In particular, the Stark–Heegner point
P and its conjugates generate a rank-2 subgroup of E(H) which is isomorphic
to Vψ . This shows that r(E, Vψ) > 1, and the belief that Stark–Heegner points
ought to behave like their quadratic imaginary counterparts strongly suggests
that in fact ran(E, Vψ) = 1. If such is the case, Conjecture ES predicts the
nonvanishing of some p-adic iterated integral attached to ( f, g, h).

The global point P and its conjugates were obtained from a 17-adic
calculation. This is an essential limitation of [Dar], where one is forced to
work p-adically at a prime p dividing the conductor of E . On the other hand, the
p-adic iterated integral appearing on the left of (70) can be calculated using any
prime p which is inert in K . It turns out to be expedient (albeit, not essential, as
in the calculations relying on the algorithms of [DP]) to work at p = 17. This
is because, with this choice of p, the classical modular form f of level 17 is
p-adically of level 1, and the p-adic iterated integral can therefore be calculated
by applying the ordinary projection algorithms of [La2] to a space of ordinary
overconvergent 17-adic modular forms of weight one and relatively modest level
5 · 29.

It can be checked that, for a suitable embedding of H into the quadratic
extension Q172 of Q17, the points P and σ 2 P are defined over Q17, while the
points σ P and σ 3 P are defined over Q172 and are interchanged by the Frobenius
element σ17. Fix such an embedding from now on, and let γ± ∈ S1(Γ1(5 · 29),
χ)∨L [g±] be the unique element satisfying

γ±(g∗±) = 1.

Here, g± = g±ζ 3
8

denotes the 17-stabilizations of g. A numerical evaluation of
the 17-adic iterated integrals, to 16 significant digits, shows that∫

γ±
f · h = 1259389260500681328× 17 mod 1716,

and that ∫
γ±

f · h = logE,17(PK ) logE,17(P)
3 · 17 · log17(uK )

(72)

to an accuracy of 16 significant 17-adic digits. Since σ17 PK = −PK , while P
generates E(H)Vψ

L ∩ E(Q17), this is in perfect agreement with the prediction
of (70).

REMARK 4.2. It is worth emphasizing that the Stark–Heegner point P is
a priori quite mysterious and not known to correspond to a global point, while
the 17-adic iterated integral appearing on the left-hand side of (72) can be
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related to the 17-adic logarithm of the global cohomology class κ( f̆ , ğ, h̆) ∈
H 1(H, V17(E)) constructed in [DR2] as a limit of 17-adic étale Abel–Jacobi
images of suitable ‘generalized Gross–Schoen diagonal cycles’. Since both the
17-adic iterated integral appearing on the left-hand side of (72) and the ‘integrals
on H17 ×H’ used to compute the Stark–Heegner point P are given by explicit
17-adic analytic expressions, a proof of formula (72) does not seem entirely out
of reach. Such a proof would represent substantial progress in understanding
the global properties of Stark–Heegner points, perhaps making it possible to use
them in Euler system arguments of the kind exploited originally by Kolyvagin.
This would extend the approach described in [DR2, Theorems A and C] from
‘rank-0’ to certain ‘rank-1’ settings.

The next example involves forms g and h with representation having
projective image D4. Such odd representations are induced from class characters
of both real and imaginary quadratic fields, so this example would be equally
at home in Section 3. Its principal novelty is that it illustrates situations where
the p-adic iterated integrals vanish in rank-(1, 1) settings because the regulator
term of Conjecture ES is 0.

EXAMPLE 4.3. Consider the curves

Ea : y2 + y = x3 − x2 + 10x + 6
Eb : y2 + xy + y = x3 + x2 − x − 2
Ec : y2 + y = x3 − x2 − x + 1

of conductor 155 labelled 155a, 155b, and 155c in Cremona’s tables, and write
fa , fb, and fc for the associated weight-two newforms.

Let χ1 be the trivial character, let χ5 and χ31 denote the (even and odd,
respectively) characters of conductor 5 and 31, and set χ := χ155 := χ5 · χ31,
which takes values in L = Q. The space S1(155, χ) has dimension three and
contains three dihedral forms: one form g with integer Fourier coefficients

g = q + q4 − q5 − q9 + q16 − 2q19 − · · ·
and a second pair of complex conjugate forms each defined over the cyclotomic
field Q(ζ3). The form g has associated linear representation ρg with projective
image D4, and ρg can be described in the following equivalent ways.

(1) It is induced from a quartic character of the Hilbert class field of the
imaginary quadratic field Q(

√−155).

(2) It is induced from a quadratic character of the imaginary quadratic field
Q(
√−31), whose conductor is a prime ideal of norm 5.
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(3) It is induced from a quadratic character of the real quadratic field Q(
√

5),
whose conductor is a prime ideal of norm 31.

(The remaining pair of complex conjugate forms are associated to
representations which arise from quartic characters of Q(

√−31) with conductor
a prime ideal of norm 5—they are not considered further in this example.)

The representation Vgg decomposes as

Vgg = L ⊕ L(χ5)⊕ L(χ31)⊕ L(χ155),

and the corresponding ranks are given by

r(Ea/Q) = 1, r(Ea, χ5) = 0, r(Ea, χ31) = 1, r(Ea, χ155) = 0
r(Eb/Q) = 0, r(Eb, χ5) = 0, r(Eb, χ31) = 0, r(Eb, χ155) = 0
r(Ec/Q) = 1, r(Ec, χ5) = 1, r(Ec, χ31) = 0, r(Ec, χ155) = 0,

and likewise for the analytic ranks. In particular, the central critical value
L(Eb, %gg, 1) is nonzero, and hence the curve Eb fails to satisfy Hypothesis B of
the introduction. It will therefore be ignored from now on.

As predicted by the BSD conjecture, the points on Ea and Ec over Q and the
fields Q(

√−31) and Q(
√

5) are given by

Pa = (2, 5), Pa,31 =
(−1630

729 ,
40175

√−31−19683
39366

)
,

Pc = (1, 0), Pc,5 =
(
0, −1+√5

2

)
.

Consider both the primes p = 7 and p = 13, which have different splitting
behaviours in the three quadratic fields, as shown in the table below.

p χ5(p) χ31(p) χ155(p)
7 −1 +1 −1
13 −1 −1 +1

For p = 7, the eigenvalues of σp on Vg are αg = 1 and βg = −1, and so

(αg · αg, αg · βg) = (1,−1), (βg · αg, βg · βg) = (−1, 1).

The 7-adic iterated integrals attached to ( fa, γ±1, g) and ( fc, γ±1, g) are∫
γ1

fa · g =
∫
γ−1

fa · g = 0 mod 730∫
γ1

fc · g =
∫
γ−1

fc · g = 1416540068067896281523634× 7 mod 730.
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For p = 13, the eigenvalues of σp on Vg are αg = i and βg = −i , and so

(αg · αg, αg · βg) = (−1, 1), (βg · αg, βg · βg) = (1,−1).

The 13-adic iterated integrals attached to ( fa, γ±i , g) and ( fc, γ±i , g) are∫
γi

fa · g = −
∫
γ−i

fa · g = 10546307292618612 mod 1315∫
γi

fc · g =
∫
γ−i

fc · g = 21913581880269709 mod 1315.

Following the notations in the rank-(1, 1) setting of Conjecture ES, the pair
(%1, %2) of irreducible subrepresentations of Vgg attached to the curves Ea and
Ec can be taken to be (χ1, χ31) and (χ1, χ5), respectively, where χ1 is the trivial
character. Observe that the eigenvalues of σ13 are (1,−1) in both cases. One
checks to 15 digits of 13-adic precision that∫

γi

fa · g =
80 · logEa ,13(Pa) logEa ,13(Pa,31)

i · 63 · 13 · log13(u−)
,

where i is the unique square root of −1 in Z13 which is ≡ 5 mod 13, and u− =
(1+√5)/2 is a fundamental unit for Q(

√
5). Note that the same formula holds

if one replaced i by −i on both sides. Similarly one checks to the same amount
of 13-adic precision that∫

γi

fc · g = −
80 · logEc,13(Pc) logEc,13(Pc,5)

21 · 13 · log13(u−)
.

Turning now to p = 7 and the curve Ea , observe that (χ1(7), χ31(7)) = (1, 1),
and hence the regulator term in Conjecture ES vanishes. This explains why
the iterated integrals attached to ( fa, γ±1, g) were observed to vanish, at least
numerically to 30 digits of 7-adic precision. The situation for the curve Ec is
different, since (χ1(7), χ5(7)) = (1,−1). As predicted by Conjecture ES, the
authors were able to verify, to 30 digits of 7-adic precision, that∫

γ±1

fc · g = −
8 · logEc,7(Pc) logEc,7(Pc,5)

3 · 7 · log7(u−)
.

The final three sections summarize some of the numerical evidence that was
obtained in support of Conjecture ES in settings where g and h are not both theta
series. It is an apt moment to pause momentarily and thank again Steve Donnelly:
most of the interesting global points in these sections were found by him upon
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our request using his descent code. We might also stress here that although the
overconvergent projection algorithms used to compute p-adic iterated integrals
are efficient, such computations still remain something of a technological tour
de force: many of our examples pushed the available hardware and software (the
algorithms of [La2] in particular) to their current limits.

5. Stark points over A4, S4 or A5 extensions and exotic weight-one forms

This section focusses on the case where Vgh is reducible and at least one of
g or h is an exotic cusp form whose associated projective Galois representation
cuts out a nontotally real extension of Q with Galois group A4, S4, or A5. (The
case in which Vgh is irreducible is very difficult to test experimentally, due to
the apparent scarcity of such Vgh of manageable size occurring with multiplicity
two in the Mordell–Weil group of elliptic curves of reasonable conductor. See
[DLR1, Example 6.2] though for a successful experiment in the analogous
setting in which Mordell–Weil groups are replaced by groups of units.)

LEMMA 5.1. Assume that one of g or h is an exotic weight-one form and
that g and h satisfy the self-duality condition. Then the representation Vgh is
irreducible, unless g is the twist of h∗ by a quadratic character ι, in which case

Vgh = L(ι)⊕ Adg(ι).

Proof. The discussion in [DLR1, Section 2] rules out the case where Vgh

contains an irreducible subrepresentation of dimension two. Hence Vgh contains
an irreducible one-dimensional subrepresentation, and the result follows from
Schur’s lemma (see [DLR1, Section 2]).

So if Vgh is reducible, Lemma 5.1 implies that g is a quadratic twist of h∗.
Since it is always possible to replace the form f by one of its quadratic twists,
there is no real loss in generality in assuming that g = h∗, which is what shall
be done in the rest of this section. In this setting, Conjecture ES suggests a new,
efficiently computable (conjectural) analytic formula for the p-adic logarithm of
global points defined over the A4, S4, or A5-extension cut out by the adjoint Adg

(or, equivalently, by the projective representation attached to g).

5.1. Theoretical preliminaries. Let h be an exotic weight-one form, let
g = h∗ be its conjugate form, and let L be as before the field generated by
the Fourier coefficients of h, or of g = h∗. The representation Vgh = L ⊕ Adg,
where L refers to the trivial representation of GQ with coefficients in L , factors
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through Gal (H/Q), where H is the field cut out by the projective representation
attached to g, so that

Gal (H/Q) ' A4, S4 or A5.

Conjecture ES predicts that the trilinear form I ′p in (8) arising from p-adic
iterated integrals may be nonidentically zero only when

r(E, L) = r(E,Adg) = 1, (73)

or
r(E, L) = 0, r(E,Adg) = 2. (74)

In the rank-(1, 1) setting, Conjecture ES asserts that, for a suitable choice of
elements

PQ ∈ E(Q), Pgα ∈ (E(H)Adg
L )σp=αg/βg , ugα ∈ ((O×H )Adg

L )σp=αg/βg ,

which, since αg 6= ±βg, are unique up to scaling by L×, and for a suitable choice
f̆ , γ̆gα , and h̆ of test vectors attached to ( f, gα, h),∫

γ̆gα

f̆ · h̆ ?= logE,p(PQ) logE,p(Pgα )

log(ugα )
.

In the rank-2 setting, Conjecture ES asserts that∫
γ̆gα

f̆ · h̆ ?= logE,p(P1) logE,p(Qgα )− logE,p(Q1) logE,p(Pgα )

log(ugα )
,

where (P, Q) is a basis of HomGQ(Adg, E(H)L), and P1, Q1 (respectively Pgα ,
Qgα ) denote the images of a vector v1 ∈ Adσp=1

g (respectively, v2 ∈ Adσp=αg/βg
g )

under these homomorphisms.
In the rank-(1, 1) setting, the conjectural formula above gives an explicit,

albeit conjectural, p-adic analytic expression for a global point—namely Pgα—
defined over the field H cut out by Adg, depending on quantities which are
a priori accessible computationally:

Pgα
?= expE,p

(
log(ugα )

logE,p(PQ)
·
∫
γ̆gα

f̆ · h̆
)
. (75)

The point Pgα can be viewed as an elliptic curve analogue of the Stark unit
ugα . For the sake of numerical experiments, it is worth giving a more explicit
description of Pgα , depending on the nature of Gal (H/Q).



H. Darmon, A. Lauder and V. Rotger 70

5.1.1. Cases where g is of tetrahedral type. The group G = Gal (H/Q) ' A4

has three representations of dimension one which factor through the quotient
A4/V4 ' A3, and a unique faithful irreducible representation of dimension three,
which is therefore isomorphic to the adjoint representation Adg. Let R(x) be any
degree-four polynomial whose splitting field is H , and let M be the quartic field
which is generated by a single root of R. Then Adg is related to a permutation
representation by the formula

Adg = IndGQ
G M

L − L .

It follows that

r(E,Adg) = r(E, IndQ
M L)− r(E, L) = rank(E(M))− rank(E(Q)).

(The Artin formalism for L-series implies similar equalities for the analytic
ranks.) In particular when r(E,Adg) = 1, there is (up to scaling) a unique point
P ∈ E(M) whose trace to E(Q) is zero, and E(H)Adg

L is generated, as an L-
vector space, by the four Galois translates of P , whose sum is zero. Let P =: P1,
P2, P3, and P4 denote these Galois translates, on which Gal (H/Q) = A4 acts
via the natural permutation action. The point Pgα can be expressed as a linear
combination of the Pj , depending on the conjugacy class of σp.

Case 1: σp = 1. In the case when αg/βg = βg/αg = 1, the representations %g

and Adg are not regular at p, and Hypothesis C is not satisfied.

Case 2: σp is of order 2. In that case it may be assumed that the points P1 and P2

are defined over Qp2 and are interchanged by σp, and likewise for P3 and P4. It
follows that αg/βg = −1, and that

(E(H)Adg
L )σp=1 = L · (P1 + P2) = L · (P3 + P4) is one dimensional,

(E(H)Adg
L )σp=−1 = L · (P1 − P2)⊕ L · (P3 − P4) is two dimensional.

In this scenario, in which Vg is regular but Adg is not, the point Pgα is a specific
L-linear combination of the points P1 − P2 and P3 − P4, which lies in the well-
defined one-dimensional subspace hom(V gβ

g , V gα
g ) of Adg.

Case 3: σp is of order 3. In that case, it may be assumed that σp fixes the point P1,
which is thus defined over Qp, and cyclically permutes the points P2, P3, and P4.
The eigenvalues of σp on Adg are then equal to 1, αg/βg = ζ3, and βg/αg = ζ−1

3 ,
for some primitive cube root ζ3 of 1, and Pgα is determined, up to scaling, by the
rule

Pgα = P2 + ζ−1
3 P3 + ζ3 P4. (76)
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In particular,

(E(H)Adg
L )σp=αg/βg = L · Pgα is one dimensional.

This is the only regular case, in which the point Pgα is completely pinned down
by its specified behaviour under the action of σp.

REMARK 5.2. There are two distinct conjugacy classes of elements of order
3 in A4, which are rational over Q(ζ3) and interchanged by the action of
Gal (Q(ζ3)/Q). Note that 8 of the 12 elements in A4 are of order 3, and hence,
by the Chebotarev density theorem, the Frobenius element σp is regular for Adg

for a set of primes p of Dirichlet density 2/3.

5.1.2. Cases where g is of octahedral type. The dimensions of the irreducible
representations of the group G = Gal (H/Q) ' S4 are 1, 1, 2, 3, and 3.
The first two representations are the trivial and sign representations, and the
two-dimensional representation factors through the quotient S4/V4 = S3.
In particular, the only faithful irreducible representations of G are three
dimensional, and there are two such, whose characters are given in the following
table.

Size 1 6 3 8 6
Class 1 (12) (12)(34) (123) (1234)
%1 3 1 −1 0 −1
%2 3 −1 −1 0 1

The representation %1 occurs in the natural permutation representation of G
on four letters, while %2 is just the twist of %1 by the sign character. Among the
two representations, it is %2 which is the adjoint representation. This can be seen
by noting that the eigenvalues of %1((1234)) are visibly −1, i , and −i , and that
those of %2((1234)) are 1, i , and −i , and that only the latter set of eigenvalues is
consistent with the property of the adjoint representation that all elements in G
admit 1 as eigenvalue.

Let R(x) be any degree-four polynomial whose splitting field is H , and let
M be the quartic field which is generated by a single root of R. The field H is
an S3-extension of M , and hence there is a unique quadratic extension M̃ of M
contained in H . The field H also contains a unique quadratic field K/Q, which
is cut out by the sign character of S4 and satisfies M̃ = M K . The representation
Adg is described by the formula

Adg = IndGQ
G M

sgn− sgn,
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where sgn is viewed both as the quadratic character of G M and GQ induced by
the sign characters on the finite quotients Gal (H/M) ' S3 and Gal (H/Q) ' S4.
It follows that

r(E,Adg) = r(E, IndH
M sgn)− r(E, sgn) = dimL E(M̃)−L − dimL E(K )−,

where the superscript − refers to the −1 eigenspace for the involutions in
Gal (M̃/M) and Gal (K/Q), respectively. When r(E,Adg) = 1, there is, by
Frobenius reciprocity, a unique point P ∈ E(M̃)−, up to scaling. Let P1, P2, P3,
and P4 denote the A4 translates of P = P1, and observe that σ ∈ G = S4 acts on
these points by the rule

σ Pj =
{

Pσ j if σ ∈ A4;
−Pσ j if σ ∈ S4 − A4.

The resulting explicit description of the action of G on these four points, which
together generate E(H)Adg

L , makes it possible to describe the point Pgα explicitly,
depending on the conjugacy class of σp in G.

Case 1: σp = 1. In that case, αg = βg, and hence Hypothesis C′ is not satisfied.

Case 2: σp is of order 2 and odd; that is, it is conjugate to the transposition (12).
In that case, after relabelling the Pj , it can be assumed that

σp P1 = −P2, σp P2 = −P1, σp P3 = −P3, σp P4 = −P4.

In particular, the x-coordinates of the points P1 and P2 lie in Qp2 and are
permuted by Gal (Qp2/Qp), while the x-coordinates of P3 and P4 are defined
over Qp, even though all four points are defined over Qp2 . The eigenvalues of σp

are equal to 1 and −1 = αg/βg = βg/αg, and

(E(H)Adg
L )σp=1 = L · (P1 − P2) is one dimensional,

(E(H)Adg
L )σp=−1 = L · P3 ⊕ L · P4 is two dimensional.

This is another irregular case, in which the point Pgα is a specific L-linear
combination of P3 and P4 lying in the line hom(V gβ

g , V gα
g ) of Adg.

Case 3: σp is of order 2 and even; that is, it is conjugate to the permutation
(12)(34). After eventually relabelling the Pj , it can be assumed that

σp P1 = P2, σp P2 = P1, σp P3 = P4, σp P4 = P3,

so that

(E(H)Adg
L )σp=1 = L · (P1 + P2) = L · (P3 + P4) is one dimensional,
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(E(H)Adg
L )σp=−1 = L · (P1 − P2)⊕ L · (P3 − P4) is two dimensional.

This is yet another irregular case, and Pgα is some unspecified L-linear
combination of P1 − P2 and P3 − P4.

Case 4: σp is of order 3. In that case, it can be assumed that σp fixes the point
P1, which is defined over Qp, and permutes the points P2, P3, and P4 cyclically.
The eigenvalues of σp on Adg are then equal to 1, αg/βg = ζ3, and βg/αg = ζ−1

3 ,
and Pgα is determined, up to scaling, by the rule

Pgα = P2 + ζ−1
3 P3 + ζ3 P4.

In particular,

(E(H)Adg
L )σp=αg/βg = L · Pgα is one dimensional.

Case 5: σp is of order 4, and hence is conjugate to (1234). In that case, it can be
assumed that

σp P1 = −P2, σp P2 = −P3, P3 = −P4, σ P4 = −P1.

The eigenvalues of σp are equal to 1, i , and −i , and

(E(H)Adg
L )σp=1 = L · (P1 − P2 + P3 − P4),

(E(H)Adg
L )σp=i = L · (P1 + i P2 − P3 − i P4), (77)

(E(H)Adg
L )σp=−i = L · (P1 − i P2 − P3 + i P4). (78)

In particular, the αg/βg-eigenspace for σp is one dimensional if and only if σp

has order > 2, which occurs for 14 of the 24 permutations in S4. This regularity
condition is therefore satisfied for a set of primes p of density 7/12.

5.1.3. Cases where g is of icosahedral type. The dimensions of the irreducible
representations of the group G = Gal (H/Q) ' A5 are 1, 3, 3, 4, and 5, and the
characters of the two distinct three-dimensional representations are described in
the following table.

Size 1 15 20 12 12
Class 1 (12)(34) (123) (12345) (12354)

%1 3 −1 0 1+√5
2

1−√5
2

%2 3 −1 0 1−√5
2

1+√5
2
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In this case, both the representations %1 and %2 arise as the adjoint of the Artin
representation %g and %′g, respectively, where %′g denotes the Artin representation
of the conjugate form of g, whose Fourier coefficients lie in the field Q(

√
5).

It turns out to be easier to describe the direct sum %1 ⊕ %2 in Galois-theoretic
terms rather than each %i individually. Let D10 be the dihedral group of order
10, embedded naturally in A5, and let M be the non-Galois sextic field fixed by
D10. The field M is generated by a root of a sextic polynomial R(x), the so-called
Lagrange sextic resolvent attached to the A5 extension. Since Gal (H/M)= D10,
there is a unique quadratic extension M̃ of M contained in H , which is cut out
by the unique nontrivial quadratic character χ− of D10. It is not hard to check
the identity of virtual representations:

%1 ⊕ %2 = IndGQ
G M
χ−,

which implies that the six-dimensional representation E(H)Adg
L ⊕ E(H)

Wg′
L is

generated as an L-vector space, by the unique point P ∈ E(M̃)− together with
its 12 Galois translates

P =: P1, P2, P3, P4, P5, P6, −P1,−P2,−P3,−P4,−P5,−P6.

The Stark point Pgα is a Q(
√

5)-linear combination of the six linearly
independent points Pj with 1 6 j 6 6. The coefficients that enter in this
linear combination are completely determined by the requirement that σp Pgα =
αg/βg Pgα , provided that the Frobenius element σp is not of order 6 2. Since A5

has precisely 44 elements of order > 2, this condition holds for a set of primes
of Dirichlet density 11/15.

5.2. Numerical evidence. In contrast to the situation in Sections 4.2 and 7.2,
numerical evidence is somewhat more bountiful in the setting of exotic modular
forms. In particular, despite the appellation ‘exotic’ such forms seem to be more
plentiful in small level than those studied in Section 4.2. (Note that in all our
exotic examples we checked that Hypotheses A, B and C hold.)

As in Example 3.11, it is helpful to consider algebraic factors similar to those
defined in [DR1, Theorem 3.1], given by

E(gα, f, h) := (1− αgα f αh p−1)× (1− αgα f βh p−1)

× (1− αgβ f αh p−1)× (1− αgβ f βh p−1)

E0(gα) := (1− α2
gχ
−1(p))

E1(gα) := (1− α2
gχ
−1(p)p−1).
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Here, when p divides the level of f , we set α f = ap( f ) and β f = 0, and
otherwise define these so that x2−ap( f )x+ p = (x−α f )(x−β f ). Economizing
on notation, we define Eα as

Eα := E(gα, f, h)
E0(gα)E1(gα)

∈ L . (79)

We define Eβ similarly, switching the roles of αg and βg in the above.
Our first exotic example involves the tetrahedral form of level 133 first

constructed by Tate.

EXAMPLE 5.3. Let χ be a Dirichlet character of level 133 = 7 · 19 of order 2 at
7 and order 3 at 19. (There are two such characters which are Galois conjugate
to each other.) Denote by ζ a primitive 12th root of unity, and define ζ3 := ζ−4,
a primitive cube root of unity. Then S1(133, χ) is defined over Q(ζ3) and has
dimension two. It contains two eigenforms defined over Q(ζ ), namely

h = q + (ζ 2 − 1)q2 − ζq3 + ζq5 + (−ζ 3 + ζ )q6

+ ζ 3q7 − q8 + (ζ 3 − ζ )q10 + (−ζ 3 + ζ )q13 − · · ·
and its Galois conjugate obtained by replacing ζ by −ζ . Let g = h∗, the twist of
h by χ−1 (this has Fourier coefficients complex conjugate to those of h). The A4-
extension H cut out by the projective representation attached to g is the normal
closure of the quartic field

M := Q(w), w4 + 3w2 − 7w + 4 = 0,

which has discriminant 1332.
Consider the elliptic curves

Ea : y2 + y = x3 + x
Eb : y2 + y = x3 + x2 − 7x + 5

of conductor 91 = 7 · 13 labelled 91a and 91b in Cremona’s tables, and write
fa and fb for the associated weight-two newforms. These curves both satisfy the
conditions in the rank-(1, 1) setting of Conjecture ES, namely

r(Ea, 1) = 1, r(Ea,Adg) = 1, r(Eb, 1) = 1, r(Eb,Adg) = 1.

Let P (a)
Q and P (b)

Q denote Mordell–Weil generators of Ea(Q) and Eb(Q),
respectively (modulo the torsion for 91b), and let P (a) and P (b) denote generators
of the one-dimensional subspaces of Ea(M)Q and Eb(M)Q, respectively,
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consisting of points with trace zero. A combination of naive search and two-
descent shows that one can take

P(a)Q = (0, 0),

P(a) =
(−156w3 − 64w2 − 598w + 654

289
,

823w3 + 1464w2 + 5515w − 7663
4913

)
,

P(b)Q = (−1, 3),

P(b) = (9w3 + 5w2 + 31w − 45,−w3 + 16w2 + 16w + 83).

Letting p = 13, the Hecke polynomial t2 − a13(h)t + χ(13) has roots βh = ζ
and αh = −ζ 3. Hence the two 13-stabilizations gα and gβ of g with Up-
eigenvalue αg = βh = ζ−1 and βg = αh = ζ 3 are distinct. (Note that we are
twisting by χ−1 here, and that χ−1(p)βh = (αhβh)

−1βh = αh , and likewise
χ−1(p)αh = βh .) Let γgα and γgβ denote the corresponding dual elements.

Choose the embedding of Q(ζ ) into Q13 which sends ζ to the unique 12th
root of unity in Z13 which is congruent to 6 modulo 13. The values of the p-adic
iterated integrals, evaluated to 20 digits of 13-adic accuracy, are then given by
the four quantities∫

γgα

fa · h = −6603156733219298602528 mod 1320∫
γgβ

fa · h = 2705941994573919260213 mod 1320

∫
γgα

fb · h = −679336918469999467881× 13 mod 1320∫
γgβ

fb · h = −2983964554989928769557 mod 1320.

The ratio αg/βg = ζ−4 = ζ3 is a primitive cube root of unity, and hence the
eigenvalues of σ13 on Adg are 1, ζ3, and ζ 2

3 . The fact that σ13 has order 3 puts us
in Case 3 in the analysis in Section 5.1.1. Let

P (a)
gα , P (a)

gβ ∈ Ea(H)
Adg
L , P (b)

gα , P (b)
gβ ∈ Eb(H)

Adg
L

be the points constructed from P (a) and P (b) using (76). The units ugα and ugβ
are constructed using the same formula, with the point P replaced by the unit
u1 := −w + 1, which is the root of x4 − 4x3 + 9x2 − 3x + 1 = 0 in M , and its
Galois conjugates u2, u3, and u4.

It then turns out that, to 20 digits of 13-adic accuracy,∫
γgα

fa · g = −ζ 2
3 · Eα ·

logEa ,13(P
(a)
Q ) logEa ,13(P

(a)
gα )

log13(ugα )
,
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∫
γgβ

fa · g = −ζ3 · Eβ ·
logEa ,13(P

(a)
Q ) logEa ,13(P

(a)
gβ )

log13(ugβ )
,

where Eα is defined as in (79), and likewise for Eβ .
A similar pattern recurs with the elliptic curve Eb, for which it was checked to

20 digits of 13-adic precision that∫
γgα

fb · h = ζ

3
· Eα ·

logEb,13(P
(b)
Q ) logEb,13(P

(b)
gα )

log13(ugα )
,

∫
γgβ

fb · h = −ζ
−1

3
· Eβ ·

logEb,13(P
(b)
Q ) logEb,13(P

(b)
gβ )

log13(ugβ )
,

with Eα as in (79), and likewise for Eβ . (Here, ζ ·Eα/3 = ζ−1 ·Eβ/3 = 4/(13
√

3).)
The choice of the prime p = 13 in the above calculations was dictated largely

by convenience. This prime has the virtue of splitting completely in L = Q(ζ ),
so that L embeds into Q13, and it divides the level of fa and fb, which can thus
be viewed as overconvergent 13-adic modular forms of tame level 133.

The weight-one tetrahedral form g of level 133 was considered by Chinburg
[Ch] in connection with Stark’s original conjectures, motivated by the final
sentence in [St2],

A meaningful verification for N = 133 would be of some interest.

Stark’s concluding comment follows the verification of his conjecture for the
weight-one modular form considered in Example 4.1.

The next example involves the tetrahedral modular form of minimal level
124 = 4 · 31 [Bu, Section 2.2] which is also considered in [Ch]. It illustrates
our conjecture in both rank-(1, 1) and rank-2 exotic settings.

EXAMPLE 5.4. Let χ be a sextic Dirichlet character of conductor 124 = 4 · 31,
having order 2 at 4 and order 3 at 31. Denote by ζ a primitive 12th root of unity,
and define ζ3 := ζ 2 − 1, a primitive cube root of unity. The space S1(124, χ)
is defined over Q(ζ3) and has dimension two. Just as in the previous example, it
contains two eigenforms, which are defined over Q(ζ ) and conjugate over Q(ζ3),
namely

h = q + ζ 3q2 + ζq3 − q4 − ζ 2q5 + (ζ 2 − 1)q6 − ζq7

− ζ 3q8 + (−ζ 3 + ζ )q10 + (ζ 3 − ζ )q11 − ζq12 + ζ 2q13 + · · ·
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and its conjugate obtained by replacing ζ by−ζ . Let g = h∗. The field cut out by
the projective representation attached to g is the normal closure H of the quartic
field

M = Q(w), w4 + 7w2 − 2w + 14 = 0,

which has discriminant 1242 and Galois group isomorphic to A4.
Consider the elliptic curve

E : y2 = x3 + x2 − 2x + 1

of conductor 124 labelled 124a in Cremona’s tables, and write f for the
associated weight-two newform. The curve E has rank 1 over Q (with a torsion
subgroup of order 3) and rank 2 over M—this places us in the rank-(1, 1) setting.
Following the same notation of the previous example, generators for E(Q) and
for the subgroup of points in E(M) of trace zero are given by

PQ = (−2, 1), P =
(
w3 − w2 + 3w − 7

2
,
w3 + 4w2 + 9w + 10

4

)
.

These points were found using a naive search.
Choosing the prime p = 13 as in the previous example, the Hecke polynomial

t2 − a13(h)t + χ(13) has roots βh = 1 and αh = ζ3. Hence αg = 1 and βg = ζ 2
3 ,

and therefore the 13-stabilizations gα and gβ of g are distinct.
Choose the embedding of Q(ζ ) into Q13 which sends ζ to the unique 12th

root of unity in Z13 which is congruent to 7 modulo 13. The values of the 13-
adic iterated integrals were computed to be∫

γgα

f · h = 684158979097768450057× 13 mod 1320

∫
γgβ

f · h = 5953034774844704381281 mod 1320.

Note that αg/βg and βg/αg are both primitive cube roots of unity, and hence,
just as in the previous example, the setting is the one discussed in Case 3 in the
analysis in Section 5.1.1. Just as before, the points Pgα and Pgβ in E(H)Adg

L can be
defined as suitable linear combinations of the point P and its Galois conjugates,
following the formula in (76). The units ugα and ugβ are likewise constructed
using the same formula, with the point P replaced by the unit u1 := w2−w+ 3,
the unique root of x4 + 2x3 + 18x2 − 6x + 1 in M .

With these conventions in place, it has been checked to 20 digits of 13-adic
precision that ∫

γgα

f · h = 2√
3
· Eα ·

logE,13(PQ) logE,13(Pgα )

log13(ugα )
,
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γgβ

f · h = 2√
3
· Eβ ·

logE,13(PQ) logE,13(Pgβ )

log13(ugβ )
,

where Eα is as in (79), and likewise for Eβ , with
√

3 = ζ 3 − 2ζ .
We now turn to the curve

E : y2 + xy + y = x3 − x2 − 3x + 3

of conductor 26 labelled 26b. One checks

r(E) = 0, r(E,Adg) = 2, (80)

and likewise for analytic ranks, and so here we are in the rank-2 setting. The
required points in E(H)Adg may be constructed from the generators

P =
(

283w3 + 1295w2 + 1442w + 9528
4802

,

29371w3 − 35875w2 + 146552w − 319814
235298

)
Q =

(−25w3 + 98w2 + 41w + 775
121

,

67w3 + 3832w2 + 2465w + 17404
1331

)
of the rank-2 Mordell–Weil lattice in E(M). We define P1 and Pgα as in the
Case 3 analysis for tetrahedral forms (and similarly Pgβ switching ζ3 for ζ−1

3 ).
Likewise we define the points Q1, Qgα , and Qgβ .

Writing now f for the form attached to E we find, with the same embedding
as before, that ∫

γgα

f · h = 6721481652857547558786 mod 1320

∫
γgβ

f · h = −2549577176522983012568 mod 1320.

Then, to 20 digits of 13-adic precision,∫
γgα

f · h = ζ3 · Eα√
3
· logE,13(P1) logE,13(Qgα )− logE,13(Q1) logE,13(Pgα )

logp ugα
(81)∫

γgβ

f · h = −ζ
−1
3 · Eβ√

3
· logE,13(P1) logE,13(Qgβ )− logE,13(Q1) logE,13(Pgβ )

logp ugβ
,

(82)

where Eα is as in (79), and likewise for Eβ , exactly as predicted by Conjecture ES.
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Finally, we consider the curve

E : y2 = x3 + x − 10

of conductor 52 labelled 52b, for which again (80) holds, and so we are in the
rank-2 setting. Here, we take

P =
(−225w3 − 1533w2 − 1458w + 1078

2809
,

−247041w3 + 68295w2 − 1265094w + 317530
297754

)
,

Q =
(−63391w3 − 51546w2 − 698338w − 942346

390625
,

84293978w3 − 33352782w2 + 603648754w − 1348508882
244140625

)
,

as generators for the Mordell–Weil lattice in E(M), and construct the points P1,

Pgα , Pgβ and Q1, Qgα , Qgβ from them. Letting f now be the newform attached
to E , we have∫

γgα

f · h = −1602512412162131808818 mod 1320∫
γgβ

f · h = 4989460414989865668627 mod 1320,

and one checks to 20 digits of 13-adic precision that again (81) and (82) hold.
(The algebraic constants which occur in equation (81) for 26b and 52a are in fact
exactly the same, and likewise for (82): both curves have nonsplit multiplicative
reduction at 13.)

The following example illustrates the vanishing of p-adic iterated integrals
predicted by Conjecture ES in a rank-2 setting but where the regulator term
vanishes for trivial reasons.

EXAMPLE 5.5. Consider the curve

E : y2 + xy = x3 − 18x + 31

of conductor 4811 = 17 ·283 labelled 4811a in Cremona’s table, and write f for
the associated weight-2 newform. Letting h be the octahedral weight-one form
in level 283 with quadratic character and g = h∗, it is readily checked that

r(E/Q) = ran(E/Q) = 2, ran(E,Adg) = 0.
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(The third equality was obtained by calculating L(E,Adg, 1) numerically to
a modest precision sufficient to verify its nonvanishing.) Taking p a regular
prime for ρg, it is clear that Hypotheses A–C are satisfied, but that the matrix
Rgα (E, %gh) of Conjecture ES has determinant 0. The prediction that all
associated p-adic iterated integrals should vanish was verified for p = 17 to 5
digits of 17-adic accuracy.

We note also here that we tested the vanishing prediction of Conjecture ES in
several examples when r(E, %gh) = 4 and 6 (involving CM rather than exotic
forms).

Our final exotic example involves the exotic octahedral modular form of
minimal level 148 = 4 · 37 [Bu, Section 2.3] and rank-(1, 1) settings of
Conjecture ES.

EXAMPLE 5.6. Let χ be the Dirichlet character of level 148 = 22 · 37 which is
trivial at 2 and has order 4 at 37 (there are two such characters and they are Galois
conjugate). The space S1(148, χ) is defined over L = Q(i) and has dimension
one. It contains the single eigenform

h = q − iq3 − q7 + iq11 + (i − 1)q17 + (−i + 1)q19 + · · · .
The field H cut out by the projective representation attached to g = h∗ is the
normal closure of the quartic field

M := Q(a), a4 − a3 + 5a2 − 7a + 12

of discriminant 22 · 373 and having Galois group S4. The unique quadratic
subfield of H is K = Q(

√
37), and hence M̃ = M K is the unique quadratic

extension of M contained in H .
Testing Conjecture ES in the rank-(1, 1) setting requires elliptic curves E

of rank 1 over Q for which in addition r(E,Adg) = 1. We choose p = 17
and consider elliptic curves E of rank 1 and the conductor dividing 148p
which satisfy the necessary hypotheses. (Restricting the conductor of E in this
way makes it possible to confine the 17-adic iterated integral computations
to spaces of overconvergent p-adic modular forms tame level 148.) Analytic
rank computations suggest these are the curves 37a, 629a, 629c, and 629d in
Cremona’s tables.

Following the general notation introduced in Section 5.1.2, Conjecture ES was
verified for each of E = 37a, 629a, and 629d using points P ∈ E(M̃)− found
by Steve Donnelly. (For 629c, the authors were unable to find the point P . This
leaves opens possibility of constructing it using Conjecture ES, a challenge that
has not yet been addressed.)
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The elliptic curves of interest are

E37a : y2 + y = x3 − x
E629a : y2 + xy = x3 − x2 + 11x − 18

E629d : y2 + xy + y = x3 − x2 − 171x + 1904

with associated modular forms f37a , f629a , and f629d .
With p = 17, the Hecke eigenvalues for the octahedral form h are βh = i and

αh = −1, and therefore αg = −i and βg = −1. It follows that the Frobenius
eigenvalues at 17 for the adjoint representation Adg are 1, α/β = i , and
β/α = −i , which places this experiment in Case 5 of the analysis in Section
5.1.2.

Choose the embedding of L = Q(i) into Q17 which sends i to the unique
square root of −1 which is congruent to 4 modulo 17. A calculation of iterated
integrals to 15 digits of 17-adic precision reveals that∫

γgα

f37a · h = 795182232610993468 mod 1715

∫
γgβ

f37a · h = 591309544450892129 mod 1715

∫
γgα

f629a · h = 231921888434186915 mod 1715

∫
γgβ

f629a · h = 776162921415439615 mod 1715

∫
γgα

f629d · h = −612176557243786922× 17 mod 1715

∫
γgβ

f629d · h = 329220710071055453 mod 1715.

Consider first the elliptic curve E = E37a . The generator of E(Q) is chosen to
be PQ = (0, 0). The point(−152551a3 + 327117a2 − 384541a + 1037221

21316
,

−110958819a3 + 69702635a2 + 95157821a + 314525497
3112136

)
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on the quadratic twist y2+ y = x3− 1369x + 12663 of E by 37 gives rise to the
point

P =
(−10817b7 − 15535b6 − 11412b5 − 43863b4 − 97162b3 + 30857b2 + 39063b − 42

21316
,

2553946b7 − 379967b6 − 1189613b5 + 10482748b4 + 12706439b3 − 35039416b2 + 19176309b + 6012477
15560680

)

in E(M̃)−, where

M̃ = Q(b), b8 + b7 + b6 + 4b5 + 8b4 − 4b3 + b2 − b + 1 = 0.

Writing P1, P2, P3, and P4 for the Galois translates of P so that they are
permuted cyclically by σ17, define

Pgα = P1 − i P2 − P3 + i P4, Pgβ = P1 + i P2 − P3 − i P4,

following (78) and (77). Likewise, taking u := −b2 as one of the two roots of
x8 − x7 + 9x6 − 10x5 + 102x4 − 10x3 + 9x2 − x + 1 in M̃ leads to a definition
of the Stark units ugα and ugβ ∈ (O×H )Adg

L attached to the two stabilizations of g.
The following identities were verified to 15 digits of 17-adic precision:∫

γgα

f37a · h = 4
3
· Eα ·

logE,17(PQ) logE,17(Pgα )

log17(ugα )
,∫

γgβ

f37a · h = 4
3
· Eβ ·

logE,17(PQ) logE,17(Pgβ )

log17(ugβ )
,

with Eα as in (79), and likewise for Eβ .
Consider next the elliptic curve E = E629a . Here, the generator for E(Q) is

chosen to be PQ = (2, 2), and, just as above, the point

P =
(−5b7 − 11b6 − 16b5 − 31b4 − 74b3 − 47b2 − 25b + 57

36
,

1083b7 + 1784b6 + 2366b5 + 5569b4 + 11572b3 + 3647b2 + 1907b − 3464
1080

)
belongs to E(M̃)−. The points Pgα and Pgβ , and the units ugα and ugβ , are defined
just as they were before. It was then checked to 15 digits of 17-adic precision that∫

γgα

f629a · h = −2i − 2
3

· Eα ·
logE,17(PQ) logE,17(Pgα )

log17(ugα )
,∫

γgβ

f629a · h = 2i − 2
3
· Eβ ·

logE,17(PQ) logE,17(Pgβ )

log17(ugβ )
,

with Eα as in (79), and likewise for Eβ .
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Finally, for the curve E = E629d , let PQ = (16, 47) be the Mordell–Weil
generator for E(Q), and let

P =
(−1369b7 + 259b6 − 518b5 − 4625b4 − 5994b3 + 12987b2 − 17871b + 9656

400
,

−1258148b7 + 64491b6 − 649461b5 − 5104594b4 − 5377617b3 + 14354298b2 − 11310937b + 2516289
40000

)

be the generator of E(M̃)−L .
With the same definitions for the points Pgα and Pgβ in terms of P as before,

the following remarkably simple relation was checked to 15 digits of 17-adic
precision:∫

γgα

f629d · h = (−10i + 10) · Eα ·
logE,17(PQ) logE,17(Pgα )

log17(ugα )
,∫

γgβ

f629d · h = (−10i − 10) · Eβ ·
logE,17(PQ) logE,17(Pgβ )

log17(ugβ )
,

with Eα as in (79), and likewise for Eβ . Here, (−10i + 10) · Eα = 160/17 and
(−10i − 10) · Eβ = −160/17.

6. Stark points attached to odd two-dimensional Artin representations

This section considers the case where g ∈ S1(N , χ̄) is a cuspidal newform and
h = E(1, χ) is the Eisenstein series attached to the pair (1, χ). In that case,

Vgh = Vg ⊕ Vg∗, L(E, %gh, s) = L(E, %g, s)L(E, %̄g, s).

The factorization of L-functions guarantees that Hypothesis A of the
introduction is automatically satisfied in this setting, but Hypothesis B is
only satisfied when L(E, %g, 1) = 0. Furthermore, the conditions formulated
in Conjecture ES are fulfilled precisely when L(E, %gh, s) has a double zero at
s = 1, so that

ran(E, Vg) = ran(E, V̄g) = 1.

The eigenvalues of σp acting on Vg and on Vh , respectively, are given by

αg, βg, αh = 1, βh = χ(p) = (αgβg)
−1,

and therefore
αgαh = αg, αgβh = β̄g.
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Let H be the Galois extension of Q through which %g (or, equivalently, %̄g)
factors. Assuming that Vg is not isomorphic to its contragredient, its underlying
field L of coefficients is a CM subfield of a cyclotomic field, and the spaces
E(H)Vg

L and E(H)
Vg∗
L decompose as σp-modules as

E(H)Vg
L = L · Pg,α ⊕ L · Pg,β, E(H)V̄g

L = L · Pg∗,ᾱ ⊕ L · Pg∗,β̄,

where Pg,α is an eigenvector for σp with eigenvalue αg, and similar conventions
are adopted for the other points.

When g is regular at p and (14) is satisfied—and so Hypothesis C holds by
Proposition 1.1—Conjecture ES of the introduction predicts that, for a suitable
choice of test vectors,

( f̆ , γ̆gα , h) ∈ S2(N )L × S1(N , χ)∨L [gα] × M1(N , χ)L

(and likewise with αg replaced by βg), the following identities hold:∫
γ̆gα

f̆ · h̆ = logE,p(Pg,α) · logE,p(Pg∗,β̄)

logp(ugα )
, (83)∫

γ̆gβ

f̆ · h̆ = logE,p(Pg,β) · logE,p(Pg∗,ᾱ)

logp(ugβ )
, (84)

where ugα is precisely the same Stark unit as arose in Section 5.

The identities above turned out to be harder to check experimentally, for the
following reasons.

• Instances where L(E, %g, s) acquires a simple zero at s = 1 are ostensibly
sporadic in nature. When %g is not isomorphic to its contragredient
representation, this L-function does not admit a sign in its functional equation
which might be used to systematically predict the vanishing of L(E, %g, 1),
and it is expected that cases where L(E, %g, 1) = 0 are exceedingly rare
(although very little data has been gathered to be able to make serious
pronouncements in this direction).

• The field cut out by %g is larger than the field cut out by its adjoint Adg. More
precisely, it is an abelian extension of it, of degree t > 2, where t is the order
of the nontrivial central character attached to %g. In particular, the point Pg,α

that arises in this section is entirely independent of the point denoted Pgα in
Section 5, is defined over a larger degree extension, and is therefore harder to
produce numerically in practice, in addition to not arising in as systematic a
manner.
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The problem of producing numerical evidence becomes more tractable when
g = g∗, which occurs precisely when g is induced from a ring class character of
an imaginary quadratic field. Such examples are arguably less interesting, since
they also fall under the scope of Section 3. See the second half of Example 3.12
of Section 3.3 for a numerical verification of Conjecture ES in the case where
g is further assumed to be self-dual. (See [DLR1, Example 5.2] though for
numerical evidence when g 6= g∗ in the analogous setting in which f is replaced
by a weight-two Eisenstein series, and Mordell–Weil groups are replaced by unit
groups.)

7. Stark points over cyclotomic fields and Eisenstein series

7.1. Theoretical preliminaries. This section turns to the case where g is an
Eisenstein series satisfying condition (2) of Hypothesis C′. Recall that, in this
case, V gα

gh := W ⊗ Vh , where W is any line in Vg which is not an eigenspace for
the global Galois action, that is, not one of the two one-dimensional irreducible
summands of Vg. Conjecture ES of the introduction predicts that, for a suitable
choice of test vectors

( f̆ , γ̆gα , h̆) ∈ S2(N )L × S1(N , χ)∨L [gα] × M1(N , χ)L

(and likewise with αg replaced by βg), the following identities hold:∫
γ̆gα

f̆ · h̆ = logE,p(Pg,α) · logE,p(Pg∗,β̄)

logp(ugα )
,∫

γ̆gβ

f̆ · h̆ = logE,p(Pg,β) · logE,p(Pg∗,ᾱ)

logp(ugβ )
,

where ugα and ugβ are the Gross–Stark p-units rather than genuine units.
Otherwise, the statement of Conjecture ES is identical to the case (83) where
the roles of g and h are interchanged.

For the same reasons as were discussed in the previous section, we have
been unable to gather much experimental evidence for it, except in the simplest
(and particularly appealing) special case where g and h are both weight-one
Eisenstein series of the form

g = E1(1, χ−1), h = E1(χ1, χ2) where χ1χ2 = χ.
It is natural to restrict attention to the case where at least one of χ1 or χ2 is not
quadratic, to exclude scenarios that were already treated in Section 3, where both
Vg and Vh are induced from genus characters of the imaginary quadratic field
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attached to the quadratic Dirichlet character χ . Let L be the field in which the
characters χ1 and χ2 take values. The representations Vg, Vh , and Vgh decompose
as direct sums of one-dimensional representations:

Vg = L⊕L(χ−1), Vh = L(χ1)⊕L(χ2), Vgh = L(χ1)⊕L(χ2)⊕L(χ̄1)⊕L(χ̄2).

It is worth noting that the representation Vgh is isomorphic to its dual, but that its
irreducible constituents are not all self-dual when χ1 or χ2 is nonquadratic. This
phenomenon, which is specific to the case where at least one of the forms g or h
is an Eisenstein series, makes the occurrence of situations where L-functions
vanish somewhat more rare and sporadic, just as in the setting described in
Section 6.

The adjoint representation Adg attached to Vg breaks up as a direct sum

Adg = L ⊕ L(χ)⊕ L(χ−1).

Let Hχ be the abelian extension of Q cut out by the character χ . Recall that
Hypothesis C′ requires that

χ(p) = 1; that is, Vg is not regular and χ1(p) = χ2(p)−1.

Since χ is nonquadratic, the L-vector spaces

(OHχ [1/p]×)χL, (OHχ [1/p]×)χ−1

L , (OHχ [1/p]×)χ+χ−1

L

have dimensions one, one, and two, respectively. Let ugα ∈ OHχ [1/p]×)χ+χ−1

L be
the Gross–Stark unit associated to gα following the recipe of Section 1.2.

Let f be a weight-two cusp form attached to an elliptic curve. Note that
Hypothesis A is automatically satisfied in this setting. When ran(E, χ1⊕χ2) > 0
(and so Hypothesis B holds), Conjecture ES predicts that the iterated integrals
attached to ( f, g, h) is nonvanishing if and only if ran(E, χ1 ⊕ χ2) = 1. Assume
(after possibly reordering χ1 and χ2) that

ran(E, χ1) = 1, ran(E, χ2) = 0.

Under this assumption, Conjecture ES predicts the existence of points Pχ1 ∈
E(Hχ1)

χ1
L and Pχ̄1 ∈ E(Hχ1)

χ̄1
L for which∫

γ

f · h ?= logE,p(Pχ1) logE,p(Pχ̄1)

logp(ugα )
.
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A notable feature of this conjecture is that it involves global points over abelian
extensions of Q, whose occurrence seems sporadic, in contrast with the self-dual
setting that is germane to the theory of Heegner and Stark–Heegner points.

7.2. Numerical evidence. Although Eisenstein series are plentiful, it is the
very scarcity of points over odd-degree abelian extensions, and the necessity of
working at a prime p which splits completely in this abelian extension, which
make the numerical verification of Conjecture ES so challenging in this situation.
Frequently, when such a point does exist, the common level of the Eisenstein
series and cusp form f , and size of the prime p, push the example beyond the
current reach of experimentation.

The authors were rather fortunate to encounter the following two examples
(and in addition another cubic field example in which ran(E, χ1 ⊕ χ2) = 2 and
the integral vanished, as predicted by Conjecture ES). In the first one, we give
for variety numerical details of the logarithms computed—these were suppressed
elsewhere to lighten the burden of unilluminating long numbers in the paper.

EXAMPLE 7.1. Let

E : y2 + xy + y = x3 + x2 − 4x + 5

be the elliptic curve of conductor 2 · 3 · 7 denoted 42a in the tables of Cremona.
Let χ1 be the (even) cubic character of conductor 19, and let χ2 be the (odd)
quadratic character of conductor 3, so that χ = χ1χ2 is an odd sextic character of
conductor 57. As before, write L = Q(ζ3) for the field of coefficients generated
by the values of χ1. A direct calculation reveals that

E(Q)L = 0, r(E, χ1) = r(E, χ̄1) = 1, r(E, χ2) = r(E, χ̄2) = 0,

and likewise for the analytic ranks. More precisely, the cyclic cubic field cut out
by χ1 is given concretely by

Hχ1 = Q(α) where α satisfies α3 − α2 − 6α + 7 = 0.

The Mordell–Weil group E(Hχ1) has rank 2, and is generated as a Gal (Hχ1/Q)-
module by the point

P := (2α2 + 3α − 8, 4α2 + 6α − 10)

with coordinates in Hχ1 .
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Fix the prime p = 7, and let ζ3 be the unique cube root of unity in Q7 which is
congruent to 2 modulo 7. Fix a primitive 6th root of unity ζ6 = −ζ̄3, so ζ3 = ζ 2

6 .
After letting σ be a generator of the Galois group Gal (Hχ1/Q), let

Pχ1 = P + χ̄1(σ )Pσ + χ̄1(σ
2)Pσ 2

,

Pχ̄1 = P + χ1(σ )Pσ + χ1(σ
2)Pσ 2

.

A numerical evaluation of the p-adic logarithms shows that

logE,7(Pχ1) = −199213220217977173722637405653124 · 7 mod 738 (85)

logE,7(Pχ̄1) = −61436332416679587407622380051451 · 72 mod 738.

Turning now to the Gross–Stark unit attached to g, the defining polynomial of
the sextic field Hχ is chosen to be x6 + 2x5 − 2x4 − 14x3 + 55x2 + 19x + 343,
whose roots generate the group of 7-units in Hχ . Let u be the unique 7-adic root
of this polynomial satisfying ord7(u) = 3, and set

uχ :=
∑

σ∈Gal (Hχ /Q)

χ̄(σ )⊗ uσ ,

uχ̄ :=
∑

σ∈Gal (Hχ /Q)

χ(σ)⊗ uσ .

An evaluation of the 7-adic logarithms of these units yields

log7(uχ ) = 793452521874901120340916121448× 7 mod 738,

log7(uχ̄ ) = 2536773629823487601064250408052× 7 mod 738,

and

log7(uχ )+ log7(uχ̄ ) = 475746593099769817343595218500× 72 mod 738.

(86)
Let

g := E1(1, χ−1), h := E1(χ1, χ2),

and take the stabilization

ğ := (g(q)− g(q7))− (−ζ−1
6 + 1)(g(q2)− g(q14))

in (classical) level 2 · 7 · 57 with U2-eigenvalue 1. These are also 7-adic modular
forms of level 114 = 2 · 57. Letting γ̆ be the element in the dual space which
sends ğ to 1 and the other stabilization of E1(1, χ−1) to zero, a computation
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of the p-adic iterated integral (by far the most resource intensive part of the
experiment) reveals that∫

γ̆

f · h = −1264003828062411821439581214808 mod 736. (87)

A direct comparison of (87) with the invariants obtained in (85) and (86) shows
that ∫

γ̆

f · h = 64
7 · 9

logE,7(Pχ1) logE,7(Pχ̄1)

(log7(uχ )+ log7(uχ̄ ))
mod 736.

Replacing ğ by the other stabilization of E1(1, χ−1), with U2-eigenvalue
−ζ−1

6 + 1, and defining γ̆ accordingly, just multiplies the integral value by ζ 2
3 ;

and likewise, taking ğ to be a stabilization of E1(χ
−1
1 , χ−1

2 ) and h := E1(1, χ) in
the integral changes its value by at most a cube root of unity. This is as predicted
by Conjecture ES.

EXAMPLE 7.2. Consider the case where

E : y2 + xy + y = x3 − 5x − 8

is the elliptic curve of conductor 2 · 13 denoted 26a in the tables of Cremona.
Write f for the newform of weight two attached to E . Let η1 be an (even) cubic
character of conductor 7, and let η2 be the (odd) quadratic character of conductor
3. Define χ1 := η1η2, an odd sextic character of conductor 21, χ2 := 1, and
χ := χ1χ2 = χ1. (This rather roundabout notation is chosen just to align with
that in Section 7.1.) Letting g := E1(1, χ−1) and h := E1(χ1, χ2) = E1(χ, 1)
= E1(1, χ), the representation Vgh is given by

Vgh = L ⊕ L ⊕ L(χ)⊕ L(χ̄),

where L = Q(ζ3) is the field generated by the values of χ . A descent calculation
reveals that

E(Q)L = 0, r(E, χ) = r(E, χ̄) = 1,

and likewise for the analytic ranks. The cyclic sextic field cut out by χ is given
by

Hχ = Q(α), where α satisfies α6 − α5 + 3α4 + 5α2 − 2α + 1 = 0.

The Mordell–Weil group E(Hχ ) has rank 2, and is generated as a Gal (Hχ/Q)-
module by the point
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P := (2α5 − 6α4 + 8α3 − 10α2 + 4α − 23,−50α5

+ 38α4 − 134α3 − 36α2 − 242α + 50)

with coordinates in Hχ . (This point is the image of one on the quadratic twist
of E by −3 over the cyclic cubic field Hη1 cut out by η1.) The points Pχ and
Pχ̄ , and the units uχ and uχ̄ , are now constructed in an analogous manner to
Example 7.1.

We take p = 13. Noting here a2(g) = 1 + ζ−1
6 with ζ6 a primitive sixth root

of unity, we replace g by its stabilization

ğ := (g(q)− g(q13))− (g(q2)− g(q26))

in level 2·13·21, and let γ̆ be the element in the dual space which sends ğ to 1 and
the other stabilization to zero. Embedding Q(ζ6) in Q13 so that ζ6 ≡ 4 mod 13,
we find∫

γ̆

f · h = −1183909055963560023118938339892601× 13 mod 1330.

It was then checked to 30 digits of 13-adic precision that∫
γ̆

f · h = 4
13 · ζ6

logE,13(Pχ ) logE,13(Pχ̄ )
(log13(uχ )+ log13(uχ̄ ))

,

as predicted by Conjecture ES.

REMARK 7.3. The experimental work in this paper fell into two phases—one of
discovery and one of verification—between which Conjecture ES was gradually
formulated and refined. Formula (45) and Examples 3.11, 4.1, and 7.1 belong to
the former phase, and the remaining examples to the latter. One notable feature
which eluded the authors at the outset was the possibility of nonvanishing of the
p-adic iterated integral in ‘genuine rank-2’ settings. This discovery was made
experimentally in the companion paper [DLR1, Example 6.1], and it was this
experiment which led to the definitive formulation of the conjecture.
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Appendix. Digest of numerical examples

The following table summarizes some of the salient features of the numerical
examples presented in support of Conjecture ES. It is intended as a navigational
guide for the reader. Each numbered example involves a choice of weight-one
modular forms g and h of some common level N . This level, the dimensions of
the irreducible summands of the tensor product representation Vgh := Vg ⊗ Vh ,
and the image of each of those irreducible representations as an abstract group
are given in the second, third, and fourth columns of the table, respectively.
(Here, Dn is the dihedral group of order n.) Each numbered example then
involves a further choice of one or more elliptic curve E and one or more
primes p with gcd(N , p) = 1. The curve E always has conductor dividing
N p (and thus the attached form f has p-adic level dividing N ). The Cremona
labels of the curves E are shown in the fifth column, and the ranks with which
the irreducible summands of Vgh occur in the Mordell–Weil group of E are
given in the sixth. For reasons of space we do not show the different primes
p considered; note however that whether p was chosen to divide the conductor
of E or not can be readily deduced by comparing columns ‘Level’ and ‘Curves’.
The examples in the table are grouped under headings indicating the nature of
the points constructed.



Stark points and p-adic iterated integrals 93

Ex. Level Dimension of Vgh Galois groups Curves Ranks

Classical Heegner points over ring class fields of imaginary quadratic fields
3.11 83 2+ 1+ 1 D6 × 1× C2 83a 1+ 1+ 0
3.11 83 2+ 2 D6 × D6 83a 1+ 1
3.12 79 2+ 2 D10 × D10 79a 1+ 1
3.14 57 2+ 1+ 1 D6 × 1× C2 57b 2+ 0+ 0

Heegner points arising from a Shimura curve parameterization
3.15 35 2+ 1+ 1 D6 × C2 × 1 35a 1+ 1+ 0

Stark–Heegner points over ring class fields of real quadratic fields
4.1 145 2+ 1+ 1 D8 × C2 × 1 17a 1+ 1+ 0

Points arising both as Heegner and Stark–Heegner points
4.3 155 1+ 1+ 1+ 1 1× C2 × C2 × C2 155a 1+ 0+ 1+ 0
4.3 155 1+ 1+ 1+ 1 1× C2 × C2 × C2 155c 1+ 1+ 0+ 0

Points over fields cut out by the projective representations attached to exotic forms
5.3 133 1+ 3 1× A4 91a, 91b 1+ 1
5.4 124 1+ 3 1× A4 124a 1+ 1
5.4 124 1+ 3 1× A4 26b, 52b 0+ 2
5.5 283 1+ 3 1× S4 4811a 2+ 0
5.6 148 1+ 3 1× S4 37a, 629a, 629d 1+ 1

Points over abelian extensions of Q
7.1 57 1+ 1+ 1+ 1 C3 × C2 × C3 × C2 42a 1+ 0+ 1+ 0
7.2 21 1+ 1+ 1+ 1 1× 1× C6 × C6 26a 0+ 0+ 1+ 1
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